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Abstract

Gravitational waves can act like gravitational lenses, affecting the observed
positions, brightnesses, and redshifts of distant objects. Exact expressions for
such effects are derived here in general relativity, allowing for arbitrarily-
moving sources and observers in the presence of plane-symmetric gravita-
tional waves. At least for freely falling sources and observers, it is shown that
the commonly-used predictions of linear perturbation theory can be gener-
ically overshadowed by nonlinear effects; even for very weak gravitational
waves, higher-order perturbative corrections involve secularly-growing terms
which cannot necessarily be neglected when considering observations of
sufficiently distant sources. Even on more moderate scales where linear effects
remain at least marginally dominant, nonlinear corrections are qualitatively
different from their linear counterparts. There is a sense in which they can, for
example, mimic the existence of a third type of gravitational wave
polarization.

Keywords: gravitational lensing, gravitational waves, perturbation theory

(Some figures may appear in colour only in the online journal)

1. Introduction

Some of the most important potential signatures of gravitational waves are associated with
their effects on the propagation of light. Collections of null rays can be deflected, sheared,
delayed, or otherwise altered as they travel through a gravitational wave. Indeed, most
contemporary attempts to observe gravitational waves rely on measurements of the relative
time delays which accumulate as light travels between material bodies. This is particularly
clear for interferometric detectors [1], where one or more beams of light are circulated
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between collections of mirrors and then recombined to reveal their relative phases. Efforts to
detect gravitational waves using pulsar timing arrays [2] exploit similar principles, but instead
make use of time intervals observed on the earth between radio bursts emitted by distant
pulsars. Besides temporal effects such as these, gravitational waves can also affect obser-
vations of an object’s sky location, brightness, shape, and so on [3-9].

Almost all prior discussions of these phenomena have been perturbative, involving
calculations which are valid only through first order in the gravitational wave amplitude (see,
however, [3, 10—13]). This has been justified, at least implicitly, by the minuscule size of even
these lowest-order terms: in most cases of astrophysical interest, the gravitational wave strain
amplitude € is much smaller than unity. Enormous technological effort is required to detect
such waves at all, and waveform measurements which are accurate to more than a handful of
decimal places cannot be expected for quite some time. In this context, it might appear
reasonable to dismiss higher-order corrections as uninterestingly-small. One of the goals of
this paper is to show that such reasoning can be misleading. Even if a dimensionless
observable associated with a gravitational wave of amplitude ¢ < 1 is bounded by
€ X (number of order 1) in linear perturbation theory, higher-order corrections are not
necessarily bounded by €2 x (another number of order 1). The coefficient in front of the €2
term can instead grow enormously with the distance between a light source and its observer,
implying that nonlinearities may be significant even when considering observations of very
weak gravitational waves. Nonlinear effects also tend to have very different observational
signatures from their lower-order counterparts, further increasing their potential detectability.

Although it does not appear to have been previously pointed out in this context, the
existence of large higher-order corrections is well-known in many types of perturbative
calculations. A simple example is provided by the Mathieu-type equation

Em) + %ef(u)cos u=>0. (D

If u denotes an appropriate phase coordinate, £2(1) may be shown to describe a particular
metric component associated with a linearly-polarized, ‘monochromatic’ gravitational plane
wave with strain amplitude e. Moreover, the coordinate system where this is true is
constructed such that there is a sense in which electromagnetic observations of distant objects
have properties which can be read off directly from &2 (). Solutions to (1) therefore serve as a
convenient proxy for understanding nonlinear effects associated with monochromatic
gravitational waves in general relativity. Assuming ¢ < 1 while adopting convenient initial
conditions,

Ew) =1 +€cosu+é€2(3coszu—u2)+0(€3). ()

The magnitude of the second-order term in this expansion clearly overtakes the first when
|u] ~ €12 > 1, signaling that the linear approximation fails for large |u|. This occurs no
matter how small ¢ may be; weaker amplitudes merely delay such problems to larger scales.

We show that similar effects arise for a variety of gravitational wave observables in
general relativity, thus implying that the results of linear perturbation theory cannot neces-
sarily be applied on large scales. As a model, geometric optics is considered in the presence of
a plane-symmetric gravitational wave. This may be viewed as an idealization of the system
illustrated in figure 1, where observations are performed sufficiently far from a gravitational
wave source that the curvature of the wavefronts may be neglected. Similar models are
common (though restricted only to first-order metric perturbations) in, e.g., descriptions for
how gravitational waves can affect pulsar timing measurements [2, 14].
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Figure 1. Schematic of a physical system which could correspond to the model
considered in this paper. A ‘source’ S emits electromagnetic radiation which is viewed
by an ‘observer’ . In between these objects, spacetime is assumed to be
approximately flat except for a nearly-planar gravitational wave. This wave may be
generated by a distant binary, although all considerations here are restricted to the
boxed region, and are therefore indifferent to the precise nature of the wave generation
mechanism.

Despite this, real astrophysical observations cannot rely solely upon plane wave calcu-
lations. Deviations from planarity, waves propagating in multiple directions, nonradiative
metric perturbations, and other effects could all be significant in observationally-relevant
systems. Although calculations which take into account many such effects have been per-
formed through first post-Minkowskian order [7, 15], the optical characteristics of nonlinear
gravitational waves have been essentially unexplored in this context. Moreover, it would
likely be difficult to understand the implications of any such calculations even if they did
exist; the known first-order expressions are already extremely complicated in their most
general forms. Plane waves are, by contrast, sufficiently simple that their physical effects can
be thoroughly explored even in the nonlinear regime. At the same time, these waves remain
sufficiently complicated to be interesting, and also to capture much of the relevant physics.
Results obtained using plane wave descriptions may therefore be useful in the construction of
specific hypotheses whose generality can later be tested using more complicated models. The
technical details of the plane wave problem can also be used to suggest potential simplifi-
cations in more general calculations.

A completely separate motivation for considering plane wave spacetimes follows from a
mathematical device known as the Penrose limit [16—18]. This provides a sense by which the
geometry near any null geodesic in any spacetime is equivalent to the geometry of an
appropriate plane wave. It can be interpreted as a statement that the metric in a small region
around any sufficiently-relativistic observer in any spacetime is equivalent to that of an
‘effective plane wave.” Although we make no attempt to prove it, the Penrose limit suggests
that (at least some types of) observations performed by ultrarelativistic observers can in
general be reduced to analogous observations in effective plane wave spacetimes.

Section 2 reviews gravitational plane waves in general relativity, first from the viewpoint
of perturbation theory, and then as exact solutions to Einstein’s equation. Relations between
these two perspectives and their relative advantages are described in detail. Next, section 3
considers the physical consequences of plane wave spacetimes by deriving exact time delays,
frequency shifts, observed sky positions, area distances, and luminosity distances. With
appropriate identifications, some of the resulting expressions are only slightly more
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complicated than their linearized counterparts. Formal perturbative expansions are never-
theless derived in section 4 and then applied to specific examples in section 5.

1.1. Notation and conventions

The metric signature here is +2, ¢=G =1, the Riemann tensor satisfies
Rupe by = 2Vi4 Vo, for any w., Latin letters a, b, ... denote abstract indices, Greek letters
U, U, ... denote four-dimensional coordinate indices, and i, j, ... are used as two-dimensional
coordinate indices associated with directions transverse to the background gravitational wave.
When convenient, transverse coordinate components are indicated using boldface symbols
without indices (e.g., ; = (¥)y, ;/ljwivf =wyv,andtry = d;i%,)- The one exception where the
boldface symbol doesn’t correspond to its component counterpart is the 2 x 2 identity matrix
(I);j = 6;. Lastly, overdots are used to denote derivatives with respect to a phase coordinate u,

s0 y; = dy; /du.

2. Gravitational plane waves

Before describing how light propagates in a gravitational plane wave, it must first be
explained precisely what a plane wave is. Although the concept is clear for a scalar field in flat
spacetime, subtleties arise when considering curved geometries or fields with nontrivial
tensorial structure. This difficulty is reflected in part by the two distinct perspectives on
gravitational plane waves—one perturbative and one exact—which are common in the lit-
erature. While both of these perspectives are individually well-known, the relations between
them are not. This section clarifies the situation, and also remarks on special types of plane
waves.

2.1. Approximate plane waves

Almost every textbook on general relativity discusses gravitational waves as linear pertur-
bations on a flat background spacetime [19, 20]. To review, suppose that there exist coor-
dinates (¢, x', x2, z) in which the metric components can be approximated by
8y =My + €hy + O (€?), where ¢ < 1 is a dimensionless expansion parameter and 1, 1s the
Minkowski metric. It is also typical to adopt the transverse-traceless, or “TT’ gauge, in which
case h,, = n**h,, = n*“d,h,, = 0. These constraints on the metric perturbation can always be
imposed in connected regions of spacetime where the linearized vacuum FEinstein equation
holds [21]. Imposing TT gauge in such a region, the first-order vacuum Einstein equation
reduces there to the ordinary flat-spacetime wave equation for each coordinate component of
the perturbation: (=97 + V2)h,, = 0.

The solutions of interest here represent plane-symmetric gravitational waves propagating
in vacuum. If the spatial projection of a plane wave’s direction of propagation is identified
with 0/0z, the only components of the metric perturbation which might not vanish are A,
where i = 1, 2. This 2 x 2 symmetric matrix must be trace-free, and can depend only on the
‘phase coordinate’ u = (f — z)/~/2. The first-order line element for an arbitrary plane wave
propagating in the z-direction is therefore

ds? = =di® + [ 8 + ehy(u) Jdx'dx/ + dz? + O(€?), (3)
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where

h h

hu) = +)  hy(u) ’ @
hy(u) —h.(u)

and h(u), hy(u) represent the waveforms associated with the ‘+’ and ‘X’ polarization states.
A plane wave is said to be linearly polarized if hy (or h;) can be made to vanish via some
constant rotation of the xl, *% coordinates.

2.2. Exact plane waves

The exact theory of gravitational plane waves is often presented very differently from its
linearized counterpart. One way to motivate an exact plane wave solution in general relativity
is to first search for those geometries which share—independently of Einstein’s equation—the
symmetries associated with more familiar plane waves in flat spacetime. Consider, for
example, a scalar field with the form f = f (¢ — z) in special relativity. This is clearly sym-
metric with respect to the two spacelike translations 0/0x’ and the single null translation
0/0t + d/0z. Less obviously, scalar plane waves are also preserved by

()c"i - zi) + ()c"i + ti), (5)
0z ox' ot ox'

two Killing vector fields which generate rotations in the x'—z planes combined with boosts
along the x' directions. It follows that scalar plane waves in flat spacetime are preserved by at
least five Killing vector fields associated with the geometry through which they propagate.
The same symmetries also preserve electromagnetic plane waves in flat spacetime, thus
motivating a gravitational plane wave in four dimensions as a curved spacetime which admits
at least five linearly-independent Killing vector fields [22]. The resulting metrics are most
commonly-stated in terms of the so-called Brinkmann coordinates (U, V, X!, X?), in which
case

ds? = —2dUdV + Hy(U)X'X/dU? + (dX')’ + (dx?)’. (©6)
Using this as an ansatz, the exact vacuum FEinstein equation reduces to
tr H = 0. (7N

Any 2 x 2 symmetric trace-free matrix H;(U) therefore describes an exact plane wave in
vacuum general relativity. We call this matrix the Brinkmann waveform. It has a direct
geometric significance in the sense that the only independent, nonvanishing components of
the Riemann tensor are

Ryjyj = —Hj;, ¥

where i,j refer to coordinate components associated with the two X' coordinates.
Furthermore, the two independent components of H; correspond to the two possible
polarization states of a gravitational wave in vacuum general relativity. Up to coordinate
ambiguities in the construction of Ry;y;, it follows from (8) that the Brinkmann wave-
form may be obtained using only local measurements. Such ambiguities are minor, and
can be taken into account using only three constants ¢, ¢,, and ¢, [23]. Explicitly, two
waveforms are physically identical if and only if they can be related via the complex
replacement rule

Hy (U) + iHp(U) = ¢;[ Hn(cpU = ¢) + iHp(cpU = ¢;) Jei, 9)
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where ¢, # 0 describes a constant boost along the direction of propagation, c; a constant
translation of the phase coordinate U, and c, a constant rotation. This is sufficiently simple
that it is typically evident by inspection whether or not two Brinkmann waveforms describe
the same physical system.

Physically, a plane wave described by the metric (6) propagates in the null direction
¢% = 9/0V. Up to an overall constant, ¢“ is the unique nonvanishing vector field which is both
null and covariantly constant in any curved region of a plane wave spacetime. Noting that
t, = —V, U, these constraints define the U coordinate up to an overall affine transformation. It
may be interpreted as the phase of the gravitational wave. Interpretations of the remaining
Brinkmann coordinates follow by noting that they form a kind of Fermi normal coordinate
system whose ‘origin’ is the null geodesic V = X' = 0 [17].

Plane waves are extremely simple when described in terms of Brinkmann waveforms. It
is clear from (7) that if H;(U) and H;;(U) are any two vacuum waveforms, Hy;(U) + H;(U) is
also a vacuum waveform. This provides a sense by which plane waves in general relativity
satisfy exact linear superposition; there is no nonlinearity to speak of. Superpositions of this
type are special cases of the more general result that the vacuum Einstein equation is linear for
all metrics within the Kerr—Schild class. More precisely, suppose that there exists some null fa
and some scalar H such that g, = g, + HZ,{, is an exact solution to the vacuum Einstein
equation for some vacuum ‘background’ g,,. If g/, = &, + H'l, 0, is a second exact solution,

the metric g/, = g, + (H + H’)fa@, must be an exact solution as well [24]. For the plane
wave case of interest here, the Kerr—Schild decomposition is recovered by letting
[Z, ={,=-V,U and H = I-I,-jX"Xj , in which case g, is flat. Brinkmann waveforms are very
special, and the linearity of Einstein’s equation which they make manifest is not at all apparent
if plane waves are parametrized using different variables. Nevertheless, the optical observables
discussed below are more conveniently described in terms of different waveforms which (i)
generalize the perturbative h; appearing in (3), and (ii) do not satisfy linear superposition.

2.3. Relating the exact and approximate descriptions

Although the TT-gauge metric (3) describes, at least approximately, the same physical system
as the Brinkmann metric (6), the former expression is not a trivial linearization of the latter.
Understanding how these two descriptions relate to one another requires an appropriate
coordinate transformation. The TT gauge makes sense only at first perturbative order, so a
nonperturbative generalization of this gauge must be sought. We choose to employ those
transformations which preserve, in an appropriate sense, the TT-gauge property that objects at
‘fixed spatial coordinates’ move on timelike geodesics. Additionally, we require that the
planar symmetry of the metric be manifest in the sense that there exist two coordinates x’,
interpreted as parametrizing the 2-surfaces transverse to the gravitational wave, such that the
vector fields 0/0x’ are both spacelike and Killing. These constraints are chosen not merely to
facilitate a simple translation between the perturbative and nonperturbative viewpoints. Much
more importantly, it is shown in section 3 below that the ‘TT-like’ coordinates which they
define are particularly well-adapted to describing nonperturbative optical observables in the
presence of an arbitrarily-strong gravitational wave.

The appropriately-generalized TT coordinates are denoted here by (u, v, x!, x?), and are
known in the literature as Rosen coordinates. They are related to their Brinkmann counter-
parts (U, V, X!, X?) via

1
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u=U, x=E'UX, v=V- %[E(U)E‘I(U)]inin, (10)

where &; (U) is any nonsingular 2 x 2 (not necessarily symmetric) matrix satisfying

EU)=HWEW). (%), =0. an

Any &; with these properties is essentially a Jacobi propagator: Contracting it on the right with
an arbitrary constant vector results in the nontrivial components of a solution' to the geodesic
deviation (or Jacobi) equation [18]. Given any such propagator with the specified properties,
the exact plane wave metric (6) becomes

ds? = —2dudv + Y (u)dxdx’, (12)
where
¥ () = ¥, () = & () &g (). (13)

The implied summation in this last equation is understood to be trivial in the sense that
¥ = 2 &i&yj» or equivalently y = ETE in matrix notation. Regardless, the Rosen line element
(12) naturally splits into a longitudinal component —2dudv and a transverse component
% (u)dx'dx/. The longitudinal portion is flat and Lorentzian, while the transverse portion is
associated with the Riemannian 2-metric v (). We refer to this 2-metric as the Rosen
waveform, and note that it depends only on the phase u of the gravitational wave. It is related
to the Brinkmann waveform H;(U) via (11) and (13).

That the Rosen coordinates are, as claimed, a type of geodesic normal coordinate system
may be verified by noting that every fixed-x’ 2-surface contains a timelike geodesic. More-
over, each such surface actually contains a 1-parameter family of timelike geodesics related
by longitudinal boosts. It also contains a null geodesic along which v = (constant). These
statements can be made more intuitive in terms of the quasi-Cartesian coordinates

1 1

t= ﬁ(v+u), z= \/E(v u, (14)
defined by analogy with standard null — inertial transformations in flat spacetime. The vector
0/0z is now a spatial projection of the wave propagation direction ¢“. Additionally, any
worldline which remains at fixed (x/, z) is a timelike geodesic. More generally, all curves
satisfying dxi/dt = 0 and |dz/d¢| = (constant) < 1 are timelike geodesics. Worldlines
constrained by dx/dt = 0, |dz/dt| = 1 are instead null geodesics. These statements imply
that a large class of geodesics look trivial in Rosen coordinates. Geodesics which are not in
this class can appear quite complicated, however. A generic timelike geodesic may be
specified by choosing initial conditions for its transverse components at some fiducial phase
u = ugy, as well as a constant 4 > 0 which describes motion longitudinal to the wave.
Defining the phase average of the inverse 2-metric by

o= —— [ i@, (15)

u— Uug

! The geodesic deviation equation may be written as ¥ = —Ry in any spacetime, where y denotes the four-

dimensional deviation vector resolved into parallel-propagated tetrad components, R is a 4 x 4 matrix of similarly-
decomposed Riemann components, and overdots represent ordinary derivatives with respect to an affine
parameter [25].
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an arbitrary timelike geodesic may be shown to have the coordinate parametrization

x () =x(ug) + (u — up) ¥~y (uo)x (uo), (16)

v@u) = v(up) + (u - uo)(/l2 + %[7(“0)(7’_1>7(“0)]lj5€i(Mo)x"(uo))- (17)

Geodesics which remain at fixed (x/, z) satisfy %/ (ug) = 0 and 1 = 1.

That the Rosen metric directly generalizes the TT-gauge plane wave (3) follows
from applying (14) to (12), which produces the exact line element ds? = —dt>+
y;(u)dx'dx/ + dz?. Standard perturbative results are therefore recovered if

yij = 5,:,‘ + Gh,:j + 0(62) (18)

and tr kb = 0. It is shown in section 4.1 that such expansions do indeed arise when considering
smooth 1-parameter families of plane wave spacetimes. While the vacuum Einstein equation
is both linear and algebraic in terms of H;; (see (7)), it is a nonlinear differential equation
when expressed in terms of ;. This means that the O (e?) terms neglected in (18) are
generically nontrivial. They may be viewed as corrections due to the higher-order Einstein
equation, or alternatively as higher-order solutions to a family of geodesic equations.

The second of these perspectives follows from the interpretation of the spatial Rosen
coordinates as a lattice of timelike geodesics. The relative displacements of these geodesics
are encoded in ;. Remarkably, this matrix also encodes in a simple way many properties of
the null geodesics which are so central to the calculations of geometric optics. Plane wave
spacetimes are sufficiently simple that most of the information required to characterize the
propagation of light can (i) be embedded in the Rosen-coordinate metric components, and (ii)
this coordinate choice is one for which considerable intuition and experience already exists (at
least perturbatively). For these reasons, the remainder of this paper works almost exclusively
in Rosen coordinates.

More precisely, it is assumed that a particular Rosen coordinate system has been fixed.
While the Brinkmann waveform H;; describing a particular plane wave is unique up to the
relatively simple transformations (9), there exist many physically-equivalent Rosen wave-
forms ;. Indeed, it is clear from (10) that relations between these two types of waveforms are
nonunique and also nonlocal; different solutions to (11) are possible, and different resulting
solutions for &; generically define different ; via (13). This freedom corresponds to the ability
to choose different collections of timelike geodesics as coordinate markers. It can be
described more precisely as the set of all solutions to & = HE for which ET€ is symmetric (a
constraint which is true everywhere if it is true anywhere), and for which y = €' is non-
singular, modulo those solutions which preserve €'€. Fixing a particular H,; while choosing a
fiducial phase uo, any two such solutions &;, &; to (11) must be related by

£/ = £ { &1 (u0)8 (o) + (4 = uo) (r N £ (wo)€ (o) - ' (wo)&'(w) ]} (19)

The complexity of this relation makes it clear that if one is presented with two Rosen
waveforms ;, yij’., it not necessarily obvious by inspection whether or not they describe the
same spacetime. It is nevertheless possible to check equivalence by computing some &; and &;
which generate the appropriate waveforms, and then determining if ££~! and E'€'~! can be
related by the transformation (9) (see (11)).

Although it is rarely discussed, the same ambiguities regarding representations of
gravitational waves arise even in the linearized theory. As a possible counterpoint, one might
object that vacuum, first-order, TT-gauge metric perturbations on a flat background are

8
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known to be invariant with respect to first-order gauge transformations. Such statements
depend, however, on global assumptions such as asymptotic falloff (see section 2.3 of [21]).
If a spacetime is taken to be a literal plane wave, there is no such falloff. If, more realistically,
a plane wave is used only as a model intended to be valid in a finite region of spacetime, the
true asymptotic boundary conditions are external to the modeled region and therefore unu-
sable. From either perspective, the familiar uniqueness of TT-gauge metric perturbations is
lost. If (18) holds, the transformations h;;(u) — h;(u) + ¢; + udy are easily shown to
describe the same geometry through O (¢) for any constant trace-free matrices c;;, dj;.

It is assumed here that a particular Rosen coordinate system has been chosen such that
det & > 0 everywhere of interest. This ensures that a single coordinate patch can be used in all
calculations, and also that the orientations of the x' and X coordinates are identical. As with
any geodesic-type coordinate system, gravitational focusing generically causes Rosen coor-
dinate systems to break down on sufficiently large scales. Restricting to a single coordinate
patch therefore implies an upper bound on the maximum distances over which the calcula-
tions described here can be applied. This bound is, for example, of order (ew)™! in the case of
a monochromatic gravitational wave with angular frequency @ and strain amplitude €. Optical
effects involving larger scales are discussed in [3].

2.4. Rosen metrics: nonperturbative considerations

Suppose that a particular vacuum plane wave has been fixed by prescribing a trace-free matrix
H;j(u). This is equivalent, via (8), to prescribing the wave’s curvature. Rosen waveforms then
follow from (11) and (13), implying that Y (u) is essentially the square of a matrix which
describes the displacements of coupled parametric oscillators attached to ‘springs’ whose
squared natural frequencies” are proportional to H{u). Similar equations arise throughout
physics and engineering, and a variety of methods have therefore been developed to
understand them.

A large class of physically-relevant waveforms can be classified as either ‘burstlike’—
having a large amplitude only for a short time—or ‘continuous,” implying approximate
periodicity. The curvature associated with a burst might be further idealized as vanishing
completely whenever u lies outside a bounded connected region C C R. The spacetime can
then be viewed as a curved region sandwiched between two flat connected regions 7. Such
spacetimes are often described as ‘sandwich waves.” In either of the flat regions where
Hj; = 0, the general solution to (11) is

E(u) = art + I/tbri. (20)

The two matrices ar, br, must be constant and must satisfy (a{ br);;; =0 and
det(ar, + ubr, ) > 0 everywhere of interest. )

The trivial case of a spacetime which is everywhere flat is conventionally described by a
metric in which y; = ;, implying that {; must be a constant orthogonal matrix. This is not
required, however. Regions of flat spacetime can also be covered by coordinate systems
whose ‘waveforms’—computed as squares of expressions like (20)—grow quadratically with
u. Recalling (6) and (10), this corresponds to using noncomoving geodesics as coordinate
markers. While such possibilities are an uninteresting complication in spacetimes which are
globally flat, they can be unavoidable when considering bursts of gravitational waves. If
coordinates are chosen such that y; = §; in one of a sandwich wave’s flat regions, the

2 Einstein’s equation requires that the eigenvalues of H;; have opposite signs, so the instantaneous frequencies in this
analogy are not necessarily real.
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2-metric in the other flat region cannot be prescribed arbitrarily, but must instead be computed
by integrating (11) through the intervening burst of gravitational waves. Cases where
resulting 2-metric is not equal to 6; physically correspond to gravitational wave bursts which
impart permanent displacements (and possibly kicks) to initially-comoving test particles. This
is known as the gravitational memory effect, and is discussed further in sections 4.1.1 and 5.2
below.

Plane waves which cannot be modeled as bursts, but whose curvature is instead periodic
in u, may be understood using different methods. In these cases, € = HE corresponds to a set
of coupled Hill-like equations. Although some methods exist for finding exact solutions to
Hill equations [26, 27], these are rather limited. General properties of periodic waves may
instead be understood using Floquet theory [28]. It follows from this that even though &; and
% = &y do not typically share the periodicity of Hy;, knowledge of &; in only one oscillation
period can be used to extend it everywhere. Although we shall not do so here, such methods
can be used to greatly enlarge the validity of perturbative calculations. Another interesting
consequence of Floquet theory is that it can be used to find which waves are ‘unstable’ in the
sense that they admit exponentially-growing &;. Such dramatic effects require very large
gravitational wave amplitudes, however.

3. Nonperturbative optical observables

How, at least in principle, might a gravitational wave be detected? Perhaps the most obvious
observable associated with any spacetime is its curvature, and it follows from (8) that
knowledge of R, ¢ for any gravitational plane wave immediately implies knowledge of its
Brinkmann-type waveform. Local experiments may therefore be used to directly determine
Hji(u) for all phases u in which measurements are performed. Not all interesting observables
are local, however. Pulsar timing techniques, for example, use radio bursts which are
expected to travel through many gravitational wave cycles before reaching the earth.
Observed properties of these bursts are therefore modified by a kind of integrated curvature
which depends nontrivially on Hj;.

This section considers more generally those nonlocal observables which describe the
appearance of a luminous source in the presence of an intervening gravitational plane wave.
Exact equations are derived for the observed spectrum, sky location, angular size, and
brightness of each such source. Some (though not all) of these observables have been con-
sidered previously in [3], but in forms which were difficult to interpret and which could not be
immediately compared to known perturbative results. Where overlap exists, the new
equations obtained here are far simpler both to understand and to apply. Throughout, grav-
itational waveforms and polarization content are unconstrained, and light is assumed to follow
the laws of geometric optics.

The basic system we consider is illustrated in figure 2(a). There, a source is abstracted to
a timelike worldline S and its observer to another timelike worldline (@. Images then cor-
respond to past-directed null geodesics from @ to S. Given any observation event p, € O,
exactly one image is assumed to exist in all cases considered here®. The remainder of this
paper explores the properties of these images. More complicated optical problems (such as the
interferometer illustrated in figure 2(b)) can typically be understood as multiple copies of the

3 There exist special source-observer configurations where pointlike sources appear as extended images. Plane wave
spacetimes can also admit multiple discrete images on very large scales which cannot be described by the single
Rosen coordinate patch assumed here [3, 12, 32].
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(a) (b)
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Figure 2. (a) Diagram illustrating the observation of a pointlike source S by an
observer O. The observation event p,, is connected to the emission event p, by a light
ray whose tangent can be computed as the gradient of Synge’s function o. Source and
observer 4-velocities are denoted by U5 . (b) A two-arm interferometer with an

0,8
observer O flanked by two mirrors S ;. The relative phases of the light compared at p,,
determine the difference 67z, in their emission times. This system may be viewed as a

composite the one in part (a).

basic system shown in figure 2(a). Unless otherwise indicated, the results of this section place
no restriction on the motions of the source or the observer.

3.1. Time of flight

Observations such as those illustrated in figure 2(a) provide a natural mapping between
‘observation times’ and ‘emission times.” More precisely, the light rays which connect S to @
may be used to relate the proper time 7, recorded by © at an observation event p, € O to the
proper time 7, recorded by S at the emission event p, € S. Such relations play an important
role in all optical calculations performed below. The redshift or blueshift can, for example, be
computed from dz,/dz,. Additionally, the time difference dz, (or the phase shift) for the
interferometer illustrated in figure 2(b) follows by successively applying the maps 7,(z,)
applicable to each pair of optical elements.

As a first step towards computing 7,(z,) for the simpler system in figure 2(a), consider
instead the gravitational wave phase u, (1, ) at p, as a function of the gravitational wave phase
u, at p,. Although the plane wave phase coordinate u is null, the difference u, — u;(u,) may
nevertheless be interpreted as a ‘time of flight’ for a photon traveling from S to @. This
interpretation is supported by noting that (i) the u coordinate is unique up to a constant affine
transformation, and (ii) the restriction of u to any timelike geodesic is, up to a positive
constant, a proper time for that geodesic.

The phase relation ug(u,) can be computed using Synge’s function o (p, p’). This is a
two-point scalar which takes two events as arguments and returns one half of the squared
geodesic distance between those events [25, 29, 30]. Plane wave spacetimes are one of the
few examples where this function is known explicitly (although generic post-Minkowskian
approximations are available [31]), with the Brinkmann form appearing in, e.g., [18] and the
Rosen form in [30]. Given two events p, p’ and their associated Rosen coordinates (u, v, x'),
', v', x"),

1 ) .
o(p, p) =~ =) = V) + [T ] - ) - XY 1)
where (y~1y~! denotes the matrix inverse of the average (y~') defined by (15), except that this

average is to be evaluated between u’ and u instead of between 1 and u. For the trivial case of
a spacetime which is globally-flat, there exist coordinates where y; =J; and so

11
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o (p. p) = —( — w)(v = V) + t|x —x'P = L[~ = /P + |x = x'P + z — 2)’]. The
general expression (21) for the geodesic distance in an arbitrary plane wave differs from
this only via the replacement I — (y~!)"! in the transverse directions.
The existence of the null geodesic which connects the observation and emission events
illustrated in figure 2(a) implies that
o(p,.p)=0(p.p) =0, (22)

SO
1 ) )
Uy — Ug = E(Vo - Vs)_l[<7_1>_1]lj(xo = x:)' (X — X5)/ (23)

whenever v, # v,. Using the ¢ and z coordinates defined by (14) instead results in the
equivalent

o= te= L] (e = 0 = )+ (20— 207 (24)

Supplementing these equations with appropriate parametrizations for the source coordinates
in terms of the gravitational wave phase allows explicit solutions to be obtained for u (u,) or
1, (t,). If the source and observer move on geodesics, the necessary parametrizations are given
by (16) and (17).

Once u,(u,) is known, it may be used to relate proper times associated with the obser-
vation and emission events. The observer’s proper time 7, is related to the gravitational wave
phase via

dr, _ 1
du ue,’
where U¢ denotes the observer’s 4-velocity and ¢9 = d/dv the gravitational wave’s

propagation direction. Noting that ¢“ is Killing, this rate is a constant for geodesic observers.
More generally, we parametrize it by

(25)

2, = —(ﬁu;‘jfa)‘l > 0, (26)

which coincides with the A appearing in (17) if the motion is geodesic. Regardless of
acceleration, a (not necessarily constant) 4, can be defined analogously for the source, in
which case proper times along S and O are related via

= (45/40)

dz, du,

dn duy

27)

If the source and the observer both move on geodesics, 4,/4, is a constant and this equation is
trivially integrated to obtain 7;(z,) in terms of u(u,).

3.2. Frequency shifts

The derivative dz;/dz, appearing in (27) is directly observable. If a physical process on S
occurs with a characteristic frequency w,—perhaps the frequency of a spectral line or the
angular velocity of a pulsar—which is much larger than any frequencies associated with the
gravitational wave or with the acceleration of S, such a process would be observed on O to
occur at frequency @, = (dz,/dz,)w;. This reduces to the familiar Doppler effect in flat
spacetime, but more generally includes curvature corrections as well. One way to compute o,
is to implicitly differentiate (23) and then substitute the result into (27). Alternatively, note
that the gradient of Synge’s function o (p,, p,) is tangent to the light ray which connects p; to

12
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po- It is also parallel-transported along that ray, implying that

usv,
= Lola? (28)
Wy Uu;Viyo

Wy

in terms of the observer and source 4-velocities Uy, ;. The gradient in the numerator here is
understood to be evaluated at p, while the gradient in the denominator is understood to
instead be evaluated at p;. It follows from (28) that w, = w, if U is equal to U¢ parallel-
transported along the relevant light ray, a generalization of the flat-spacetime result that the
Doppler effect vanishes for comoving objects. Such a condition is, however, physically
unnatural in curved spacetimes; the frequency shift is generically nonzero.

Equation (28) may be directly evaluated using (21) and (26). The result is conveniently
expressed in terms of the 2-vectors

<y_l>_l(xs - x0—>s) <7_1>_1(xs—>0 - xa)
k() = ) k‘v = 9 29
\/Ej'()(u() - ux) \/E/ls(uo - us) ( )
where
Xoos =X — (”0 - MS)<}'_1>7(MO)X'0, Xso = X5 + (”o - Ms)<7_l>7(us)xs~ (30)

All averages here are to be evaluated between u, and u,, while, e.g., X, denotes a u-derivative
of the observer’s transverse coordinates evaluated at p,. Up to overall factors included for
later convenience, k, and k, are essentially transverse separations between the source and the
observer evaluated either at the emission phase u, or at the observation phase u,. Causality
does not allow any observation at u = u, to depend on properties of the source at that phase
(except for special alignments where u, = u,,), so the relevant observables instead involve an
extrapolation of the source’s position from u = u; to u = u, performed using the geodesic
which is tangent to S at p,. Comparing (16) and (30), x,_,, represents precisely this kind of
‘osculating extrapolation.” Similarly, x,_ ; extrapolates the transverse location of the observer
from u = u, to u = u; using the geodesic tangent to © at p,. In terms of k, and k;, the
frequency ratio in the presence of an arbitrary plane wave is

-1

-1 iz J -1 iz J
@, dr, 7; (uf)ksks _y,“ (Mo)koko
—2 === = (A /)| 1+ 2 T (31)
Wy dz, 1+ Y (up)k,k;

This is valid for arbitrarily-moving sources and observers. It reduces in the flat limit , — &;
to an expression for the ordinary Doppler shift. More generally, there is a sense in which the
effects of relative motion and spacetime curvature can be disentangled by considering the
time derivative of w,/w, [10, 11, 33].

Equation (31) simplifies significantly if the source and observer are assumed to move on
geodesics which remain at fixed spatial coordinates. When this occurs, 4, = 4, = 1 and

— <7_1>_1(xs - xo)
\/E(uo - us) ‘

The frequency shift then depends on the difference between inverse Rosen waveforms at the
emission and observation events:

®, = @ _ [7,»1- (uo) =7 (ux)]koko .
e L+ 75 (uo)ky k,

ko = ks (32)
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One deficiency with this formula is that k) has no immediate physical interpretation. It is
closely related, however, to the observed position of the source. As explained in section 3.3,
that position is naturally described in terms of a unit 3-vector (k;, 12”). Using (39) to relate this
vector to k,, the frequency shift (33) can be rewritten as

= 0 cos 0 L [T = )y~ (u)ET () [ (34)
where 6 denotes the observed angle between the source and the gravitational wave
propagation direction (see (41)). Additionally, &; is a square root of y; in the sense of (13).
Although such roots are not unique, a particular choice must be made to in order to define an
observer rest frame with respect to which the components of ky are defined. The &;; appearing
in (34) is the same as that used in (38) to construct this frame.

Although exact, (34) is very similar to the first-order perturbative formula typically used
when discussing gravitational wave measurements via pulsar timing [2, 14] or Doppler
velocimetry [34-36]. In terms of the first-order metric perturbation eh;; which appears in (3),
it is well-known that

Do — Bs _ %(l + cos )1 hy () — hy(up) Jk + O(€2). (35)
Wo

The physical meanings of the 6, ki, and u, which appear here are unchanged in the exact

result (34), although their time-dependence is no longer trivial and relations to coordinate

quantities are different. The metric difference € [h;; (1) — hy;(u,)] appearing in the first-order

result is, however, generalized to

8y = & (o) ()& (o) = [ 77" (o) = 17 (u0) | (o) & (). (36)

Direct approximations to (34) are discussed further in section 4.2.3.

3.3. Source locations

Gravitational waves may affect not only a source’s apparent spectrum, but also its location on
the sky. Such locations can be compactly described in terms of a 3-vector which resides in the
observer’s instantaneous rest frame. More precisely, consider an orthonormal triad (ef, ¢*)
which is orthogonal to the observer’s 4-velocity 5. It is convenient to align this triad such
that one of its components is locked to the direction of propagation associated with the
background plane wave. Projecting the null propagation direction ¢“ into the observer’s rest
frame and normalizing, the longitudinal frame vector is then

eff = N27,( g% + UML)l = N2 2004 — U, (37)
It is also convenient to define the remaining two frame vectors by
.0 0
et = &7 r(u s, 5+ <) (38)
v ox

where € is a particular matrix satisfying (13). It is easily verified that the resulting triad is
indeed orthonormal and orthogonal to Uj. It is also parallel-transported for geodesic
observers. If @ is not a geodesic, another frame—perhaps one which is Fermi-Walker
transported—might be more natural. We nevertheless apply these definitions in all cases.

Recalling that the direction of the light ray connecting p, to p;, is given by =V, 0 (p,, p,),
its rest-frame components describe the observed location of S. If the unit-normalized versions
of these components are denoted by (Ief, lgua), use of (21) results in

14
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P 2Tk o Lok (uok,

LKy (uk, Ky (uk,”

(39)

where k, is defined by (29). By construction, |I€l ?+ 12“2 = 1. These expressions hold for
arbitrarily-moving sources and observers in arbitrary plane wave spacetimes.

It is often sufficient to consider only the transverse 2-vector k. This is proportional to
& " (u,)k,, the first factor of which takes into account that the transverse 2-metric
¥y (u,) = §T (u,)E(u,) is not Euclidean at the observer’s location. The vector k, is more
interesting, however. Recalling its definition, the observer’s transverse location x, does not
enter on its own, but instead appears via the osculating projection x,_ . Objects therefore
appear to be not where they ‘are,” but where they ‘would have been.” This can be made more
clear in terms of the distance measurements considered in section 3.4. Using (42) and the area
distance rye, (43) in (39),

172

R 1 det(y~") ET(u )y Y (X, — Xoey).

kJ_ =
Tarea \/det}'_l(u,,)}’_l(us)

(40)

It is sometimes convenient to parametrize source locations by angles instead of vectors.
Let (0, ¢) be polar coordinates constructed in the observer’s sky such that @ corresponds to
the apparent angle between the source and gravitational wave, while ¢ = 0 coincides with the
direction of (e{');. Then,
~ cos ¢ sin 6
i ( ¢

[ =

= in & sin 9), ky = cos 6. (41)

Combining this with (39) shows that the observed latitude € explicitly satisfies
tan2(0/2) = k7" (u,)k,. (42)

One interesting characteristic of position measurements is that they can be used to deduce
the presence of a gravitational wave even when observing very nearby sources. While
knowledge of Ky at any one instant isn’t particularly meaningful, its time evolution is. This
evolution can be nontrivial no matter how close S happens to be to ©. It is evident from the
presence of y~!(u,) — 77 (uy) in (33) that useful timing measurements are instead restricted
to source-observer separations over which significant differences can be expected in the
gravitational waveform.

3.4. Distances

The next observable we consider is the area distance r,.,. If a source’s angular size is
resolvable and found to be equal to the small solid angle €2 in the observer’s sky, there is a
sense in which its physical area is Qr2,., [12]. This is somewhat technical to derive, so we
defer to the result obtained in [3] using Brinkmann coordinates. Translating that into Rosen
coordinates while using (42) results in

172

. V2201t = uy) det(y™) _ @3)

1 + cos 8 \/dety‘l(ug)y_l(us)

The first fraction here is essentially an affine distance to the source, while the second corrects
this by taking into account the expansion of a thin bundle of light rays which converge on p,,.

15
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That latter correction is remarkably simple in terms of the Rosen waveform, depending only
on the arithmetic and geometric averages of y~! between the source and the observer.

It can also be useful to describe a source in terms of its luminosity distance ry,,,, which is
related to the area distance via

dr, )
Mum = (_Y) Tarea- (44)
dz,

One factor of dz/dz, occurs here due to the frequency shift experienced by light traveling
from S to @, while the second arises from considering bundles of light rays which converge
on p; rather than p,. An explicit formula for the luminosity distance follows immediately by
substituting (31) and (43) into (44). For the special case where both sources and observers
move on geodesics at fixed spatial coordinates, the frequency shift is given by (34) and hence

172

2 (uy — uy) det(y~")
L+cos® | Jdety="(u,)y " (uy)

Flum =

2
[ &7 sur g [
x|1-2

2 1 + cos @

(45)

4. Perturbative approach

Equations (23), (31), (40), (43), and (44) provide exact prescriptions for the time delays,
frequency shifts, positions, and distances of generic sources in plane wave spacetimes. We
now consider their perturbative expansions. This is done for two reasons: first, it provides a
clear connection between the exact results derived here and the various approximations which
have appeared in literature. Second, some physical implications of the optical formulae are
more easily understood when written in an approximate form. In particular, the results of
section 3 can be expanded beyond the lowest-order approximation which has typically been
considered in the past, and doing so demonstrates that some higher-order corrections grow
very rapidly with the source-observer distance.

Two types of nonlinearity arise here. The first of these has its origin in the nonlinearity of
Einstein’s equation as applied to the Rosen-type plane wave metric (12) and its associated
waveform Yij- Perturbative expansions of this waveform are considered in section 4.1, and are
sufficient to qualitatively understand that nonlinear effects can accumulate at large distances.
The various gravitational wave observables are, however, nonlinear functionals of Vi This is
taken into account when deriving explicit second-order expansions for various observables in
section 4.2.

4.1. Expanding the metric

As explained in section 2.2, gravitational plane waves in general relativity can be trivially
described in terms of the Brinkmann waveform H;; which appears in the line element (6). This
directly determines the curvature, and is restricted by the vacuum Einstein equation only to be
trace-free. The observables discussed in section 3 are not, however, written in terms of Hj;.
They instead depend on the Rosen waveform y;, which is related to Hj; via the nonlinear and
nonlocal expressions (11) and (13). Although the vacuum Einstein equation could be applied
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to find a nonlinear differential equation for the Rosen waveform alone, we take the per-
spective that it is more natural to instead describe a plane wave in terms of H;; and then to
derive y; from that. It is also convenient to view the perturbative expansion performed here
not as an approximation for a single system which involves a small quantity ¢, but rather as an
approximation for an entire family of systems which are smoothly parametrized by €. Orders
in perturbation theory then correspond to differentiations with respect to € evaluated at e = 0.

The precise family of plane wave spacetimes considered here* is defined to be the set of
Brinkmann line elements (6) with

Hjj(u; €) = €5 (w), €= 0, (46)

where the ‘reference waveform’ $);; (1) = d.H;; (u; €) is assumed to be fixed and independent
of e. Additionally supposing that tr $ (1) = 0, it follows from (7) that each spacetime in this
family is an exact solution to the vacuum Einstein equation. The parameter € controls the
amplitude of a wave’s curvature, but not its polarization, frequency, or any other local
properties. As expected from such an interpretation, different members of this family are
physically distinct: choosing any nonzero e¢ and any ¢’ #e, the waveform
Hj; (u; €') = (¢'/€) Hjj(u; €) cannot be transformed into H;; (u; €) using the gauge transforma-
tion (9). It is also clear that the wave disappears entirely entirely in the € — 0 limit.

Given a trace-free $);(u), an associated Rosen waveform ¥ (u; €) may be found by first
constructing a matrix &;(u; €) with the expansion

E(us ) =& () + ... +€"E, ) + ... 47)
Applying (11),
E(O) =0, E(n) = 33‘5(”—1) (48)

for alln > 1. Iteratively solving these equations then results in an approximation for &; (u; €).
Using it together with (13) produces a family of Rosen waveforms yij(u; €) with the
perturbative expansion coefficients

@) = -0y i )] = 3 & . (49)
ptq=n
Recalling (3), we use the more standard notation k(u) interchangeably with y, (u) for the
first-order metric perturbation.

As already emphasized in section 2.3, different Rosen waveforms—corresponding to
different initial conditions for (11)—can be used to describe the same physics. Ambiguities of
this kind are easily resolved for the sandwich waves described in section 2.4, in which case it
is natural to fix a particular waveform by demanding that % = &; = 6; in one of the locally-
flat regions. More generally, however, there does not appear to be any ‘preferred’ choice.

Our approach is to fix a convenient solution for &;, and then to note that all other
possibilities are related via (19). Letting this particular solution satisfy the nonperturbative
initial condition

Gij(uo; €) = 0y, &j(up; €) =0 (50)

* Tt can sometimes be interesting to instead consider families of waves where the curvature depends smoothly on €, u
and u/e. Any portions involving u/e vary rapidly as e — 0, thus evoking the concept of a ‘high-frequency limit’
[37, 38]. Considering such families is equivalent to a type a singular perturbation theory (as opposed to the regular
perturbation associated with (46)). See also the last paragraph of section 4.1.2.
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for some constant uy, it follows from (48) that &, = I and

u uy
S = [dur [ dus$ug, (1) (51)
Uy uo
and for all » > 1. Hence,
g, =&, —&,=0  (nodd), (52)
and
g(n) + g(-,ll—) = (tI‘ E(n))l (I’l even). (53)

Combining these constraints with (49) shows that each y,,, generated by a £ which satisfies
(50) is symmetric and that

ry, =0 (nodd), Yoy = %(tr y(n))l (n even). 54

The familiar tracelessness of the first-order TT-gauge perturbation h =y, therefore
generalizes to all odd-order metric perturbations. It does not generalize to even orders; those
expansion coefficients are instead ‘pure trace.’

Through second order, these results imply that the particular Rosen waveform defined by
(50) is explicitly

u Uy u i 2
y(u;e):1+2€/ dulf duzﬁ(u2)+€2trl%(f du,f duzfj(uz))

+ f *duy f “duy f “dus f ”3du45(u2)5(u4)]1+ o(é). (55)

0

The second line of this equation generically grows with u, which can be seen more clearly if
the waveform is rewritten in terms of the first-order perturbation #;; instead of §); = %h,j
Making this replacement and integrating by parts results in

y(u; €) =1+ eh(u)
1 u I R
et [hz(u) - /Modu1 /uodughz(ug)]l +0(¢). (56)

The trace of A* cannot be negative, so the double integral here—and therefore the second-
order metric perturbation as a whole—typically grows with u. Indeed, there exists an e-
dependent lengthscale beyond which the second-order term outpaces the first. We now
consider two examples which demonstrate this explicitly.

4.1.1. Gravitational wave bursts with memory. Consider a sandwich wave as described in
section 2.4. More specifically, consider an e-dependent family of waves (46) with $); (1) zero
everywhere except in a small region u# € (=9, 0) inside of which the curvature oscillates
several times. Choosing uy < —6 in (50) guarantees that the metric before the burst is trivial:
% (u; €) = 8;;. The metric after the burst must, however, be generated by the square of (20),
where ar,(¢) and by, (¢) are constant matrices determined by the details of the curved region.
If ar.(e) # I or by (e) # 0, the gravitational wave burst is said to exhibit memory [39, 40] in
the sense that it permanently displaces initially-comoving pairs of freely-falling test particles.
It follows from (51) that the first and second-order perturbations are
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(@ = 5hO) = [ du w90, 57
(br)yy = 55O = [ dusiu, (58)
and
| S I
(ar)o = tr[ (arly =5 [ du [ dush (uz)]l, (59)
1 L0
(bF+)(2) =5 tf[(ar+)(1)(br+)(]) - Z/_;; durh (m)]l- (60)

Although gravitational wave bursts with memory can arise from many physical
scenarios, classic discussions [40, 41] consider those waves which are emitted either from the
scattering of multiple masses or the explosion of one mass into multiple unbound
components. Applying the quadrupole formula in such cases suggests that (br, )i = 0.
Assuming this, a coordinate rotation may always be performed together with a rescaling of e
such that

1
@ =55 %) (6)

Now consider second order effects. It follows from (60) that even though by, vanishes at first
order, it cannot vanish at second order. Indeed, tr(bz, )») < O in these cases. Applying (13)
and (20), the second-order waveform is explicitly

yw; e)=1+ e{ ((1) _01) + ie[l + 4tr(a7~1)(2)]1}
+ el u(br), J + 0(e) (62)

when u, > 0. If the first-order waveform inside a burst is schematically of the form
h(u) ~ cos wu and oscillates N ~ wé times, it follows from (60) that tr(bz, )2y ~ —Nw. The
second-order metric perturbation therefore becomes comparable to the first-order perturbation
when

ou ~ (eN)1 > 1. (63)

Of course, ¥y, and 7, are qualitatively different when this occurs. One is trace-free while the
other is a pure trace. On even larger scales where wu ~ (¢>N)~!, the determinant of the Rosen
waveform goes to zero. Recalling the line element (12), the metric itself becomes singular on
this scale. Such effects are not an artifact of the perturbative expansion, but instead signal the
breakdown of the Rosen coordinate system due to the gravitational focusing of nearby
geodesics.

4.1.2. Monochromatic waves. Another instructive example is provided by a linearly-
polarized gravitational wave with constant amplitude. Let this wave be monochromatic with
angular frequency w in the sense that it can be described by the family (46) with

5 The condition (br, )y = 0 implies that through first order, pairs of test particles which are comoving before the
burst are also comoving after the burst; only their displacements might be permanently affected at O (¢). Some cases
where an additional ‘velocity memory’ arises are discussed in [42]. See also [41, 43] for an electromagnetic memory
effect where nontrivial velocity changes occur even at lowest order in simple scattering problems.
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Figure 3. Plot of y,, (1) for a monochromatic gravitational wave with $);;(u) given by
(64) and € = 1072, An exact solution is shown together with its first and second-order
approximations. Initial conditions for all three curves are matched at u = 0. The O (¢)
approximation is poor after e~'”2 = 10 curvature oscillations, although the O(e?)
approximation still works well there. A coordinate singularity appears in fewer than
€' = 100 oscillations.

1 0
0 _1) CoS wi. (64)

It follows from (11) and (46) that if @ = 1, the 2, 2-component of &;(u; €) satisfies the
Mathieu equation (1). (The equation for general w differs from this only via the rescaling
u — wu, resulting in &, (u; €) + %ea)zézz (u; €) = 0.) We now show that important features
of the metric perturbations associated with monochromatic gravitational waves are captured
by the approximate Mathieu solution (2).

Although it is possible to express all components of y; (u; €) exactly in terms of Mathieu
functions, consider instead the perturbative expansion described above. This first requires
imposing initial conditions for &; (u; €). Unfortunately, there is no natural phase at which to
apply (50). Indeed, all choices are more complicated than necessary. Setting uy = 0 for
definiteness, (49) and (51) imply that ; involves an oscillating term as well as a constant
offset. Eliminating this offset by modifying the initial condition at O (¢) recovers the expected
first-order perturbation

h(u) = —((1) _01) COS Wil (65)

The second-order perturbation is then

w2
Hw) = 7(

1 .
Yoy () = R[l — 2(wu)? + 3 cos 20u I + 2[5(2)(0) + uf(z)(O)], (66)

where the final two terms allow for O (e2) modifications to the initial condition (50). It is clear,
however, that no matter what these modifications are, the quadratic growth when |owu| > 1
cannot be eliminated. This is a second-order effect which becomes comparable to first order
effects when

|ou| ~ €12 > 1. (67)

It can be understood intuitively as a version of (63) where the number of gravitational wave
oscillations N isn’t fixed, but is instead of order wu. For a given wave amplitude e, it follows
that nonlinear effects tend to be more important for approximately-monochromatic waves
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than for bursts. Also note that as suggested by (66), Rosen coordinates break down when
|wu| ~ €' > e~/2. This is illustrated explicitly in figure 3 for the special case € = 1072.

The large nonlinear effects considered thus far do not oscillate. Monochromatic waves
where e < 1 first experience relatively-large oscillatory corrections at O (¢7). Assuming initial
conditions for £, such that (65) holds, the large-u portions of y.,) and y5, can be viewed as
conformal corrections to the first-order waveform: Using an ellipsis to denote omitted terms at
second and third order which grow more slowly than u?,

y (s e) = [1 - %(ea)u)z][l - e((l) _01) cos wu] + .+ O[>, (68)

The growing nonlinearities discussed here can be interpreted in some ways as
manifestations of an averaging effect which occurs more explicitly in ‘high-frequency’
perturbations where families of waveforms Hj; (u; €) are considered which are smooth in u/e
and ¢, but not in u and e. In that context, the zeroth-order metric is no longer Minkowski, but
instead satisfies the nonvacuum Einstein equation with an effective stress-energy tensor
sourced by the gravitational wave [37, 38]. Indeed, this stress-energy tensor is controlled by
an average of the same ‘energy density’ h* which is responsible for the second-order metric
(56) in an ordinary perturbative expansion. The high-frequency viewpoint is not pursued here
firstly because its formulation requires choosing one small parameter which simultaneously
controls both wave amplitudes and distances. This somewhat limits flexibility and clarity for
the questions considered here. More importantly, different observables can react very
differently when considering nonsmooth families of spacetimes. The usual high-frequency
formulations in general relativity are designed to compute metrics which are limits of
solutions to Einstein’s equation. It is not necessarily true, however, that limits of optical
observables can be easily described in terms of these same metrics (or even that their limits
exist at all).

4.2. Gravitational wave observables: perturbative expressions

Perturbative expansions for the various observables computed in section 3 may now be found
for families of plane waves described by (46). Completely general expressions would be quite
complicated, so we restrict attention only to those cases where the observer @ remains fixed at
the spatial coordinates (x,, z,). Also suppose that the source S remains fixed at (x;, z;). As
guaranteed by the construction of the Rosen coordinate system described in section 2.3, all
such worldlines are timelike geodesics. They are not preserved, however, by changes in the
Rosen waveform; coordinate transformations (19) which modify y; also impart initially-
stationary geodesics with nonzero coordinate velocities. Our assumption that particular
sources and observers remain at fixed spatial coordinates is therefore coupled to the choice of
a particular Rosen waveform. Although no detailed prescription is used here, we do assume
that

1
T
§o)= %o =1, En=¢&, = Ey(l)’ try,, =0, Yoy < 1. (69)

These equations are implied by the initial condition (50), although they also hold more
generally.

4.2.1. Zeroth order. Our first step is to compute all observables in the flat-spacetime limit
€ — 0. Denoting orders in perturbation theory by analogy with (47), the zeroth-order
observables are
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PO =0 =r=Ix —x, P+ (2, — 2)%, (70)
o = w, =0, (71)
li(o) = (X, — X,)/r, (72)
cos Oy = (25 — 2,)/r. (73)

As expected, both the area and luminosity distances reduce to the coordinate distance r at this
order. Frequency shifts also vanish, and a source’s apparent location in the observer’s sky is
given by the expected function of its coordinate position. Somewhat less obviously, (23)
implies that the zeroth-order emission phase u” is

) _ r

s uo_ﬁ

in terms of the observation phase u,,.

All higher-order perturbative expressions obtained below depend in various ways on
these zeroth-order quantities. Consistently retaining ‘(0)’ subscripts or superscripts on each of
them would considerably increase clutter, so this notation is suppressed when no confusion
should arise.

u (1 + cos 9(0)) (74)

4.2.2. Time of flight. The first-order perturbation u!" = d.u; |.—¢ to the zeroth-order emission

s

phase (74) is easily found by differentiating (23) with respect to ¢ while holding u,, fixed. This
results in

u D

1
AL

NN

k ki, (75)

Ao TN () B
where k; is understood to refer to the zeroth-order source direction kl( ) Similarly, (h;;)
denotes an average of the first-order metric perturbation between u”’ and u,. Decomposing hy

into its + and x components using (4), the emission phase perturbation can alternatively be
written as

(D
U _ —%[ (hy) cos2¢ + (hy) sin 24)] sin? 6. (76)

r

This vanishes for all sources which are aligned (6, = 0) or anti-aligned (o) = 7) with the
gravitational wave. If that wave is linearly-polarized, coordinates may be chosen such that
hy = 0, implying that u{" also vanishes for any source which is nominally located on one of
the four meridians

by = (1 + 2n)z/4, n=0,1,2,3. (77

Regardless of polarization, the averages appearing in (76) are typically small if the waveform
is approximately oscillatory and there are many oscillations between the source and the
observer. These averages can be important, however, when there is significant gravitational
memory.

The second-order perturbation us(z) = %()gus le=o to the emission phase is somewhat more
complicated. Differentiating (23) a second time with respect to ¢ shows that

22



Class. Quantum Grav. 32 (2015) 175017 A | Harte

u? tr[(y ) + (h)? — <h2>] sin2 @
N

O hyu) = Chy) 1 Ve

ij\(Us ij L
———— — —(hy) |k k- 78

Zr( 1 + cos @ 2<I> L (7%)
Unlike its first-order analog, us(z) does not tend to zero for oscillatory, memory-free waves at
large distances. Part of it is also independent of ¢,

4.2.3. Frequency shifts. A perturbative expansion for the relative frequency shift
(w, — ws)/w, induced by a gravitational plane wave may be found by differentiating the
exact result (34) with respect to € while holding w; fixed. At first order,

oM

= —(1 + cos 0)~ [y (ug) — hyy(up) [ & (79)
Wy

which is immediately seen to be equivalent to the well-known [2, 14] approximation (35)

when combined with (71). In terms of A, and Ay, it is more explicitly

oM

” —(1 = cos O){ [hi(uy) = hy(u)]cos 2¢p + [hy(us) — hy(u,)sin 2¢}.  (80)
Equation (74) implies that u”) — u, as 6 — 7, so @{" = 0 for any sources which are
aligned or anti-aligned with the background gravitational wave. If the wave is linearly-
polarized and coordinates are chosen such that iy = 0, first-order frequency shifts also vanish
when ¢(0) satisfies (77).

Regardless of polarization, differentiating (34) again with respect to ¢ results in the
second-order correction

o

1
= (1 = cosO)r {#o) () = 1) (0) + [ Cuty) = ()]
X [2(h) — h(us) — h(u,)]}
1
+ 5(1 + cos 9)‘1[ (a)o(l)/a)s)[h,-j(ux) — (3 + cos O)(hy) |

Wy

+ uVhy () |k @1)

The second-order metric difference 7(2)(145(0)) = Y)(4,) which appears here is directly
analogous to the first-order difference h(us(o)) — h(u,) found in a)o“)/a)s. Also note that the
final term involving A (u;) may be interpreted as a straightforward correction to the first-order
expression obtained by the replacement h(us(o)) - h(ulfo) + eus(l) + ...). Overall, w§2> and
@V both vanish when 0y = 0 or Oy — .

4.2.4. Source locations. The apparent location of a source is governed via (41) by the unit
vector (l:tl, 12”) introduced in section 3.3. Differentiating the exact expression (39) for I& with
respect to ¢ shows that first-order astrometric effects associated with a gravitational plane
wave follow from

"(1) 1 hij (u,) <hlj> NDN
[<h> h(uo):lki + > [(—1 T+ cos 0 <hu>)kik¢ ]kb (82)

a result which has also been derived (using different methods) in [4]. One of its consequences
is that the angle 6 between the source and the gravitational wave is perturbed by
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O = %{ [(h,-,-} - h,-j(uo)] + (hy) cos H}IGiIQchsc 6. (83)

If a wave is linearly-polarized with 4, = 0, sources which nominally lie on the meridians (77)
experience vanishing latitudinal motion. These sources can, however, appear to rotate slightly
around the gravitational wave propagation direction: &) = 0 but ¢, = +[(h;) — %h+(uo)].

Regardless of polarization, two special cases of (82) may be understood immediately.
The first of these supposes that (/;) can be neglected, and may be thought of as a ‘large-r’
limit in the presence of memory-free waves. Applying it,

B = (1= cos 0)[h(u)eos 2 + hup)sin 20]1 — hu) Yo (84

Gravitational waves can also produce nontrivial astrometric effects in a ‘small-#’ limit where
<hlj> g ]’llj (uo) and

~(1
i

- %{h(uo) — sin? @[ hy(u,)cos 2¢p + hy(u,)sin 2¢]I}l€l. (85)
In either of these cases, first-order position perturbations depend on the waveform only at the
observer (where u = u,). The angular dependence of this effect is nevertheless distinct for
near and distant sources.

If a gravitational wave is linearly-polarized, the matrices which multiply ’:1(0) in (84) and
(85) depend on u,, only via an overall scaling. Sources in either limit therefore appear to move
coherently along straight lines in the presence of linearly-polarized gravitational waves. The
orientations and relative amplitudes of these lines depend, however, on each source’s nominal
location (6g), ¢g))- More complicated apparent motions can arise in either the small-r or
large-r limits for gravitational waves which are not linearly-polarized, and even for linearly-
polarized waves when (/;) is neither negligible nor approximately equal to ;; (i,).

Astrometric effects are significantly more complicated at higher orders. For brevity, we
therefore present second-order corrections only for the latitude 8. Expanding (42),

00 = % tr{[(y(z)) - y(z)(u,))] + (%)) cos € + (1 + cos ¢9)[(h)2 - (hz)]

uV [ (hy) = 2 () 1
= - : + —(4 + cos 0){hy;
J2r 1+ cos@ 2( ) i)

— hy () [l k]~ %(2 — cos )63, }csc 0. (86)

+[(h) - h(uo)]z} sin9+{

All terms involving y,,) in this equation are easily seen to be direct generalizations of the first-
order metric perturbations appearing in 6y (see (83)).

4.2.5. Distances. The remaining observables considered here are the area distance 7., and
the luminosity distance ry,,,. First-order perturbations for these quantities may be found by
expanding the exact expressions (43) and (44), which results in

D (hij) — hij(“o))Ai Aj

A = | (k) + k ki, 87
r 2(< lj) 1+ cos@ L ®7)
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and

(1) (1) -

rl”T‘“ = rT + (1 + cos 0) [ by (1) — hyp(u) JRLA. (88)
The second of these results describes how an object’s apparent brightness is affected by a
gravitational wave. It has sometimes been stated in the literature that gravity first affects
brightnesses only at second order in general relativity (e.g., [5, 44]). A typical argument
appeals to the Raychaudhuri equation, which can be used to show that the expansion of a null
congruence is unperturbed through first order for objects at a fixed affine distance. This is
misleading, however. Gravitational waves (and more general geometries) do affect affine
distances at O (¢). This and the first-order time dilation both contribute nontrivial first-order
perturbations to 7y, and ryym.

Second-order distance perturbations must take into account changes in a source’s affine
distance, time dilation, and, unlike in the first-order case, the gravitational focusing of null
congruences. All of these effects are taken into account automatically by differentiating (43)
twice with respect to e:
rd(r2e)d 1 2 2
Zarea  _ " tr {y(z)(ug)cos 0 + %oy (us) — (1 + cos O)cos 0[(7(2)) + (h)* — (h )]

p
W3 ]

_ _ 21, 2 - 2
+ (1 = cos O)[(h) — h(u,)] 2[h (uo) + b (us) 2<h>]}+[1+cos9

x [2<htj> - hij(un) - hlj(us)

1 NN
+ =03+ O {h;;y — h;;(uy) |k k. 89
T+ cos @ 2( cos 0)(h;;) ](u):|J_J_ (89)

The second-order perturbation to the luminosity distance follows from this, (79), (81), and
(87) via

(2) 7@

fon B (0B 30 - 2o ). 00

4.3. Summary of second-order effects

Most terms in the second-order expressions derived above are relatively uninteresting in the
sense that their magnitudes are comparable to squares of typical first-order magnitudes. If
these latter O (e) effects are only marginally detectible, their squares are hopelessly small.
More interesting are the second-order terms which can acquire large numerical coefficients.
As motivated in section 4.1, y,, can be large, thus implying that (78) and (86) simplify to

r

42

O = itr{ [(#) = 10 ()] + <y(2)> cose} Sin 6+ ..., 92)

at large distances. These are identical to the expressions which would be obtained if the first-
order expressions (75) and (83) for u‘" and 01y were applied with the substitution & — €y,
providing a sense in which the potentially-significant contributions to u; and 6 through second
order mimic first-order effects with an ‘effective first-order metric’ b + €y,,). This effective
metric has a nonzero trace, and therefore mimics a third type of gravitational wave
polarization—sometimes referred to as a ‘breathing mode’ [45]—which introduces a distinct
¢-dependence into various observables. It must be emphasized, however, that this ‘extra

u® = tr(y,,) sin? @ + ..., oD
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polarization’ is only an effective phenomenon. It is entirely determined by the ordinary +
and x polarization states, and therefore does not represent a physically-independent degree of
freedom. This is also an effect which arises only when considering nonlocal observables, and
not in, e.g., direct local measurements of R 9.

Although the notion of an effective metric applied to first-order expressions describes all
potentially-large second-order contributions to u; and 6, it cannot do so for all interesting
terms

(2

, 1
75 = Z(1 — cos H)tr[y(z)(us) - y(z)(uo)]
oy Cus )y
L[ Znlwbk (93)
2 1 +cosf

associated with the second-order frequency perturbation (81). The trace terms here are indeed
those which would be obtained by adding an appropriate correction to the metric perturbation
appearing in a)(fl)/a)s. The remaining portion of the second-order frequency perturbation is
different, however. It arises from the wave-induced perturbation to the emission phase, and
can be important when h;; varies significantly over scales of order eulV. Somewhat more
precisely, use of (75) shows that the h,j term in (93) can be large if (h;;) is significant and there
is a sense in which rfzij > hy. This occurs if, e.g., a gravitational wave simultaneously
possesses both high and low frequency components. See section 5.3.

The effective metric concept fails completely to describe the second-order perturbations
to the area and luminosity distances. Using (89) and (90), these perturbations are dominated
by

(2)

For 1
% = 7 tr[y(z)(u,,)cos 0 + ¥ (us) — (1 + cos O)cos 0<y(2)>] + ... (94)
and
(2)
rum 1
IT = Z tr[ (2 — cos 9)7(2)(%) + (2cos @ — 1))’(2)(us)
o (ug) KL B
_ — (| Pt IR R
(1 + cos B)cos 9<y(2)>] (us /r) |+ cos 0 95)

at large distances, which could not have been guessed from the first-order expressions (87)
and (88). This is because the gravitational focusing of neighboring null geodesics is essential
to both of these expressions, but has no first-order analog in vacuum general relativity.

5. Gravitational wave examples

We now consider the optical effects of three types of gravitational waves in order to illustrate
some physical consequences of the perturbative expressions derived in section 4. The first of
these examples involves a gravitational wave which is both monochromatic and linearly-
polarized. Next under discussion is a fast burst with nontrivial memory. Lastly, we consider a
superposition of these two possibilities.
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5.1. Optics in a monochromatic wave

Perhaps the simplest physically-interesting gravitational wave is a linearly-polarized example
whose curvature is monochromatic in the sense described in section 4.1.2. Specifically,
consider a family (46) of waves with curvatures given by (64). Also suppose that Rosen
coordinates have been chosen such that y,, = h is given by (65) and 7, = 1.

The first-order frequency shift for freely-falling sources and observers embedded in such
a wave and remaining at fixed spatial coordinates follows from (80):

a)(gl)/a)s = %(cos wu, — cos wug)(l — cos G)cos 2¢. (96)

This generically oscillates as u, is varied, but vanishes for any sources with ¢, satisfying
(77). Other observables depend on the average waveform (/;;) between the emission and
observation events. Using (74) to define the zeroth-order estimate
wr
232,
for the number of gravitational wave cycles between these events, (h;) ~ N~! over large
distances where N > 1. It follows that averages can be ignored at first order in the large-
distance limit. Equation (75) then implies that u!" — 0. The first-order position change is
nontrivial, however, and may be described by

(1 + cos ) 7

0y — % cos wu, sin 0 cos 2¢, bay —% cos wu, sin 2¢. 98)

It also follows from (87) and (88) that the first-order perturbations to a source’s apparent
distance are

D e — %(1 — cos 6)cos 2¢ cos wu,, (99)

1
”1(u]n)1/” — (1 — cos f)cos 2(/)(005 wug — 5 cos wu,,), (100)
when (/;) can be ignored.
Continuing these calculations through second order, it is implied by (66) that the
dominant contribution to the waveform is

1
Yoy () = —g(a)u)zl + ... (101)

at large u. Substituting this into (93) results in

2A72
o? o, = ”iv [2( o )— 1](1 —cos ) + ... (102)
Uu

o — Us

The z2N? factor appearing here can be enormous at large distances, potentially allowing the
magnitude of ew? to compete with @{". The temporal and angular dependencies of the first
and second-order effects are very different, however. Similar comments also apply to the
other observables considered here.

Consider, for example, 6. This involves the second-order average (¥,,), which is not
generically negligible at any distance. Computing it using (101) and substituting the result
into (92) shows that
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2N2
B2y = ”12 {[3(u ”_OM )_ 1](1 + cos 6)

2
—3( o )cose}sin9+..., (103)

Uy — U

which is again proportional to z2N2. Although the first-order observables oscillate for
monochromatic waves, their second-order counterparts act (at least over short observation
times) more like offsets. These offsets depend in a characteristic way on both the distance to a
source and its angular separation from the wave propagation direction. Their magnitudes can
be comparable to first-order effects when N ~ wr ~ /2.

5.2. Optics and the memory effect

As a second example, consider a short burst of gravitational waves as described in
section 4.1.1. We do not model the burst itself, but only its memory in the form of the second-
order Rosen waveform (62). Observations may then be split into three main phases. These are
the (i) early times where u, < —9, (ii) intermediate times where u, > 0 but u;, < —§, and (iii)
late times where u, > 0 and u, > 0. The first and last of these phases involve light propa-
gating entirely through flat regions of spacetime.

We start by considering first-order effects. The frequency shift is particularly simple,
vanishing at both early and late times, while holding the constant value

o'V /o, = —%(1 — cos 0)cos 2¢ (104)

at intermediate times. The true frequency shift would not, of course, jump between these
possibilities instantaneously. Transitions would instead last for observation times of order the
burst time §, and would depend on detailed properties of the waveform. Also note that (104)
suggests that " does not vanish as 6, — 7. This is in conflict with the general comments
following (80), and is an unphysical artifact of the discontinuity introduced in the waveform
by ignoring timescales of order §.

Optical observables other than the frequency shift depend on (/;), which cannot
necessarily be ignored when memory effects are significant. Indeed, this average imparts
various observables with the ‘continuous component’ of their time dependence. For example,
(75) implies that us(o) is initially zero, changes linearly with u, via

ul) = —L( “o ) sin? @ cos 2 (105)
‘ 2\/5 Up — Uy ¢

at intermediate times, and then saturates to a constant value at late times.

Astrometric effects are somewhat more complicated. Through first order, a source which
is initially stationary at (6, ¢) = (6(0), ¢ ) rapidly moves to a position determined by

1 1
0y = —— sin @ cos 2¢, = — sin 2 106
()] ) @ ¢(1) > ¢ ( )
when u, = 0. These perturbations then vary linearly with u, until saturating at

9(1) = % sin 26 cos 2¢, ¢(]) = —% sin 2¢’ (107)

where they remain at late times. That the asymptotic angular perturbations are nonzero is a
consequence of the finite displacement memory associated with the gravitational wave.
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The distance observables r,., and r,, are both equal to r at early times. They then suffer
‘immediate’ equal and opposite first-order perturbations

D = ) = %r(l — cos 0)cos 2¢ (108)

rlum area

when u, = 0. These perturbations subsequently vary linearly with u,, until reaching

area um

|
= 5" sin? @ cos 2¢, Hon = Iy + 7(1 = cos 0)cos 2¢ (109)

when u, approaches r (1 + cos 49(0))/ V2 from below. The perturbation to the area distance
retains this value for all later times, while the perturbation to the luminosity distance instead
jumps so as to agree (again) with 7!} at late times.

Continuing these calculations through second order, we focus on the contribution due to
the constant tr(br, )2y appearing in (62). As explained following (60), this constant must be
negative if the first-order memory is to perturb only the asymptotic positions of test particles,
and not their velocities. The relevant portion 7(2)(14) = u[tr(bg, )21+ ... of the second-order
metric then contributes

0® /o, = —%uo[tr(bﬂ) ](1 —cosO) + ... (110)

(@)

to the frequency shift at intermediate times. This is nowhere negative, and therefore
corresponds to a linearly-increasing blueshift. It is an effect which saturates at

[tr(bﬁ)m]sinzg + . (111)

_r
232

where it remains for all late times. Gravitational wave bursts therefore induce permanent
blueshifts at this order: Initially-comoving test particles are focused by the wave, experiencing
a small ‘velocity memory’ at late times. This is a nonlinear effect proportional to the nominal
source-observer distance r.

Similarly considering the dominant large-distance effect on 6 at second order, it follows
from (92) that 0,y continuously changes from zero according to

O = %uo[tr(bﬂ)(z)][(%)(l + cos 6) — 2] sing + ... (112)

o — Us

w(§2> lwg = —

at intermediate times. This is nowhere negative, indicating that second-order effects tend to
make objects appear to bunch up against the wave propagation direction. This behavior
transitions to

Oy = %(uo - us)[tr(ba)(z)][z(L) cos @ — (1 + cos 9)]sin9 +... (113)

Uy — Ug

at late times, the sign of which depends on 6y and u,. The nontrivial late-time dependence of
6 on u, is another consequence of the velocity memory imparted by the gravitational wave
burst at second order.

5.3. Superimposed bursts and continuous waves

Our last example consists of a superposition of the monochromatic and burst-type waves
discussed above. Allowing the relative amplitudes of these components to differ by a constant
factor h,, suppose that except in a small neighborhood of u = 0,
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h(u) = [ he® () — cos a)u]((l) 01), (114)
where O (u) is the unit step function. All first-order perturbations to the optical observables in
this case have the form (results of section 5.1) + A, X (results of section 5.2).

Second-order effects are potentially more interesting. In particular, the h,-j contributions to
the frequency shift (93) and the luminosity distance (95) can be significant. Using (105) while
assuming that the number of cycles (97) associated with the continuous component of the
wave satisfies N > 1, this reduces to

1 ; A
ﬂ rhy (u) bk = —aNhe (1 — cos )2 cos? 2¢ sin wu (115)
r 1 +cos@
at late times. Unlike the other second-order examples considered here, this oscillates with the
same frequency as the first-order waveform. The prefactor zNh,, can also be extremely large,
particularly if the memory amplitude is much larger than the amplitude of the monochromatic
component so A, > 1.

6. Conclusions

We have derived the exact time delays (24), frequency shifts (31), sky positions (39), area
distances (43), and luminosity distances (44) associated with optical observations in the
presence of arbitrarily-varying gravitational plane waves. Together, these results provide a
simple and nonperturbative framework with which to explore the physics of nonlinear
gravitational waves.

One conclusion is that the optical effects associated with gravitational plane waves
appear particularly simple when those waves are described in terms of &;(u), a nonlocal
variable which generalizes the familiar waveforms of TT-gauge perturbation theory. Non-
perturbatively, £; is a square root of the transverse metric y; = £ &y in a Rosen-type coor-
dinate system. It also represents the nontrivial components of a Jacobi propagator, and
therefore describes separations between neighboring families of geodesics. The physical
character of £; can be understood by noting that it satisfies an ordinary differential equation
51, = Hy.&; which also describes a set of coupled parametric oscillators. The instantaneous
natural frequencies of these oscillators directly correspond to those curvature components
Hj(u) = —=&; Ig‘lj‘ 'R,is Which represent the freely-specifiable degrees of freedom associated
with the gravitational wave. Although the equation satisfied by &; is linear, its solutions
depend nonlinearly on the ‘local waveform’ H;. It is through this nonlinearity—which is
more closely connected to the geodesic equation than to Einstein’s equation—that interesting
optical effects can arise on large scales.

Much of our discussion examines these effects perturbatively. An expansion
&= 5,-;0) + 651:5-1) + 625}2)4_ ... for the metric square root is obtained in section 4.1, where € is
a small parameter which controls only the overall scale of Hj;. The various optical effects
considered nonperturbatively in section 3 are then specialized in section 4.2 for freely-falling
sources and observers, and also expanded through second order in €. Two main results
emerge: (i) Higher-order perturbations secularly grow at large source-observer distances, and
(ii) some higher-order metric perturbations produce observable effects with angular depen-
dencies which are completely different from those associated with first-order effects.

The first of these statements can be understood directly from (56), which shows that the
second-order metric perturbation involves the first-order metric perturbation /;; via a double
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integral of the ‘energy density’ hijhij. This density is non-negative, so its integrals—and
therefore the metric itself—grow wherever h,j # 0. As a consequence, second-order optical
effects can be much more important on large scales than naive estimates might suggest.

This can be interpreted as a kind of memory effect when the curvature is significant only
for a short time (i.e., for gravitational wave bursts). Standard assumptions have long been
known to imply that at first order, bursts can exhibit a displacement-type memory, but no
‘velocity memory;’ initially-comoving particles remain comoving after a gravitational wave
has passed. We show that this picture changes at second order in the gravitational wave
amplitude. The secularly-growing portion of the second-order metric physically corresponds
to a finite kick imparted to initially-comoving test particles, a nontrivial velocity memory.
Even a small effect of this sort can produce significant displacements over sufficiently long
times. If a particular burst is characterized as N oscillations with angular frequency @ and
strain amplitude €, the associated nonlinear effects on observables are fractionally of order
€2N (wr) over lengthscales of order r > Nw™'.

The analogous scaling is different for continuous gravitational waves which maintain
their amplitudes over all relevant lengthscales. Second-order effects are then shown to grow
like €2N2, where N ~ wr now denotes the number of gravitational wave cycles between a
source and its observer. This number is typically of order unity or less for gravitational waves
intended to be observed using standard interferometer designs such as LIGO, so nonlinear
effects are negligible in those cases. Much larger values of N can arise in pulsar timing,
however. Consider, for example, a gravitational wave with w/2z = 300 nHz and with an
approximately constant amplitude between the earth and a pulsar where r ~ 10 kpc. Second-
order terms in this case are then amplified by N? ~ 10'2. Although this factor is large,
multiplying it by a realistic strain magnitude results in an O (¢2N?) effect which would still be
challenging to detect.

Regardless of the precise type of gravitational wave under consideration, we show that
the growing higher-order metric perturbations also have nonvanishing traces. While the
familiar trace-free property of TT gauge can be extended to all odd-order metric perturbations,
even orders generically acquire finite traces. This distinction physically results in different
azimuthal dependencies for the optical effects associated with, e.g., first and second-order
metric perturbations. Focusing only on the aforementioned second-order terms which grow at
large distances, many second-order observables in general relativity appear similar to linear
observables, but with 4; replaced by an ‘effective metric perturbation’ which possesses a
small nonzero trace. This trace has optical effects similar to those associated with breathing-
type polarization modes in other theories of gravity. It differs, however, in that nonlinear
perturbations in general relativity do not represent physically independent degrees of free-
dom; such terms are entirely determined by the ordinary + and x polarization modes. Fur-
thermore, this effect arises only for nonlocal measurements. Both distinctions can be
observationally subtle, however, and might complicate efforts [46] to constrain alternative
theories of gravity via the presence of additional gravitational wave polarization modes.
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