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Abstract. Climate data availability has a key role in development pro- 

cesses of policies, services, and planning in the agriculture sector. How- 

ever, a common problem is the lack of data at the spatial or tempo- 

ral resolution required, or missing variables. In this work we propose 

a Bayesian Network approach to generate data for those variables that 

present incomplete data series, maintaining the consistency among vari- 

ables. We first determine which of the measured variables are the best 

ones to use as proxies for the unmeasured one based on correlation 

analysis and availability. Then, based on these variables, we built a 

Bayesian network model to estimate the variable of interest. Based on this 

model, the most probable values of the missing variable are estimated via 

probabilistic inference. We used as a case study the relative humidity (RH) 

of the driest month, which is one of main variable-indicators to describe 

the suitability of the land for coffee production. A BN model was built to 

estimate RH and evaluated for all Central America and Southern Mexico, 

showing a very good performance over several metrics. 

 

 

 

 

 

 

 

 

 

 

 
 



1 Introduction 
 

Climate data availability has a key role in development processes of policies, 

services, and planning in the agriculture sector. However, a common problem is 

the lack of data at the spatial or temporal resolution required, or gaps in the 

data series, or missing variables, or all them combined [15,19,20]. The access to 

climate information is determinant for agricultural planning. For example, in the 

case of Central America, crop modeling using process-based models commonly 

requires climate data in daily time steps, which are hardly available for all the 

region [18,20]. Even if the data would be available among different climate data 

sources, possible difference in resolution and origin produce inconsistency issues 

among the datasets making their combination unsuitable [13]. Therefore, several 

solutions for reconstructing missing data series using different approaches have 

been proposed. These include the regularized EM algorithm for Gaussian data 

[15], empirical orthogonal functions [16], the group method of data handling [1], 

and others. Frequently many of these approaches have limitations to deal with 

data uncertainty (from measurements, processes, etc.) and the sort of possible 

missing information in real time series records and even modeled data. Bayesian 

networks (BNs) can handle these kind of conditions. However, few attempts 

have been done to show the advantages of BNs in climate science. Previous 

work includes the application of BNs for weather forecasting [3] and the 

exploration of the dependencies among climate variables [4]. 

 

We propose a Bayesian Network approach to generate data for those variables 

that present incomplete data series, maintaining the consistency among 

variables. We first determine which of the measured variables are the best ones 

to use as proxies for the unmeasured one based on correlation analysis, and 

also on availability. Then, based on these variables, we built a Bayesian network 

model to estimate the variable of interest. Finally, we estimate the most probable 

values via probabilistic inference. 

 

We used as a case study the relative humidity (RH) of the driest month, 

which is one of the main variable-indicators to describe the suitability of the 

land for coffee production. A BN model was built to estimate RH and evaluated 

for all Central America and Southern Mexico, showing a very good 



performance over several metrics. The results confirmed that the estimated RH 

maintains the consistency with the other variables as in the training data. This 

means that the estimated RH keeps the same relationship with the other 

variables, which is one of the major concerns in modeling climate data. 

The main contribution of this work is a novel application of Bayesian net- 

works in estimating climate data for agricultural planning, an important and 

unexplored domain for the application of probabilistic graphical models. 

 

The rest of the document is organized as follows. First, we review previous 

work on estimating missing data in BNs in general, and in agriculture in 

particular. Then we described the proposed methodology, including variable 

selection and model construction. Next, we present the experiments and 

results, as well as the potential applications of the model. We finalize with a 

summary and directions for future work. 

 
2 Related Work 

 

2.1 Handling missing data in BNs 

When learning a BN from data, a common situation is to have incomplete data. 

There are two basic cases [17]: 

Missing values: there are some missing values for one or more variables. 

Hidden nodes: a variable or set of variables for which there is no data at all. 

For dealing with missing values, there are several alternatives: 

1. Eliminate the registers with missing values. 

2. Consider a special unknown value. 

3. Substitute the missing value by the mode of the variable. 

4. Estimate the missing values based on the values of the other variables in the 

corresponding register, based on probabilistic inference. 

For hidden nodes, the most common approach to estimating their parameters 

is based on the Expectation–Maximization (EM) technique [17]. 

 

A technique for error detection and missing data estimation based on Bayesian 

networks was proposed in [8]. The algorithm starts by building a model of the 



dependencies between sources of information (variables) represented as a 

Bayesian network. Subsequently, the validation is done in two phases. In the 

first step, potential faults are detected by comparing the actual value with the 

one predicted from the related variables via propagation in the Bayesian network. 

In the second phase, the real faults are isolated by constructing an additional 

Bayesian network based on the Markov blanket property. Using the BN model, 

missing values can be estimated based on the values of the variables in the 

Markov blanket of the missing one. In contrast with this work, in our approach, 

we do not build a BN model for all the variables in the problem but instead look 

for those variables that can be used as proxies to estimate the missing variable, 

and based on these variables we build the BN model. 

 

 

2.2 Estimating missing data in agriculture 

Missing data is a major problem in the agricultural sector, in applications such 

as the definition of policies or implementation of programs at national or 

regional scales, or farming planning at local or farm levels. Using incomplete 

information during such processes leads to a misrepresentation of the 

phenomena under analysis, and completing the missing data has economic, 

technical, and timing costs [9,12]. Some standard procedures have been used in 

the sector. For example, the National Agricultural Statistics Service (NASS) that 

implements the Agricultural Resource Management Survey in the USA, used 

conditional averages after the elimination of outliers, and if the information is 

insufficient national averages were used. However, the NASS is in the process of 

improving the procedures to deal with missing information [12]. In this sense, 

academia has proposed several methods, such as combining surveys and 

satellite information [6], spatial interpolations [16], using proxy variables [10], 

reducing the resolution of analysis, and others. These sort of possibilities are 

promising; however, in practice institutions and individuals have constraints of 

different nature to implement these methods. In developing countries, access to 

the information, language, qualified personal and financial issues are some of 

the main constraints to use such improved methods. For example, in some 

Central American countries, the World Bank had to finance the reconstructions 

of climate variables using interpolation methods to promote weather index-

based insurance for agriculture [20]. We consider that the proposed method 



could be a practical alternative as it is based on information that could be 

available, and it does not require high computational resources or technical 

expertise. 

 

3 Methodology 

 

Variables experimentally observed or produced by reanalysis or modeling 

processes retain consistency among them. In our approach, we exploited this 

consistency among variables (correlated behavior) to build and parameterize a 

Bayesian network model, then inferring the missing values for a particular 

variable. It assumed that even if there is not a direct physical causal relationship 

among variables, some variables can work as proxies of others. The proposed 

methodology is summarized in Figure 1. 

 

Fig. 1: Model development process. 

 

This study is part of a set of studies that explore the changes in the land 

suitability for coffee production in Central America. In particular, we are 

interested in modeling the variable Relative Humidity of the Driest Month 

(RHDM) for the region. The driest month refers to the month with the lowest 

precipitation. RHDM has been identified as an agro-ecological variable that 

influences the suitability of a site for coffee production [5] and is a common 

unobserved variable for meteorological stations. 

 

3.1 Variable Selection 

 

We used the surface reanalysis dataset: Climate Forecast System Reanalysis 

(CFSR) [7]. CFSR includes the variables precipitation, temperature (minimum 



and maximum), wind speed, solar radiation and relative humidity 

(https://globalweather.tamu.edu).  The spatial resolution is 38km per pixel at a 

daily time step for the period from 1979 to 2014. A complete dataset was down- 

loaded for the extent of Central America. From this dataset, a sub-dataset for 

the relative humidity of the driest month was created (RHDM-dataset) by 

averaging daily to monthly values from multiples years to a single year, then 

extracting the variables values for the two driest months (n = 1710). Once the 

RHDM-dataset was built, we selected those variables with a significant 

correlation to RH, as depicted in Table 1. Maximum temperature (Tmax), 

minimum temperature (Tmin) and precipitation (Rain) were selected as proxy 

variables. A sensitivity analysis to findings was done to display the variance 

reduction of proxy variables on the relative humidity (RH). 

According to the Pearson’s correlation coefficients, all variables have significant 

relations to RH: Tmax and Rain have the major correlation, then solar 

radiation (Solar), and then Tmin and wind speed (Wind) (see Table 1). How- 

ever, in practice Solar and Wind are hardly measured so we excluded them. 

 

 RH Tmax Tmin Rain Wind Solar 
RH 1.00 – – – – – 

Tmax -0.60 1.00 – – – – 
Tmin 0.12 0.12 1.00 – – – 
Rain 0.60 -0.21 0.17 1.00 – – 
Wind 0.11 -0.30 0.65 -0.09 1.00 – 
Solar -0.15 0.19 0.67 -0.13 0.57 1.00 

Table 1: Pearson’s correlation coefficients between the climate variables for Cen- 

tral America. 
 

Thus, the developed model uses only Rain, Tmax and Tmin as proxy-predictor 

variables for RH. 

 

3.2 Model  Development 

 

The model was built using the software package Netica (www.norsys.com). For 

each variable, nodes were created, and descriptive statistics used to define the 

number and size of the states of the nodes. Proxy variables were linked directly 

to RH as parents; then a link reversal1 proceeding was conducted to 

incorp ora te  the correlation among the proxy variables (climate variable 

                                                           
1 Reversal links: https://www.norsys.com/WebHelp/NETICA.htm 



consistency). The priors and Conditional Probabilistic  Tables (CPTs) 

were learned from the training dataset using the Counting- Learning 

Algorithm [14]. The model –structure, and parameters– is illustrated in Figure 2. 

 

Fig. 2: Bayesian network for the relative humidity of the driest month. RH: 

relative humidity (%), Tmax: mean maximum temperature (°C), Tmin: mean 

minimum temperature (°C) and Rain: total precipitation (mm). Links do not 

represent biophysical relationships. Priors and conditional probabilities were 

learned from dataset CFSR (http://globalweather.tamu.edu). 

 

4 Experiments and Results 

 

4.1 Sensitivity analysis 

The sensitivity analysis, Figure 3, agreed with the variable relevance obtained 

with the Pearson correlation analysis (Table 1). Rain and Tmax have the highest 

influence on RH and Tmin the lowest one. 

 

 

 

 

 

 

Fig. 3: Sensitivity analysis results for relative humidity. Rain: precipitation 

(mm), Tmax: maximum temperature, Tmin: minimum temperature. 

 



 

4.2 Model  Validation 

The HRDM dataset was divided into 80% (n=1368) for training and 20% (n=342) 

for validation of the model. Using the validation dataset, we evaluated the model 

using different metrics. The Bayesian metrics logarithmic loss, quadratic loss, 

and spherical payoff were estimated using the feature test with cases in Netica 

[14]. The metrics RMSE, R2 (Adjusted), Index of Agreement and bias were 

calculated from the expected RH vs. RH from the validation dataset [2,11]. 

Also, it was graphically examined if the estimated RH maintains the 

relationship with the precipitation and temperature variables in the same 

magnitude as the RH of the original dataset –CFSR. 

 

The results are summarized in Table 2. The Bayesian metric spherical pay- off 

indicates a good performance of the model for inferring RH [11]. Also, the 

more traditional metrics in meteorological sciences: bias close to zero, a very low 

RMSE, an index of agreement (d2) over 0.90 and an R2 of about 0.80 attested 

the very good performance of the model. 

 

Metric Values 
Spherical 

 

0.80 
Bias 0.50 

RMSE 3.64 
d2 0.93 

R2 (Adj) 0.79 
Table 2: Performance metrics. Bayesian scoring metrics were estimated using the 

test with cases option in Netica. The traditional metrics were estimated using 

the expected value (mean value) of RH from the model vs. reanalysis values. 

 



 

Fig. 4: Scatter plot of monthly relative humidity estimated vs. reanalysis 

(validation data set). 

Figure 4 displays graphically the correspondence between the RH estimated for 

the model versus the reanalysis of the data reported in CFSR, showing, in 

general, a high consistency between the estimated and real (reanalysis) values. 

 

We also confirmed that the estimated RH maintains consistency with the 

other variables as in the training data. This means that the estimated RH keeps 

the same relationship with the other variables, which is one of the major 

concerns in modeling climate data: consistency among data. This can be 

appreciated in Figure 5 which depicts scatter plots of RH vs. the other three 

variables, using the training (reanalysis) and estimated data. 

 

Finally, a spatial comparison of the estimated vs. the actual (reanalysis) RH 

over the region (with a pixel size of 38 km) is depicted in Figure 6. We can 

appreciate that in general, the model reproduces very well the patterns of RH 

in the region. 

 

4.3 Model application 

The current state of the model allows using it in two ways to infer the relative 

humidity of the driest month (RHDM) for coffee production or the monthly RH. 

The model was created, adjusted and validated to generate the RHDM in Central 

America, where ranges between 50-60% are optimal and 80-90% suboptimal for 

Coffea arabica [5]. So, for land evaluation for coffee production, the model can 



be used at two levels: first, at local or farm level, by using directly the model 

to estimate the RHDM; and second, at regional or national level, by using 

RHDM-suitability maps (created from data in Fig. 6: expected RHDM) to 

determine the optimal areas to implement coffee policies or programs. An 

example is displayed in Figure 7. 

 

Inferring monthly RH. Even if the model was developed to infer RHDM, the 

model can estimate with an acceptable accuracy the monthly RH (values of any 

month). To do it, the CPTs were updated using the sub-dataset including all the 

months for the study region. Then the expected RH was estimated and 

compared with the reanalysis values. The model was capable of maintaining a 

very good performance, see Table 3. The results indicate that the model only 

required updating the CPTs using the monthly values for RH. 



 

Fig. 5: Relative humidity of the driest month vs. proxy variables: left, reanalysis RH; right, 

estimated RH. Notice that the estimated RH against the proxy variables describes similar 

patterns than using RH from reanalysis. RH: relative humidity, Tmax: mean maximum 

temperature, Tmin: mean minimum temperature, and Rain: total precipitation. Monthly 

data.



 

 

 

 
Fig. 6: Relative humidity of the driest month from reanalysis and estimated by 

the BN model for Southern Mexico and Central America (pixel size 38 km). 

 

Metric Values 
Bias 0.48 

RMSE 4.39 
d2 0.93 

R2 

 

0.76 
Table 3: Performance metrics for RH. The metrics were estimated using the 

expected value (mean value) of RH from the model vs. reanalysis values. d2 

=Index of agreement (0 to 1, where 1 is a perfect match). 

 

Considerations for further applications. The model application to different 

regions or high-resolution data is possible following the same methodology, but 

the variable states should be revised according to the new conditions. In the case 

of using high-resolution data, we will require reviewing if the correlation among 

variables remains as we saw at gross resolution if this is not the case the model 

variables should be updated. At this point, the time step analysis is monthly 

values; further analysis have to be done to explore if the proxy variables and 

their states remain unchanged at finer time steps such as weekly or daily. Lastly, 

we consider that this method can be applied to overcome missing data for other 

climate variables.



 
Fig. 7: Suitability map of Relative Humidity of the Driest Month for Coffea 

arabica L. for Southern Mexico and Central America (pixel size 38 km). Modified 

from [5]. Optimal = optimal conditions, S1 = Very good, S2 =Moderate, S3 = 

Marginal. 

 

5 Conclusions and Future Work 
 

We introduced a meteorological application of Bayesian networks to generate 

missing data of a climate variable. The procedure is simple, requiring a low 

modeling effort, and ensures maintaining the corresponding inter-relationship 

(consistency) to the others climate variables. The use of BN allows knowing 

the uncertainty of the inferred data, which is missing when traditional methods 

based on equations are implemented to estimate climate data. 

 

We used as a case study the relative humidity (RH) of the driest month, 

which is one of many variable-indicators to describe the suitability of the land 

for coffee production. After few adjustments, the model could estimate monthly 

RH for all the year, in different regions or fine spatial resolution. Because RH 

is frequently unregistered in comparison to precipitation and temperature; we 

believe that our model offers to the region a valuable tool to generate reliable 

data for RH. 

 



In the future, we plan to integrate this information into a Bayesian network 

model for analyzing land suitability for coffee production incorporating 

predictions of future climate changes. 
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