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We report on a comparison of high-resolution numerical simulations of Lagrangian particles ad-
vected by incompressible turbulent hydro- and magnetohydrodynamic (MHD) flows. Numerical
simulations were performed with up to 10243 collocation points and 10 million particles in the
Navier-Stokes case and 5123 collocation points and 1 million particles in the MHD case. In the hy-
drodynamics case our findings compare with recent experiments from Mordant et al. [1] and Xu et
al. [2]. They differ from the simulations of Biferale et al. [3] due to differences of the ranges choosen
for evaluating the structure functions. In Navier-Stokes turbulence intermittency is stronger than
predicted by a multifractal approach of [3] whereas in MHD turbulence the predictions from the
multifractal approach are more intermittent than observed in our simulations. In addition, our
simulations reveal that Lagrangian Navier-Stokes turbulence is more intermittent than MHD tur-
bulence, whereas the situation is reversed in the Eulerian case. Those findings can not consistently
be described by the multifractal modeling. The crucial point is that the geometry of the dissipative
structures have different implications for Lagrangian and Eulerian intermittency. Application of the
multifractal approach for the modeling of the acceleration PDFs works well for the Navier-Stokes
case but in the MHD case just the tails are well described.

PACS numbers: 47.27.-i, 47.10.+g,52.30Cv, 52.35.Ra, 52.65.Kj

Introduction Lagrangian statistics of turbulent flows has
undergone a rapid development in the last 6 years due to
enormous progress in experimental techniques measuring
particle trajectories. Particle tracking velocimetry has
been used for moderate Reynolds numbers by [4].
However, the techniques developed in Cornell [5–7] and
Lyon [1, 8] allowed the measurements of probability
density functions (PDFs) of velocity increments which
triggered a renewed interest in the theoretical under-
standing of Lagrangian statistics. A very promising
approach based on a Markovian closure was recently
introduced in [9]. This approach is not readily applicable
to magnetohydrodynamic (MHD) turbulence, since the
distribution function depends not only on velocity, space
and initial condition but in addition on the Jacobian.
Although work in this direction is in progress, we
compare our simulations to a phenomenological model
of Lagrangian statistics in Navier-Stokes turbulence
introduced by Biferale et al. [3]. Our findings show
increased intermittency in Navier-Stokes flows, such that
the structure functions agree with recent experimental
data from the two experimental groups [1, 2]. On the
other hand, our MHD simulations are less intermittent
than the predictions from a multifractal model.

Numerical Methods The Lagrangian particle trajectories
were obtained by two slightly different parallel spectral
codes (Garching and Bochum) based on the spectral
code used in [10]. The velocity and magnetic field was
evaluated at the particle positions using either trilinear
or tricubic interpolation. Contrary to the simulations

of [3], we found that tricubic interpolation captures
especially trajectories with high acceleration more
precise than linear interpolation, a conclusion which was
drawn already 20 years ago (see [11] and the discussion
therein). However, the effect of the slightly different
trajectories has only a minor effect on the tails of the
acceleration PDFs with the tendency that the PDF
calculated with tricubic interpolation is slightly more
intermittent than the corresponding one calculated with
trilinear interpolation. The simulations presented here
use a tricubic interpolation for obtaining the velocities
at the particle positions.

Navier-Stokes turbulence We performed a set of simu-
lations for the Navier-Stokes-equations with two resolu-
tions, 5123 and 10243 collocation points and 1 million and
10 million particles, respectively, in order to obtain reli-
able statistical results within a few large eddy-turnover
times.

Parameters of all simulations (Navier-Stokes and
MHD) are summarized in Table I. Here we used the
same conventions as described in [12]. To get to a sta-
tionary turbulent state, we started with randomly dis-
tributed Fourier-modes without driving. After the tur-
bulence has been fully developed, the low mode number
modes were kept constant. Particles with initially homo-
geneous random positions were injected when a station-
ary state was reached. For the simulation with 10243 col-
location points, we started from the stationary turbulent
state with 5123 collocation points. The relaxation to a
new stationary state took about one large-eddy turnover
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FIG. 1: Eulerian structure functions of order p=1,2,4,5,6 (top
to bottom)

time. After this period, the particles were injected.
The choice of the parameters for Run1, Run4 and Run5

and therefore the resulting Taylor microscale Reynolds
number was motivated by the standard procedure to
choose the dissipation length ld smaller than the grid
spacing [13]. However, recent investigations of how dis-
sipative structures like shocks, tubes and sheets enter
the dissipation range [14–16] suggest a more conserva-
tive choice which was realized in Run2 and Run3.

The exponents of the longitudinal Eulerian structure
functions Sp =< |u(x + l) − u(x)|p >, angular brack-
ets denoting spatial averaging, can be described by the
She-Lévêque formula [17, 18] for the simulations Run1
- Run3. The structure functions using extended self
similarity (ESS) [19] together with straight lines illus-
trating the fitted slopes are shown in Figure 1 for data
obtained from Run3. The values of the corresponding
exponents are summarized in Table II. These Eulerian
statistics serve just as a test to check the numerics.
The determination of the Lagrangian structure functions
Sp =< |u(t + τ) − u(t)|p >, angular brackets denoting
temporal averaging, turned out to be much more diffi-
cult. Figure 2 shows a typical plot of the second order
Lagrangian structure function normalized to ετ . It is
clear that no scaling range is present as already observed
in the experiments [1, 2] and simulation [3, 20]. There-
fore, in order to obtain scaling exponents one has to rely
on the assumption of extended self similarity. Figure 3
shows an evaluation of the Lagrangian structure func-
tions assuming ESS. In Table III we present the relative
exponents ζp/ζ2 for our simulations. In addition, this
table contains also exponents collected from the experi-
ments [1, 2] and other numerical simulations [1, 3].

First, we observe that the simulations Run1 - Run3 all
give exponents which agree within the error bars. Thus,
a possible dependence of the exponents on the Reynolds
number or the choice of a stricter criterion for the numer-
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FIG. 2: 2nd order structure function normalized to ετ for
Run1 (solid line) and Run4 (dashed line)
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FIG. 3: Lagrangian structure functions from Run3 of order
p=3-6 (top to bottom)

ical resolution could not be detected given the relative
large error bars. In addition, the exponents fit quite well
to the present experiments [1, 2] but are clearly differ-
ent from the exponents obtained by [3]. The reason for
this is not the different interpolation for particle veloci-
ties (trilinear in [3], tricubic here). We repeated a sim-
ulation with the parameters of Run2 but using trilinear
interpolation and got the same scaling as with tricubic
interpolation. We explain this discrepancy similar as in
[2] by observing that the evaluation of the structure func-
tions was performed systematically using larger values of
τ compared to us. We have have chosen the inertial range
from Figure 2 by the requirement that the function stays
above ninety percent of its maximum value. This leads
to an inertial range of 2 ≤ τ ≤ 7.We are able to repro-
duce the exponents of [3] if we choose a minimal value
of τ of about eight. Larger values of τ result in a more
Gaussian behavior and explains why the exponents of [3]
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Rλ u0 εk εm ν = η dx ld τd L TL T/TL N3 Np

190 0.82 0.23 - 8 · 10−4 12.27 · 10−3 6.9 · 10−3 5.9 · 10−2 2.4 2.9 10.3 5123 1.18 · 106 Run1

122 0.16 2.1 · 10−3 - 3 · 10−4 12.27 · 10−3 1.1 · 10−2 3.7 · 10−1 1.9 12 5 5123 1 · 106 Run2

178 0.16 2 · 10−3 - 1.5 · 10−4 6.14 · 10−3 6.4 · 10−3 2.8 · 10−1 2 11 2 10243 10 · 106 Run3

187 0.48 0.1 0.15 5 · 10−4 12.27 · 10−3 5.9 · 10−3 7.1 · 10−2 2.4 5 4.7 5123 1.18 · 106 Run4

234 0.22 1 · 10−2 1.5 · 10−2 1.5 · 10−3 12.27 · 10−3 4.3 · 10−3 1.2 · 10−1 2.5 6.3 1.8 5123 1 · 106 Run5

TABLE I: Parameters of the numerical simulations. Rλ: Taylor microscale Reynolds number
p

15u0L/ν, u0 =
p

2/3Ek, Ek:
kinetic energy, Em: magnetic energy, E = Ek + Em, εk: kinetic energy dissipation rate, εm: magnetic energy dissipation
rate, ε = εk + εm, ν: viscosity, η: resistivity, ld: dissipation lengthscale (ν3/εk)1/4, τd: Kolmogorov time scale (ν/εk)1/2,

L = (2/3E)3/2/ε: integral scale, TL = L/u0: large-eddy turnover time, T : total integration time, N3: number of collocation
points, Np: number of particles, Navier-Stokes simulations: Run1-Run3, MHD simulations: Run4, Run5

are less intermittent.
We also applied the multifractal model to the accelera-

tion statistics obtained from the simulations. We shortly
review the approach of [3]. One starts with a suitable
description for the Eulerian structure functions, e.g. the
She-Lévêque model [17] and performs a Legendre trans-
formation to obtain the singularity spectrum. In order
to translate Eulerian to Lagrangian increments, one as-
sumes a Kolmogorov like relation δτv ∼ δlu where tempo-
ral and spatial increments are related by τl ∼ l/δlu. The
resulting expression for the Lagrangian structure func-
tions,

Sp(τ) ∼ 〈vp0〉
∫
h∈I

dh

(
τ

TL

)hp+3−D(h)
1−h

, (1)

is evaluated by a saddle point integration. To obtain
the acceleration PDF, first the acceleration is defined as
a = δτηv

τη
where τη = τη(h, u0) is the Kolmogorov time

scale which is itself a multifractal quantity depending on
the large scale velocity field u0. Assuming a Gaussian
statistics of u0 and integrating over the possible scaling
factors h results in an explicit expression for the acceler-
ation PDF (see [3] for details)

P (a) ∼
∫ hmax

hmin

dh ã((h−5+D(h))/3)R
y(h)
λ

exp
(
−1

2
ã2(1+h)/3R

z(h)
λ

)

order She-Lévêque Run3

1 0.364 0.36 ± 0.0027

2 0.696 0.696 ± 0.0027

3 1 1

4 1.279 1.276 ± 0.0053

5 1.538 1.526 ± 0.013

6 1.778 1.752 ± 0.024

7 2.001 2.028 ± 0.088

8 2.211 2.204 ± 0.087

TABLE II: Eulerian structure functions obtained using ESS
with ζ3 = 1.

with ã = a/σa, σa =
〈
a2
〉1/2,

y(h) = χ(h− 5 +D(h))/6 + 2(2D(h) + 2h− 7)/3 and
z(h) = χ(1 + h)/3 + 4(2h − 1)/3. A comparison of
the multifractal prediction to the numerically obtained
acceleration PDFs is shown in Figure 4. Although
there is an excellent agreement between prediction and
simulation, one has to keep in mind that the multifractal
prediction contains three parameters. The first parame-
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FIG. 4: Acceleration PDFs for runs Run2(+) and Run3(x)
including the PDFs using the multifractal approach for the
Navier-Stokes simulations. The inset shows the PDF multi-
plied by (a/σ)4.

ter is hidden in the relation
〈
a2
〉
∝ Rχλ when normalizing

the width of the PDF. However, this parameter can be
determined from one simulation and should then be kept
fixed for other Reynolds numbers. In the She-Lévêque
model, the value of hmin is given by hmin = 1/9. If one
uses this value, it is not possible to get good agreement
with the measured shape of the PDF. Therefore, as in
[3], we use hmin as a free parameter. The last is a free
amplitude in the normalization. In order to get such
an excellent agreement in Figure 4, we had to choose
hmin = 0.175 for Run2 and hmin = 0.16 for Run3. The
dependence on hmax is negligible.
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order Run1 Run2 Run3 MF-NS Simulation [3] Experiment [1] Simulation [1] Experiment [2]

Rλ 190 122 178 284 1000 140 815

1 0.58 ± 0.006 0.57 ± 0.007 0.57 ± 0.005 0.55 - 0.56 ± 0.01 0.56 ± 0.02 0.58 ± 0.12

2 1 1 1 1 1 1 1 1

3 1.28 ± 0.020 1.29 ± 0.025 1.30 ± 0.016 1.38 - 1.34 ± 0.02 1.3 ± 0.04 1.28 ± 0.30

4 1.46 ± 0.06 1.48 ± 0.066 1.51 ± 0.041 1.71 1.7 ± 0.05 1.58 ± 0.06 1.5 ± 0.09 1.47 ± 0.38

5 1.58 ± 0.12 1.60 ± 0.12 1.65 ± 0.075 2.00 2.0 ± 0.05 1.76 ± 0.1 1.61 ± 0.13 1.59 ± 0.46

6 1.67 ± 0.19 1.68 ± 0.18 1.76 ± 0.11 2.26 2.2 ± 0.07 1.9 ± 0.2 1.69 ± 0.2 1.66 ± 0.53

TABLE III: Relative ESS-exponents calculated with respect to the structure function of order 2. MF-NS denotes the Multi-
Fractal approach for Navier-Stokes.

MHD turbulence The parameters for the MHD simula-
tions are summarized in Table I (Run4, Run5). Both
runs were performed with negligible magnetic and cross
helicity. ESS plots of the Lagrangian velocity structure
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FIG. 5: Lagrangian structure functions from Run4 of order
1,3,4,5,6 (top to bottom)

functions are shown in Figure 5. They show a similar
curved shape although no trapping in vortex tubes ap-
pears in MHD turbulence (see also Biferale et al. [21]).

The exponents for the Lagrangian velocity structure
functions are given in Table IV. Also shown is the pre-
diction by a multifractal model, which was obtained us-
ing the same steps as described above, but starting with
a She-Lévêque like formula suitable for incompressible
MHD-turbulence [10, 22],

ζMHD
L (p) =

p

9
+ 1−

(
1
3

)p/3
. (2)

Although this formula is strictly valid only for the struc-
ture functions of the Elsässer variables z± = u±B, we as-
sume a cascade in the kinetic energy so that this formula
can also be applied to the structure functions of velocity.
The resulting multifractal model shows now an increased
degree of intermittency compared to the numerical sim-
ulations (Run4, Run5). On the first sight this is aston-
ishing since this is just the opposite behavior as in the

Navier-Stokes case. To summarize, we have the following
situation that in the Eulerian description, MHD turbu-
lence is more intermittent than Navier-Stokes turbulence
whereas the situation is reversed in the Lagrangian pic-
ture. This finding is also not compatible with the mul-
tifractal ansatz. The multifractal ansatz possesses a cer-
tain monotonicity property. This means that if for two
different sets of structure function exponents, one is more
intermittent than the other in the Eulerian picture, than
this one is also more intermittent in the Lagrangian tur-
bulence. To see this, it is sufficient to look at high values
p of the order of the structure functions. One observes
that the value of h∗ where the infimum of

hp+ 3−D(h)

is assumed goes to hmin for high values of p. Thus the
asymptotic behavior reads

ζp = hminp+ 3−D(hmin) , p� 1 .

For the saddle point evaluation of the Lagrangian struc-
ture functions (see eqn. 1) one has to find the infimum
of

hp+ 3−D(h)
1− h

so that the asymptotic behavior is given by

ζp =
hminp+ 3−D(hmin)

1− hmin
, p� 1 .

Since both in Navier-Stokes and MHD the value of
hmin = 1/9 is identical, the degree of intermittency is
determined by D(hmin). This is both valid for the Eule-
rian as well as for the Lagrangian model which guarantees
the monotonicity property.

Our conclusion from this numerical observation is that
the geometry of the most singular structures (vortex
tubes and current sheets) is not the right quantity to
determine the degree of Lagrangian intermittency, but
it is more important to look at the tracer dynamics.
In Figure 6 particle trajectories with high acceleration
near singular structures are shown. Here the isosurfaces
belong to a fixed point in time. Important is that in the
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order Run4 Run5 MF-MHD

Rλ 187 270

1 0.527 ± 0.004 0.526 ± 0.002 0.63

2 1 1 1

3 1.412 ± 0.013 1.407 ± 0.014 1.26

4 1.76 ± 0.04 1.73 ± 0.06 1.47

5 2.06 ± 0.08 1.96 ± 0.14 1.65

6 2.24 ± 0.24 2.11 ± 0.25 1.81

TABLE IV: Relative ESS-exponents calculated with respect
to the structure function of order 2.

FIG. 6: Trajectories with high acceleration in NS (left) and
MHD (right, blue denotes current density and red vorticity).

MHD case the trajectories near the sheet structures are
smooth. Thus contrary to the Eulerian point of view
where the sheets are responsible for producing intermit-
tency, they do not contribute significantly to Lagrangian
intermittency. Large changes with high acceleration
occur at the ends of the sheet structures. Thus a naive
translation of Eulerian to Lagrangian structures is not
possible. A more detailed investigation of the relation
between Lagrangian intermittency and the small-scale
structure of dissipation will be presented elsewhere.
Using the multifractal approach we also compared the
PDFs of velocity and magnetic field increments of the
order of the Kolmogorov time with the multifractal
prediction which is depicted in Figure 7, again assuming
the validity of (2) for the velocity and magnetic field.
Here, we have chosen hmin = 0.16 to obtain the best
agreement between the model and prediction. The
agreement is not as perfect as in the Navier-Stokes case.
Here, only the exponential tail could be well described
by the multifractal model.

Conclusions and open questions The presented Navier-
Stokes simulations show good agreement with recent ex-
periments but deviate from predictions of a multifrac-
tal model. An observation which also could not be
described by multifractal modeling is that Lagrangian
Navier-Stokes intermittency is stronger than in the MHD
case whereas the situation is reversed for Eulerian statis-
tics. The present situation is depicted in Figure 8. It
shows that the multifractal prediction for Lagrangian
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FIG. 7: Comparison of PDFs of velocity(+) and magnetic
field(x) increments for small τ : magnetic field increment are
broader. The continuous line corresponds to the multifractal
approach.

Navier-Stokes turbulence fits well to the simulations of
Lagrangian MHD turbulence and vice versa. This again
shows that it is not easily possible to relate the geometry
of the most dissipative structures to the strong accelera-
tion events.
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FIG. 8: Comparison of measured scaling exponents to the
multifractal prediction

A second and related critical issue in the Lagrangian
treatment is the validity of the Kolmogorov like relation
l ∼ τul which connects Eulerian and Lagrangian quanti-
ties. At least in the neighborhood of strongly dissipating
structures (tubes and sheets) this relation has to be al-
tered to l ∼ τu0 where u0 is the mean flow produced
by the vortex. A similar reasoning was given in [23] to
calculate the basic mechanism for obtaining exponential
tails in the PDF of velocity increments.

The partial success of the PDF modeling with the mul-
tifractal ansatz is mainly attributed to the freedom of
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choosing three free parameters: i) one parameter hid-
den in the normalization of the Reynolds number, ii) the
value of hmin and finally iii) the amplitude. If one fixes
hmin to the She-Lévêque value hmin = 1/9 then this mod-
eling is not able to reproduce the shape of the PDF.

Thus a deeper understanding of the connection
between the geometry of dissipative structures and
high acceleration events is necessary to correctly model
Lagrangian intermittency.
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