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Abstract

Effects of linear plasma response currents on non-axisymmetric magnetic field perturbations

from the I-coil used for Edge Localized Mode mitigation in DIII-D tokamak are analyzed with the

help of a kinetic plasma response model developed for cylindrical geometry. It is shown that these

currents eliminate the ergodization of the magnetic field in the core plasma and reduce the size of

the ergodic layer at the edge. A simple balance model is proposed which qualitatively reproduces

the evolution of the plasma parameters in the pedestal region with the onset of the perturbation.

It is suggested that the experimentally observed density pump-out effect in the long mean free

path regime is the result of a combined action of ion orbit losses and magnetic field ergodization

at the edge.

PACS numbers: 52.25.Dg, 52.25.Fi, 52.25.Gi, 52.25.Mq, 52.25.Xz, 52.35.Kt, 52.35.Py, 52.35.Qz,

52.55.Fa, 52.65.Ff, 52.65.Tt, 52.65.Vv
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I. INTRODUCTION

A method of Edge Localized Mode (ELM) control using non-axisymmetric external magnetic

field perturbations has been proposed and successfully tested in DIII-D1–6. Namely, some

suppression of ELM’s in high collisionality regimes has been reported in Refs. 2,3, suppression

and full elimination of ELM’s in low collisionality regimes has been reported in Refs. 4,5

and, in particular, for ITER similar plasma shape it has been reported in Ref. 6.

An important issue using this method is to have a minimal influence of these perturbations

on the transport in the core plasma. So far, theoretical studies of magnetic field ergodiza-

tion1,7,8 and heat transport1,8,9 in such ergodized fields in DIII-D used a vacuum perturbation

field. Those calculations show that the magnetic field topology should be strongly affected

by the perturbations1,7,8. In particular, splitting of heat and particle deposition profiles ob-

served experimentally has been shown to be qualitatively consistent with magnetic footprints

produced by splitting of the separatrix in the presence of non-axisymmetric perturbations7

and with the modelled 3D temperature distribution outside the separatrix8,9. At the same

time, the modelling of heat transport using the Monte Carlo fluid code E3D10 performed in

Refs. 8,9 shows a significant effect of the perturbations on plasma temperature both, in the

pedestal region and deep in the core plasma. However, in the experiments the core plasma

appears not to be affected by the perturbations. A possible explanation can be shielding of

magnetic field perturbations by plasma response currents.

In this study this shielding effect, as well as the effect of the perturbation field on plasma

rotation and other plasma parameter profiles is estimated with the help of the linear pertur-

bation magnetic field model taking into account the plasma response currents in the kinetic

approximation11 which has been developed for cylindrical geometry. A particular experi-

ment, DIII-D shot 126006, using the I-coil with even parity and current value 3.9 kA is

analyzed using the experimental equilibrium and plasma parameter profiles measured when

the current in the C-coil is set on. In parallel to calculations with the help of the kinetic

model11, a comparison is made with analytical results of linear drift-MHD model12. In addi-

tion, the applicability of linear and quasilinear approximations for the pertinent experiment

is discussed.

The structure of the paper is as follows. In Section II coupling of the cylindrical model

with the realistic equilibrium magnetic field computed with kinetic EFIT code13,14 and I-
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coil perturbation magnetic field provided by TRIP3D code1 is described, and results of the

perturbation field penetration modelling and their comparison with the results of the reduced

MHD model12 are presented. Results of the field line tracing in vacuum and in presence of

plasma response currents are also presented in this section. In Section III quasilinear effects

of the perturbation on plasma rotation and plasma parameter profiles are studied and the

role of nonlinear effects is estimated. In Section IV the implications of the field line tracing

results for the transport in the pedestal region are discussed. In Section V the results are

summarized.

II. PERTURBATION FIELD IN PRESENCE OF LINEAR PLASMA RESPONSE

CURRENTS

For modelling, the magnetic field is presented in the following form15

B = B0 + δB = ∇ϕ×∇ψpol +∇
(
ψtor + Ãϑ

)
×∇ϑ (1)

where ψtor and ψpol are toroidal and poloidal magnetic fluxes (divided by 2π) of the un-

perturbed magnetic field B0, ϕ is the azimuth (toroidal) angle of cylindrical coordinates

(R,ϕ, Z) and ϑ is the poloidal angle like variable of the flux coordinates (ψtor, ϑ, ϕ). Vector

potential Ãϑ of the perturbation field δB is represented by a Fourier series in these flux

variables,

Ãϑ = 2 Re
∞∑
n=1

∞∑
m=−∞

Aϑ;m,n (ψtor) eimϑ+inϕ. (2)

Details of numerical computation of flux variables and complex Fourier amplitudes in the

vacuum case, Aϑ;m,n = A
(vac)
ϑ;m,n, are presented in Appendices A and B. In presence of plasma

response currents, Fourier amplitudes are expressed through the amplitudes in vacuum and

the “form factors” Tm,n as follows

Aϑ;m,n(ψtor) = A
(vac)
ϑ;m,n(ψtor)Tm,n(ψtor). (3)

A. Estimations with help of a cylindrical model

For estimation of form factors Tm,n, the model of an inhomogeneous periodic plasma cylinder

with rotational transform of the unperturbed magnetic field, Bϑ
0 = Bz

0/(qRaxis), is introduced
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where the radial coordinate is related to the toroidal flux by r =
√

2ψtor/Baxis, the z-

coordinate is related to the toroidal angle by z = ϕRaxis and the azimuth ϑ is identified

as poloidal angle. Here Baxis = B0ϕ/Raxis is the unperturbed magnetic field value at the

magnetic axis R = Raxis (see also Appendix A). Profiles of the safety factor, q(r), plasma

density, ne(r), electron and ion temperature, Te(r) and Ti(r), respectively, and of the toroidal

rotation velocity, V z
(i) = RaxisV

ϕ
(i), correspond to DIII-D shot 126006. Given these profiles,

the profile of the toroidal magnetic field, Bz
0(r), is obtained from the equilibrium equation

for the cylinder, the profile of the parallel plasma current density, j0‖(r), follows from q(r)

and the profile of the equilibrium radial electric field is computed assuming zero poloidal

plasma rotation velocity, V ϑ
(i) = 0. All these profiles are smoothly extended outside the

separatrix. The resulting profiles are shown in Figs. 1-3 as functions of radius r and of the

normalized toroidal flux s = ψtor/ψ
(a)
tor = (r/a)2, where ψ

(a)
tor is the toroidal flux value at the

separatrix and a is separatrix radius. It should be noted that directions of plasma current

and toroidal magnetic field were opposite in the discharge 126006. Therefore, the coordinate

system where q > 0 used here is left-handed (resonant poloidal and toroidal wave numbers

have opposite sign too). In order to avoid the ambiguity, directions of various velocities

are explicitly related in the plots to the directions of parallel plasma current or poloidal

magnetic field.

Outside the separatrix, plasma is assumed to be surrounded by the sheet current (“antenna”)

at r = rA and a perfectly conducting wall at r = rW > rA. Thus, ignoring poloidal coupling

of Fourier modes, form factors are estimated with help of the cylindrical model as follows,

Tm,n(ψtor) =
B(plas)
r (r)

B
(vac)
r (r)

, (4)

where B(plas)
r and B(vac)

r are the radial components of a single harmonic, ∝ exp(imϑ+ ikzz),

of the perturbation magnetic field computed with plasma and in vacuum, respectively.

In order to show that radial positions of the antenna and of the wall do not influence Tm,n if

plasma pressure and current density are small in the region r > rp containing the antenna,

rp < rA, the following ideal MHD equation for the “outer” solution of tearing mode theory16

is considered,

d

dr

r

k2

dBr

dr
− rBr

(
1− d

dr

1

rk2
+ Fp

)
=

4πr

ickϑ
j(A)
z , (5)

Fp =
r

k ·B0

[
d

dr

1

rk2

4π

c
(k× j0)r +

2

r2k2

(
kzB

′
0z +

4πk2
z

k ·B0

dp0

dr

)]
, (6)
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where k = ezkz + eϑkϑ, kz = n/R, kϑ = m/r, j0 and p0 are equilibrium plasma current

and pressure and j(A)
z = IAδ(r − rA) is z-component of the antenna current. Solutions for

the homogeneous equation (5) regular at the cylinder axis in vacuum case, Fp = 0, and

with plasma are denoted with uint and w, respectively. Solution, which satisfies boundary

condition at the wall in vacuum case is denoted with uext. In the region r > rp where Fp

can be ignored w can be presented as w = αuint + uext where α = Const. Solution of the

inhomogeneous equation (5) in the region r < rA is

Br(r) =
4πik2(rA)rAIAuext(rA)w(r)

cm (w′(rA)uext(rA)− w(rA)u′ext(rA))
. (7)

Replacing here for the vacuum case w and w′ with uint and u′int, respectively, form factor (4)

is obtained as

Tm,n =
w(r)

αuint(r)
. (8)

If a resonant magnetic surface, q(r) = m/n, is present in plasma, the ideal MHD equation (5)

is not sufficient in the resonance layer. In this layer, a 4-th or higher order equation has to

be solved which, in addition to the “fast mode” described by (5), describes also “slow”, short

scale, evanescent modes which correspond to shear Alfven and ion Bernstein modes. However

additional solutions associated with slow modes and subject to the boundary conditions

rapidly decrease with the distance from the resonance surface so that outside the resonance

layer w is the only important solution regular at the magnetic axis.

It should be noted that self-consistent equilibrium in cylindrical geometry leads to pecu-

liarities of parallel current near the separatrix where q formally diverges. A true q profile is

used only up to q ≈ 5.5 and extended further outside assuming the parallel equilibrium cur-

rent density to be finite and exponentially decaying outside the separatrix. The equilibrium

results in a negative parallel current density j0‖ around the separatrix (see Fig. 2). This

circumstance, however, does not have a significant influence on the results. If the equilib-

rium current density is fully ignored in the unperturbed distribution function, the resulting

perturbation fields change by 50% or less which is significantly smaller than the effect of

plasma response currents on those fields as shown below. Another circumstance which adds

to the uncertainty at the edge is coupling of poloidal modes which becomes strong there

but is fully omitted in straight cylinder or slab models. Therefore, the results should be

considered as an estimate valid by order of magnitude.
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B. Kinetic plasma response model

The form factors (4) can be estimated by various plasma response models for the straight

cylinder as well as slab models12,17–21. Here, the kinetic linear plasma response model of

Ref. 11 is applied for this purpose. In this model, Maxwell equations,

∇× Ẽ =
iω

c
B̃, ∇× B̃ = −iω

c
Ẽ +

4π

c
j̃, (9)

are solved in cylindrical geometry retaining the Maxwell current and using a plasma response

current j̃ computed in the kinetic approximation with the help of a Hamiltonian formalism

taking into account collisions by means of a Krook term. For a single spatial harmonic,

Ẽi, j̃
i ∝ exp (imϑϑ+ ikzz), where the notation for the poloidal wave number is changed

to mϑ, the contra-variant components of the perturbed current density of a single particle

species contributing to j̃ in (9) is written through a differential conductivity operator as

follows,

j̃k(N)(r, ϑ, z) =
1

r

N∑
n,n′=0

(−1)n
∂n

∂rn

(
r σkl(n,n′) (r,k)

∂n
′

∂rn′ Ẽl(r, ϑ, z)

)
, (10)

where Ẽl are the co-variant components of the electric field,

σkl(n,n′) (r,k) =
2πie2

rω

∞∑
mφ=−∞

∞ sgn(e)∫
0

dJ⊥

∞∫
−∞

du‖

∞∫
0

dr0δ(r − rg)
∂ (pϑ, pz)

∂
(
r0, u‖

) (akα(n)
)∗
m

(
alβ(n

′)
)
m

× 1

m ·Ω− ω − iν
Ωα

(
(ω −m ·Ω)

∂f0

∂Jβ
+ Ωβm · ∂f0

∂J

)
, (11)

(
akα(n)

)
m

=
1

2πn!

π∫
−π

dφ e−imφφ (ρr)n
(
∂xkg
∂θα

N−n∑
l=0

1

l!
(ik · ρ)l +

∂ρk

∂θα

N−n−1∑
l=0

1

l!
(ik · ρ)l

)
,

and where the second sum is zero if N − n < 1. Here, the canonical angles and actions

are θ = (φ, ϑ, z) and J = (J⊥, pϑ, pz) where φ is gyrophase, J⊥ ≈ m0v
2
⊥/(2ωc) is the

perpendicular adiabatic invariant, m0 is particle mass, ωc is the cyclotron frequency, m =

(mφ,mϑ, kz) where mφ is a cyclotron harmonic number, ν is the collision frequency and

k ·ρ = mϑρ
ϑ + kzρ

z. The Larmor radius, ρ, is defined expressing particle coordinates xi via

canonical variables as xi = xig + ρi, where xig are guiding center coordinates independent of

φ and the gyro-average of ρi is zero. Integration variables r0 and u‖ are defined through the

co-variant components of the generalized momentum as

pϑ,z = pϑ,z(r0, u‖) =

(
m0h(r0)u‖ +

e

c
A0(r0) +

m0 c

B0(r0)
h(r0)×∇Φ0(r0)

)
ϑ,z

, (12)
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where h = B0/B0 and B0 = ∇ × A0, and canonical frequencies are Ω =(
ωc, h

ϑu‖ + vϑE, h
zu‖ + vzE

)
where viE are the contra-variant components of the electric drift

velocity. The unperturbed distribution function is used in the form of an inhomogeneous

drifting Maxwellian,

f0 =
n0(r0)

(2πm0T0(r0))
3/2

exp

−ωc(r0)J⊥
T0(r0)

−
m0

(
u‖ − V‖(r0)

)2

2T0(r0)

 , (13)

where the parameters n0, T0 and V‖ for each species differ only by first order Larmor radius

corrections from the equilibrium density, temperature, and parallel fluid velocity of the

respective species. All these parameters and also the equilibrium electrostatic potential Φ0

are fully defined by the experimentally measured profiles shown in Fig. 1, the profile of the

safety factor q(r) and the reference magnetic field value Baxis.

The stiff set of Maxwell equations (9) is solved numerically using the re-orthonormalization

procedure. Since even for a Larmor radius expansion of order N = 1 used here for both, the

electrons and the ions, explicit expression for the plasma response current is rather complex,

the FORTRAN subroutines for the conductivity operator have been directly generated by

the symbolic processor package MAPLE22. (As a check of this fully implicit approach, the

results of the ideal MHD equation (5) are accurately reproduced by the code in the absence or

away from the resonance surface.) The computations for the static perturbations in DIII-D

are performed in a frame of reference moving along the Z-axis so that perturbation frequency

ω is finite in this frame. In the non-relativistic limit, the magnetic field and the co-variant

components of the force (torques) acting on the α-species from the single harmonic of the

perturbation field

T
(EM)
(α)ϑ =

mϑ

ω
Pα, T

(EM)
(α)ϕ =

n

ω
Pα, (14)

are independent of the frame of reference. The absorbed power,

Pα =
1

2
Re

∫
d3rẼ∗

k j̃
k
(N), (15)

where j̃k(N) is the α-species current density (10), scales linearly with ω when changing the

reference frame.

As one can see, in contrast to the reduced MHD theory12,17,18,20, plasma neutrality and

incompressibility are not enforced in the kinetic model, and the model should properly

recover the compressible MHD results23. At the same time, any anomalous shear viscosity
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is not taken into account. Therefore, various regimes with large viscosity effects presented

in Ref. 12 are missing in the present model.

The radial profiles of the form factor modules |Tm,n(ψtor)| resulting from the kinetic model

are shown in Fig. 4 for the I-coil main toroidal mode n = 3. The resonant modes with

mϑ = m ≤ −4 are reduced by more than one order of magnitude at corresponding rational

flux surfaces, m + nq(ψ
(res)
tor ) = 0. The non-resonant modes −3 ≤ m ≤ −1 show a similar

trend as the resonant ones due to the properties of the ideal MHD response (in the absence of

plasma rotation this response is described by Eq. (5)). In Fig. 5 the values of the form factor

modules at the corresponding resonance surfaces
∣∣∣T (res)
m,n

∣∣∣ =
∣∣∣Tm,n(ψ(res)

tor )
∣∣∣ are shown versus

sres = ψ
(res)
tor /ψ

(a)
tor and compared to the results of the drift-MHD theory of Ref. 12. The latter

results are given by Eq. (9) of Ref. 12 as
∣∣∣T (res)
m,n

∣∣∣ = |Ψ(t)/Ξ(t)| with substitution of local

plasma parameters and wave numbers and putting the viscosity coefficient to 104 cm2 s−1.

The results agree for most of the resonant modes except for those in the regions with high

perpendicular equilibrium electron fluid velocity where the mode frequency in the rest frame

of the electrons exceeds the electron-ion collision frequency (see Fig. 6). One should note that

the curve in Fig. 5 corresponding to drift MHD theory actually consists of few curves which

correspond to relevant regimes of Ref. 12. Values of
∣∣∣T (res)
m,n

∣∣∣ for the “first semicollisional”

regime which dominates here, as well as other observed regimes do not depend on the

viscosity explicitly. It should also be noted that both models agree well in predicting the

small screening of the magnetic field perturbations at the very edge of plasma due to the

increasing shear and resistivity when approaching the separatrix.

C. Relation between the electron and ion torque

For further analysis, it is interesting to estimate how the torque from the perturbation

is distributed between electrons and ions. Simple estimate can be obtained using the cold

resistive MHD model where the linearized equation for the perturbed fluid velocity (ignoring

the negligible unperturbed parallel velocity) is

−i (ω′ + iνα) Ṽα + ωcα × Ṽα =
eα
mα

Ẽ′. (16)

Here ω′ = ω−k ·VE = ω−ωE is perturbation frequency in the frame of reference where the

equilibrium electric field is zero (which is also the rest frame of α species), VE is the electric
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drift velocity, ωcα = eαB0(mαc)
−1 is the cyclotron frequency, eα and mα are α-species charge

and mass, respectively and Ẽ′ is the electric field perturbation in the rest frame of α species.

The collision frequency να is put for electrons to the electron-ion collision frequency, νe = νei,

and for ions it models the viscosity effect, νi = µ⊥δ
−2, where µ⊥ is the (generally anomalous)

perpendicular viscosity coefficient and δ is the resonance layer width. Integrating over the

volume work of the electric field on the response current, (eα/2)Re
[
Ẽ∗ ·

(
n0αṼα + ñαVE

)]
,

one obtains for the total power absorbed by α-species,

Pα,cold =
ω

ω′
ω2
pα

8π
Re i

∫
d3r

 |Ẽ ′
‖|2

ω′ + iνα
+

(ω′ + iνα) |Ẽ′
⊥|2

(ω′ + iνα)
2 − ω2

cα

+
iẼ′∗

⊥ × Ẽ′
⊥ · ωcα

(ω′ + iνα)
2 − ω2

cα

 , (17)

where ωpα = (4πn0αe
2
α/mα)

1/2
is plasma frequency of α-species. The perturbation frequency

in the laboratory frame ω is intendedly kept finite because it cancels in the expressions for

the torque (14). When obtaining (17), the electric drift velocity VE was assumed constant

within the resonance layer where the main power absorption takes place. For electrons, only

the largest first term (absorption due to the parallel conductivity) should be retained while

for ions this term is always smaller than the corresponding term for electrons and should

be ignored. The last (Hall) term should also be ignored for ions because it is small when

compared to the second term. It can be seen that the resulting Pi,cold ∼
∫

d3rn0imiνiṼ
2
i

is the work of the viscous force on the perturbed ion velocity Ṽi = c̃|E′
⊥|/B0. Thus, one

obtains

Pe,cold ∼ Sδ
ω ω2

peνei|Ẽ ′
‖|2

ω′(ω′2 + ν2
ei)
, Pi,cold ∼ Sδ

ω ω2
piνi|Ẽ′

⊥|2

ω′ω2
ci

, (18)

where S is the magnetic surface area. The electric field components can be estimated as com-

ponents of the electrostatic field, |Ẽ ′
‖|/|Ẽ′

⊥| ∼ k‖δ, expanding k‖ ≡ k ·h around rres being the

resonant surface radius, k‖ ≈ k′‖δ where k′‖ ≡ dk‖/dr = sBkz/rres and sB = (rres/q)dq/drres is

the shear parameter. One can do this for the so called “constant psi” regimes which include

most of the regimes in Ref. 12 except visco-inertial and inertial regimes. In the “constant

psi” regimes, the inductive parallel electric field (the only one present at the resonant surface

where k‖ = 0) is approximately constant in the resonant layer and is balanced by the rapidly

changing with radius parallel electrostatic field only outside the layer. Therefore, the total

Ẽ ′
‖ can be estimated as the electrostatic field at distance δ from the resonant surface. It can

be seen from Figs. 6 and 3 that ωe ∼ ωE ∼ ωi ∼ νei. In this case one obtains from (14)
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and (18) T (EM)
(e)ϕ

T
(EM)
(i)ϕ


cold

=
Pe,cold
Pi,cold

∼
miω

2
ci|Ẽ ′

‖|2

meνeiνi|Ẽ′
⊥|2

∼
(
δ

δVR

)6

, (19)

where δV R = rresτ
1/3
H τ

−1/6
R τ

−1/6
V is the resonance layer width for the visco-resistive regime12,19,

τH =
1

sBkzvA
, τR =

4πn0ee
2r2

res

meνeic2
, τV =

r2
res

µ⊥
(20)

are the Alfven, resistive and viscous times, respectively, and vA = B0 (4πn0imi)
−1/2 is the

Alfven velocity. For finite electron temperatures, the electron pressure effect can be impor-

tant20 which limits the electron absorption region to k‖vTe < (ωEνei)
1/2 which has a width

δe ∼ (ωEνei)
1/2
(
vTe|k′‖|

)−1
where vTe = (Te/me)

1/2. Since ωE ∼ νei, collisional electron

damping is of the order of collisionless Landau damping which can be calculated from11

Pe ≈ π2Sm
2
eω

rres

∞∫
0

dr0 r0

∞∫
−∞

du‖

0∫
−∞

dJ⊥
|ωce|
Te

fe0δ
(
k‖u‖ + ωE − ω

)
|Hm|2 (21)

×
[
ω − ωe +

k⊥T
′
e

meωce

(
5

2
− ωceJ⊥

Te
−
meu

2
‖

2Te

)]
,

where |Hm| ≈ |eeu‖Ẽ ′
‖/ωE|, ωe = ωE + ω∗e is stationary perturbation frequency in the

electron rest frame and T ′e ≡ dTe/dr0. The parallel fluid velocity V‖ in expression (13)

for the equilibrium distribution function fe0 has negligible effect and, therefore, is ignored

there. Assuming that Ẽ ′
‖ as well as other functions of radius except k‖ stay constant in the

absorption region one obtains (see also Ref. 24)

Pe ≈
S ω ω2

pe|Ẽ ′
‖|2√

32π vTe|k′‖|ω2
E

(
ω − ωe +

k⊥T
′
e

2meωce

)
∼ δe

δ

(
νei
ωE

)1/2

Pe,cold, (22)

where the expression in the parentheses has been estimated as ωE. Finally, replacing in (19)

Pe,cold with smallest of Pe,cold and Pe given by (22), the relation between electron and ion

torque is obtained as

T
(EM)
(e)ϕ

T
(EM)
(i)ϕ

∼
(
δ

δVR

)6

min

1,
νei

vTe|k′‖|δ

 (23)

As one can see from Fig. 7 the torque acting on electrons appears to be very small compared

to the torque acting on ions if one estimates the width of the resonance layer δ from the

drift-MHD theory (Table I of Ref 12) using the the same anomalous viscosity coefficient

as in Section II B, µ⊥ = 104 cm2 s−1. It should be noted, however, that drift-MHD values

of δ appear to be roughly ten times smaller than ion Larmor radius, ρLi = vTi/ωci (see
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Fig. 7), which invalidates the fluid approach. This feature of MHD theory in the case of

finite ion temperature has been pointed out, in particular in Ref. 25. Computations with

the kinetic model show that the actual layer width, in particular the radial scale of the

largest component of the perturbed ion velocity Ṽi⊥ = Ṽi⊥ · h×∇r, does not shrink below

ρLi ≈ 0.45 cm (see Fig. 8). The same radial scale is seen also for the parallel plasma response

current density (see Fig. 13). Estimation of the torque ratio (23) with δ = ρLi shows that

the electron torque is by an order of magnitude larger than the ion torque (see Fig. 7). Since

also ion Landau damping and parallel ion viscosity contribute to the absorption of energy

by ions, the values of ion and electron torque computed directly using the kinetic model are

compared in Section IIIA.

D. Effect of plasma response on the magnetic field configuration

Results of field line tracing for the perturbation field in vacuum and in presence of plasma

response currents are presented in Figs. 9 and 10 in real space and flux coordinates. In flux

coordinates, also island widths are plotted which are obtained from the field line equations

dψtor

dϕ
=

Bψtor

Bϕ
= −∂Ãϑ

∂ϕ

(
1 +

∂Ãϑ
∂ψtor

)−1

,

dϑ

dϕ
=

Bϑ

Bϕ
= ι

(
1 +

∂Ãϑ
∂ψtor

)−1

, (24)

where ι(ψtor) = 1/q(ψtor) = dψpol(ψtor)/dψtor is the rotational transform angle, for the case

where only one harmonic is present in the perturbation vector potential (2) and, therefore,

the field line equations (24) have an integral

ψtor +
m

n
ψpol(ψtor) + 2 |Aϑ;m,n(ψtor)| cos (mϑ+ nϕ+ arg(Aϑ;m,n(ψtor))) = Const. (25)

Invariant (25) follows immediately from the Hamiltonian form of Eqs. (24),

dψpol

dϑ
= −∂Ãϑ

∂ϕ
,

dϕ

dϑ
= q +

∂Ãϑ
∂ψpol

. (26)

Contours of this quantity give the flux surfaces including the island flux surfaces correspond-

ing to (m,n) resonance. Maximum width of island separatrix (island width) is computed

from (25) numerically. In the particular case where |Aϑ;m,n| dependence on radius can be
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ignored, |dAϑ;m,n/dψtor| � 1 and |d2Aϑ;m,n/dψ
2
tor| � |dι/dψtor|, one gets for the island width

∆ψtor ≈ 4
∣∣∣ι(ψ(res)

tor )Aϑ;m,n(ψ
(res)
tor )

∣∣∣1/2
∣∣∣∣∣∣dι(ψ

(res)
tor )

dψ
(res)
tor

∣∣∣∣∣∣
−1/2

, (27)

where ψ
(res)
tor is the toroidal flux at the resonant surface, dψpol(ψ

(res)
tor )/dψ

(res)
tor = ι(ψ

(res)
tor ) =

−n/m.

It can be seen from the figures that effect of the perturbation field on the magnetic field

configuration in the core plasma is negligible small (island widths are reduced by a factor of

10 or more) for most of the modes except the m = −7, n = 3 mode which is almost locked

to the electron fluid.

In the zoom, Fig. 10, one can see that ergodicity appears starting from s = 0.97 where an

open ergodic field region is formed. This remaining ergodic layer is rather robust because

screening of the perturbation field by plasma response currents decreases near the separatrix

(see Section II B) and because of the stronger island overlapping caused by increase of the

shear there.

III. ESTIMATION OF QUASILINEAR AND NONLINEAR EFFECTS

A. Quasilinear evolution

In the quasilinear approximation, the perturbation field modifies the equilibrium profiles of

poloidal and toroidal plasma velocity as well as the profiles of plasma density and electron

temperature. The way to estimate the change of plasma velocity and the effect of such a

change on the penetration threshold is well known (see Refs. 12,18–20). In the long mean

free path regime, the perturbation field interacts mainly with electrons (see Section IIC)

which results in a (mainly perpendicular) quasilinear force acting on electrons due to the

poloidal and toroidal momentum transfer from the perturbation field. Such a force cannot

be compensated by a small perpendicular electron viscosity and cause F×B radial drift of

electrons which, in turn, leads to plasma polarization and modification of the equilibrium

electric field. The Lorentz force due to this additional radial drift velocity balances the

quasilinear force acting on electrons. The resulting acceleration of the E × B rotation

looks like an acceleration of plasma ions directly by the quasilinear force. This acceleration

continues until the change of the toroidal viscous force acting on ions modifies the radial ion

12



flux so that it matches the electron flux and polarization stops. Finally, in a steady state, this

additional ambipolar convective flux must be balanced by a change of the anomalous diffusion

flux in expense of a reduced density gradient. Usually, only the effect of the quasilinear

force on the rotation is considered12,18–20. However, the modification of plasma density

and electron temperature can also be important at the very edge and in the case of mode

locking because these modifications change the local electron (and ion) diamagnetic rotation

velocity which is of the same importance for the screening effect as E×B plasma rotation.

In order to estimate these effects, the toroidal momentum balance equation in the presence

of quasilinear forces acting on electrons and ions from the perturbation field is re-derived in

this section for general tokamak geometry in order to retain also quasilinear particle fluxes

which are an intermediate result of this derivation. For simplicity momentum sources which

determine the rotation velocity in absence of the perturbation field, in particular, the NBI

momentum source, are omitted in this equation. These sources do not enter Eq. (37) which

determines the rotation velocity change due to the perturbation field being of interest here.

Flux surface average (average over the volume between neighboring flux surfaces) of the co-

variant toroidal component of the α-species momentum equation can be cast to the following

form (compare, e.g., to Ref. 26)

mαnα
∂

∂t

〈
gϕϕV

ϕ
(α)

〉
=
eα
c

√
gBϑ

(〈
Γr(α)

〉
− Γ

(NEO)
(α) − Γ

(A)
(α)

)
+
〈
F

(V )
(α) ϕ

〉
+
〈
F

(EM)
(α) ϕ

〉
, (28)

where mα, eα, nα, V
ϕ
(α) and

〈
Γr(α)

〉
=
〈
Γ(α) · ∇r

〉
are α-species mass, charge, density, contra-

variant component of the toroidal fluid velocity and flux surface averaged particle flux den-

sity, respectively, Γ
(A)
(α) ,

〈
F

(V )
(α) ϕ

〉
and

〈
F

(EM)
(α) ϕ

〉
denote prescribed flux surface averaged anoma-

lous particle flux density, co-variant toroidal components of the viscous force density and

force density from the I-coil perturbation field (they have the dimension of torque density),

respectively, and

Γ
(NEO)
(e) = −Γ

(NEO)
(i) ≡ − c

√
gBϑee

〈
eeneEϕ +R(ei)

ϕ

〉
(29)

is the neoclassical particle flux density which is automatically ambipolar due to the charge

neutrality, eini + eene = 0, and R(ie)
ϕ = −R(ei)

ϕ . Here R(ei)
ϕ and Eϕ are the covariant com-

ponents of the electron-ion friction force and of the inductive electric field, respectively.

Toroidal co-variant component of the metric tensor, gϕϕ = R2, and metric determinant g

entering (28) and (29) correspond to flux variables (r, ϑ, ϕ) which differ from variables of
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Section II by the re-defined flux surface label r = r(ψtor) which has a dimension of radius

and is fixed by the condition27 〈|∇r|〉 = 1. With this definition, the total particle flux is a

product of averaged flux density
〈
Γr(α)

〉
and flux surface area

S =
∫ 2π

0
dϑ
∫ 2π

0
dϕ
√
g. (30)

In order not to overload the notation subscript “0” is omitted in this section on the unper-

turbed quantities such as nα, B
i, Ei etc.

For electrons, ignoring small inertia term (l.h.s. of (28)) electron flux density is readily

obtained as 〈
Γr(e)

〉
= Γ

(NEO)
(e) + Γ

(A)
(e) −

c
√
gBϑee

〈
F

(EM)
(e) ϕ

〉
. (31)

Time derivative of Gauss’s law and continuity equations link particle fluxes with the unper-

turbed radial electric field by

〈grr〉 ∂Er
∂t

= −4π
(
ei
〈
Γr(i)

〉
+ ee

〈
Γr(e)

〉)
, (32)

where grr = |∇r|2 and it has been used that equilibrium electrostatic potential is close to

a constant on the flux surface so that Er is also a constant there. Assuming that poloidal

ion velocity is zero due to the damping of poloidal rotation by the parallel viscosity (gyro-

relaxation effect),

V ϑ
(i) = Vi‖

Bϑ

B
− cBϕ√

gB2

(
Er −

1

eini

∂pi
∂r

)
= 0, (33)

where pi is ion pressure, the toroidal contra-variant velocity (toroidal angular frequency) is

linked directly to the radial electric field and ion pressure gradient,

V ϕ
(i) = Vi‖

Bϕ

B
+

cBϑ√
gB2

(
Er −

1

eini

∂pi
∂r

)
=

c
√
gBϑ

(
Er −

1

eini

∂pi
∂r

)
. (34)

Due to (B4) V ϕ
(i) is constant on the flux surface (plasma rotates within the flux surface as

a solid body). Equation for time evolution of this quantity is obtained eliminating electric

field in (32) with help of (34) and substituting there electron and ion flux densities using (31)

and (28) for α = i, respectively,1 +
v2
A

c2

〈grr〉 g
(
Bϑ
)2

〈gϕϕ〉B2

mini 〈gϕϕ〉
∂V ϕ

(i)

∂t
=
〈
F

(V )
(i) ϕ

〉
+
〈
F

(EM)
(e) ϕ

〉
+
〈
F

(EM)
(i) ϕ

〉

− 1

c

√
gBϑ

(
eiΓ

(A)
(i) + eeΓ

(A)
(e)

)
, (35)
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where vA = B/
√

4πnimi is the Alfven velocity. Assuming that in absence of the perturbation

radial polarization current due anomalous non-ambipolar fluxes as well as other momentum

sources which were omitted here for simplicity are balanced by the (anomalous) viscous force

which has the form similar to the collisional viscous force,

〈
F

(V )
(i) ϕ

〉
=
〈
F

(V )
(i) ϕ

(
V ϕ

(i)

)〉
=

1

S

∂

∂r

(
Sminiµ

(ϕ) 〈gϕϕ〉
∂V ϕ

(i)

∂r

)
, (36)

such that toroidal viscosity coefficient (momentum diffusion coefficient) µ(ϕ) is independent

of V ϕ
(i), for the change in toroidal velocity due to the perturbation field, ∆V ϕ

(i), one obtains

the ordinary differential equation

〈
F

(V )
(i) ϕ

(
∆V ϕ

(i)

)〉
+
〈
F

(EM)
(e) ϕ

〉
+
〈
F

(EM)
(i)ϕ

〉
= 0. (37)

Using the boundary conditions

∂∆V ϕ
(i)

∂r

∣∣∣∣∣
r=0

= ∆V ϕ
(i)

∣∣∣
r=a

= 0, (38)

where a is plasma radius, and the fact that quasilinear force in the case of a single pertur-

bation mode is localized around r = rres in the narrow region |r − rres| < ∆r integration of

a steady state equation (37) gives12,19

∆V ϕ
(i) (rres) ≈ T (EM)

ϕ

a∫
rres

dr

Sminiµ(ϕ) 〈gϕϕ〉
. (39)

where

T (EM)
ϕ = T

(EM)
(e) ϕ + T

(EM)
(i) ϕ , T

(EM)
(α) ϕ =

a∫
0

drS
〈
F

(EM)
(α) ϕ

〉
=
∫
V

d3r
〈
F

(EM)
(α) ϕ

〉
(40)

is the toroidal torque. Using S ≈ 4π2rRaxis, 〈gϕϕ〉 ≈ R2
axis one obtains an estimate

∆V ϕ
(i) (rres) ∼

T (EM)
ϕ (a− rres)

4π2aR3
axismini(rres)µ(ϕ)

. (41)

The value of T (EM)
ϕ for a single mode can be estimated from Fig. 11 where the total toroidal

torque and the torque on ions is shown for the mode m = −7, n = 3 as a function of

Ve⊥ = Ve∗ − Vi∗ + rV ϕ
(i)q

−1 where Ve∗ and Vi∗ are electron and ion diamagnetic velocities,

respectively. This dependence has been obtained by scaling the original V ϕ
(i) shown in Fig. 1

by the factor changing between 0 and 2. Here Ve⊥ and V ϕ
(i) are counted in directions of
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poloidal magnetic field and toroidal current, respectively. For low toroidal rotation velocities

Ve⊥ < 0 due to Ve∗ < 0 and, therefore, torque is positive, i.e. it leads to toroidal spin

up. Estimating the torque away from the resonant peak as T (EM)
ϕ ∼ 105 dyne cm and

µ(ϕ) ∼ 104 cm2 s−1 one obtains for the spin up from a single mode Raxis∆V
ϕ
(i) ∼ 105 cm s−1.

Comparing Fig. 5 to Fig. 3 one can see that for all resonant modes except for m = −5 and

m = −6 Ve⊥ < 0 and, therefore, all these modes lead to a toroidal spin up. Thus, total

spin up is a few km s−1. This estimate strongly depends, however, on the value of toroidal

viscosity, µ(ϕ), which is not a well determined quantity. It should be noted that the change

in the rotation velocity is very small, about two orders of magnitude smaller that rotation

velocity on the axis (see Fig. 1). Roughly this agrees with the value of the torque from the

NBI which is about 8 · 107 dyne cm.

It should be noted that due to the nonlinear dependence of the torque on ∆V ϕ
(i) (see Fig. 11)

Eq. (39) is nonlinear and has several roots which describe either the state where the islands

“slip” through the plasma and perturbation is strongly screened by plasma response currents,

or the “locked” state where the screening is strongly reduced12,19,20. In the reduced MHD

theory one of the locked states is achieved if Ve⊥ ≈ 0. It can be seen from Fig. 5 and Fig. 11

that a locked state is observed only for the mode m = −7, n = 3 (and other modes with the

same helicity and different n). It is remarkable that the “resonant” value of Ve⊥ where the

torque passes through zero and which is actually realized in the experiment is different from

Ve⊥ = 0. This follows directly from kinetic theory11. Since the value of the torque in the

vicinity of the “resonance” is more than an order of magnitude higher than elsewhere (which

is the result of increased field amplitude due to better penetration near the “resonance”),

locking of this mode prevents further spin up.

Besides the rotation change, modification of density profiles occurs if an essential amount

of the torque is applied to electrons (see Eq. (31)). Actually torque on ions is two orders

of magnitude smaller than torque on electrons (see Fig. 11). This modification is negligible

if the additional flux due to the torque is small compared to the anomalous particle flux

which for the estimates is assumed in the form Γ
(A)
(e) = −D⊥∂ne/∂r. Thus, the effect of the

perturbation field on the density profile can be ignored if

Γ
(EM)
(e)

Γ
(A)
(e)

=
c
〈
F

(EM)
(e) ϕ

〉
√
gBϑeeD⊥

(
∂ne
∂r

)−1

∼
qT (EM)

ϕ

4π2r2Raxis∆rmiωciD⊥

(
∂ne
∂r

)−1

� 1. (42)
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It is convenient to express the ratio (42) through the toroidal velocity change (39),

Γ(EM)
e

ΓAe
∼
rres∆V

ϕ
(i)

vTi

ρLi
∆r

µ(ϕ)

D⊥

qR2
axis

r2
res

rres
a− rres

(
rres
ni

∂ni
∂rres

)−1

� 1, (43)

where vTi =
√
Ti/mi and ρLi = vTi/ωci are ion thermal velocity and Larmor radius, re-

spectively, and ∆r is the width of the resonance layer. It can be seen that for µ(ϕ) ∼ D⊥

condition (43) is usually well fulfilled in the core plasma.

It should be noted that the estimate of the local torque density〈
F

(EM)
(e) ϕ

〉
∼ T (EM)

ϕ /(4π2Raxisrres∆r) used in (42) can be used if this quantity has pre-

dominantly a definite sign in the resonance layer. This is not the case for the locked mode

m = −7, n = 3 which can be seen from Fig. 12 where the radial profile of the local torque

density computed directly by the Maxwell solver as〈
F

(EM)
(α) ϕ

〉
=

〈(
eαñαẼ +

1

c
j̃α × B̃

)
· ∂r
∂ϕ

〉
(44)

is shown for the “slipping” mode m = −5, n = 3 and for the pertinent locked mode. In fact,〈
F

(EM)
(α) ϕ

〉
is three orders of magnitude higher for the locked mode than for the slipping mode

which is the consequence of better penetration and quadratic dependence of this quantity

on the perturbation field amplitude. Estimating D⊥ = 104 cm2 s−1 one obtains from the

first equality in (42) that Γ
(EM)
(e) /Γ

(A)
(e) ∼ 2 > 1 for the locked mode. Thus, electron pressure

profile must be affected by the perturbation field. As shown in Ref. 24,28, in the case of

negligible finite Larmor radius effects which is well fulfilled for the electrons, expression for

the particle flux Γ
(EM)
(e) in the collisionless limit coincides with the expression for particle

flux in the ergodic magnetic field29. Therefore, the expected consequence of perturbation

induced transport is the elimination of electron pressure gradient in the resonance layer. If

perturbation induced ion flux would be also large, ion pressure gradient would be eliminated

too leading to complete locking of plasma rotation in the resonance layer. However, as one

can see from Fig. 12, torque on ions is about 40 times smaller than torque on electrons

and, therefore, it produces the radial ion flux which is smaller than anomalous. As a result,

locking of m = −7, n = 3 mode does not lead to zero rotation at q = 7/3 rational surface.

B. Nonlinear effects

Nonlinear effects can be ignored if the island width is small compared to the width of the

parallel current30. In this case, the re-distribution of the parallel current over the perturbed
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flux surfaces (including island flux surfaces) does not change significantly the radial profile of

the parallel current density given by linear theory. This comparison is presented in Fig. 13.

One can see that even for the “slipping” mode these widths are of the same order, and,

strictly speaking linear theory is violated. However, this violation is weak, and therefore the

results of the present analysis should be valid by order of magnitude. For the locked mode

violation is much stronger. If the island opens nonlinearly, then Tm,n ≈ −2m/(r∆′) which is

very close to unity for tearing stable modes18 (here ∆′ is a tearing mode stability index16).

It should be noted that elimination of electron pressure gradient due to the quasilinear effects

discussed in Section IIIA has not been modelled here. If the electron pressure gradient is

absent in the resonance layer, the largest parallel electron response currents which are driven

by the Lorentz force from the perturbation field, F̃L‖ =
(
eeVe × B̃/c

)
‖

= −eeVe⊥B̃r/c will

be reduced to the level where perturbation magnetic field is described by the vacuum model

which is close to the result of the nonlinear theory.

IV. EFFECT OF THE PERTURBATION FIELD ON THE PEDESTAL REGION

As follows from the results of Section IID ergodization of the magnetic field is limited by

plasma response currents to a relatively narrow region around separatrix, s > 0.97, where,

in turn, the perturbation field reaches almost the vacuum value. It is interesting to consider

now the consequences of this result for plasma density and temperature in the pedestal

region. Experimental density and temperature profiles in this region show the following

features when the perturbation field is set on:

• Density gradient is almost unchanged by the perturbation field, profile shifts down as

a whole. Changes of the shape can be seen only at the very edge (s > 0.97).

• Electron temperature is flat and ends with large gradient region at the last 2-3 cm.

With the perturbation it becomes even more flat, region of large gradient shrinks to

about 1 cm (gradient increases).

• Ion temperature increases as a whole with the perturbation field.

• Change of profiles when varying the perturbation amplitude by factor of the order one

is small.
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• Strong density and temperature changes occur in the long mean free path regime.

Most of these features can be explained by the change of boundary condition for the density

at the pre-separatrix region which is affected by the ergodization. For this purpose, assuming

that particle and electron heat transport are completely anomalous, the following model

equations are considered,

∂

∂r
SΓe = 0, Γe = −D⊥

∂ne
∂r

, (45)

∂

∂r
SQe = 0, Qe = −3

2
D⊥

(
Te
∂ne
∂r

+ ne
∂Te
∂r

)
,

where Γe =
〈
Γr(e)

〉
and Qe particle and energy flux density, respectively. These equations fol-

low, in particular, from Eqs.(4), (6), (61) and (62) of Ref. 31 for the electrostatic turbulence

with small parallel wave numbers,

∆k⊥
vTek‖

∂ω

∂k⊥
� 1, (46)

where ∆k⊥ and vTe =
√
Te/me are perpendicular spectral width and electron thermal ve-

locity, respectively, in the case of small curvature drift effects. Thus, one can formally put

k‖ = ωDα = 0 in Eqs.(61) of the pertinent reference. Ignoring for simplicity viscous tensor,

collisional heat flux and equilibrium radial electric field, after the re-notation Eqs. (45) are

obtained. If zero boundary condition is prescribed for the temperature at the separatrix,

Te(a) = 0, Eqs. (45) link temperature and density profiles through a simple relation

Te(r) =
2Qe

3Γe

(
1− ne(a)

ne(r)

)
, (47)

where Qe/Γe ratio is independent of the radius. According to Eqs. (45), the density profile

does not change shape and moves as a whole if the boundary condition for the density

at the separatrix, ne(a), changes. At the same time, electron temperature increases and

steepens with the reduction of ne(a) (see Fig. 14). Increase and steepening of the temperature

profile with density decrease is due to the reduction of the conductive heat flux fraction

(linear in temperature gradient) as compared to the convective heat flux fraction (linear

in temperature) which tends to form a constant temperature profile. As shown in Ref. 32,

the increase of ion temperature is due to the fact that the anomalous diffusion coefficient

is smaller than the neoclassical heat diffusion coefficient. Since neoclassical heat diffusion

coefficient scales linearly with density, ion temperature increases due to the density decrease.
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Thus, the reasons for the density pump-out in the whole pedestal should be looked for in

the narrow ergodized pre-separatrix region or outside the separatrix. This can be increased

screening of neutrals due to the ergodization, or the effect of the perturbation field on

the ion orbit losses. In the second case, without the perturbation field, orbit losses are

minimized by the equilibrium radial electric field which develops due to relatively small

mobility of electrons. Ergodization releases electrons and, therefore, changes the radial

electric field which does not prevent ion orbit losses anymore. The mechanism connected with

ion orbit losses should be more pronounced in the long mean free path regime where, in fact,

major changes of the profiles are observed. It should have a property of “saturation” with

increasing perturbation amplitude because as long as ergodization has completely destroyed

the ambipolar electric field preventing the ion orbit losses, particle flux from this region

becomes fully determined by the ion orbit loss mechanism which is independent of the

ergodicity level.

V. SUMMARY

In this work, with the help of the linear kinetic model for the straight periodic inhomoge-

neous cylinder combined with 3D vacuum magnetic field data, the effect of plasma response

currents on the non-axisymmetric magnetic field perturbations from the I-coil used for ELM

mitigation in DIII-D has been studied for the particular experiment, shot 126006. It has

been shown that a large perpendicular equilibrium electron fluid velocity leads to a sig-

nificant (by two and more orders of magnitude) reduction of the perturbation field in the

core plasma due to the screening of this field near the resonant magnetic surfaces. Both,

the toroidal plasma rotation and the diamagnetic drift of electrons and ions contribute a

similar amount to this velocity. In addition, the non-resonant plasma response leads to

a relatively small (of the order one) attenuation of the perturbation field harmonics with

negative poloidal wave numbers m and to some amplification of harmonics with positive m

which are never resonant. It has been shown that in addition to the modification of the

toroidal rotation velocity quasilinear effects lead also to modification of plasma density and

electron temperature around resonant magnetic surfaces. However, all these effects appear

to be small for the case considered here. In particular, the predicted change of the toroidal

plasma rotation velocity by a few km/s is two orders of magnitude smaller the velocity of
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plasma rotation due to the NBI injection. An estimation of non-linear effects shows that

these effects approach the order of one and, therefore, the results of the present linear anal-

ysis are marginally valid. It has been observed that the kinetic model stays in approximate

agreement with the reduced MHD model except in regions with fast perpendicular electron

rotation. This is a remarkable fact because for plasma parameters used here, MHD theory

predicts that the resonant layer width is more than by an order of magnitude smaller than

ion Larmor radius and, therefore, MHD theory is formally invalid.

In contrast to the vacuum magnetic field model which predicts full destruction of the mag-

netic field configuration in the outer half of plasma volume it has been observed that plasma

response currents significantly reduce the effect of the perturbation field on the magnetic

configuration. In particular, the effect of the perturbation field on the magnetic surfaces

in the core plasma is almost absent and an ergodic layer is formed only at the edge, for

s = ψtor/ψ
(a)
tor > 0.97, where ψtor is the toroidal flux. The model predicts a toroidal plasma

spin up (spin up of the ion component) which, in turn, leads to a simultaneous slowing down

of the electron component and ends up with mode locking at the q = 7/3 rational surface.

A simple balance model for the pedestal region which assumes that the ergodization effect

in the narrow pre-separatrix layer s > 0.97 leads to a reduction of the plasma density in

this layer, qualitatively reproduces the experimental behavior of plasma parameters in the

pedestal region with the onset of the perturbation coil current. A possible reason for such a

density reduction is the combined effect of ion orbit losses and magnetic field ergodization.

The present results should be considered as a preliminary estimate for the following reasons.

Although the linear approximation used here is shown to be marginally valid, poloidal mode

coupling effects have been completely ignored in the present model. Near the separatrix these

effects are of order one because the metric tensor of flux variables is essentially dependent on

the poloidal angle there. Therefore, the results for the pedestal region should be viewed as

an order of magnitude estimate only. In addition, the poloidal rotation velocity has been set

to zero in this modelling. This approximation is good for the core plasma, but at the edge

it can overestimate the perpendicular electron fluid velocity roughly by factor of 2 which

also leads to a certain overestimation of the screening effect. However, this overestimation

is not expected to change the order of magnitude of the results for the perturbation field

amplitude. Thus this study can be viewed as a first estimate of important effects, while for

the more reliable results a proper two dimensional modelling of the perturbation magnetic
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field is required.

APPENDIX A: DIVERGENCE-FREE REPRESENTATION OF EQUILIBRIUM

AND VACUUM PERTURBATION MAGNETIC FIELD IN CYLINDRICAL CO-

ORDINATES

The unperturbed magnetic field is given in the divergence free form,

B0 = ∇A0ϕ ×∇ϕ+B0ϕ∇ϕ, (A1)

where B0ϕ is the co-variant toroidal magnetic field component (constant in the low pressure

approximation) andA0ϕ = −ψpol is the co-variant toroidal component of the vector potential.

Here ψpol = ψpol(R,Z) is the poloidal magnetic flux divided by 2π which is provided by the

equilibrium code EFIT13,14 on the 2D rectangular grid in cylindrical coordinates (R,ϕ, Z)

and is reconstructed by bi-cubic spline interpolation.

Perturbation magnetic field in vacuum is provided by the TRIP3D code1 in the form of

physical components, δB̂i, on an equidistant 3D grid in cylindrical coordinates. If these

components are reconstructed by direct interpolation, ∇ · δB = 0 condition is satisfied only

up to the interpolation accuracy which may lead to appearance of attractors and numerical

diffusion in the Poincaré mapping. For the divergence-free representation which satisfies

this condition up to computer accuracy magnetic field is represented via vector potentials.

Separating the axisymmetric part of the perturbation field, δB̄, as follows,

δBi(R,ϕ, Z) = δB̃i(R,ϕ, Z) + δB̄i(R,Z), (A2)

where components δB̃i(R,ϕ, Z) have zero average over ϕ, this part is presented as

δB̄ = ∇×
(
Āϕ(R,Z) ∇ϕ

)
+ δB̄ϕ ∇ϕ, (A3)

where δB̄ϕ = Const and

Āϕ(R,Z) =

R∫
Rmin

dR′R′δB̄Z(R′, Z). (A4)

Here, δB̄Z(R′, Z) is the Z-component of the field averaged over the toroidal angle and Rmin

is the inner boundary of the data box. The non-axisymmetric part of the field is represented
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using the gauge Ãϕ = 0 as follows,

δB̃ = ∇×
∞∑

n=−∞
einϕ (AR,n(R,Z) ∇R + AZ,n(R,Z) ∇Z) (A5)

where axisymmetric components of vector-potential Ã are zero, AR,0 = AZ,0 = 0. The

remaining Fourier amplitudes are obtained from Fourier amplitudes of the physical compo-

nents of the magnetic field,

AR,n(R,Z) =
i

n
R δB̂Z,n(R,Z), AZ,n(R,Z) =

−i
n
R δB̂R,n(R,Z). (A6)

Since functions expanded in Fourier series are real, fn = f ∗n, only half of the series is used

in (A5),

f(ϕ) =
∞∑

n=−∞
fne

inϕ = 2Re
∞∑
n=1

fne
inϕ. (A7)

Fourier amplitudes of the physical magnetic field components δB̂R,n, δB̂Z,n as well as aver-

aged components δB̄Z = δB̂Z,0 and δB̄ϕ = R δB̂ϕ,0(R,Z), respectively, are obtained using

the approximate formulas for the Fourier transform of a periodic function f(ϕ) given on an

equidistant grid (ϕ0, ϕ1, . . . , ϕK) where ϕK = 2πk/K as follows

fn =
1

K

K∑
k=1

f(
2πk

K
) exp

(
−2πikn

K

)
. (A8)

APPENDIX B: CONVERSION TO FLUX COORDINATES BY INTEGRATION

ALONG THE FIELD LINES

Flux coordinates (ψtor, ϑ, ϕ) are generated by integration of the unperturbed field line equa-

tions in cylindrical variables,

dR

dϕ
=
BR

0

Bϕ
0

,
dZ

dϕ
=
BZ

0

Bϕ
0

. (B1)

Denoting the solution which corresponds to the field line starting at the point (Rb, 0, Zb) with

Ru(Rb, Zb;ϕ) and Zu(Rb, Zb;ϕ), choosing Zb = Zaxis being the coordinate of the magnetic

axis, and generating a set of these solutions for the grid of Rb values (so that Rb serves as a

flux surface label), one obtains for the toroidal flux Ψtor = 2πψtor = Ψtor(Rb)

Ψtor(Rb) =

2πq∫
0

dϕBR
0 (Ru(Rb, Zaxis;ϕ), Zu(Rb, Zaxis;ϕ))

× Ru(Rb, Zaxis;ϕ)Zu(Rb, Zaxis;ϕ), (B2)
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where the safety factor q = q(Rb) is expressed through the period ∆ϕ of functions Ru and

Zu over the field line parameter ϕ as follows, q = ∆ϕ/(2π). Since in flux variables poloidal

and toroidal angles satisfy on the field line the condition qϑ−ϕ = Const, relations between

cylindrical coordinates (R,Z) and flux coordinates (ψtor, ϑ) are given by

R = Ru(Rb(ψtor), Zaxis; q(ψtor)ϑ), Z = Zu(Rb(ψtor), Zaxis; q(ψtor)ϑ). (B3)

Since the metric determinant of flux variables satisfies

√
g Bϕ = q

√
g Bϑ = 1, (B4)

the equilibrium magnetic field (A1) can also be presented as

B0 = ∇ϕ×∇ψpol +∇ψtor ×∇ϑ. (B5)

According to Eqs. (A1) and (A2), axisymmetric part of the perturbation field provides

small corrections to A0ϕ and B0ϕ. Non-axisymmetric part of δB takes in flux variables the

following form

δB̃ = ∇Ãψtor ×∇ψtor +∇Ãϑ ×∇ϑ. (B6)

Component Ãψtor does not modify the magnetic field topology because this small term can

be iteratively absorbed into the flux function. (Formally, Ãϑ can also be included in ψtor

however this would destroy the property of ψpol to be a function of ψtor alone and, therefore,

destroy simple topology of the unperturbed magnetic field15.) Thus, both, the symmetric

part of the perturbation field and vector potential component Ãψtor can be ignored for small

perturbation fields. Comparison of Poincaré plots computed for the vacuum perturbation

field model with and without these correction terms show a negligible difference in the

results. Therefore, these terms have been omitted in the further analysis.

Fourier amplitudes of the perturbed vector potential component Ãϑ are obtained during the

field line integration as follows,

Aϑ;m,n(ψtor) =
1

2πq

2πq∫
0

dϕAϑ;n (R(Rb, Zaxis;ϕ), Z(Rb, Zaxis;ϕ)) e−imϕ/q. (B7)

where

Aϑ;n(R,Z) = AR,n
∂R

∂ϑ
+ AZ,n

∂Z

∂ϑ
=

q

Bϕ
0

(
BR

0 AR,n +BZ
0 AZ,n

)
(B8)

and cylindrical components of vector potential are given by (A6).
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Field line tracing for the complete field B = B0 + δB is finally performed in cylindrical

variables respectively transforming the amplitudes Aϑ;n modified by plasma response back

to cylindrical variables.
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FIGURES

FIG. 1: Profiles of plasma density, temperature and toroidal velocity (counted in the direction of

plasma current) vs the normalized toroidal flux s = ψtor/ψ
(a)
tor.

FIG. 2: Safety factor and parallel equilibrium current density vs the normalized toroidal flux s.
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FIG. 3: Perpendicular equilibrium electron, Ve⊥ = Ve∗ + VE , and ion, Vi⊥ = Vi∗ + VE , fluid

velocities and electric drift velocity VE vs the normalized toroidal flux s. Velocities are counted in

the direction of poloidal magnetic field.

FIG. 4: Form factor modules |Tm,n| vs the normalized toroidal flux s for n = 3. Poloidal wave

numbers m are given above the respective curves.
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FIG. 5: Form factor modules at resonance magnetic surfaces as given by the kinetic model (black

circles) and by the drift MHD theory (solid line) for n = 3. Poloidal wave numbers of the resonant

modes are indicated below the data points. Spikes marked by pentagrams on the drift MHD

curve correspond to zeros of the perpendicular equilibrium electron fluid velocity Ve⊥ (see Fig. 3).

The thickness of the horizontal line on top of the plot indicates the respective MHD regime of

Ref. 12: thin - “first semicollisional”, medium - “first Hall-resistive”, thick - “inertial”, diamonds

- “visco-inertial”.

FIG. 6: Ratio of the n = 3 perturbation frequency to the electron-ion collision frequency in the

rest frame of electrons (solid) and in the reference frame where electric field is zero (dashed). As

in Fig. 5, poloidal wave numbers are assumed to be continuous in order to match the resonance

condition over the whole radius.

29



FIG. 7: Ratio of electron torque to ion torque estimated according to Eq. (23) for the layer width

δ given by the MHD theory (curve 1) and putting δ = ρLi (curve 2). The ratio δ/ρLi is also shown.

FIG. 8: Real (solid) and imaginary (dashed) parts of the perturbed ion velocity component

Ṽi⊥ = (eini0)
−1 j̃i · h×∇r for the modem = −5, n = 3 where j̃i is the response current of ions (10).
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FIG. 9: Poincaré plots for the vacuum perturbation magnetic field model in real space (above)

and magnetic (below) coordinates. Right figures present details of the region near the unperturbed

separatrix with a higher density of the traced field lines. In magnetic coordinates, also the safety

factor q and analytical island widths corresponding to Eq. (25) are shown vs s = ψtor/ψ
(a)
tor.
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FIG. 10: Poincaré plot in magnetic coordinates for the perturbation magnetic field model with

plasma response. See Fig. 9 for the notation. Right figure is a zoom of the region with the ergodic

layer near the unperturbed separatrix.

FIG. 11: Total toroidal torque (left) and torque on ions (right) for the mode m = −7, n = 3 vs

perpendicular equilibrium electron fluid velocity, Ve⊥. Torque is counted in the direction of plasma

current. The variation of Ve⊥ from −9.9·105 cm s−1 to 8.4·105 cm s−1 is obtained using as an input

the toroidal velocity, V z
(i), equal to the experimental value times the scaling factor which changes

from 0 to 2. Dashed vertical line corresponds to the experimental value (scaling parameter 1).
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FIG. 12: Toroidal torque density, 〈F (EM)
ϕ 〉, for electrons (solid) and ions (dashed) for the “slipping”

mode m = −5, n = 3 (left) and for “locked” mode m = −7, n = 3 (right). Vertical line indicates

the position of resonant surface.

FIG. 13: Real (solid) and imaginary (dashed) parts of the Fourier amplitude of the parallel plasma

response current, j‖, for m = −5, n = 3 (left) and for m = −7, n = 3 (right) (in the vacuum,

Aϑ;m,n is purely real). Thick horizontal lines indicate the positions of islands.
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FIG. 14: Electron density and temperature resulting from Eqs. (45) before (dashed) and after

(solid) reduction of the density at the separatrix. The same D⊥ constant over the radius is assumed

in both cases.
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