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Introduction. The diffractive broadening of collimated or focused electromagnetic

wave beams can result in significant changes of the absorption profiles with respect to

standard ray-tracing calculations, where diffraction is neglected [1, 2]. In this paper, the

beam tracing (BT) method [3, 4] and the complex geometrical optics (CGO) approach

[5, 6] are applied to study the propagation of a Gaussian beam in two-dimensional

isotropic inhomogeneous media. Both methods rely on the use of a complex phase

for the wave field, the imaginary part of which allows for the evolution of the beam

profile. BT exploits a paraxial expansion of the wave phase around a reference ray to

obtain a set of equations for the width of the beam and the curvature of the phase

front. In CGO the eikonal equation, ( c
ω
∇S(r))2 = ε(r, ω), is analytically extended

to the complex space, and solved by means of its characteristics which are rays in

the complex space; the phase and the amplitude are thus calculated in the complex

space and the numerical procedure of “ray aiming” is used to obtain results in real

space. This method accounts for diffraction by introducing a correlation between near

rays. For propagation in both a homogeneous and a lens-like medium, as well as in

a plasma slab, analytic BT solutions are obtained and compared numerically with

both analytic exact solutions of the corresponding Helmholtz equation, to asses the

accuracy of the method, and CGO calculations, to study the validity of the numerical

algorithm. With respect to the exact solution , it is found that BT yields the energy

density very accurately, the behavior of the wave electric field on the wavelength scale

being also discussed. The agreement of the CGO numerical procedure with the analytic

BT solutions turns out to be excellent.

The BT solutions of the Helmholtz equation for the propagation in an

isotropic medium. With reference to the Helmholtz equation for the (monochro-

matic) wave electric field E(r, ω) in a slowly space-varying isotropic medium with

dielectric function ε(r, ω), i.e., [∇2 + (ω/c)2ε(r, ω)]E(r, ω) = 0, the solution relative to

a wave beam, obtained by applying the BT method [3], can be written as

E(r, ω) = ê(τ)
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where the Gaussian harmonics are defined in terms of the parabolic cylinder functions,

Hm(ξ) being the Hermite polynomials. From (1) it appears that the line ξ1 = ξ2 = 0

is the symmetry axis of each harmonic, and it is referred to as reference ray (�); the

coordinate system (τ, ξ1, ξ2) is such that τ is the coordinate along the reference ray with

dτ =| dr/dτ |−1 ds, ds being the elementary arc length of �, and ξi ≡ √
2vi/wi(τ),

i = 1, 2, are the transverse (to �) coordinates normalized to the beam widths wi.

Because of the fast varying exponential factor in (1), the eikonal function S is obtained

by making use of a paraxial expansion about the reference ray, so that
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the eigenvalues of the 2 × 2 Hessian matrix of S being related to the two radii of

curvature of the phase front. For the specific case for which the dependence with

respect to ξ1 and ξ2 is separable and considering an axisimmetric wave beam, one gets

the 2nd term in right-hand-side of (2)
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the second equality relating the the radius of curvature R(τ) of the axisymmetric beam

to the corresponding width w(τ). The coefficients cmn in (1) are to be determined from

the value of the electric field amplitude on the initial (τ = 0) phase front. The radii

of curvature and the beam widths are obtained as solutions of a tensorial Riccati-type

equation which governs the Hessian matrix of the complex eikonal S̄(τ) = S(τ) +

i((ξ1)2 + (ξ2)2)/2, the coefficient of such an equation depending on the derivatives of

the dispersion function [1,7].

The BT solutions for 2D-propagation. We consider the specific case of a 2D-

Gaussian beam in the (x, z)-plane propagating in a weakly inhomogeneous medium

slab, symmetric in the transverse (with respect to the beam launching direction) x-

direction, i.e., the dielectric function is ε(z, x) = ε(z,−x). Under these conditions and

for an initially (z = z0) plane Gaussian beam the electric field of which is E(r, ω) =

ŷu0e
−x2/w2

0 , the reference ray is the z-axis, and solution (1) reduces to,

E(r, ω) = ŷu0
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ε0(z) ≡ ε(z, x = 0) is the dielectric function on the reference ray. A lens-like medium

is characterized by the dielectric function ε(x) = ε0 [1 − (x/L)2], the coordinate of the



reference ray being z = 2(c/ω)
√

ε0τ , and z0 = 0. The corresponding beam width is [7]
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the curvature 1/R(z) being obtained by applying the 2nd of (3). As for the (real part

of the) electric field amplitude, u(z, x), from (4) one gets
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The case of a homogeneous medium is simply given by (5) and (6) to lowest order in

(z/L) � 1. Let us consider now the case of a plasma slab of width a, with dielectric

function ε(z, ω) = 1 − ω2p(z)/ω2 and parabolic density. For an initially plane Gaussian

beam, launched at z0 = −a along the density gradient direction, the width and the

radius of curvature, expressed in terms of the ray coordinate τ , are equal to those

calculated for the homogeneous medium, because of the plasma homogeneity in the

transverse directions. For the chosen launching conditions, the beam propagation is

unaffected by refraction, whereas the dispersive effects are embodied in
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With ε0(z) = N 2 + (ωp/ω)2(z/a)2, the integration occurring in (4) can be carried out

explicitly.

Numerical results and discussion. A detailed numerical analysis of the BT solu-

tions for the three foregoing specific cases is performed along with a comparison with

the corresponding exact solutions. For a homogeneous medium , the x-profile of the

BT solution is shown in Fig.(1a), dashed curve, for a fixed position on the reference

ray. The oscillatory structure of the profile, weighted by the Gaussian factor e−x2/w2
,

is due to the x2-term in the cos-factor of (6) which describes the curvature of the

phase front; diffraction effects avoid zeros of both R(z) and w(z), i.e., caustics. The

corresponding x-profile of the exact solution of the 2D-Helmholtz equation [1] is also

shown in Fig.(1a), full curve. For z = 0 the exact solution reduces just to the Fourier

transform of a Gaussian, thus giving the initial field amplitude; for z 	= 0 an oscillating

exponential sets in: this solution appears to be a superposition of modes, each one

characterized by different wavelengths giving rise to the diffractive pattern shown in

Fig.(1a); it appears that the BT solution is quite accurate, as quantitatively shown in

Fig.(1b). With reference to a lens-like medium , the BT solution (5) and (6) is shown

in Fig.(2a) as a function of z, for x = 0, dashed curve: the field oscillations on the scale

of the wavelength appear to be shifted with respect to the exact solution (full curve).



Again the exact solution is a superposition of modes [7], no well-defined wavelength

being thus identifiable. For a not too long propagation length, the arctan-term in (6)

partially describes this shift, which, however, does not affect the energy density, as

shown in Fig.(2b). For the propagation of a Gaussian beam in a lens-like medium the

BT solution is also compared with the corresponding one obtained by means of the

CGO approach and the agreement between the two solutions is found to be better than

0.02%. The BT solution for the beam propagation in a plasma slab exhibits an addi-

tional effect due to the density variation along �, which increases both the wavelength,

the corresponding maximum being λmax = 2πc/(ωN), and the electric field amplitude.

This effect depends on the beam frequency ω (temporal dispersion). One should note

that the BT method fails to describe the propagation of evanescent waves, i.e., for

ω ≈ ωp, for which the CGO approach should be employed.
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Fig.(1a): the BT (dashed curve) and exact (full curve) x-profile of a very narrow (k0w0 = 8) beam propagating in a
homogeneous medium; k0z = 200, k0 = ω

√
ε0/c.

Fig.(1b): the accuracy of the BT solution: ∆(k0z) =
∫

dx | uEX(z, x)− uBT (z, x) |2, vs k0z.
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Fig.(2a): the z-dependence of the BT (dashed curve) and exact (full curve) solution on the beam axis (x = 0) for a
narrow beam (wc/w0 = 1.3) propagating in a lens-like medium; k0L = 50.

Fig.(2b): the quantity | 1−EBT (k0z)/EEX(k0z) | vs. k0z, Ei(k0z) = 〈
∫

dx | ui(x, z) |2〉, with i = BT, EX respectively,

and 〈 〉 is the average over the wavelength. Peaks occur at the foci predicted by geometrical optics.
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