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Abstract. The achievement of long duration, alternating currentldisges on the tokamak IST-
TOK requires a real-time plasma position control systene plasma position determination based
on magnetic probes system has been found to be inadequitg the current inversion due to the
reduced plasma current. A tomography diagnostic has beeeftre installed to supply the required
feedback to the control system. Several tomographic methoelavailable for soft X-ray or bolo-
metric tomography, among which the Cormack and Neural nétsumethods stand out due to their
inherent speed of up to 1000 reconstructions per seconld cwirently available technology. This
paper discusses the application of these algorithms oarfgvices while comparing performance
and reliability of the results. It has been found that altjfothe Cormack based inversion proved to
be faster, the neural networks reconstruction has fewiaets and is more accurate.
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INTRODUCTION

A real-time plasma position control system is required thiece long duration, al-
ternating current discharges on the tokamak ISTTOK R 0.46cm,a = 8.5cm).
Such a system has been in place for some time using magnebe$f2]. However,
this system has been found to be limited during the curresgrgion of long duration,
alternating current discharges. A tomography diagnosticdeen installed to supply ad-
ditional feedback to the control system. This paper presew different tomographic
algorithms which can be processed in real-time (one reoactgin in Q1 ms) using, for
example, the Linux RTAI platform in a standard PC equipedhwhie acquisition boards.

The considered algorithms are the Fourier-Bessel [3, 4]Jaandural-network (NN)
method [5]. The Fourier-Bessel algorithm uses a fit of thalavke data to a set of
basis functions: the Bessel functions are used in radiakton and the Fourier sine
and cosine components representation for the poloidattthre The NN is trained with
phantom data to produce a given output for some predefinadsnfs will produce a
good reconstruction if the presented problem is in some waingerpolation of the
training set.



TOMOGRAPHY SYSTEM

The ISTTOK tomography system consists of 30 photodiode rélan 10 in each of
the 3 cameras (see fig. 1). For each 10, only the 8 innermosinelmare actually
connected to the acquisition system resulting in 24 usedrala. Each camera has a
circular pinhole of 1 mm and each photodiode has a size®k 1.5 mm. The distance
from the photodiode array to the pinhole is 1 cm, allowingladoverage of the plasma.
No filter is used so each photodiode is essentially measwisigle light and some
ultra-violet.

Each channel is amplified by a transductance amplifier withia gf 18 x 10° and
digitally acquired at a rate of 2 MSamples/s with 14 bits clolation.

Since the power supplies that adjust the plasma positioe hdag of the order of
100us [6], not all the samples from the cameras are necessargdoipe one tomogram
in real-time, so only one sample every J28is used, by filtering 256 samples.

ALGORITHMS

In tomography, the goal is to generate a cross-section vieavgiven medium from a
set of integrated measurements.

In the fusion community, several tomography algorithmsuaed, the most common
being the constrained regularization, also called pixedda methods, Cormack based
methods and Neural-Networks. The most common constraggedarization algorithms
are the Maximum Entropy and the Minimum Fisher, but othempdémregularizations
exist [7-9]. These algorithms are usually iterative, sy thie not good candidates for
a real-time application, although they do produce moraléh reconstructions than the
other two algorithms. Because of that, this paper focuseh®iCormack method and
NN.

The Cormack method [10] essentially approximates the ewvitssprofile by a Fourier

FIGURE 1. The tomography camera system of the tokamak ISTTOK: 3 cesnwith 8 diodes each.
Sight lines in the poloidal installation are drawn.



expansion on the poloidal plane and an expansion in Zermiokgnomials in the radial
direction. However, Zernicke polynomials have the inhem@oblem that they are non
zero at the outer edge which can lead to completely unrgatissults. So a different
type of functions must be used in the radial expansion andg\ia4] found that the
first order Bessel functions are appropriate.

Fourier-Bessel basis functions

The Radon transform in two dimensions can be written as
f(p.o)= [ gro)ds ®
L(p.@)

where the integral path(p, @) is shown in fig. 2,g(r,8) is the plasma emissivity in
poloidal coordinates antl p, ) is the measurement along the lineg~ourier expanding
these two functions one can write them as

2 Om(r) cogmo) + gp(r) sin(mo) (2)

Z fm(p) cosmg) + f5(p) sin(mg) ©)

Expanding furthegr:>(r) one can obtain
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Substituting egs. (2), (3) and (4) into eq. (1) it can be shtvan [10]

fmo(P) = an fm(p) (5)

Detectorv

f. 9

plasma
g(r,9)

FIGURE 2. The measurement geometry of Eq.1.



Now, if gmi(r) = In(Xmir), wherexqy, is the (I + 1)'th zero of the first order bessel
function Jn(x), according to [3], one can write

fml(p) =2y1- pzjm(xml)

. m Um+n71(p) Umfnfl(m
xnzo’zmnéan(xmosm(nE—Xmm)( mrn T m—n ) (6)

whered, = % for n= 0 andd, = 1 otherwiseUn(p) is the Chebyshev polynomial of
i 1

the second kindJn(p) = %)C;W. It is impractical to follow these summations

to infinity, so they must be truncated. This truncation ise&lancording to the following

criteria:

« Thel index is associated with the radial component of the expan3ihe resolution
of this component is determined by the number of photodiadesach camera,
according to the Nyquist theorem; in the present case of &jplmles per camera,
Ny =4,orl =0,1,2and 3.

- The mindex is associated with the angular component of the exparsnd its
resolution is determined by the number of cameras. For 3lestant cameras, one
can have up ton = 2, but since ISTTOK’s cameras are not equidistdpt= 2, or
m=0and 1.

If all a;}'s are known, then one can use egs. (4) and (2) to generatentagtaphic

reconstruction. Each photodiode’s position is given(py @), so one can writef; =
f(pi,@). By writing X, = fmi(p1) cosm@) and X3, = fmi(pi) sin(m@) one can use
the matrix notatiorf = X - g or:
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Since this is a fitting problem with more equations than umkmg) X is not a square
matrix so a simple matrix inversion is not possible. A leagteses fit can be performed
using the Singular Value Decomposition (SVD) of the makix UWVT [11]:

M—» —
U|'f—»

A=y - (8)
2w Y

whereU;i(V) is thei'th column of the matrixU(V), W is thei’th diagonal value of
the matrixW and M is the number of columns oX. SinceX = X(p, ), it can be
precalculated as well as it's SVD. Thus, for each tomogranty eq. (8) needs to
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FIGURE 3. A multilayer perceptron Neural Network, with 2 hidden layeEach neuron is a function
of all neurons on the previous layer and the bias. The biasonds independent of previous layers.

be calculated and the reconstruction can then be built on(ay grid. In this case,
a 33x 33 grid was used. It has more pixels than the system can eedmivnot as many
as to take too long to build a reconstruction.

Neural Networks

A Neural Network (NN) consists of simple processing unitsuions) connected
amongst each other in a particular way. Typically, a NN iamged in layers of neurons,
where any one neuron can have a connection to all other newnorthe previous
layer (see fig. 3). Each neuron has one activation functioiclwban be any function
of neurons from the previous layer(s). The activation fiorcz used in this work is
z=tanh(3;w;a) whereg; is the output from the neurarof the previous layer and
is the weight that neuronhas on the present neuron.

There are many types of NNs. In this work, a multi-layer pptan was used. A NN
must be trained in order to determine the weights. Thisitrgirs done with an artificial
input and output data set. For tomography, one generatéoé@eantoms of expected
spacial radiation distributions of the plasma and, usimg&l sensors on this phantom,
generates the corresponding sensor data. For this worlghfwetoms generated were
rings of different widths, radii and positions, becauseakes sense that th&, radiation
is coming from the outer part of the plasma.

The perceptron networks have one extra neuron in each layehwsn'’t related to
the previous layers; this is the bias neuron and is usudilpske The training and layer
optimization of the network was performed using bayesiathous [5] and produced
a two hidden layer network where the first hidden layer hasu#ares and the second
hidden layer also has 9 neurons. The inputs for the netwerkher data channels from
the photodiodes and thg, y) position of the pixel being reconstructed and the output is
the value of this pixel. So for each reconstruction, the NNstnun for as many times as
there are pixels in the reconstruction grid (833 = 1089 runs).
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FIGURE 4. Comparison of the reconstructions using Fourier-Besd®) @hd Neural Networks(NN)
algorithms contemplating different ranges of measuremeise - a) has no noise, b) has 3% noise and c)
has 5% noise. Clearly, the NN reconstructions are supegitited FB in any of the cases presented. The
phantom used (right) is a ring slightly shifted from the gty 8.6 mm irRand -5 mm inz.

ANALYSIS

The algorithm speed tests were run on a standard PC runrerigghl Time Application
Interface (RTAI [12]) for Linux, with an Intel®Pentium®4 Bcessor at a clock speed of
2.80 GHz. RTAIl is basically an interrupt dispatcher, traygpihe peripherals’ interrupts
and, if necessary, re-routing them to Linux. One can havesla tanning on a given
processor without being interrupted until this task is fuieid so that it will always take
the same time to run.

ISTTOK’s tomography systems’s lines of sight geometry wasduto generate the
virtual channel data for processing by the algorithms.

For a reconstruction on a 3333 grid, the Fourier-Bessel Algorithm takes aboup40
and the NN takes 356s, using only Long numbers in KERNEL space.

Figure 4(a) shows the test emissivity (phantom) and thenscactions of it using
both algorithms discussed. The phantom used is a ring Bfigfitcentered.

Table 1 shows the error of the reconstructions for the sarsehevels as in figure 4.
Since the noise is added randomly, 10 different runs weréopeed to have some
statistics. The error presented is the mean of these 10Fansach run, it was calculated

~ 2
usinge = Zx’y(gp“(x’y)fg(xgy)) wheregph is the phantom and is the reconstruction.
2xy (gph(x.y))

The standard deviation of the error was also calculated tands found that the FB
algorithm presents less sensitivity to the noise.
Figure 4(b) shows the reconstructions when the signals B&veandom gaussian




TABLE 1. Errors of the reconstructions for both Fourier-
Bessel and Neural-Netowrks algorithms, with differentseoi
levels added to the channel data. The standard deviatidreof t
error is also presented.is the distance in centimeters of the
center of mass of the phantom to the center of mass of the
reconstruction presented in figure 4.

FB NN
£ o d(cm) £ o d(cm)

0% || 0.085 - 0.422| 0.036 - 0.008
3% || 0.086 0.002 0.445 0.046 0.017 0.082
5% || 0.087 0.003 0.390 0.047 0.017 0.255

noise

noise added and figure 4(c) shows the reconstructions wieesighals have 5% random
gaussian noise added.

One algorithm to determine the plasma position can be theecefimass of the re-
constructed emissivity. The column labell@dn table 1 was built using this algorithm
and calculating the distance between the phantom’s cehteass and the reconstruc-
tions’. Again, it is apparent that the NN algorithm produedsetter reconstruction than
the FB algorithm, with a deviation of less than 1 mm versis™m, for 3 % random
noise.

DISCUSSION

The Fourier-Bessel algorithm was 9 times faster than thedldetwork, for the same
setup. The FB algorithm has shown to be more robust in theepoesof noisy data as
shown by the lower standard deviation of the tests. HowekerNN produces better
reconstructions, almost perfectly reconstructing theppsed phantom. Considering the
need for a reconstruction in each 128 only the FB is suitable and it still allows for
some time to post-process the reconstruction and detether@asma position or other
parameters that may be obtainable. On the other hand, a Nisiatied to determine the
position, instead of the whole reconstruction, would be Imfaster and there would be
no need for a post-processing step.

Determining the center of mass of the reconstruction, it veasmd that the NN
reconstruction presents a better agreement with the pimafdoup to 5 % noise in
the data.

One further remark is that the NN can only reconstruct wrsbgen trained to, while
the FB reconstructs only what is allowed by the maximum oadéine Bessel functions
and the Fourier modes - the maximumand| discussed in section . As a result, the
NN’s reconstruction can fail if the channel data is too déf® from the training set,
although this may be detected [5], while the FB'’s has alwaysesartifacts which must
be filtered by a post-processing algorithm.

Taking into consideration the present hardware capasligit ISTTOK, was shown
that the FB algorithm is the most suitable method for plasositipn control application
due to the reconstruction time constraints.

The application of these methods to the experimental datagsing.
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