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Abstract. The achievement of long duration, alternating current discharges on the tokamak IST-
TOK requires a real-time plasma position control system. The plasma position determination based
on magnetic probes system has been found to be inadequate during the current inversion due to the
reduced plasma current. A tomography diagnostic has been therefore installed to supply the required
feedback to the control system. Several tomographic methods are available for soft X-ray or bolo-
metric tomography, among which the Cormack and Neural networks methods stand out due to their
inherent speed of up to 1000 reconstructions per second, with currently available technology. This
paper discusses the application of these algorithms on fusion devices while comparing performance
and reliability of the results. It has been found that although the Cormack based inversion proved to
be faster, the neural networks reconstruction has fewer artifacts and is more accurate.
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INTRODUCTION

A real-time plasma position control system is required to achieve long duration, al-
ternating current discharges on the tokamak ISTTOK [1] (R = 0.46cm,a = 8.5cm).
Such a system has been in place for some time using magnetic probes [2]. However,
this system has been found to be limited during the current inversion of long duration,
alternating current discharges. A tomography diagnostic has been installed to supply ad-
ditional feedback to the control system. This paper presents two different tomographic
algorithms which can be processed in real-time (one reconstruction in 0.1ms) using, for
example, the Linux RTAI platform in a standard PC equiped with the acquisition boards.

The considered algorithms are the Fourier-Bessel [3, 4] anda neural-network (NN)
method [5]. The Fourier-Bessel algorithm uses a fit of the available data to a set of
basis functions: the Bessel functions are used in radial direction and the Fourier sine
and cosine components representation for the poloidal direction. The NN is trained with
phantom data to produce a given output for some predefined inputs. It will produce a
good reconstruction if the presented problem is in some way an interpolation of the
training set.



TOMOGRAPHY SYSTEM

The ISTTOK tomography system consists of 30 photodiode channels, 10 in each of
the 3 cameras (see fig. 1). For each 10, only the 8 innermost channels are actually
connected to the acquisition system resulting in 24 used channels. Each camera has a
circular pinhole of 1mm and each photodiode has a size of 1.5×1.5mm. The distance
from the photodiode array to the pinhole is 1cm, allowing a full coverage of the plasma.
No filter is used so each photodiode is essentially measuringvisible light and some
ultra-violet.

Each channel is amplified by a transductance amplifier with a gain of 1.8×106 and
digitally acquired at a rate of 2 MSamples/s with 14 bits of resolution.

Since the power supplies that adjust the plasma position have a lag of the order of
100µs [6], not all the samples from the cameras are necessary to produce one tomogram
in real-time, so only one sample every 128µs is used, by filtering 256 samples.

ALGORITHMS

In tomography, the goal is to generate a cross-section view of a given medium from a
set of integrated measurements.

In the fusion community, several tomography algorithms areused, the most common
being the constrained regularization, also called pixel-based methods, Cormack based
methods and Neural-Networks. The most common constrained regularization algorithms
are the Maximum Entropy and the Minimum Fisher, but other simpler regularizations
exist [7–9]. These algorithms are usually iterative, so they are not good candidates for
a real-time application, although they do produce more reliable reconstructions than the
other two algorithms. Because of that, this paper focuses onthe Cormack method and
NN.

The Cormack method [10] essentially approximates the emissivity profile by a Fourier

FIGURE 1. The tomography camera system of the tokamak ISTTOK: 3 cameras with 8 diodes each.
Sight lines in the poloidal installation are drawn.



expansion on the poloidal plane and an expansion in Zernickepolynomials in the radial
direction. However, Zernicke polynomials have the inherent problem that they are non
zero at the outer edge which can lead to completely unrealistic results. So a different
type of functions must be used in the radial expansion and Wang [3, 4] found that the
first order Bessel functions are appropriate.

Fourier-Bessel basis functions

The Radon transform in two dimensions can be written as

f (p,φ) =
∫

L(p,φ)
g(r,θ)ds (1)

where the integral pathL(p,φ) is shown in fig. 2,g(r,θ) is the plasma emissivity in
poloidal coordinates andf (p,φ) is the measurement along the lineL. Fourier expanding
these two functions one can write them as

g(r,θ) =
∞

∑
m=0

gc
m(r)cos(mθ)+gs

m(r)sin(mθ) (2)

f (p,φ) =
∞

∑
m=0

f c
m(p)cos(mφ)+ f s

m(p)sin(mφ) (3)

Expanding furthergc,s
m (r) one can obtain

gc,s
m (r) =

∞

∑
l=0

ac,s
mlgml(r) (4)

Substituting eqs. (2), (3) and (4) into eq. (1) it can be shownthat [10]

f c,s
m (p) =

∞

∑
l=0

ac,s
ml fml(p) (5)

FIGURE 2. The measurement geometry of Eq.1.



Now, if gml(r) = Jm(xmlr), wherexml is the (l + 1)’th zero of the first order bessel
function Jm(x), according to [3], one can write

fml(p) = 2
√

1− p2J′m(xml)

×
∞

∑
n=0,m 6=n

δnJn(xml)sin
(

n
π
2
−xmlp

)

(

Um+n−1(p)

m+n
+

Um−n−1(p)

m−n

)

(6)

whereδn = 1
2 for n = 0 andδn = 1 otherwise.Um(p) is the Chebyshev polynomial of

the second kind,Um(p) =
sin[(m+1)cos−1 p]√

1−p2
. It is impractical to follow these summations

to infinity, so they must be truncated. This truncation is done according to the following
criteria:

• Thel index is associated with the radial component of the expansion. The resolution
of this component is determined by the number of photodiodesin each camera,
according to the Nyquist theorem; in the present case of 8 photodiodes per camera,
Nl = 4, or l = 0,1,2 and 3.

• The m index is associated with the angular component of the expansion and its
resolution is determined by the number of cameras. For 3 equidistant cameras, one
can have up tom= 2, but since ISTTOK’s cameras are not equidistantNm = 2, or
m= 0 and 1.

If all ac,s
ml ’s are known, then one can use eqs. (4) and (2) to generate the tomographic

reconstruction. Each photodiode’s position is given by(pi ,φi), so one can writefi =
f (pi ,φi). By writing Xc

i,ml = fml(pI )cos(mφi) andXs
i,ml = fml(pi)sin(mφi) one can use

the matrix notation~f = X ·~a or:
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Since this is a fitting problem with more equations than unknowns,X is not a square
matrix so a simple matrix inversion is not possible. A least squares fit can be performed
using the Singular Value Decomposition (SVD) of the matrixX = UWVT [11]:

~a =
M

∑
i=0

~Ui · ~f
Wi

·~Vi (8)

where~Ui(~Vi) is the i’th column of the matrixU(V), Wi is the i’th diagonal value of
the matrixW and M is the number of columns ofX. SinceX = X(p,φ), it can be
precalculated as well as it’s SVD. Thus, for each tomogram, only eq. (8) needs to
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FIGURE 3. A multilayer perceptron Neural Network, with 2 hidden layers. Each neuron is a function
of all neurons on the previous layer and the bias. The bias neuron is independent of previous layers.

be calculated and the reconstruction can then be built on any(x,y) grid. In this case,
a 33×33 grid was used. It has more pixels than the system can resolve, but not as many
as to take too long to build a reconstruction.

Neural Networks

A Neural Network (NN) consists of simple processing units (neurons) connected
amongst each other in a particular way. Typically, a NN is arranged in layers of neurons,
where any one neuron can have a connection to all other neurons on the previous
layer (see fig. 3). Each neuron has one activation function which can be any function
of neurons from the previous layer(s). The activation function z used in this work is
z= tanh(∑i wiai) whereai is the output from the neuroni of the previous layer andwi
is the weight that neuroni has on the present neuron.

There are many types of NNs. In this work, a multi-layer perceptron was used. A NN
must be trained in order to determine the weights. This training is done with an artificial
input and output data set. For tomography, one generates a set of phantoms of expected
spacial radiation distributions of the plasma and, using virtual sensors on this phantom,
generates the corresponding sensor data. For this work, thephantoms generated were
rings of different widths, radii and positions, because it makes sense that theHα radiation
is coming from the outer part of the plasma.

The perceptron networks have one extra neuron in each layer which isn’t related to
the previous layers; this is the bias neuron and is usually set to 1. The training and layer
optimization of the network was performed using bayesian methods [5] and produced
a two hidden layer network where the first hidden layer has 9 neurons and the second
hidden layer also has 9 neurons. The inputs for the network are the data channels from
the photodiodes and the(x,y) position of the pixel being reconstructed and the output is
the value of this pixel. So for each reconstruction, the NN must run for as many times as
there are pixels in the reconstruction grid (33×33= 1089 runs).
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FIGURE 4. Comparison of the reconstructions using Fourier-Bessel (FB) and Neural Networks(NN)
algorithms contemplating different ranges of measurementnoise - a) has no noise, b) has 3% noise and c)
has 5% noise. Clearly, the NN reconstructions are superior to the FB in any of the cases presented. The
phantom used (right) is a ring slightly shifted from the center by 8.6 mm inR and -5 mm inZ.

ANALYSIS

The algorithm speed tests were run on a standard PC running the Real Time Application
Interface (RTAI [12]) for Linux, with an Intel®Pentium®4 Processor at a clock speed of
2.80 GHz. RTAI is basically an interrupt dispatcher, trapping the peripherals’ interrupts
and, if necessary, re-routing them to Linux. One can have a task running on a given
processor without being interrupted until this task is finished so that it will always take
the same time to run.

ISTTOK’s tomography systems’s lines of sight geometry was used to generate the
virtual channel data for processing by the algorithms.

For a reconstruction on a 33×33 grid, the Fourier-Bessel Algorithm takes about 40µs
and the NN takes 356µs, using only Long numbers in KERNEL space.

Figure 4(a) shows the test emissivity (phantom) and the reconstructions of it using
both algorithms discussed. The phantom used is a ring slightly off-centered.

Table 1 shows the error of the reconstructions for the same noise levels as in figure 4.
Since the noise is added randomly, 10 different runs were performed to have some
statistics. The error presented is the mean of these 10 runs.For each run, it was calculated

usingε =
∑x,y(gph(x,y)−ĝ(x,y))

2

∑x,y (gph(x,y))2 wheregph is the phantom and ˆg is the reconstruction.

The standard deviation of the error was also calculated and it was found that the FB
algorithm presents less sensitivity to the noise.

Figure 4(b) shows the reconstructions when the signals have3% random gaussian



TABLE 1. Errors of the reconstructions for both Fourier-
Bessel and Neural-Netowrks algorithms, with different noise
levels added to the channel data. The standard deviation of the
error is also presented.d is the distance in centimeters of the
center of mass of the phantom to the center of mass of the
reconstruction presented in figure 4.

noise
FB NN

ε σ d (cm) ε σ d (cm)

0% 0.085 - 0.422 0.036 - 0.008
3% 0.086 0.002 0.445 0.046 0.017 0.082
5% 0.087 0.003 0.390 0.047 0.017 0.255

noise added and figure 4(c) shows the reconstructions when the signals have 5% random
gaussian noise added.

One algorithm to determine the plasma position can be the center of mass of the re-
constructed emissivity. The column labelledd in table 1 was built using this algorithm
and calculating the distance between the phantom’s center of mass and the reconstruc-
tions’. Again, it is apparent that the NN algorithm producesa better reconstruction than
the FB algorithm, with a deviation of less than 1 mm versus 4.5 mm, for 3 % random
noise.

DISCUSSION

The Fourier-Bessel algorithm was 9 times faster than the Neural-Network, for the same
setup. The FB algorithm has shown to be more robust in the presence of noisy data as
shown by the lower standard deviation of the tests. However,the NN produces better
reconstructions, almost perfectly reconstructing the proposed phantom. Considering the
need for a reconstruction in each 128µs, only the FB is suitable and it still allows for
some time to post-process the reconstruction and determinethe plasma position or other
parameters that may be obtainable. On the other hand, a NN dedicated to determine the
position, instead of the whole reconstruction, would be much faster and there would be
no need for a post-processing step.

Determining the center of mass of the reconstruction, it wasfound that the NN
reconstruction presents a better agreement with the phantom for up to 5 % noise in
the data.

One further remark is that the NN can only reconstruct what it’s been trained to, while
the FB reconstructs only what is allowed by the maximum orderof the Bessel functions
and the Fourier modes - the maximumm and l discussed in section . As a result, the
NN’s reconstruction can fail if the channel data is too different from the training set,
although this may be detected [5], while the FB’s has always some artifacts which must
be filtered by a post-processing algorithm.

Taking into consideration the present hardware capabilities at ISTTOK, was shown
that the FB algorithm is the most suitable method for plasma position control application
due to the reconstruction time constraints.

The application of these methods to the experimental data isongoing.
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