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ABSTRACT

Grids of variable resolution are of great interest in atmosphere and ocean modeling as they offer a route to

higher local resolution and improved solutions. On the other hand there are changes in grid resolution

considered to be problematic because of the errors they create between coarse and fine parts of a grid due to

reflection and scattering of waves. On complex multidimensional domains these errors resist theoretical in-

vestigation and demand numerical experiments. With a low-order hybrid continuous/discontinuous finite-

element model of the inviscid and viscous shallow-water equations a numerical study is carried out that

investigates the influence of grid refinement on critical features such as wave propagation, turbulent cascades,

and the representation of geostrophic balance. The refinement technique the authors use is static h re-

finement, where additional grid cells are inserted in regions of interest known a priori. The numerical tests

include planar and spherical geometry as well as flows with boundaries and are chosen to address the impact of

abrupt changes in resolution or the influence of the shape of the transition zone. For the specific finite-element

model under investigation, the simulations suggest that grid refinement does not deteriorate geostrophic bal-

ance and turbulent cascades and the shape of mesh transition zones appears to be less important than expected.

However, the results show that the static local refinement is able to reduce the local error, but not necessarily the

global error and convergence properties with resolution are changed. The relatively simple tests already il-

lustrate that grid refinement has to go along with a simultaneous change of the parameterization schemes.

1. Introduction

In the numerical modeling of the atmospheric or

oceanic general circulation, the affordable resolution is

still far from satisfying. This motivates the investiga-

tion of local grid refinement as a tool to gain efficiency.

Static, local grid refinement could be used to increase

the resolution in a specific region of interest, such as

a single country or continent, arctic or tropical regions,

or to improve the representation of important local

features that have a large impact on the whole simula-

tion, such as boundary currents, sea overflows, islands,

and deep water formations in an ocean model, and

mountains, tropical cyclones, and convection areas in an

atmosphere model. A complete treatment of local grid

refinement for atmosphere/ocean models has to address

manifold challenges. The first challenges are within the

dynamical core. The fluid dynamical part that solves the

equations of motion has to be enabled to operate effi-

ciently on refined grids in the horizontal as well as in the

vertical direction, where one has to take into account

that the refinement in horizontal and eventually in ver-

tical direction will influence each other. The second

challenge is the parameterization schemes of subgrid-

scale processes and turbulent closure, which have to

take into account the variable resolution. A third chal-

lenge is related to the evaluation of the locally refined

model. Ideally one would like to have a model that is

much ‘‘cheaper’’ than the global model in high resolu-

tion but delivers a solution that is, at least in the refined

region, ‘‘comparable’’ to the high-resolution solution.

The metrics to quantify this in terms of efficiency and in

terms of solution quality are far from obvious.

The purpose of this paper is to study the influence

of static grid refinement on fundamental features of
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geophysical modeling, such as wave propagation, the

representation of turbulent cascades, boundary cur-

rents, or geostrophic adjustment. These problems can be

addressed in a two-dimensional setup. With respect to

the aforementioned challenges we focus on the hori-

zontal component of the dynamical core and consider

(two dimensional) horizontally refined grids. These

grids are created a priori, they are fixed and not adapted

during the experiments. Since the horizontal component

of an atmosphere/ocean model resembles to some ex-

tent the shallow-water equations, we use these equations

as model equations. The questions of horizontal in

combination with vertical refinement and the problem

of subgrid-scale closures constitute scientific problems

in its own and are not addressed here. We also omit the

important and intricate topic of comparing the compu-

tational costs between refined and unrefined experiments.

A typical problem that occurs when horizontally re-

fined grids are used is the reflection and scattering of

waves at the transition between coarse and fine parts

of the grids. It is well known from classic papers that

study the error caused by grid refinement in computa-

tional fluid dynamics [see e.g., Trefethen (1982) and

Vichnevetsky (1987) for studies of hyperbolic equa-

tions] that small-scale waves with a wavelength close

to the grid spacing can be affected strongly when simu-

lations are performed on refined grids, while large-scale

features typically appear to be rather unaffected. For

linear equations of motion, dispersion relations and

group velocities can be calculated for the considered

discretization methods; this allows a detailed analysis

of the behavior of waves at the transition zones between

coarse and fine grids. Results indicate that, when the

wavelength is of the same order of magnitude as the

grid spacing, severe reflection and scattering occurs for

almost every discretization scheme. These scatterings will

also occur when refinement is applied in dynamical cores

for geophysical applications (Ullrich and Jablonowski

2011; Long and Thuburn 2011). On the other hand, the

first approaches using grids of variable horizontal reso-

lution for three-dimensional models of atmosphere and

ocean do not show fundamental problems in the dynamics

at the mesh-transition zones (Skamarock et al. 2012;

Ringler et al. 2013).

In this paper, we investigate the effect of grid re-

finement in a shallow-water model based on a hybrid

finite-element discretization method that was especially

developed for geophysical applications and from which

we expect an excellent behavior on refined grids. This

discrete model allows us to create a kind of ‘‘best-case-

scenario’’: if this model does not perform well on refined

grids than other models will potentially experience

even more severe problems. The hybrid finite-element

combines a continuous second-order representation for

the height field with a discontinuous first-order repre-

sentation for the velocity field on a triangular grid—the

PDG
1 P2 finite element (Cotter et al. 2009a; D€uben et al.

2012). The element fulfills the Ladyzhenskaya–Babuska–

Brezzi condition, which is a necessary condition for

convergence in finite-element modeling, and was de-

signed to represent the geostrophic balance at the same

time (Cotter et al. 2009a,b). This is remarkable for a

low-order finite element and necessary to avoid spuri-

ous modes in geophysical applications (Le Roux et al.

1998). These properties make the hybrid element a

promising candidate to form the dynamical cores of fu-

ture weather or climate models. In principle, the consid-

ered element allows h and r refinement (either new

grid points are introduced into the domain, or given grid

points are moved toward regions of specific interest),

and has already been used on unstructured and refined

grids in idealized applications (Comblen et al. 2010).

We provide a detailed investigation of the errors

caused by the use of grid refinement in view of critical

geophysical quantities for the specific PDG
1 P2 finite-

element setup. More precisely, we study the influence

of grid refinement on the energy/enstrophy cascade, on

the representation of boundary currents, on energy

conservation, and on the ability to represent the geo-

strophic balance. The influence of the structure of the

transition zone between coarse and fine parts of the grid

and how the error behaves when the change of resolu-

tion is increased is tested as well.

An analytical study seems to be extremely difficult, if

not impossible, for nonlinear and multidimensional

equations in complex geometries.We therefore resort to

an experimental approach and carry out several nu-

merical experiments. We simulate idealized test cases

such as a zonal geostrophic flow, wave packets with var-

ious wavelengths, two-dimensional turbulent cascades,

a zonal flow over an isolated mountain, and Munk gyres.

We perform these simulations on refined grids, where

refinement is realized by introducing new grid points to

the original grid (so-called h refinement). Since it is

known from the literature that pronounced errors occur

when abrupt changes of the grid spacing are considered,

we investigate sudden changes where grid resolution is

increased by a factor of 2, 4, or 8 within one grid spacing

of the unrefined grid.

We believe that such a study is relevant for many of

the next generation ocean and atmosphere models that

have a grid refinement capability. Examples are the

hybrid finite-volume/finite-difference models such as

theModel for Prediction Across Scales (MPAS; Ringler

et al. 2011, 2013), or the icosahedral nonhydrostatic

general circulation model (ICON; Bonaventura and

1998 MONTHLY WEATHER REV IEW VOLUME 142



Ringler 2005) and the finite-element models: the Finite-

Element-Sea Ice-Ocean Model (FESOM; Danilov et al.

2004), the Community Atmosphere Model Spectral El-

ement (CAM-SE; Taylor et al. 1997), or the Imperial

College Ocean Model (ICOM; Piggott et al. 2008).

There are also approaches that implement local zoom-

ing via nesting (see e.g., Harris and Durran 2010). A

further step that is discussed especially in atmospheric

science, is the use of adaptive grid refinement techniques

[see Behrens (2006) for an overview].

The paper is organized as follows. In section 2, we give

a brief overview about the model setup. In section 3, we

present numerical results. In section 4, we draw the

conclusions.

2. Model setup

In this section we give a brief introduction to the used

PDG
1 P2 finite-element model for the shallow-water

equations. A detailed description of the model setup

can be found in D€uben et al. (2012).

a. The viscous shallow-water equations

We consider the viscous shallow-water equations in

nonconservative form:

›tu1u � ($u)1 fk3u1 g$h2
1

H
$ � [Hn($u)]5 t ,

(1)

›th1$ � (Hu)5 0, (2)

where u is the two-dimensional velocity vector, f is the

Coriolis parameter, k is the vertical unit vector, g is the

gravitational acceleration, n is the eddy viscosity, t is

a forcing term (e.g., wind in ocean applications), h is the

surface elevation, andH is the height of the fluid column

given by H 5 h 2 hb, where hb is the bathymetry.

The prognostic variables are the surface elevation and

velocity.

b. Discretization

Following the typical finite-element approach, we

expand the physical fields into sets of basis functions Ni

and Mi:

u5 �
N

u

i51

uiNi and h5 �
N

h

i51

hiMi .

We use a PDG
1 P2 finite element to discretize the

equations. This means that we employ discontinuous

linear Lagrange polynomials for the representation of

the velocity field Ni, and globally continuous quadratic

Lagrange polynomials for the representation of the

height fieldMi. Each triangular cell has three degrees of

freedom for each component of velocity located at the

vertices of the cells and six degrees of freedom for

the height field located at the vertices and edges. While

the degrees of freedom of the height field are shared

with the surrounding cells, the degrees of freedom of the

velocity field belong to a specific cell, which leads to

a discontinuous representation.

Time integration is performed by an explicit three-

level Adams–Bashforth method. The equation

›tc5R(c) ,

whereR denotes the right-hand side of the system andc

is the vector of prognostic variables, is discretized in

time by

c j115c j 1Dt

�
23

12
R(c j)2

4

3
R(c j21)1

5

12
R(c j22)

�
,

where c j is the vector of state variables at the jth

time step.

c. Grids and grid refinement procedure

In principle the model is applicable to each kind of

triangular grid. In this publication, we use two types of

standard grids on which refinement is performed. On

the one hand, we use structured triangular grids that

provide a uniform coverage of the plane. The grids are

developed from rectangular grids by bisecting each

rectangular into two triangles. On the other hand, we use

icosahedral geodesic grids that provide a quasi-uniform

coverage of the sphere (Baumgardner and Frederickson

1985).

In the h-refinement procedure which is used to refine

the (quasi) uniform standard grids, an area of specific

interest is specified where the original triangles are split

into four new triangles (sketched in Fig. 1). The grids

remain conformal and do not show hanging nodes.

Changes in the grid spacing are always performed in an

abrupt way, which means that the grid spacing is

changing by a factor of 2, 4, or 8 within one grid spacing

of the coarse grid. In the standard procedure the tri-

angles in the transition zone between coarse and fine

parts of a grid are split into two new triangles, as shown

in Fig. 1. For global applications, the new vertices are

projected onto the sphere.

3. Numerical results

In this section we present the results of five test cases

that we have designed to understand the impact of static
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local grid refinement. The first test (section 3a) uses

a zonal geostrophic flow to evaluate the effect of grid

refinement on the representation of geostrophic bal-

ance. In the second test (section 3b), we investigate the

behavior of wave packets with variable wavelength at

the transition zone of the grid. In the third test (section

3c) we consider randomly initialized physical fields to

investigate the effect of grid refinement on turbulent

decays. In tests four and five, we consider the influence

of grid refinement in flows over topography (section 3d)

and with lateral boundaries (section 3e).

The following nomenclature is used to describe the

varying grid resolution, for example, for a grid called

H0T1R1. The subscript of H indicates the coarsest res-

olution in the domain compared to the initial grid H0,

the subscript of T indicates the type of the transition zone;

L or R indicate whether the left or the right side was

refined by the number of levels indicated by the subscript.

a. Geostrophic balance affected by grid refinement

In this subsection,we simulate a global steady-state zonal

geostrophic flow. The test was proposed by Williamson

et al. (Williamson et al. 1992, test case 2). The PDG
1 P2

element was designed carefully to satisfy the primary

balances of the linear shallow-water equations without

producing strong spurious modes and it was already

tested that PDG
1 P2 is able to represent geostrophic

balance properly for the linear shallow-water equations

(Cotter et al. 2009a; Maddison et al. 2011). Here, we

want to test if geostrophic balance is still represented

properly when grid refinement is strongly changing the

aspect ratio between adjacent grid cells, for the non-

linear equations on the sphere.

The simulated westerly flow has a maximum velocity

of ca. 39m s21 and a fluid depth varying between 1000

and 3000m. It is a stationary solution of the nonlinear

shallow-water equations. The flow is zonally symmetric.

For this test case it is crucial that the model is starting

from a balanced state. We initialize the finite-element

model as follows: For the height field we use the pre-

scribed values of the analytic initial conditions at the

nodes of the continuous basis functions. For the corre-

sponding velocity field we solve a system of equations to

fit the discontinuous basis functions as far as possible to

the steady state of the linear shallow-water equations,

to assure balanced initial conditions.

We use three different grids for simulations. One

uniform icosahedral grid with a typical edge length of

about 480 km, the same grid with six refinement regions

that are circular in longitude–latitude space with a di-

ameter of about 608, and the same grid that has only the

one refinement region at the equator (see Fig. 2). We

used a time step of only 10 s.

Figure 3 shows the pattern of the absolute error of the

height field for different time steps and the three grids.

After 5 days the wave-5 grid imprint of the icosahedral

grid is visible in the error plots for the uniform simula-

tion. For the refined simulations with six circles refined,

a wave-2 imprint dominates, which is caused by the an-

isotropy of the refinement zones (cf. Figs. 2 and 3). A

change of the error pattern happens on time scales of

days as can be seen from the small differences between

days 5 and 5.5.

To get a better understanding of the source of errors,

Fig. 4 shows the L1-error and L2-error norm of the

height field against time, the L2 norm of the divergence

field against time, the errors in energy conservation for

the different grids against time, and the L2 error for the

height field at day 10 against the largest edge length. The

error norms are defined as

L1(t)5

ð
V
jhj2 h

j
a j dxð

V
jhj

a j dx
, and L2(t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
V
(hj2h

j
a)

2 dxð
V
(h

j
a)

2 dx

vuuuuut ,

FIG. 1. Sketch of the refinement procedure. (left)An area of interest is specified in the original grid,

(right) the triangles are divided into four new triangles, and a transition zone is introduced.
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where hj is the computed height at time step j compared

to the analytical solution hja. Here V indicates that we

integrate over the whole domain. It is interesting that

the simulation with only one refined circle shows the

highest local and global errors (see Figs. 3 and 4).

Since flows in geostrophic balance have vanishing di-

vergence, the L2 norm of the velocity divergence can

serve as an indicator for a violation of the geostrophic

balance. From Fig. 4 we infer that for any of the simu-

lations the L2 error of the divergence shows no signifi-

cant tendency to increase over the simulation length of

50 days.We therefore attribute the existing errors rather

to the broken zonal symmetry of the flow than to the

inability of the PDG
1 P2 model to maintain geostrophic

balance on refined grids.

Regarding energy conservation we remark that the

considered discrete shallow-water model does not strictly

conserve energy. The procedure to calculate the relative

error for energy is described in section 5 in the appendix.

Figure 4 shows that the error in energy conservation is

getting smaller when the refined area is increased.

It was found in D€uben et al. (2012) that the given

model shows third-order convergence with uniform

resolution for the Williamson test case 2, although a

second-order convergence would be expected because

of the linear representation of velocity. This can be ex-

plained since Cotter and Ham (2011) showed in

a Helmholtz decomposition for the linear shallow-water

equations that the used PDG
1 P2 element exhibits third-

order convergence rates for Rossby waves (at least with

b-plane approximation). The errors caused by zonal

asymmetry will propagate as Rossby waves. It is visible

in Fig. 4 that this third-order convergence breaks down

when refined grids are used. However, second-order

convergence is maintained.

We summarize the results of this section by conclud-

ing that the grid refinement perturbs the test case

slightly due to a break of zonal symmetry, while the

higher accuracy within the refinement region reduces

the error locally. The reduction of the local error due to

higher resolution is able to level out the error due to the

break of zonal symmetry on the grid with six refined

circles, but not on the grid with only one refined circle.

Geostrophic balance is maintained.

b. Wave propagation affected by grid refinement

In this subsection we study the transition of wave

packets between coarse and fine areas of a grid. We

simulate waves with four different wavelength that

travel on grids with an abrupt change in resolution and

evaluate two different types of transition zones and two

different angles the incoming waves form with the

change in resolution. The model results are evaluated

with regard to the error in energy conservation, and the

change of the spectra of kinetic energy.

The wave packets are initialized as follows:

u5 ua exp

"
2
(x2 x0)

2

2s2

#
sin

�
2pn(x2 x0)

Lx

�
, y5 0, and

h5
u2g

g
1

ua3 ug

g
exp

"
2
(x2 x0)

2

2s2

#
sin

�
2pn(x2 x0)

Lx

�
,

where ua is the maximal absolute value of the zonal

velocity, ug is the group velocity of the wave packet, s

FIG. 2. Geostrophic balance affected by grid refinement: positions of the vertices in the grid

with six refinement zones. A second simulation has only the one refined circle in the center and

a third simulation is using the unrefined grid.
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is the standard deviation that adjusts the width of

the packet, x0 is the center of the packet, and n is the

wavenumber that indicates the ratio how often the

wavelength of the inner frequency of the packet

fits into the length of the domain Lx. Simulations

are performed on a plane with periodic boundary

conditions.

As initial values we used the following: ua5 2.0m s21,

ug 5 250.0m s21, s2 5 0:006L2
x, Lx 5 107m, Ly 5 1.6 3

106m, and x0 5 0.25 3 Lx. Initially, the wave packet

consists of linear gravity waves and is located in the left

half of the domain. We simulate the inviscid nonlinear

shallow-water equations without Coriolis force [Eqs. (1)

and (2) with f 5 n 5 0]. We use a time step of 10 s.

FIG. 3. Geostrophic balance affected by grid refinement: absolute error for the height field (from top to bottom) at days 5, 5.5, 10, 20, 30,

and 50 on the (left) uniform and the grids with (middle) one and (right) six refined circles (cf. Fig. 2). Note the changed color bar for the

different rows. The wave-5 and -2 patterns are clearly visible for the unrefined case and the case with six refined circles, due to the

symmetry of the grids. The case with only one refinement zone shows the highest local errors.
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We use a grid that consists of 50 3 8 squares, each of

them divided into two triangles, as the unrefined starting

point for grid refinement (H0). We refine either the left

or the right half of the domain, and increase the reso-

lution by a factor of 2, 4, or 8. We use two different types

of transition zones between the refined and unrefined

areas. Both of them lead to an abrupt change in reso-

lution. The transition zones of the grids are sketched in

Fig. 5. In the first type the triangles at the transition zone

do not have steep angles (H0T1R1, H0T1R2). In the

second type, the triangles at the transition show steep

angles (H0T2R1, H0T2R2, H0T2R3; there are angles with

less than 68). Additionally to the grids in Fig. 5 we use

grids in which the left half of the domain is refined

(H0T1L1, H0T1L2, H0T2L1, H0T2L2, H0T2L3), and uni-

formly refined grids in which the whole domain of-

fers doubled or 4 times the resolution of the coarse grid

(H1,H2).

FIG. 4. Geostrophic balance affected by grid refinement: (top left) L1-error and L2-error norm of the height field

against time, (top right) L2 norm of the divergence field against time, (bottom left) error in energy conservation for

the different grids, and (bottom right) L2-error norm of the height field against the largest edge length.

FIG. 5.Wave propagation affected by grid refinement: transition zone between the left- and the right-hand side of the grids. (top left)H0,

(top middle) H0T1R1, (top right) H0T1R2, (bottom left) H0T2R1, (bottom middle) H0T2R2, and (bottom right) H0T2R3. Additional grids

were used with the left-hand side of the grid refined.
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At least two grid points are necessary to resolve a

given wavelength in a gridpoint finite-difference model.

The number of cells by which one wavelength of the

internal wave is resolved on the coarse grid H0 is given

by 50/n. For our simulations, we consider two wave

packets where the internal wave should be resolved

properly (n 5 5 and n 5 10), and two wave packets

where the coarse resolution is very close to, or below the

possible minimum to resolve the wave packet (n 5 20

and n 5 30).

Figure 6 shows the height field of the reference runs

on the finest uniform grid (H2) after 20 000 s. The spe-

cific time step is chosen such that the wave packet has

crossed the transition zone once, and traveled for the

same time on each side of the grid. Figure 7 shows the

spectra of kinetic energy for the simulation with n5 20.

The procedure to calculate the spectral coefficients is

described in the appendix. All spectral coefficients Eij

are zero for j different from zero, since the physical fields

only vary in the x and not in the y direction. The kinetic

energy spectrum of the initial wave packet has the form

of a Gaussian distribution centered around n. While

there is no visible difference between the height field of

the wavepacket at initialization (not shown here) and

after 20 000 s, the initial Gaussian distribution is slowly

getting weaker with increasing time, and additional

Gaussian distributions form at multiples of the wave-

number n, since advection induces weak scale interactions.

Figure 8 shows the height field after 20 000 s for sim-

ulations on the H0T2L3 and the H0T2R3 grid. Out of the

13 grids used, these are the grids for which we expect the

largest errors, since they show the strongest change in

resolution and triangles that are very narrow with very

steep angles. As expected, differences between the grids

are very small for the sufficiently resolved waves with

n5 5 and n5 10 (less than 0.2m for n5 5 and less than

6m for n 5 10), but they become clearly visible for

higher values of n. Plots for the model runs on grids with

lower refinement level (not shown here) look very sim-

ilar to the runs on the H0T2L3 and the H0T2R3 grid.

A consideration of the spectra of kinetic energy could

give a better impression of the errors caused by grid

refinement. To calculate the spectra a discrete Fourier

transformation of the physical fields is needed, which is

only possible for equidistant grids (see the appendix)

and a locally refined grid is not equidistant by definition.

To get at least an approximation of the spectra, we

calculate discrete Fourier transformations using only the

equidistant grid points of the initial, unrefined grids. To

this end, the values of the discontinuous velocity are

averaged at the vertices. The major shortcoming of this

procedure is that the obtained spectra cover only

wavelengths down to the doubled grid spacing of the

FIG. 6.Wave propagation affected by grid refinement: height field after 20 000 s for (from top left to bottom right) n5 5, n5 10, n5 20, and

n 5 30, for simulations on the finest uniform grid (H2). The wave packet is represented properly.

FIG. 7. Wave propagation affected by grid refinement: kinetic

energy spectra calculated at initialization and after 20 000 s for n5
20 and a simulation on the finest uniform grid (H2). The spectra are

calculated by evaluating all of the 2003 64 vertices of the grid, for

the discrete Fourier transformations. The initial Gaussian distri-

bution is slowly getting weaker with increasing time, and additional

Gaussian distributions form at multiples of the wavenumber n,

since advection induces weak scale interactions.
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initial, unrefined grid. It has to be kept in mind that this

spectrum calculation does only yield a crude approxi-

mation when we interpret the results. When calculating

the spectra on a mesh with the uniform grid spacing of

the fine grid, the insufficient representation of the wave

packet by the linear basis function for velocity in the

coarse part perturbs the spectra calculated on the full

grid. Therefore, this is not an option.

Figure 9 shows the approximated kinetic energy

spectra after 20 000 s for different values of the wave-

number n for the different grids.We note that changes of

the total level of the kinetic energy spectra do not in-

dicate a change of total energy within the simulation.

Energy can be transferred into potential energy or higher

wavenumbers that are not covered by the approximated

spectra.

For n5 5 and n 5 10 the spectra are nicely separated

according to the color code, meaning that we get three

different results for uniform grids, grids for which the

left-hand side is refined, and grids for which the right-

hand side is refined. It is surprising that differences for

the different types of the transition zone and for grids

with different changes of resolution are hardly visible

and also that the spectra show clear differences for n 5
10, while changes of the height field appear to be small

(see Fig. 8). The same separation is still visible for n 5
20, although the coarsest uniform grid (H0) differs from

the other uniform grids, since the wave packet is hardly

resolved. Althoughmost of the structure in the spectra is

due to aliasing for n 5 30, it is obvious that the model

fails to represent the wave packet on the coarsest uni-

form and the refined grids.

Figure 10 shows the relative error for energy for the

different grids used. For the grids in which the right-

hand side is refined (blue lines), the error follows the H0

run, till the wave packets reach the transition zone.

Afterward, the error in energy conservation strengthen

the conclusion from Fig. 9 since errors depend only little

on the refinement level (with a difference for the relative

error of less than 1.03 1029 for n5 5 after 20 000 s), and

marginally on the type of the transition zone (with

a difference of less than 1.5 3 10210 for n 5 5 after

20 000 s). For the grids in which the left-hand side is re-

fined (green lines), the errors follow the uniform model

runs with corresponding resolution, till the wave packets

reach the transition zone. Again, the errors differ only

marginally for the different types of the transition zone

(less than 2.03 10210 for n5 5). Ignoring themodel runs

on the H0T2L3 and the H0T2R3 grid, the relative errors

on the different grids lie in between the relative errors of

FIG. 8. Wave propagation affected by grid refinement: height field after 20 000 s on the reference high-resolution

grid (H2) and the worst grids used (H0T2L3 andH0T2R3), for (from top left to bottom right) n5 5, n5 10, n5 20, and

n 5 30. The plots show the height field against the x direction on different grids. Note that the simulation is still

simulated with two horizontal dimensions.

MAY 2014 D €U BEN AND KORN 2005



the runs on the finest and coarsest uniform grids, for the

cases where the wave packet is sufficiently resolved (n5
5 and n 5 10). The model runs on the H0T2L3 and the

H0T2R3 grid, that show the highest change in resolution

and the steepest angles, differ from the other runs for

large wavelength (n 5 5 and n 5 10).

To test the influence of the angle a wave forms with

the transition zone, we divide the rectangular domain by

a diagonal, where either the bottom-left (H0L1diag), or

the top-right (H0R1diag) part of the grid is refined by

one refinement level, increasing the resolution by a fac-

tor of 2 (see Fig. 11). Figure 12 shows the approximated

energy spectra of model runs on the two refined, and the

uniform H1 grid. Results are similar as for the runs

where either the left or the right half of the domain is

refined. The spectra are separated by the side of the grid

that has been refined.

Themain results of this section are that differences for

different types of transition zones and for grids with

different changes in resolution are fairly small, and that

changes of spectra can be strong although errors in the

physical fields are hardly visible. Grid refinement has an

influence on energy conservation, but the relative error

is typically getting smaller compared to the unrefined

simulation.

c. Turbulent decay affected by grid refinement

In this section, we investigate the influence of grid

refinement on turbulent decays. The results of the pre-

vious section show that small-scale waves can be dis-

turbed at transition zones between coarse and fine grids,

even if changes appear to be fairly small when looking

solely at the physical fields (cf. e.g., Figs. 8 and 9 for n5
10). It is not obvious if the errors in wave propagation

can influence isotropic turbulent cascades for which

waves hit the boundary between the coarse and the fine

part of the grid with all different wavelengths and angles.

We study a test case in which the physical fields are

initialized randomly on a plane. The test is typically used

to evaluate the cascade of kinetic energy in turbulent

two-dimensional flows (McWilliams 2006), or for model

evaluation (Ringler and Randall 2002; Bonaventura and

Ringler 2005). In two-dimensional turbulent flows, en-

ergy is transferred from smaller to larger scales. The

kinetic energy spectra should show a n23 cascade with

the wavenumber (Salmon 1998).

FIG. 9. Wave propagation affected by grid refinement: approximated kinetic energy spectra after 20 000 s for (from

top left to bottom right) n 5 5, n 5 10, n 5 20, and n 5 30. The spectra are calculated evaluating all of the 50 3 8

vertices of the coarsest uniform grid, for the discrete Fourier transformations. While the differences between dif-

ferent transition zones and different changes in resolution are marginal, the direction of the resolution change is

important (coarse / fine or fine / coarse, see the color code). Details on the grids can be found in Fig. 5.
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We use a grid that consists of 603 60 squares, each of

them divided into two triangles, as a coarse uniform grid

(H0) for a periodic domain. We refine the H0 grid on the

whole domain to obtain a second uniform grid with

doubled resolution (H1). Furthermore, we build up two

grids in which the resolution in the right-hand side of the

H0 grid is increased by a factor of 2 or 4 (H0R1 and

H0R2). The grids are plotted in Fig. 13. The transition

zone between the coarse and fine part of the grid is the

same as for the H0T1R1 and the H0T1R2 grid, plotted in

Fig. 5.

We want to initialize the turbulent decay with white

noise in the physical fields on the coarsest grid. To apply

the same ‘‘random’’ initial conditions on each grid we

describe the white noise as a superposition of all wave

modes that are possibly described on the H0 grid with

the same amplitude, using modes that are sinus shaped

in the two spatial directions with wavelengths between

FIG. 10. Wave propagation affected by grid refinement: time evolution of the relative error for energy conservation for (from top left to

bottom right) n5 5, n5 10, n5 20, and n5 30. Inmost cases, the relative errors on the refined grids are enclosed between the errors on the

coarsest and finest uniform grid (H0 andH2). The shape of the transition zone and the change in resolution seem to be rather unimportant.

Details on the grids can be found in Fig. 5.

FIG. 11. Wave propagation affected by grid refinement: positions of the vertices in the (top left) H0L1diag and (top right) the H0R1diag

grid, and height field after 20 000 s for n 5 20 on the (bottom left) H0L1diag and the (bottom right) H0R1diag grid.
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2Dx on the H0 grid and half the size of the domain. The

initial conditions can be described as

f(x, y)5f01�
30

i51
�
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j51

f1 sin

�
2pix
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1 r1,i

�
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!

1 �
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�
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�
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1 r2,j

!
,

where f represents either a component of velocity or

height, f0 and f1 are constants associated with the

physical field, and r1,i and r2,j are random numbers that

are equally distributed between zero and 2p. As initial

values we used the following: u0 5 0.0m s21, u1 5
0.01m s21, y0 5 0.0m s21, y1 5 0.01m s21, h0 5 400.0m,

and h1 5 1.0m. They result in absolute values of the

velocity field that vary between 0.0 and 0.5m s21, and

a fluid depth between 350 and 450m. Tests are per-

formed on an f plane (f5 1.03 1024 s21) for the inviscid

equations (n 5 0), with a domain size of 12 000 km 3
12 000 km. We use a time step of 25 s.

Figure 14 shows the zonal velocity field on the different

grids, and its evolution in time. It is visible that the eddy size

increases with increasing time, and that the fields are finer

resolved but qualitatively equivalent on the refined grids.

We evaluate the energy spectra to get a better im-

pression of the influence of grid refinement to the tur-

bulent cascade. To obtain an approximation of the kinetic

energy spectra on the refined grids, we evaluate only the

grid points in the initial, unrefined grid, like we already

did in section 3b. Since it is difficult to read information

from the two dimensional energy spectra, we present the

spectra in one-dimensional form. To this end, we take the

average of all spectral coefficients that represent a wave-

length l5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2x 1l2y

q
within an interval between Lx/i and

Lx/(i 1 1), "i 5 1, . . . , 59.

Figure 15 shows the one-dimensional kinetic energy

spectra of the model runs calculated for the full domain

and for the left- and the right-hand side of the domain.

The spectra of the partly refined grids calculated over

the full domain lie between the H0 and H1 spectra and

are therefore closer to the expected cubic decay rate

compared to the coarse uniform simulation. The grid

that was refined in two refinement levels has a different

higher energy spectra for the very small wavelength;

a behavior we would expect for a finer resolved model

simulation. While the spectra on refined grids are

slightly increased for the coarse left-hand side, they are

slightly decreased for the fine right-hand side of the grid

compared to uniform simulations at the same resolution

if calculated only in the specific hand side of the grid. All

spectra look reasonable and no spurious accumulation

of energy is visible for the refined grids.

d. Topography and grid refinement

We analyze simulations of a zonal geostrophic flow

over an isolated mountain on refined grids. The test is

known from Williamson et al. (1992) (test case 5) and

consists of a global steady-state nonlinear zonal geo-

strophic flow that is perturbed by a mountain introduced

into the Northern Hemisphere, behind which Rossby

waves form and propagate over the globe.

The steady case specifies a zonal westerly flow with a

maximum velocity of ;20m s21 and a fluid depth vary-

ing between 5960 and 7960m. The test is performed

without viscosity (n 5 0).

FIG. 12. Wave propagation affected by grid refinement: test on diagonally refined grids.

Approximated kinetic energy spectra after 20 000 s for different wavenumbers. The spectra are

calculated evaluating all of the 50 3 8 vertices of the coarsest uniform grid, for the discrete

Fourier transformations. The qualitative results are as in Fig. 9.
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We perform simulations on seven different grids.

Three of them are uniform icosahedral geodesic grids

(H0, H1, and H2). Additionally, we use four refined grids

in which the resolution around themountain is increased

by a factor of 2 (H0Re1, H1Re1) or 4 (H0Re2, H1Re2)

starting from the H0 or the H1 grid. The refinement area

of the H0Re1 and the H1Re1 grid spans the rectangular

between the longitude values of 1258–558W and the

latitude values of 108–558N. The refinement area of the

first refinement level of the H0Re2 and the H1Re2 grid

spans the rectangular between 1308W–308E and 258S–
708N. The second refinement level spans between 1258–
558W and 108–558N. Some of the grids are plotted in

Fig. 16. Details on the grids are given in Table 1.We use

a time step of 25 s.

Figure 17 shows the difference in height of the simu-

lations at day 15, compared to a reference simulation on

a uniform icosahedral grid of high resolution with an

averaged edge length of 120 km. Inside of the refined

areas the error is reduced significantly and spurious

behavior is not visible at the transition zones between

different refinement levels, but outside of the refined

areas improvements are small.

Figure 18 shows the kinetic energy and enstrophy

spectra calculated at day 15 and day 100 for the different

grids. The procedure to calculate the kinetic energy

spectra on a sphere is described in the appendix. At day

15, all spectra are still in good agreement. At day 100,

the refined grids produce a spectra closer to the runs on

uniform grids with higher resolution and closer to the

theoretically expected decay rate, compared to their

unrefined partners, not only for the smallest wave-

numbers. The turbulent decay seems to be improved on

the long term.

e. Lateral boundaries and grid refinement

We perform classical numerical ocean tests consisting

of wind-driven Munk gyres in an idealized planar setup

FIG. 13. Turbulent decay affected by grid refinement test: positions of the vertices in the grids.
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and in a North Atlantic domain with real world topog-

raphy and coast lines. A wind forcing induces a clock-

wise circulation. Because of the change of the Coriolis

parameter in the meridional direction the gyre is in-

tensified toward the western boundary, and a western

boundary current develops (Pedlosky 1996). The tests

are realized with free-slip boundary conditions (u � n 5
0, and ›u/›n5 0 on the boundary ›V). We are particu-

larly interested in the impact of grid refinement on the

representation of western boundary currents. Piggott

et al. (2009) could already show the huge potential to

reduce the number of nodes when using adaptive grid

refinement for a standard Galerkin finite-element

discretization with continuous piecewise-linear ba-

sis functions.

The planar domain has the dimensions of 1000 km 3
1000 km and is located in theNorthernHemisphere. The

test case is initialized with a constant water depth of

1000m and zero velocity. The Coriolis parameter is

given in b-plane approximation by

f 5 1024 s21 1 4:03 10211 y s21 ,

where y is the meridional coordinate. Wind forcing

is introduced to the differential equation for velocity

through the following forcing term:

t5
t s

H
,

where ts is the surface wind forcing and H is the fluid

depth.

While the meridional wind forcing is zero, the zonal

wind forcing is set to

tsx52t03 1023 3 cos
�py
L

�
,

FIG. 14. Turbulent decay affected by grid refinement: zonal velocity of the initial conditions on the (top left) H1 grid, and after 100 days

on the (from top left to bottom right) H0, H1, H2, H0R1, and H0R2 grids. It is visible that the eddy size increases with increasing time, and

that the fields are finer resolved but qualitatively equivalent on the refined grids. No spurious behavior is visible at the transition zones.
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where L is the length of the domain in meridional di-

rection. We use a time step of 10 s.

We use three different grids for the simulations

(Figure 19). One grid in which the area that is impor-

tant for the representation of the western boundary

current is refined and two grids that offers a coarse and

fine uniform resolution. The refined and the fine grid

have the same maximal resolutions.

While energy is introduced to the system via the wind

forcing, the energy is reduced by diffusion. The value used

for the eddy viscosity n and the wind forcing t0 need to

be balanced at a realistic level for the resulting velocity

field. In principle, we want to use as little viscosity as

possible, since viscosity dampens the flow patterns and

reduces details. On the other hand, thewidth of theMunk

layer at thewestern boundary is fixed by the value of eddy

FIG. 15. Turbulent decay affected by grid refinement: one-dimensional kinetic energy spectra after 100 days for the

full domain, and (from left to right) for the left- and the right-hand side of the domain. The spectra for the full domain

were calculated from a discrete Fourier transformation on the original grid with 603 60 vertices for all grids, to allow

a direct comparison of the spectra. The spectra of the partly refined grids lie between the H0 and H1 grid and are

therefore closer to the expected cubic decay rate compared to the coarse uniform simulation. The spectra for the left-

and the right-hand side of the domain were calculated from a discrete Fourier transformation on a grid with the

respective local resolution. While the spectra on refined grids are slightly increased for the coarse left half, they are

slightly decreased for the fine right-hand side of the grid compared to uniform simulations at the same resolution.

FIG. 16. Topography and grid refinement: positions of the vertices in the (left) H1Re1 and (right) H1Re2 grid.
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viscosity, and the Munk layer needs to be resolved by at

least two grid cells. This leads to a condition for the

minimal viscosity that we are allowed to use in our sim-

ulations, which is dependent on the grid resolution at the

western boundary. The constraint that assures that the

Munk layer is resolved by at leastN grid points in a global

finite-difference model is given by

n. 3:823 10212(NDs)3 cos(u)m21 s21 , (3)

where Ds is the lattice spacing and u is the latitude

(Griffies 2004). We calculate the minimal values needed

for eddy viscosity, to resolve the Munk layer with two

grid cells, with an equation similar to Eq. (3) derived and

tested for the b-plane approximation and free-slip

boundaries. Using a lower viscosity leads to an in-

sufficiently resolved western boundary current. We use

n5 100.0m2 s21 and t05 0.1m2 s21. The number of cells

is 512 in the coarse, 730 in the refined, and 2048 in the

fine grid.

Figure 20 shows the equilibrated height field of the

model runs on the three grids after one year. It is visible

that the western boundary is not properly resolved in the

TABLE 1. Properties of the grids used for the topography and grid

refinement test.

No. of cells

Typical edge length

on the sphere (km)

H0 1280 960

H0Re1 1596 480–960

H0Re2 3636 240–960

H1 5120 480

H1Re1 6182 240–480

H1Re2 13 792 120–480

H2 20 480 240

FIG. 17. Topography and grid refinement: error of height on the different grids [(from top left to bottom right) H0, H0Re1, H0Re2, H1,

H1Re1, H1Re2, and H2] after 15 days compared to a reference run with higher resolution. Inside of the refined areas the error is reduced

significantly and spurious behavior is not visible at the transition zones between different refinement levels, but outside of the refined areas

improvements are small. Small-scale noise pattern are caused by themapping, which is necessary to compare the results on different grids,

and not so much by numerical noise within the simulations.
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coarse simulation. In contrast, the height field of the

refined grid is represented smoothly along the western

boundary. In comparison to the uniform, fine simula-

tion, the height pattern of the refined simulation shows

a clear improvement compared to the height field of the

uniform, coarse simulation. These results are consistent

with the results in Piggott et al. (2009) for adaptive mesh

refinement.

Next we simulate an ocean basin shaped like the At-

lantic Ocean, but with a domain that is cut at the equator

and at 588N. The real-world topography is cut at 1000-m

depth. An artificial wind forcing that is balanced by

bottom friction induces a steady circulation. We use two

different grids. A uniform grid with a typical edge length

of 120 km, and the same grid refined at the western

boundary, with a typical edge length of 60 km in the fine

FIG. 18. Topography and grid refinement: (left) one-dimensional energy and (right) enstrophy spectra on the

sphere after (top) 15 and (bottom) 100 days for different grids. At day 100, the refined grids produce a spectra closer

to the runs on uniform grids with higher resolution and closer to the theoretically expected decay rate, compared to

their unrefined partners, not only for the smallest wavenumbers.

FIG. 19. Lateral boundaries and grid refinement: positions of the vertices in the coarse, the refined, and the fine grids used for the planar

Munk gyre test.
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part of the grid (plotted in Fig. 21). We use a time step

of 20 s.

Simulations are initialized with zero surface elevation

and zero velocity. The zonal wind forcing is given by

tsl 5

	
2t03 10233 cos(4u) if u, 458

0 if u$ 458
,

where the meridional wind forcing is zero.

Figure 22 shows the equilibrated steady surface ele-

vation for model simulations with t0 5 1.0m2 s21 and

n5 6655.0m2 s21 for the refined and t05 2.0m2 s21 and

n 5 53 240.0m2 s21 for the unrefined grids. The increase

of the local resolution at the western boundary allows

the use of a lower eddy viscosity. If we use the same eddy

viscosity on the uniform grid, that we use for the refined

simulation (n 5 6655.0m2 s21), the Munk layer is not

properly resolved. Since we use a lower viscosity we dis-

sipate less energy and we can use a weaker and therefore

more realistic wind forcing to obtain very similar values

for the velocity. We argue that the height field in the re-

fined model run shows a smaller Munk layer, with more

details compared to the uniform run, and is therefore

preferable. Grid refinement leads to only a small increase

in computational costs, since the increase of the number of

degrees of freedom is fairly small (cf. 7250 grid cells in the

refined vs 5783 cells in the uniform simulation).

From the Munk gyre test one can learn that refining

the grid and adapting the physics, here the change in the

viscosity coefficient, has to go hand in hand in order to

obtain an improved model solution. Here it was excep-

tionally simple because we just had to satisfy the lower

bound for viscosity [Eq. (3)], but for the general case

such kind of information is not available.

4. Conclusions

Our results provide numerical evidence only and the

conclusions are limited to the PDG
1 P2 finite element.

The simulations of a zonal geostrophic flow (section

3a) suggest that grids of variable resolution do not per-

turb the representation of the geostrophic balance, but

they can increase the zonal asymmetry which will induce

errors. For the specific test case, the convergence pro-

perties are changed as well.

As expected, the simulations of wave packets (section

3b) show that linear gravity waves with wavelengths less

than 5 times the coarser grid spacing are strongly re-

flected and scattered at the transition between coarse

and fine grids, while waves that are well resolved on the

FIG. 20. Lateral boundaries and grid refinement: (from left to right) equilibrium surface elevation of the planar Munk gyre simulations

on the coarse, the refined, and the fine grids. Grid refinement along the boundary leads to a clear improvement compared to the simulation

with uniform, coarse resolution.

FIG. 21. Lateral boundaries and grid refinement: vertices of the

refined grid used for theAtlantic shapedMunk gyre. The black line

marks the coastline.
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coarse grid are hardly effected. The errors are fairly

independent of the structure of the transition zone and

the change of resolution between fine and coarse parts of

the grids. Even if changes might appear to be small when

looking at the physical fields only, errors could be iden-

tified by looking at the spectra (Figs. 8 and 9). Therefore,

it is likely that many errors in the wave propagation will

be invisible but still apparent when using grids of vari-

able resolution. Nevertheless, the simulations of ran-

domly initialized physical fields (section 3c but also

section 3d) show that grid refinement does not have

a strong influence on the turbulent cascades in the

considered finite-element setup. While the energy

spectra of the full grid appears to be improved, small

changes are visible for the local spectra within

the fine and the coarse region with a slight decrease

and increase of kinetic energy, respectively. The error

in energy conservation is influenced by grid re-

finement, but it is typically getting smaller compared to

the error on the corresponding unrefined grids (sections

3a and 3b).

The simulations of flow over topography (section 3d)

can be seen as an example that it is not necessarily true

that the global error is reduced when grid refinement is

able to reduce the local error around an important local

feature, although the local feature is strongly influencing

the whole simulation. These results are consistent with

the results in Ringler et al. (2011) where multiresolution

simulations with a smooth transition zone between the

coarse and the fine part of the grid are performed with

a model based on a finite-volume scheme. Ringler et al.

showed that the global error of simulations is mostly

dependent on the resolution of the coarse part of the

grid, when simulating the same test case.

For the representation of boundary currents a careful

use of grid refinement allows a fair improvement of the

solution while the increase in computational cost ap-

pears to be comparably small. The tests approve that

grid refinement will only reveal its full potential if it goes

along with a simultaneous change of the parameteriza-

tion schemes, here a reduction of the kinematic viscosity

that was possible due to an increased resolution within

the Munk layer.

In summary, grid refinement appears to be promising

for this particular setup and we did not discover pro-

found problems when using variable resolution, even if

abrupt changes in grid resolution are used. But it also

became clear that grid refinement is not a panacea and

that many further studies will be needed to unleash its

full potential and minimize errors. On a broader per-

spective our results advocate a deeper investigation of

static local grid refinement as a viable alternative to time-

varying adaptive grid refinements or at least as an in-

termediate step toward adaptive grids. This holds in

particular for applications where regions of interest can

be identified a priori, as it is the case in ocean modeling.

Many open questions remain, for example how to com-

pare different (static) refinement procedures such as h

FIG. 22. Lateral boundaries and grid refinement: equilibrium surface elevation in the Atlantic-shaped Munk gyre

after one year of simulations (left) with and (right) without refined western boundary. We used n 5 6655.0m2 s21 in

the refined, and n 5 53 240.0m2 s21 in the unrefined model simulations. Because of the lower viscosity, the refined

model run shows a smaller Munk layer and more details compared to the uniform run.
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refinement, p refinement, r refinement, and nesting.1 It is

not even clear how to carry out a sensible comparison

between these different refinement strategies. The met-

rics for this sort of model intercomparison constitute

a challenge in itself.
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APPENDIX

Diagnostics for Energy and Enstrophy

a. Energy conservation

We calculate the global energy at time step j using the

following formula:

Ej 5

ð
V

�
1

2
h ju j � u j 1

1

2
g(hjhj 2 h

j
bh

j
b)

�
dx .

We compute the relative error for total energy at time

step j using the initial value as a reference:

hE(tj)5
jE02Ejj

E0
. (A1)

b. Kinetic energy and enstrophy spectra on
plane and sphere

The model runs are evaluated with kinetic energy and

enstrophy spectra.Using a discrete Fourier transformation,

we calculate the spectral coefficients f̂ij of a two-

dimensional physical field f on regular equidistant grids

on the plane via

f̂kl 5 �
N

x
21

m50
�

N
y
21

p50

fmp exp 22pi
mk

Nx

 !
exp

 
22pi

pl

Ny

!
,

wherefmp5f(xm, yp) is the value of the physical field at

a given grid point ("m5 1, 2, 3, . . . ,Nx, and"p5 1, 2, 3,

. . . ,Ny).We define the factor 1/NxNy to be introduced in

the inverse transformation back to physical space.

By calculating the spectral coefficients for the two

components of the velocity fields (ûkl and ŷkl), we

obtain the two-dimensional spectra of the kinetic

energy:

Ekl 5
1

4
(jûklj21 jŷklj2) .

To calculate the spectra of the kinetic energy and

enstrophy on the sphere, we proceed as follows. In a first

step, the relative vorticity and divergence are calculated

as curl and divergence of the velocity. In a second step,

vorticity and divergence are mapped onto a Gaussian

grid. In a third step, the spectral coefficients of vorticity

and divergence (zmn and dmn ) are calculated. Steps 2 and 3

are performed using the Climate Data Operator tools

(CDO; M€uller and Schulzweida 2010).

The spectra of kinetic energy En
kin and enstrophy Zn

are given by

En
kin 5

a2e
4n(n1 1)

�
jz0nj21 jd0nj21 2 �

n

m51

jzmn j2

1 2 �
n

m51

jdmn j2
�
,

Zn 5
1

4

�
jz0nj21 �

n

m51

2jzmn j2
�
, (A2)

where n is the wavenumber. A derivation of Eq. (A2) is

given in Jakob et al. (1993).
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