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Abstract

Experiments with a network of bistable electrochem-

ical reactions, organized in regular and non-regular

tree networks, are presented to confirm an alter-

native to Turing mechanism for formation self-

organized stationary patterns. The results show

that the pattern formation can be described by iden-

tification of domains that can be activated individ-

ually or in combinations. The method was also

demonstrated to localization of chemical reactions

to network substructures and identification of criti-

cal sites whose activation results in complete activa-

tion of the system. While the experiments were per-

formed with a specific nickel electrodissolution sys-

tem, they reproduce all the salient dynamical behav-

ior of a general network model with a single non-

linearity parameter. This indicates that the consid-

ered pattern formation mechanism is very robust

and similar behavior can thus be expected in other

natural or engineered networked systems, which ex-

hibit, at least locally, a tree-like structure.

In biological context, many chemical reactions
take place in discrete units, e.g., in cells, that form
a complex network.[1, 2] Similarly, recent advances
in microfabrication allow the generation of engi-
neered networks of reaction units, e.g., with lab-
on-chip microdroplets,[3] electrode arrays,[4, 5] BZ

beads,[6] or microelectrofusion.[7] The interplays
between local reaction kinetics (nodes), the phys-
ical processes that create coupling (link), and the
architecture of the network in such systems can lead
to a wealth of self-organized phenomena, including
synchronization,[4, 6, 8] stationary Turing and os-
cillatory patterns,[9, 10, 11, 12, 13] or excitation
waves.[14, 15, 16]

Stationary patterns generated via the Turing[17]
mechanism have been observed in experiments for
both continuous[18] and networked[19] systems.
Here, an alternative mechanism for emergence of
stationary patterns in networks is experimentally
explored. We focus on network-organized sys-
tems of bistable elements with diffusive connections
between them. Bistable elements can be found
in a broad class of chemical reactions (e.g., with
autocatalysis[20, 21]) but also in cellular[22] and
engineered systems.[23] Such elements can have lo-
cal or diffusive connections between them. For
regular lattices and linear chains (i.e., for rela-
tively simple networks), it is known that, un-
der sufficiently weak coupling, the fronts fail to
propagate, and thus stationary domains can be
formed,[24, 25, 26, 27] whereas at strong coupling
the fronts spread[27, 28] and a uniform state is
eventually established. Recently, analogues phe-
nomena were theoretically investigated for complex
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networks and the formation of stationary domains,
sensitive to the network topology, was predicted
based on a simple model of regular trees and one-
component bistable elements.[29, 30] The aim of
the present study is to experimentally identify the
stationary pattern formation, induced by network
structure, with chemical reactions in which auto-
catalysis can produce local bistable behavior.

Suppose that some substance can undergo chem-
ical reactions in reactors occupying nodes i (i =
1, . . . , N) of a network and this substance can
spread diffusively from one node to another. Such
a network-organized reaction-diffusion system is
generally described by equations u̇i = f(ui) +

K
∑N

j=1
(Aijuj −Ajiui), where ui is the chemical

concentration in the node i, the function f(u) spec-
ifies the local dynamics at the nodes, and the co-
efficient K characterizes the strength of diffusive
coupling. The network structure is determined by
a symmetric adjacency matrix whose elements are
Aij = 1, if there is a connection between nodes
i and j (i 6= j), and Aij = 0 otherwise. Func-
tion f(u) can be chosen in such a way that indi-
vidual elements are bistable, e.g., with autocataly-
sis (Supporting Information). For such models an
approximate analytical theory is available for spe-
cial networks representing regular trees with fixed
branching ratio.[29]

The analytical and numerical results are summa-
rized in Figure 1. Under given nonlinearity factors
(Supporting Information), the two major parame-
ters are the coupling strength K and the branch-
ing ratio r. For weak coupling, the activation is
pinned (i.e., it does not propagate) in region I.
At the intermediate coupling strength there is a
range of branching ratios (region II), where the
center activation is pinned while the periphery ac-
tivation propagates towards the center. At suffi-
ciently strong coupling and relatively low branching
ratios (region III), the center activation spreads to-
wards to periphery, whereas the periphery activa-
tion propagates towards the center. At strong cou-
pling and large branching ratios (region IV ), the
center activation retreats and the periphery activa-
tion propagates towards the center. The behavior
of regular or non-regular tree networks can fully be
interpreted in terms of these four regions.

Figure 1b shows a non-regular tree network with
branching ratios varying from one or two, three,
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Figure 1: a) The bifurcation diagram. Region I:
Center and periphery activations are pinned. Re-
gion II: Center activation is pinned whereas pe-
riphery activation propagates towards the center of
the tree. Region III: Center and periphery activa-
tions propagate in both directions, to the periphery
and the center. Region IV : Center activation re-
treats whereas periphery activation propagates to-
wards the center. b) Different activity domains in a
non-regular tree network. Active domains A, B, C,
and D, are distinguished by different colors. Acti-
vation of any node with the cream color (#, △, 9)
results in spreading of the activation over all nodes
in the respective network domains A, A∪B, A∪C,
or A ∪D. Activation of any node with the brown
color (2, ♦) remains pinned on that node. Acti-
vation of a single node with the magenta color (D)
retreats and vanishes resulting in the uniform pas-
sive state.

four and five. Numerical simulations for this net-
work were performed with the coupling constant
K = 0.04, so that these domains corresponded
to regions II, III or IV in the bifurcation dia-
gram. Simulations were done by applying initial
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activation to one of the nodes and following the
subsequent evolution until a stationary state was
reached. Stationary patterns were then classified
by identifying all the possible stationary states that
could be obtained by such an initial activation.

The developed patterns can be interpreted by the
formation of domains activated individually or in
combinations. The domains consist of groups of
nodes that correspond to the same dynamical re-
gion and thus behave similarly. For example, do-
mains of elements in region III support spreading
of activation towards both the center and the pe-
riphery. When such domains are adjacent to, or
surrounded by nodes that are amenable to pin-
ning or to retreating (e.g., in region I, II, or
IV ), the propagating fronts get pinned and sta-
tionary structures develop. Therefore, the observed
structures consist of uniform domains separated by
nodes amenable to pinning or to retreating. The
exact configuration of the patterns depends on the
architecture of the network, the applied coupling
strength, and the nonlinearity of the reaction that
altogether determine the assignment of the nodes
to the different regions and the configuration of the
domains.

For the specific network, shown in Figure 1b, ac-
tivation of a node with the cream color resulted in
spreading of activation to all nodes of the domains
A, A∪B, A∪C, or A∪D. Activation of a node with
the brown color remained pinned on that node. Ac-
tivation of a node with the magenta color retreated
and vanished resulting in the uniform final passive
state. Simulations were also performed by initially
activating several network nodes, but essentially
the same final patterns were then reached.

Experiments with networks of bistable electro-
chemical reactions were performed (Supporting In-
formation). Each unit represented a corroding
metal (nickel) wire that accommodated a complex
reaction system (including, e.g., formation of mul-
tiple forms of metal oxides, bisulfate adsorption,
oxygen evolution and metal dissolution) that ex-
hibited bistable behavior. Moreover, coupling was
established in the form of the charge flow between
the wires (due to difference in electrode potential)
which affected the rate of metal dissolution of the
coupled electrodes.[4] Electrodes and external con-
nections between them, correspond to the nodes
and the links in all network diagrams.

First, experiments with regular trees were un-
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Figure 2: Evolution of center and periphery acti-
vations on a regular tree with the branching ratio
r = 3 at different coupling strengths K. a) Initial
condition of center activation. b) Spreading front,
K = 0.67 mS; final state at t = 1008 s is shown.
c) Pinned front, K = 2.0 mS, t = 2310 s. d) Re-
treating front, K = 4.0 mS, t = 68 s. e) Initial
condition of periphery activation. If K = 0.04 mS

the front is pinned, t = 480 s. f) Spreading front,
K = 0.10 mS, t = 464 s. V = 1300mV ; color cod-
ing indicated by the bar is used to display currents
in network nodes.

dertaken. Figure 2 shows that center activation in
a four-layer tree with the branching ratio 3 could
result in spreading fronts (Figure 2b, region III)
for weak coupling, pinned fronts (Figure 2c, region
II) for moderate coupling, and retreating fronts
(Figure 2d, region IV ) for strong coupling. Sim-
ilarly, periphery activation (Figure 2e) yielded ei-
ther pinned fronts (Figure 2e, region I) at very
weak coupling or spreading fronts (Figure 2f) at
stronger coupling; such behavior was found in all
regions II, III, or IV.

Figure 3 shows the evolution observed in the
same network after activation of an intermediate
node at different coupling strengths. In region I

(Figure 3a) the fronts are pinned on both sides.
In region II (Figure 3b) the center facing front
spreads towards the center and the periphery facing
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Figure 3: a) Pinned fronts in both directions,
K = 0.10 mS; final state at t = 402 s is shown. b)
Spreading front to the center and pinned front to-
ward the periphery, K = 0.20 mS, at t = 602 s. c)
Spreading fronts in both directions, K = 0.67 mS,
at t = 538 s. d) A spreading front towards center
and a retreating front from periphery, K = 2.5 mS.
Middle snapshot at t = 25 s and final state at
t = 50 s. V = 1300mV .

front is pinned. In region III fronts spread in both
directions and finally activate the entire network
(Figure 3c). In region IV the center facing front
propagates towards the center but the periphery
facing front is retreated from the periphery finally
establishing the passive state in the entire network
(Figure 3d). All these experiments confirm the the-
oretical predictions for the regular tree networks.

Furthermore, we could also build the same non-
regular tree as in the simulations in Figure 1b. By
performing experiments with regular trees under
the same experimental setup, we could find (Sup-
porting Figure, Figure S1) that at K ≈ 1 mS re-
gions II, III, and IV correspond to the branching
ratios r = 3, 4, r = 1, 2, and r ≥ 5, respectively.
Similar to theoretical predictions, we could see that
activations with a single (Figure 4a; Supporting In-
formation, Video S1) or multiple nodes (Figure 4b;

Supporting Information, Figure Video S2) within
domain A resulted in activation of all elements in
domain A. When activation was applied to an in-
termediate element of domain B, pattern A ∪ B

was observed (Figure 4c; Supporting Information,
Video S3). To achieve complete activation of the
network, peripheral nodes of the branches with the
highest branching ratios r = 3, 4 and 5 had to be
initially activated (Figure 4d; Supporting Informa-
tion, Video S4). When a root node of a branch with
high branching ratios r = 4 or r = 5 was initially
activated, the activation could not spread and died
out (Figure 4e). Furthermore, activation of more
central node in the branch with r = 3 resulted in a
pinned front (Figure 4f).

Thus, we have experimentally demonstrated that
bistable tree networks can support a rich variety of
stationary patterns, determined both by the net-
work architecture and initial activation conditions.
Many features of the stationary patterns in a large,
non-regular network, can be predicted from the
network topology based on experiments with four-
layer trees that identify the dependence of the dy-
namical behavior as a function of the branching
ratio. The experiments were performed with an
electrochemical system; nonetheless, a surprisingly
good agreement with theoretical predictions has
been found despite the fact that the experimen-
tal system did not perfectly meet the idealizations
made in the theory,[29] i.e., the state of a network
element was described by more than a single vari-
able and coupling between the elements was local,
but not exactly of the diffusive form. This indi-
cates that the found behavior is generic and robust;
therefore it can be expected in various natural and
engineered bistable networks.

While only (regular or non-regular) tree net-
works were considered, our results are also relevant
for large random networks that possess locally the
tree structure.[31] Hence, formation of stationary
domains should also be characteristic for random
networks provided that such domains remain suf-
ficiently small. Finally, it should be noted that,
as has theoretically been shown,[30] self-organized
stationary domains can be controlled by introduc-
ing global feedbacks and experimental realization
of such control would further facilitate the design
of complex stationary structures on networks.
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Figure 4: a) Activation of a single node from
the linear chain yields spreading fronts that acti-
vate the domain A (V = 1300 mV , final state at
t = 654 s). b) Intermediate activation of four nodes
in the domain A with r = 2 yields spreading fronts
to activate the domain A (V = 1295 mV , final
state at t = 241 s). c) Near periphery activation
of a single node in the branch with r = 3 yields
spreading fronts which activate the domains A∪B

(V = 1275 mV , final state at t = 336 s). d) Pe-
riphery activation of the branches with r = 3, 4,
and 5 yields spreading fronts to complete network
activation (V = 1280 mV , final state at t = 201 s).
e) Activation of a single node in the branch with
r = 5 yields retreating fronts to complete net-
work passivation (V = 1300 mV , final state at
t = 54 s). f) Activation of a single more central
node in the branch with r = 3 yields pinned fronts
(V = 1270 mV , final state at t = 801 s). All ex-
periments performed at K = 1.3 mS.
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