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Abstra
t

In this paper we propose a veri�
ation method for hybrid systems that

is based on a su

essive elimination of the various system lo
ations in-

volved. Brie
y, with ea
h su
h elimination we 
ompute a weakest pre
ondi-

tion (strongest post
ondition) on the prede
essor (su

essor) lo
ations su
h

that the property to be proved 
annot be violated. This is done by repre-

senting a given veri�
ation problem as a se
ond-order predi
ate logi
 formula

whi
h is to be solved (proved valid) with the help of a se
ond-order quan-

ti�er elimination method. In 
ontrast to many \standard" model 
he
king

approa
hes the method as des
ribed in this paper does not perform a forward

or ba
kward rea
hability analysis. Experiments show that this approa
h is

parti
ularly interesting in 
ases where a standard rea
hability analysis would

require to travel often through some of the given system lo
ations. In addi-

tion, the approa
h o�ers possibilities to pro
eed where \standard" rea
habil-

ity analysis approa
hes do not terminate.

Keywords

Hybrid Systems, Veri�
ation, Model Che
king, Quanti�er Elimination, Lo-


ation Elimination.



1 Introdu
tion

Hybrid Systems are real-time systems that are embedded in analog envi-

ronments. They 
ontain dis
rete and 
ontinuous 
omponents and inter-

a
t with the physi
al world through sensors and a
tuators. Due to the

rapid development of 
omputer te
hnology, hybrid systems dire
tly 
on-

trol mu
h of what we depend on in our daily lives [AHH96℄. Sin
e they

typi
ally operate in safety-
riti
al situations, the development of rigorous

analysis te
hniques is of high importan
e. However, traditional program

veri�
ation is hardly useful, for it allows us, at best, to merely approxi-

mate 
ontinuously 
hanging environments by dis
rete sampling. Also, ear-

lier veri�
ation te
hniques based on temporal logi
s [CE81, CES86, EMSS90,

GH90, MP92, MW84, Non95, Non96, OL82, Pnu77, PH88, Sis85℄ lead only

halfway towards what is a
tually demanded. Only re
ently have there been

some attempts at developing a veri�
ation methodology for hybrid sys-

tems [ABL97, ACD90, ACH

+

95, ACHH93, AD94, AH92, AHH96, AHS96,

ANKS95, CHR91, GNRR93, Hen91, Hen95, Hen96, HNSY92, Ho95, Kop96,

LLW95, Sha93, SUM96℄.

A 
ommon model for hybrid systems 
an be found in hybrid automata.

Brie
y, su
h hybrid automata are �nite graphs whose nodes 
orrespond to

global states. A 
omputation of su
h an automaton is a sequen
e of state


hanges (steps). Within ea
h step the system state evolves 
ontinuously

a

ording to a dynami
al law until a transition from one node to another one

o

urs. Transitions are instantaneous state 
hanges that separate 
ontinuous

state evolutions.

The paper is now organized as follows. We start with a formal de�ni-

tion of hybrid systems. After that we pro
eed with the formal de�nition of

the syntax and the semanti
s of Integrator Computation Tree Logi
, ICTL

[AHH96℄, that lets us formulate temporal properties of the hybrid system un-

der 
onsideration. What follows is the introdu
tion of the dedu
tive model


he
king approa
h in general. This in
ludes both the logi
al representation

and the method to solve the veri�
ation problem. Some 
ommon generaliza-

tions are brie
y examined in a subsequent se
tion. In order to provide with

some more intuition on the approa
h some examples follow whi
h also allow

us to 
ompare the approa
h with standard rea
hability analysis methods.

Finally, we 
on
lude that paper with a brief summary and an outlook at

what ought to be done in the near future.
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2 Hybrid Systems

2.1 Syntax

Definition 2.1 (Constraint Terms and Constraint Formulas)

The set CT of Constraint Terms over a �xed variable set X is de�ned as

the smallest set 
ontaining X, and real-valued 
onstants, and, moreover,

is 
losed under addition, subtra
tion, and multipli
ation with real-valued


onstants.

The set of CF of Constraint Formulas (over the variable set X) is de�ned

as the smallest set that is 
losed under 
onjun
tion and 
ontains > (truth)

and ? (falsity) as well as all atoms of the form t

1

> t

2

, t

1

� t

2

, t

1

< t

2

,

t

1

� t

2

, and t

1

= t

2

, where t

1

and t

2

are 
onstraint terms taken from CT.

As usual, we illustrate hybrid systems as graphs like

_x = 1

x � 1

_x = 1

x � 1

L N

x

:

=

0

x = 1 j x := 0

> j x := 0

Nodes L and N represent dis
rete lo
ations, whereas x is a data variable.

Within ea
h lo
ation we des
ribe the lo
ation invariant (x � 1 in the exam-

ple) and the 
ontinuous a
tivity whi
h des
ribes how the values of the data

variables 
hange in time. In the above example the value of x in
reases by 1

per time unit (say, se
ond), i.e., the �rst derivative of the fun
tion des
ribing

the behavior of x over time is the 
onstant 1.

Edges are annotated with guards and dis
rete a
tions. Guards form a 
on-

straint on the data variables to hold if a transition via the 
orresponding

edge is to be performed. The dis
rete a
tion spe
i�es how the data vari-

ables are to be 
hanged after taking the transition. In the above example

the guard of the edge from L to N is x = 1 and the 
orresponding a
tion is

to reset x to 0.

The above hybrid system thus des
ribes the following behavior: it starts at

lo
ation L with the data variable x set to 0. Within L and N the value of

x in
reases by 1 every se
ond (so x is a 
lo
k). The system leaves lo
ation

L after exa
tly one se
ond and resets x to 0. Similarly, it remains within N

for at most one se
ond and reenters L after resetting x to 0 again.

The following de�nition spe
i�es what hybrid systems are in general.

Definition 2.2 (Hybrid Systems)

Hybrid Systems are tuples of the form (X;L; E ;dif; inv; guard; a
t), where

� X is a �nite set of real-valued data variables,

� L is a �nite set of lo
ations, i.e., nodes of a graph,
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� E � L �L is a �nite (multi)set of transitions, i.e., edges of the graph

with nodes from L,

� dif : L�X 7! CT is a mapping that asso
iates with ea
h lo
ation and

ea
h data variable a 
onstraint term (with free variables taken from

X), representing the 
hange of the data variable within this lo
ation

over time,

� inv : L 7! CF is a mapping that asso
iates with ea
h lo
ation a 
on-

straint formula (with free variables taken from X), representing the

lo
ation invariant,

� guard : E 7! CF is a mapping that asso
iates with ea
h edge a 
on-

straint formula (with free variables taken from X), representing the


ondition that has to be enabled in order to travel along the edge, and

� a
t : E � X 7! CT is a mapping that asso
iates with ea
h edge and

ea
h data variable a 
onstraint term (with free variables taken from

X), representing the value of the variable after traveling along the

edge.

2.2 Semanti
s

We de�ne a state of a hybrid system as a pair (L; �) where L 2 L is a

lo
ation and � : X 7! R is a valuation of the data variables. � naturally

extends to (
onstraint) terms and (
onstraint) formulas. A state (L; �) is


alled admissible if �(inv(L)) holds. Given two admissible states � = (L; �)

and �

0

= (L

0

; �

0

) we say that �

0

is transition-rea
hable from � { denoted

by �

tr

7! �

0

{ if there exists a transition T = (L;L

0

) 2 E with sour
e L

and target L

0

, and both �(guard(T )) and �

0

(x) = �(a
t(T; x)) for ea
h

x 2 X. We 
all �

0

timely-rea
hable from � with delay Æ { denoted by

�

Æ

7! �

0

, where Æ is a non-negative real number { if L = L

0

and for ea
h

x 2 X there exists a di�erentiable fun
tion f

x

: [0; Æ℄ 7! R, with the �rst

derivative

_

f

x

: (0; Æ) 7! R, su
h that (1) f

x

(0) = �(x) and f

x

(Æ) = �

0

(x) and

(2) for all � 2 R with 0 < � < Æ: both inv(L)[x

1

=f

x

1

(�); : : : ; x

n

=f

x

n

(�)℄ and

_

f

x

(�) = dif(L; x)[x

1

=f

x

1

(�); : : : ; x

n

=f

x

n

(�)℄ are true. �

0

is timely-rea
hable

from � { denoted by �

?

7! �

0

{ if there exists a non-negative Æ 2 R su
h that

�

Æ

7! �

0

. �

0

is said to be rea
hable from � if (�; �

0

) 2 (

?

7! [

tr

7!)

�

.

A run � of H with initial state �

0

= (L

0

; �

0

) is a maximal sequen
e of states

represented as

� = �

0

7!

t

0

f

0

�

1

7!

t

1

f

1

�

2

7!

t

2

f

2

�

3

7!

t

3

f

3

� � �

where t

i

2 R
�0

and f

i

: [0; t

i

℄ 7! (X 7! R), su
h that f

i

(0) = �

i

, and

moreover, inv(L

i

)[X=f

i

(t)(X)℄ holds for all 0 � t � t

i

, (L

i

; f

i

(t

i

))

tr

7! �

i+1

and for all 0 � t

0

� t

0

+Æ � t

i

: (L

i

; f

i

(t

0

))

Æ

7! (L

i

; f

i

(t

0

+Æ)). The set of states

3




ontained in su
h a run � is given as States(�) = f(L

i

; f

i

(t)) j t 2 R; 0 � t �

t

i

g. The set of all runs of a hybrid system H with initial state � is denoted

by runs(H; �). A position � of a run � = �

0

7!

t

0

f

0

�

1

7!

t

1

f

1

�

2

7!

t

2

f

2

�

3

7!

t

3

f

3

� � �

is a pair � = (i; r) 2 N � R su
h that 0 � r � t

i

. We denote the set of

positions of a run � as pos(�). Positions are ordered lexi
ographi
ally, i.e.,

(i; r) < (j; s) if and only if i < j or (i = j and r < s). Also, (i; r) � (j; s) if

and only if (i; r) < (j; s) or (i = j and r = s). By �(�) with � = (i; r) we

denote the state (L

i

; f

i

(r)). Thus States(�) = f�(�) j � 2 pos(�)g.

A run is said to be non-zeno if

P

t

i

diverges. In the sequel we shall assume

that the runs of the hybrid system under 
onsideration are all non-zeno.

1

For the simple hybrid system from page 2 it is quite easy to �nd the set

of rea
hable states. It 
ontains exa
tly all states of the form (L; �) or (N;�)

where � maps x to an arbitrary real value between 0 and 1. Intuitively, it

should thus be possible to prove that the value of the data variable x always

remains smaller than 1. But there are mu
h more interesting properties of

the above system that we want to be able to prove. As we noted already,

the system will always remain within lo
ation L for exa
tly one se
ond,

whereas it 
an only remain within lo
ation N for at most one se
ond. Thus,

the a

umulated time spent in lo
ation N 
an never ex
eed one half of the

overall running time of the system. Su
h properties should be provable

as well. This, however, demands for a requirement language that lets us

formulate these kinds of properties. One su
h language 
an be found in

ICTL [AHH96℄ as des
ribed in the se
tion to follow.

3 Integrator Computation Tree Logi
 ICTL

3.1 ICTL Syntax

We des
ribe properties of a hybrid system with data variables X and lo
a-

tions L, in terms of ICTL formulas, where

� every 
onstraint formula over X is an ICTL formula,

� every lo
ation name from L is an ICTL formula,

� if � and 	 are ICTL formulas, so are :�, � ^	, � _	, � ! 	, and

� � 	,

� if � and 	 are ICTL formulas, so are AG �, AF �, EG �, EF �,

�EU	, and �AU	,

1

The assumption of non-zenoness implies that hybrid systems are deadlo
k-free, i.e.,

there is no rea
hable state that has no su

essor. So-
alled livelo
ks, however, are not

ex
luded. This means that we absolutely allow states whi
h have only themselves as

future alternatives. The latter 
ase just states that the situation does not 
hange in time,

whereas the former 
ase (deadlo
k) would 
laim that time itself has 
ome to an end.
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� if � is an ICTL formula, z is a new data variable, and fL

1

; : : : ; L

n

g 2 L

is a subset of the lo
ation names then z

fL

1

;::: ;L

n

g

:� is an ICTL formula

(and z is added to the set X).

Intuitively, the temporal operators AG ;AF ;EG ;EF ; EU ; AU , mean

\always", \inevitably", \possibly always", \possibly", \possibly until", and

\inevitably until" respe
tively. Their formal semanti
s with respe
t to hy-

brid systems is de�ned below.

3.2 ICTL Semanti
s with respe
t to Hybrid Systems

Given a hybrid system H, by H

z

fL

1

;::: ;L

n

g

we mean the extended system we

obtain from adding the new 
lo
k z whi
h is initialized with 0 and whi
h is

supposed to run with slope 1 within lo
ations L

1

; : : : ; L

n

and with slope 0,

i.e., it is stopped, for all other lo
ations. Noti
e that this implies that the

value of the new 
lo
k z will never get below 0. Formally:

Let H = (X;L; E ;dif; inv; guard; a
t). Then

H

z

fL

1

;::: ;L

n

g

= (X [ fzg;L; E ;dif

0

; inv

0

; guard; a
t)

where inv

0

(L) = inv(L) ^ 0 � z and

dif

0

(L; x) =

8

<

:

dif(L; x) if x 6= z

1 if x = z and L 2 fL

1

; : : : ; L

n

g

0 otherwise

for all data variables x 2 X and lo
ations L 2 L.

2

As usual, we de�ne the valuation �[z=0℄ as �[z=0℄(x) =

�

�(x) if x 6= z

0 otherwise.

Definition 3.1

Given a hybrid system H = (X;L; E ;dif; inv; guard; a
t) and a state � =

(L; �), the semanti
s of ICTL with respe
t to H and � is de�ned as:

H; � j= 
 i� j= �(
), provided 
 is a 
onstraint formula

H; � j= N i� lo
ations N and L are identi
al

H; � j= :� i� H; � 6j= �

H; � j= � ^	 i� H; � j= � & H; � j= 	

and similarly for the other boolean 
onne
tives

H; � j= AG � i� 8� (� 2 runs(H; �) )

8� (� 2 pos(�) )H; �(�) j= �))

2

A
tually, the fun
tion a
t would also have to be 
hanged a

ordingly. However, if we

take the 
onvention that we only des
ribe the a
tion on data variables that 
hange their

value by taking the transition, it be
omes unne

essary to add something like a
t(T; z) = z.
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H; � j= EF � i� 9� (� 2 runs(H; �) &

9� (� 2 pos(�) & H; �(�) j= �))

H; � j= EG � i� 9� (� 2 runs(H; �) &

8� (� 2 pos(�) )H; �(�) j= �))

H; � j= AF � i� 8� (� 2 runs(H; �) )

9� (� 2 pos(�) & H; �(�) j= �))

H; � j= �EU	 i� 9� (� 2 runs(H; �) &

9� (� 2 pos(�) & H; �(�) j= 	 &

8�

0

((�

0

2 pos(�) & (0; 0) � �

0

� �) )

H; �(�

0

) j= �)))

H; � j= �AU	 i� 8� (� 2 runs(H; �) )

9� (� 2 pos(�) & H; �(�) j= 	 &

8�

0

((�

0

2 pos(�) & (0; 0) � �

0

� �) )

H; �(�

0

) j= �)))

H; � j= z

N

:� i� H

z

N

; (L; �[z=0℄) j= �, where N � L

Lemma 3.2

For the ICTL operators AG and EF the above semanti
s 
an be 
hanged to

H; � j= AG� i� H; �

0

j= � for every �

0

rea
hable from �

H; � j= EF� i� H; �

0

j= � for some �

0

rea
hable from �

Clearly, from the above de�nition it follows that AG � $ :EF :� and

EF � $ >EU�. Also, EG � $ :AF :� and AF � $ >AU�. All tem-

poral operators 
an thus be des
ribed in terms of the two Until -operators.

Example 3.3

Re
all the property we wanted to express and prove for our example hybrid

system on page 2. In terms of ICTL this property 
an be formulated as

y

fL;Ng

:z

fNg

:AG 2z � y

i.e., we assume two additional 
lo
ks y and z, where y 
ounts overall time

(it runs with slope 1 in ea
h lo
ation) and z a

umulates the time spent in

lo
ation N (it a
ts as a usual 
lo
k in lo
ation N but is stopped in lo
ation

L). The pi
ture of our hybrid system then 
hanges to

6



_x = 1 x � 1

_y = 1 0 � y

_z = 0 0 � z

_x = 1 x � 1

_y = 1 0 � y

_z = 1 0 � z

L N

x

:

=

0

y

:

=

0

;

z

:

=

0

x = 1 j x := 0

> j x := 0

For this extension we want to prove that AG 2z � y, i.e., we have to 
he
k

whether the 
onstraint 2z � y holds for all rea
hable states.

4 Dedu
tive Model Che
king

The general idea behind the dedu
tive model 
he
king approa
h is as fol-

lows. Our ultimate aim is to automate what is des
ribed in De�nition 3.1.

To this end 
onsider a hybrid system H, some lo
ation of H, say L, and

an ICTL formula �. For some valuations of the data variables in L, �

is true and for the others � is false. Let us 
olle
t the former in the set

^

� = f� j H; (L; �) j= �g. Now, suppose we were able to des
ribe this

set

^

� as a (�nite) 
onstraint formula, say d�e

L

. Then, 
he
king whether

H; (L; �) j= � holds 
an be reformulated as to 
he
king whether �(d�e

L

) is

valid. And in 
ase of merely linear 
onstraints this 
ould even be de
ided.

Our intermediate goal, therefore, is to �nd d�e

L

, the 
hara
teristi
 
on-

straint formula for � in lo
ation L.

3

In order to a
hieve this, we 
onsider

the stru
ture of the ICTL formula �. In the simplest 
ase � is either a


onstraint formula or a lo
ation name. The latter 
ase simply redu
es to

> or ?, depending on whether or not this lo
ation name is identi
al to L.

In the former 
ase, we 
an assume � to be its own 
hara
teristi
 
onstraint

formula and so d�e

L

= �. Also, there are no diÆ
ulties with boolean 
on-

ne
tives as long as the 
hara
teristi
 
onstraint formulas for the respe
tive


omponents are known. For instan
e, d� ^ 	e

L

= d�e

L

^ d	e

L

whi
h is

a �nite 
onstraint formula provided both d�e

L

and d	e

L

are. Evidently,

the more 
ompli
ated and more interesting 
ases are those where � has a

temporal operator as a top symbol. However, it is in general not possible to

�nd a 
orresponding �nite 
hara
teristi
 
onstraint formula, for otherwise

the validity of ICTL formulas for arbitrary (linear) hybrid systems would

be de
idable whi
h, unfortunately, is not the 
ase. Therefore we 
annot

3

The reader who is familiar with standard model 
he
king approa
hes for hybrid sys-

tems probably noti
es a small 
hange in perspe
tive sin
e we do not 
ompute the set of

states that ful�ll �, but (representatives of) 
onstraint formulas instead. This view is far

from arti�
ial; in fa
t, it is 
ru
ial for the proposed approa
h.
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expe
t to �nd a 
hara
teristi
 
onstraint formula as easy as for the simple


ases above. Instead of attempting to 
onstru
t d�e

L

dire
tly, we des
ribe

it as a formula of the se
ond-order predi
ate 
al
ulus and try to simplify

this des
ription to a 
onstraint formula if possible. How this 
an be done is

des
ribed later. At this stage we are more 
on
erned with the 
onstru
tion

of the 
hara
teristi
 
onstraint formula for � at L.

4.1 First-order Theories of Rea
hability and Inevitability

Here we restri
t our view to linear hybrid systems, where dif(L; x) is a


onstant, say k

x

L

, for ea
h lo
ation L and data variable x. We extend this

to sets of data variables X = fx

1

; : : : ; x

n

g in the natural way su
h that a

term like X + k

X

L

Æ represents the sequen
e x

1

+ k

x

1

L

Æ; : : : ; x

n

+ k

x

n

L

Æ.

Definition 4.1

An interpretation = = (D;=

L

; �) for a �rst-order theory asso
iated with a

hybrid system H with lo
ations L has a �xed domain D (the reals or the

rationals, say), a valuation � for the data variables in X, and a meaning

fun
tion =

L

for the lo
ations in L su
h that =

L

(L) 2 D

n

, where n is the

number of data variables in X. A model of a formula � is an interpretation

satisfying this formula.

We often also speak of a model as a set of ground atoms of the form

fL(=(t

1

); : : : ;=(t

n

)) j = j= L(t

1

; : : : ; t

n

)g; t

i

are 
onstraint termsg, where

= is a model in the above sense. Interpretations (models) are partially or-

dered by set-in
lusion. A minimal model of � is a model of � su
h that none

of its proper subsets is also a model of �. We denote the set of minimal

models for a formula � by minMod(�). In 
ase there exists only one unique

minimal model we shall also refer to this one as minMod(�).

Definition 4.2

Let H = (X;L; E ;dif; inv; guard; a
t) be a hybrid system. For ea
h L 2 L

we de�ne the �rst-order theory

4

8X L(X) !

8

>

>

<

>

>

:

inv(L) ^

8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ! L(X + k

X

L

Æ)) ^

^

T=(L;N)2E

guard(T ) ! N(a
t(T;X))

as the lo
al rea
hability theory of L in H, R

L

H

for short. By the rea
hability

theory of H { whi
h we 
all R

H

, or simply R if H is 
lear from the 
ontext

{ we understand the 
onjun
tion of all lo
al rea
hability theories, i.e.,

R

H

=

^

L2L

R

L

H

4

For readability let us abbreviate L(a
t(T; x

1

); : : : ; a
t(T; x

n

)) with L(a
t(T;X)).

8



Hen
e, for ea
h lo
ation L 2 L we introdu
e an n-ary predi
ate with the

same name, where n is just the number of data variables in H, i.e., n = jXj.

Then, (lo
ation) atoms L(�

1

; : : : ; �

n

) 
orrespond to states (L; �), where

�(x

i

) = �

i

with X = fx

1

; : : : ; ; x

n

g. For simpli
ity we abbreviate this with

L(�

1

; : : : ; �

n

)

�

=

(L; �). This notion of 
orresponden
e between atoms and

states naturally extends to sets of atoms (interpretations, models) and sets

of states (e.g., members of a run).

The purpose of su
h a rea
hability theory is to have a logi
al represen-

tation of the rea
hable states. It is 
onstru
ted in a way su
h that for ea
h

possible state (denoted by an atom L(X) that 
orresponds to this very state)

the possible immediate future states 
an be determined. For instan
e, given

the atom L(X) the lo
al rea
hability theory of L in H tells us that the 
or-

responding state satis�es the lo
ation invariant inv(L) and also that there

are potential timed su

essors (8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ! L(X +

k

X

L

Æ))), and, �nally, potential transition su

essors (

V

T=(L;N)2E

guard(T ) !

N(a
t(T;X))). The exa
t 
onne
tion between rea
hability theories and

rea
hable states is given by the following lemma.

Lemma 4.3

If the 
onjun
tion L(�(X)) ^ R

H

has a model at all then it has a unique

minimal model whi
h 
orresponds to the set of states that are rea
hable

from (L; �) in the hybrid system H. More formally:

minMod(L(�(X)) ^R

H

)

�

=

f� j ((L; �); �) 2 (

?

7! [

tr

7!)

�

g

Proof: First note that a rea
hability theory is Horn in the lo
ation pred-

i
ates, that all other symbols have �xed interpretation, and that the only

boolean 
onne
tive within 
onstraint formulas is the logi
al 
onjun
tion.

Therefore, if the theory has a model at all then it has a unique minimal

model.

What remains to be shown is that for every lo
ation L

0

and every data

variable valuation �

0

L

0

(�

0

(x

1

); : : : ; �

0

(x

n

)) 2 minMod(L(�(X)) ^R

H

)

,

((L; �); (L

0

; �

0

)) 2 (

?

7! [

tr

7!)

�

For the dire
tion from left to right take any proof of L

0

(�

0

(x

1

); : : : ; �

0

(x

n

))

from L(�(X)) ^ R

H

. The 
laim then follows by an easy indu
tion on the

length of this proof.

As for the other dire
tion, 
onsider the rea
hable state (L

0

; �

0

) that is

in
luded in some run �

0

7!

t

0

f

0

�

1

7!

t

1

f

1

�

2

7!

t

2

f

2

�

3

7!

t

3

f

3

� � � with �

0

= (L; �)

and �

0

= f

i

(t) for some 0 � t � t

i

. A simple indu
tion on i then shows that

the ground atom represented by L

0

(f

i

(0)) belongs to the minimal model of

L(�(X)) ^ R

H

. Moreover, sin
e 8X L

0

(X) ! 8Æ (Æ � 0 ^ inv(L

0

)[X=X +

9



k

X

L

0

Æ℄ ! L

0

(X + k

X

L

0

Æ)) is a 
lause of the theory under 
onsideration we also

know that the ground atom represented by L

0

(f

i

(t)) is a member of the

minimal model and we are done. 2

Example 4.4

For our simple example from page 6 the rea
hability theory is given by

8x; y; z L(x; y; z) !

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^

8Æ Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z !

L(x + Æ; y + Æ; z) ^

x = 1 ! N(0; y; z)

^

8x; y; z N(x; y; z) !

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^

8Æ 0 � Æ � 1� x ^ 0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ) ^

L(0; y; z)

The rea
hability theory will ultimately be responsible for the temporal op-

erators AG and EF . However, it is not well suited for the other temporal

operators we are interested in. We therefore, in addition, de�ne a simi-

lar �rst-order theory; this time for these other temporal operators, though.

Just as the rea
hability theory provides us with some information about the

states that 
an be rea
hed, the inevitability theory to be de�ned below tells

us something about the states that are inevitable or unavoidable. It does

so by stating between whi
h possible future alternatives the system must


hoose. The following spe
i�es this.

Definition 4.5 (Inevitability Theory)

Let H = (X;L; E ;dif; inv; guard; a
t) be a hybrid system. For ea
h L 2 L

we de�ne the �rst-order theory

8X L(X) ! inv(L)

8X L(X) !

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

8Æ Æ � 0 ! L(X + k

X

L

Æ) _

9Æ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Æ � 0 ^

8Æ

0

0 � Æ

0

� Æ ! L(X + k

X

L

Æ

0

) ^

_

T=(L;N)2E

guard(T )[X=X + k

X

L

Æ℄ ^

N(a
t(T;X)[X=X + k

X

L

Æ℄)

as the lo
al inevitability theory of L in H, I

L

H

for short. By the inevitability

theory of H { whi
h we 
all I

H

, or simply I if H is 
lear from the 
ontext

{ we understand the 
onjun
tion of all lo
al inevitabiity theories, i.e.,

I

H

=

^

L2L

I

L

H

10



The �rst part of any lo
al inevitability theory is trivial. It just guarantees

the mere fa
t that for ea
h lo
ation predi
ate the 
orresponding lo
ation

invariant is supposed to hold. The se
ond part is more 
ompli
ated and

more interesting. Note that, given an arbitrary state represented by the

lo
ation predi
ate L(X), either the system remains forever in this lo
ation,

i.e., 8Æ Æ � 0 ! L(X+k

X

L

Æ), or it will sooner or later leave this very lo
ation.

In the latter 
ase we know that there is a time delay Æ after whi
h one of

the guards of the outgoing edges is true and until then the system remains

within lo
ation L. This is exa
tly what is expressed by the 
ompli
ated

se
ond part of the lo
al inevitability theories.

The importan
e of the inevitability theory is made pre
ise in the lemma

below.

Lemma 4.6

Ea
h minimal model of L(�(X))^I

H


orresponds to the members of one of

the possible runs

5

of H with initial state (L; �). Also, the members of any

possible run of H 
orrespond to a model of I

H

^ L(�(X)). Formally:

�

8= = 2 minMod(L(�(X)) ^ I

H

) )

9� � 2 runs(H; (L; �)) & =

�

=

States(�)

�

8� � 2 runs(H; (L; �)) )

fL

0

(�

0

(X)) j (L

0

; �

0

) 2 States(�)g j= L(�(X)) ^ I

H

Proof: Consider the systemati
 
onstru
tion of a minimal model for the

theory L(�(X)) ^ I

H

. Evidently, this leads to run of H with initial state

(L; �).

On the other hand, 
onsider an arbitrary run of H with initial state (L; �).

It is easy to see that the atoms that 
orrespond to states of this run are


losed under L(�(X)) ^ I

H

. 2

Example 4.7

For our simple example from page 6 the inevitability theory is given by

8x; y; z L(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z L(x; y; z) !

8

>

>

<

>

>

:

8Æ Æ � 0 ! L(x + Æ; y + Æ; z) _

9Æ Æ � 0 ^

8Æ

0

(0 � Æ

0

� Æ ! L(x + Æ

0

; y + Æ

0

; z)) ^

x + Æ = 1 ^N(0; y + Æ; z)

8x; y; z N(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z N(x; y; z) !

8

>

>

<

>

>

:

8Æ Æ � 0 ! N(x + Æ; y + Æ; z + Æ) _

9Æ Æ � 0 ^

8Æ

0

(0 � Æ

0

� Æ ! N(x + Æ

0

; y + Æ

0

; z + Æ

0

)) ^

L(0; y + Æ; z + Æ)

5

Re
all that we only 
onsider non-zeno runs of hybrid systems. Zeno runs 
ould even

lead to in
onsisten
ies in the inevitability theory.

11



whi
h 
an be simpli�ed to

8x; y; z L(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z L(x; y; z) ! 8Æ

0

(0 � Æ

0

� 1� x! L(x + Æ

0

; y + Æ

0

; z)) ^

N(0; y + 1� x; z)

8x; y; z N(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z N(x; y; z) ! 9Æ Æ � 0 ^

8Æ

0

(0 � Æ

0

� Æ ! N(x + Æ

0

; y + Æ

0

; z + Æ

0

)) ^

L(0; y + Æ; z + Æ)

4.2 The Dedu
tive Approa
h for Linear Hybrid Systems

Suppose we are given a hybrid system H, its rea
hability theory R together

with an initial state (L; �), and a property AG 
 to be proved, where 


is a 
onstraint formula over the data variables X. Then we have to show

that 
 holds for all the rea
hable states of H, i.e., it is true for ea
h atom

of the minimal model of the 
orresponding rea
hability theory. Trivially,

this means that there exists a model (namely the minimal model) whose

elements all satisfy the 
onstraint 
. On the other hand, sin
e the minimal

model is by de�nition a subset of any model of the theory, we know that

having su
h a model means that also for the minimal model it holds that

ea
h of its elements satisfy 
. Altogether, we know that AG 
 holds at (L; �)

for H if and only if there exists a model of its rea
hability theory (together

with the atom that 
orresponds to the initial state) su
h that 
 holds for all

its elements, or, more formally,

6

if L(�(X)) ^R^

V

N2L

8XN(X) ! 
 has

a �rst-order model. This latter statement, however, 
an be formulated in

terms of se
ond-order logi
, namely

9L

1

; : : : ; L

n

L(�(X)) ^R ^ 8X (L

1

(X) _ : : : _ L

n

(X) ! 
)

sin
e the existen
e of a model is tantamount to the existen
e of suitable

interpretations for the free symbols involved.

Example 4.8

Re
all that we wanted to prove AG 2z � y for the extended example system

on page 6. A

ording to the above observations this means that we have to

6

Re
all that the lo
ation names are the only predi
ate symbols that have a free inter-

pretation.

12



prove the validity of

9L;N

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

L(0; 0; 0)

8x; y; z L(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z L(x; y; z) ! x = 1 ! N(0; y; z)

8x; y; z L(x; y; z) ! 8Æ 0 � Æ � 1� x ^ 0 � y + Æ ^ 0 � z !

L(x + Æ; y + Æ; z)

8x; y; z N(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z N(x; y; z) ! L(0; y; z)

8x; y; z N(x; y; z) ! 8Æ 0 � Æ � 1� x ^

0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ)

8x; y; z L(x; y; z) ! 2z � y

8x; y; z N(x; y; z) ! 2z � y

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

As for the general 
ase, assume that we have to show that AG �, where �

is an arbitrary ICTL formula. That means we have to verify that � holds

for every state that is rea
hable from the initial state, say (L; �), within the

hybrid system H. If � were a 
onstraint formula or a lo
ation name, we

would know what to do from the observations above. Nevertheless, even

if � is not a 
onstraint formula, we have a des
ription of its 
hara
teristi



onstraint formula, namely d�e

L(X)

H

for ea
h lo
ation name L. I.e., proving

that H; (L; �) j= AG � holds 
an be redu
ed to showing the validity of

�(d�e

L(X)

H

). This, and similar re
e
tions on the other temporal operators,

leads to the following de�nition.

Definition 4.9

The 
hara
teristi
 
onstraint formula d�e

L(X)

H

asso
iated with the ICTL

formula �, the hybrid system H = (X;L; E ;dif; inv; guard; a
t), and the

lo
ation L 2 L is re
ursively de�ned by

d
e

L(X)

H

= 


dL

0

e

L(X)

H

=

�

> if L and L

0

are identi
al

? otherwise

d:�e

L(X)

H

= :d�e

L(X)

H

d� ^	e

L(X)

H

= d�e

L(X)

H

^ d	e

L(X)

H

and similarly for the other boolean 
onne
tives

dz

N

:�e

L(X)

H

=

�

d�e

L(X;z)

H

z

N

�

z

0

, where N � L

7

dAG �e

L(X)

H

= 9L

1

; : : : ; L

n

L(X) ^R

H

^

V

N2L

8XN(X) ! d�e

N(X)

H

dEG �e

L(X)

H

= 9L

1

; : : : ; L

n

L(X) ^ I

H

^

V

N2L

8XN(X) ! d�e

N(X)

H

7

As usual, the notation A

x

y

means A with every o

urren
e of x repla
ed by y.

13



The temporal operators EF and AF are to be treated as :AG : and

:EG : respe
tively. For the Until operators see Subse
tion 4.3 on page 15.

Intuitively, su
h a 
hara
teristi
 
onstraint formula des
ribes the ne
essary

and suÆ
ient 
ondition on the data variables su
h that the ICTL formula �

holds for the hybrid system H in lo
ation L. This, however, is exa
tly what

we need for our dedu
tive model 
he
king approa
h. The following (main)

theorem makes this more pre
ise.

Theorem 4.10

Given a hybrid system H with data variables X, an initial state (L; �) and

an ICTL formula �. Then

H; (L; �) j= � i� j= �

�

d�e

L(X)

H

�

Proof: By indu
tion on the stru
ture of �.

For � being a 
onstraint formula 
 or a lo
ation name L the theorem holds

trivially. Also in 
ase of a boolean 
onne
tive there are no problems at all.

Therefore, let us only 
onsider the more 
ompli
ated 
ases.

H; (L; �) j= z

N

:	

i� H

z

N

; (L; �[z=0℄) j= 	 (De�nition 3.1)

i� j= �[z=0℄

�

d	e

L(X;z)

H

z

N

�

(indu
tion hypothesis)

i� j= �

�

dz

N

:	e

L(X)

H

�

(De�nition 4.9)

H; (L; �) j= AG 	

i� H; � j= 	 for every � rea
hable from (L; �) (Lemma 3.2)

i� 8� ((L; �); �) 2 (

?

7! [

tr

7!)

�

)H; � j= 	

i� 8N;�

0

N(�

0

(X)) 2 minMod(L(�(X)) ^R

H

) )H; (N;�

0

) j= 	

(Lemma 4.3)

i� 9= = j= L(�(X)) ^R

H

& 8N;�

0

(N;�

0

) 2 = ) H; (N;�

0

) j= 	

i� 9= = j= L(�(X)) ^R

H

& 8N;�

0

(N;�

0

) 2 = ) j= �

0

�

d	e

N(X)

H

�

(indu
tion hypothesis)

i� 9= = j= L(�(X)) ^R

H

& = j=

V

N2L

8X N(X) ! d	e

N(X)

H

i� 9= = j= L(�(X)) ^R

H

^

V

N2L

8X N(X) ! d	e

N(X)

H

i� j= 9L

1

; : : : ; L

n

L(�(X)) ^R

H

^

V

N2L

8X N(X) ! d	e

N(X)

H

i� j= �

�

dAG 	e

L(X)

H

�
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H; (L; �) j= EG 	

i� 9� (� 2 runs(H; (L; �)) & 8� (� 2 pos(�) )H; �(�) j= 	))

(De�nition 3.1)

i� 9= = j= L(�(X)) ^ I

H

& 8N;�

0

N(�

0

(X)) 2 = ) H; (N;�

0

) j= 	))

(Lemma 4.6)

i� 9= = j= L(�(X)) ^ I

H

& 8(N;�

0

) (N;�

0

) 2 = ) j= �

0

�

d	e

N(X)

H

�

(indu
tion hypothesis)

i� 9= = j= L(�(X)) ^ I

H

& = j=

V

N2L

8X N(X) ! d	e

N(X)

H

i� 9= = j= L(�(X)) ^ I

H

^

V

N2L

8X N(X) ! d	e

N(X)

H

i� j= 9L

1

; : : : ; L

n

L(�(X)) ^ I

H

^

V

N2L

8X N(X) ! d	e

N(X)

H

i� j= �

�

dEG 	e

L(X)

H

�

Finally, H; (L; �) j= EF 	 i� H; (L; �) 6j= AG :	 i� 6j= �

�

dAG :	e

L(X)

H

�

i�

8

j= �

�

dEF 	e

L(X)

H

�

and also H; (L; �) j= AF 	 i� H; (L; �) 6j= EG :	 i�

6j= �

�

dEG :	e

L(X)

H

�

i� j= �

�

dAF 	e

L(X)

H

�

. 2

4.3 Until-Formulas

The Until -operators �EU	 and �AU	 give rise to a slight 
ompli
ation of

the dedu
tive model 
he
king approa
h des
ribed in this paper. Let us �rst

illustrate their treatment with the help of a spe
ial 
ase, namely � being

a 
onstraint formula. In order to 
he
k a property of the form 
EU	 in

state �

0

for the hybrid system H we have to �nd out whether there exists

a run � = �

0

7!

t

0

f

0

�

1

7!

t

1

f

1

�

2

7!

t

2

f

2

� � � su
h that H; (L

i

; f

i

(t)) j= 	 for

some 0 � t � t

i

and for all states \inbetween" the 
onstraint 
 holds. The

rea
hability theory (together with the initial state) is only helpful in deter-

mining whether su
h a 	 is about to hold. It does not tell us, though, what

happens inbetween. In order to over
ome this problem, we introdu
e the

notion of a 
-safe transition. Intuitively, 
-safe transitions preserve the 
on-

straint 
. Now, the set of states rea
hable via 
-safe transitions is de�nitely

a subset of the set of rea
hable states. Moreover, if a state with property

	 is rea
hable via 
-safe transitions then there exists a pre�x of at least

one run of the hybrid system su
h that ea
h transition within this pre�x is


-safe { whi
h guarantees that the states o

urring in this pre�x have prop-

erty 
 { and whi
h ends with a state having property 	. In other words,

8

Note that this \if and only if" holds be
ause �

�

dAG :	e

L(X)

H

�


ontains no free

symbols whatsoever, and therefore is either > or ?.

15



if a state with property 	 is rea
hable via 
-safe transitions then 
EU	

holds. The other dire
tion holds trivially anyway. Hen
e, what remains to

be done is to des
ribe the rea
hability theory for 
-safe transitions. This,

however, is a
tually very simple, for we just have to add 
 as an additional

lo
ation invariant for all lo
ations of the hybrid system. For instan
e, the

lo
al rea
hability theory of L then 
hanges to

8X L(X) !

8

>

>

>

>

<

>

>

>

>

:

inv(L) ^ 
 ^

8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ^ 
[X=X + k

X

L

Æ℄ !

L(X + k

X

L

Æ)) ^

^

T=(L;N)2E

guard(T ) ! N(a
t(T;X))

Note that adding this 
onstraint to the invariants of all lo
ations ensures

that 
 is also preserved for edge-transitions, (L;N) say. Also note, that the

above 
hange in the rea
hability theory allows us to des
ribe the operator


EU	 where the interval in whi
h 
 is supposed to hold in
ludes the two

interval borders. This might not be very satisfa
tory for many interesting

problems. Thus, if we want to ex
lude the left border, we have to 
hange

the lo
al rea
hability theory for L to

8X L(X) !

8

>

>

>

>

<

>

>

>

>

:

inv(L) ^

8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ^ 
[X=X + k

X

L

Æ℄ !

L(X + k

X

L

Æ)) ^

^

T=(L;N)2E

guard(T ) ^ 
[X=a
t(T;X)℄ ! N(a
t(T;X))

The di�eren
e to the earlier lo
al rea
hability theory is that 
 is no longer

for
ed to hold for the initial state, but is guaranteed to hold after time and

edge transitions. Ex
luding the right border of the interval 
an be done

by 
onsidering (
 _ 	)EU	 instead of 
EU	. The latter way to des
ribe

rea
hability theories therefore seems to be the most general one.

For the general 
ase, we have to 
onsider ICTL formulas of the form

�EU	 where � is not ne
essarily a 
onstraint formula. This 
ompli
ates

matters again a bit be
ause the additional invariant to hold is d�e

L(X)

H

for

lo
ation L and thus di�ers for ea
h lo
ation.

Definition 4.11

We de�ne the rea
hability theory R

H

(


L

1

; : : : ; 


L

n

), where n = jLj, for the
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hybrid system H under the 
onstraints 


L

1

; : : : ; 


L

n

as:

R

H

(


L

1

; : : : ; 


L

n

) =

^

L

i

2L

8X L

i

(X) !

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

inv(L

i

) ^

8Æ (Æ � 0 ^ inv(L

i

)[X=X + k

X

L

i

Æ℄ ^




L

i

[X=X + k

X

L

i

Æ℄) ! L

i

(X + k

X

L

i

Æ) ^

^

T=(L

i

;L

j

)2E

guard(T ) ^ 


L

j

[X=a
t(T;X)℄ !

L

j

(a
t(T;X))

Evidently, by the above De�nition, R

H

= R

H

(>; : : : ;>).

Definition 4.12

The 
hara
teristi
 se
ond-order formula asso
iated with the ICTL-formula

�EU	 in lo
ation L for the hybrid system H is de�ned as:

d�EU	e

L(X)

H

= :9L

1

; : : : L

n

8

>

<

>

:

L(X) ^R

H

�

d�e

L

1

(X)

H

; : : : ; d�e

L

n

(X)

H

�

^

^

N2L

8X N(X) ! d	e

N(X)

H

How to des
ribe the operator AU in terms of EU 
an be found in [AHH96℄.

5 Se
ond-Order Quanti�er Elimination

So far, we have de�ned how to obtain a se
ond-order 
hara
teristi
 
onstraint

formula from a given veri�
ation problem (a hybrid system with initial state

and a property to be 
he
ked). This se
ond-order formula is now to be

proved valid. To this end we make use of the Elimination Theorem [NS95,

NS99, NOS99℄ that allows us to transform a given se
ond-order formula into

an equivalent �rst-order formula if possible.

Notation 5.1

As usual, by �

x

y

we mean � with ea
h x

i

in the sequen
e x repla
ed by

the 
orresponding y

i

from the sequen
e y. With �

�

P (�)=	

x

�

�

we refer to

� with every o

urren
e of the predi
ate symbol P repla
ed by the formula

	. The argument sequen
e � here allows us to name the argument list of

the respe
tive o

urren
es.

Theorem 5.2 (Elimination Theorem)

Let � and 	 be two �rst-order formulas whi
h are positive with respe
t to

the predi
ate symbol P . Then

9P

�

8x (P (x) ! �) ^	

�

� 	

h

P (�)=

�

�P (x):�(P )

�

x

�

i

where �P (x):�(P ) =

^

i�!

�

i

(>) with �

0

(>) = >;�

n+1

(>) = �(�

n

(>))
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The proof of this Theorem 
an be found in [NS95℄ (but also see [NS99,

NOS99℄). There, in addition, some generalizations and dual forms are ex-

amined. For the purpose of this paper, however, the above form suÆ
es.

Note that evaluating su
h a greatest �xpoint, means to su

essively 
ompute

ea
h �

i

(>) until we rea
h one that is entailed by its prede
essor �

i�1

(>).

The monotoni
ity of � with respe
t to P (P o

urs only positively within

�) then guarantees that ea
h further iteration would also be implied by

�

i�1

(>). In fa
t, for simpli
ity, it is often not ne
essary to fully 
ompute

ea
h �

i

(>). It suÆ
es to 
onsider only those 
onjun
ts in �

i�1

(>) that are

not already subsumed by one of its prede
essors.

The above Elimination Theorem is fairly general for it does not take the

spe
ial appearan
e of the rea
hability and inevitability theories into a

ount.

Yet, in many interesting 
ases { namely those where a lo
ation predi
ate is

to be eliminated for whi
h no edge transition to itself exists { we 
an provide

with a spe
ial 
ase of the Elimination Theorem whose appli
ation does not

require the 
omputation of �xpoints. This spe
ial 
ase is given below.

Corollary 5.3 (Simplifi
ation Lemma)

Suppose that 	 
ontains L only positively and that � has no mention of L

at all. Then

9L

�

	 ^ 8X L(X) !

�

inv(L) ^ � ^

8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ! L(X + k

X

L

Æ))

��

,

	

�

L(�) = (inv(L) ^ 8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ! �[X=X + k

X

L

Æ℄))

X

�

�

Proof: By applying the Elimination Theorem. Re
all that � is supposed

to have no mention of L. We are thus able to 
ompute the �xpoint of the

right-hand side of the impli
ation sign as:

�

1

(>) = inv(L) ^�

�

2

(>) = �

1

(>) ^ 8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ !

inv(L)[X=X + k

X

L

Æ℄ ^ �[X=X + k

X

L

Æ℄)

= �

1

(>) ^ 8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ! �[X=X + k

X

L

Æ℄)

�

3

(>) = �

2

(>) ^ 8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ !

8Æ

0

(Æ

0

� 0 ^ inv(L)[X=X + k

X

L

Æ + k

X

L

Æ

0

℄ !

�[X=X + k

X

L

Æ + k

X

L

Æ

0

℄))

= �

2

(>) ^ 8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ !

8Æ

0

(Æ

0

� 0 ^ inv(L)[X=X + k

X

L

(Æ + Æ

0

)℄ !

�[X=X + k

X

L

(Æ + Æ

0

)℄))

At this stage it is easy to see that 8X �

2

(>) ! �

3

(>) and therefore we

are done with the �xpoint 
omputation and the result (after simpli�
ation)
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inv(L)^8Æ (Æ � 0^ inv(L)[X=X +k

X

L

Æ℄ ! �[X=X +k

X

L

Æ℄). This �nal result

(the \
omputed" �xpoint) has to be substituted for every o

urren
e within

the formula 	 where the free variables have to be instantiated a

ordingly.

2

The above Lemma is useful be
ause it 
an safe us a lot of �xpoint 
ompu-

tations. It states that it is almost trivial to eliminate a lo
ation predi
ate

from a (rea
hability or inevitability) theory provided the lo
ation has no

self-loop (� 
ontains no L in the preliminaries of the Lemma). Evidently,

appli
ations of the Simpli�
ation Lemma (and also the Elimination The-

orem) usually introdu
e new edges and therefore it is very unlikely that

all eliminations 
an be performed only with the help of the above Lemma.

However, it is obvious that many eliminations are just of the above kind.

The purpose of both the Simpli�
ation Lemma and the Elimination The-

orem, is to su

essively eliminate existentially quanti�ed (lo
ation) predi-


ates. I.e., ea
h elimination redu
es the number of lo
ations of the hybrid

system by one. Su
h eliminations result in new properties and new transi-

tions that, in a sense, represent paths through the eliminated lo
ation.

As an illustration let us assume that we have to verify that AG x+y � 10

holds for a hybrid system that 
ontains the following sub-system.

_x = 2

_y = 1

x � y

L

1

L

2

L

3

x � y

x = y j x := 0; y := 0

Suppose that we are now about to eliminate lo
ation L

2

. A

ording to the

approa
h presented in this paper this means that we have to 
ompute { in

fa
t, �nd a �rst-order equivalent for { the se
ond-order formula

9L

2

2

6

6

6

6

6

6

4

8x; y L

1

(x; y) ! x � y ! L

2

(x; y) ^

8x; y L

2

(x; y) !

8

>

>

>

>

<

>

>

>

>

:

x � y ^

x + y � 10 ^

8Æ (Æ � 0 ^ x + 2Æ � y + Æ !

L

2

(x + 2Æ; y + Æ)) ^

x = y ! L

3

(0; 0)

9

>

>

>

>

=

>

>

>

>

;

3

7

7

7

7

7

7

5

The �ve 
onjun
ts of the above se
ond-order formula des
ribe the transition

from L

1

to L

2

, the lo
ation invariant for L

2

, the property to be proved,

the time transition for lo
ation L

2

, and the edge transition from L

2

to L

3

respe
tively.

Now, what we would expe
t as the result of eliminating L

2

? Evidently,

lo
ation L

2

will vanish. And also, we will have to introdu
e a new edge from
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lo
ation L

1

to lo
ation L

3

whi
h in a sense represents the sub-path through

L

2

. The guard for this new edge should be x � y whi
h is inherited from

the edge between L

1

and L

2

. The dis
rete a
tion for the new edge should be

x := 0; y := 0 whi
h is inherited from the edge between L

2

and L

3

. But this


annot be all, and indeed this is not all that is 
omputed by the elimination.

As a 
on
rete example suppose that we are in lo
ation L

1

with x = 4 and

y = 5. In the new system, i.e., after eliminating L

2

, we 
an see that the

guard of the new edge holds and therefore we 
an make a transition to L

3

while resetting both x and y to 0. Moreover, the property to be proved,

namely x + y � 10 is never violated. In the original system, however, we


ould also perform the transition from L

1

, this time with destination L

2

,

though. We 
an leave L

2

only when x and y have an equal value, namely 6,

whi
h is rea
hed after exa
tly one time unit. After leaving L

2

we rea
h L

3

with both x and y reset to 0. But note, in the original system the property

to be proved (x + y � 10) has been violated in lo
ation L

2

, e.g., when both

data variables had the value 6.

It is thus not suÆ
ient to merely add the new edge; we also have to �nd the

ne
essary and suÆ
ient 
ondition on the data variables in L

1

su
h that the

property to be proved 
annot be violated within lo
ation L

2

. And indeed,

this is what the Elimination Theorem (and also the Simpli�
ation Lemma

in this 
ase) allows us to 
ompute. A

ording to the Simpli�
ation Lemma

and some further simpli�
ations based on variable eliminations in quanti-

�ed 
onstraint formulas we 
an see that the above se
ond-order formula is

equivalent to

8x; y L

1

(x; y) ! x � y ! L

3

(0; 0)

8x; y L

1

(x; y) ! x � y ! 2y � x + 5

The �rst formula des
ribes just the new edge to be introdu
ed. The se
ond

formula, however, tells us about the ne
essary and suÆ
ient 
ondition on

the data variables for lo
ation L

1

su
h that it would be impossible to violate

x + y � 10 in lo
ation L

2

.

Thus, what we a
hieved by eliminating lo
ation L

2

is, that we now 
an swit
h

to the somewhat simpler system we obtain by repla
ing the sub-system from

above by

L

1

L

3

x � y j x := 0; y := 0

For this simpli�ed system we then have to show that AG x+y � 10 (inherited

from the original problem) and also that x � y ! 2y � x + 5 for lo
ation

L

1

.
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6 Examples

6.1 The Initial Simple Example

Re
all the hybrid system of page 6 for whi
h we wanted to prove that

AG 2z � y. A

ording to Example 4.8 on page 12 this means to 
he
k

the validity of

9L;N

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

L(0; 0; 0)

8x; y; z L(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z L(x; y; z) ! x = 1 ! N(0; y; z)

8x; y; z L(x; y; z) ! 8Æ Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z !

L(x + Æ; y + Æ; z)

8x; y; z N(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z N(x; y; z) ! L(0; y; z)

8x; y; z N(x; y; z) ! 8Æ (Æ � 0 ^ x + Æ � 1 ^

0 � y + Æ ^ 0 � z + Æ) !

N(x + Æ; y + Æ; z + Æ)

8x; y; z L(x; y; z) ! 2z � y

8x; y; z N(x; y; z) ! 2z � y

I.e., we apply the Simpli�
ation Lemma and/or the Elimination Theorem

su

essively to the existentially quanti�ed lo
ation predi
ates L and N . For

instan
e, applying the Simpli�
ation Lemma to the part of the above se
ond-

order formula that is 
on
erned with the lo
ation predi
ate L, i.e.,

9L

2

6

6

6

6

6

6

4

L(0; 0; 0) ^

8x; y; z N(x; y; z) ! L(0; y; z) ^

8x; y; z L(x; y; z) !

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^ 2z � y

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z !

L(x + Æ; y + Æ; z))

x = 1 ! N(0; y; z)

results in (after some easy simpli�
ations, e.g. with Fourier's algorithm)

N(0; 1; 0) ^

8x; y; z N(x; y; z) ! 0 � y ^ 0 � z ^ 2z � y ^N(0; y + 1; z):

It therefore remains to eliminate N in the resulting formula as given below.

9N

2

6

6

6

6

4

N(0; 1; 0) ^

8x; y; z N(x; y; z) !

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^ 2z � y ^

N(0; y + 1; z) ^

8Æ 0 � Æ � 1� x ^ 0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ)

Interestingly, this �rst elimination step resulted in a se
ond-order formula

whi
h we 
ould equally obtain from the attempt to prove AG 2z � y for the

hybrid system
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_x = 1 x � 1

_y = 1 0 � y

_z = 1 0 � z

N

x

:

=

0

y

:

=

1

;

z

:

=

0

> j x := 0; y := y + 1

In a sense, the new arrows { one for the initial situation and one des
ribing

a loop from N to itself { take over the responsibility of the old lo
ation L.

Now we have to eliminate the remaining se
ond-order quanti�
ation from

the above formula. This time, however, we 
annot apply the Simpli�
ation

Lemma for the lo
ation N has got a self-loop after eliminating L. We

therefore have to pro
eed with the more general Elimination Theorem. I.e.,

we have to evaluate �N(x; y; z):�(N) where

�(N) =

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^ 2z � y ^

N(0; y + 1; z) ^

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ))

We do so by su

essively 
omputing the �

i

(>).

�

0

(>) = >

�

1

(>) = x � 1 ^ 0 � y ^ 0 � z ^ 2z � y

�

2

(>) = �

1

(>) ^

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ ! 2z + Æ � y)

= �

1

(>) ^ 1 + 2z � x + y

�

3

(>) = �

2

(>) ^

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

1 + 2(z + Æ) � x + y + 2Æ)

= �

2

(>)

Hen
e, �N(x; y; z):�(N) � x � 1 ^ 0 � y ^ 0 � z ^ 1 + 2z � x + y and a

�nal instantiation with the values 0; 1; 0 for the variables x; y; z respe
tively

results in

0 � 1 ^ 0 � 1 ^ 0 � 0 ^ 1 + 0 � 0 + 1 � >

Thus, we have �nally proved that the original hybrid system indeed satis�es

AG 2z � y.

Now, let us 
hange the property to be proved to AG 3z � y, i.e., we


onsider the same hybrid system as before (on page 6) but try to prove a

property that does not hold.
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Then the elimination of L does not make a real di�eren
e, we just have

to substitute a 2 with a 3 in the �nal result. For the elimination of N ,

however, things 
hange drasti
ally. We have to 
ompute �N(x; y; z):�(N)

where

�(N) =

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^ 3z � y ^

N(0; y + 1; z) ^

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ))

The various �

i

(>) then result in

�

0

(>) = >

�

1

(>) = x � 1 ^ 0 � y ^ 0 � z ^ 3z � y

�

2

(>) = �

1

(>) ^ 8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

3z + 3Æ � y + Æ)

= �

1

(>) ^ 2 + 3z � 2x + y

Now, note that we ultimately have to instantiate the variables x, y,

and z in the �xpoint result by 0, 1, and 0 respe
tively. Also note, that

�N(x; y; z):�(N) ! �

i

(>) for ea
h i. If we take a look at �

2

(>) we observe

that its instantiation results in? and therefore we know that �N(x; y; z):�(N)

must be equivalent to ?, i.e., the property does not hold. It thus makes sense

to 
he
k ea
h �

i

(>) after it has been generated for instantiation, for this

might lead to 
onsiderable simpli�
ations.

As a �nal little variant of the example let us ex
hange 2z � y with

az � y, i.e., we introdu
e a parameter a to the property to be proved.

Again, the elimination of L does not make a real di�eren
e to the earlier


ases, we just have to substitute a 2 with an a in the elimination result. And

again, for the elimination of N things 
hange indeed. We have to 
ompute

�N(x; y; z):�(N) where

�(N) =

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^ az � y ^

N(0; y + 1; z) ^

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ))

The various �

i

(>) then result in

�

0

(>) = >

�

1

(>) = x � 1 ^ 0 � y ^ 0 � z ^ az � y

�

2

(>) = �

1

(>) ^ 8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

3z + 3Æ � y + Æ)

= �

1

(>) ^ a� 1 + 3z � y + (a� 1)x
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Now, note that we ultimately have to instantiate the variables x, y,

and z in the �xpoint result by 0, 1, and 0 respe
tively. Also note, that

�N(x; y; z):�(N) ! �

i

(>) for ea
h i. If we take a look at �

2

(>) we ob-

serve that its instantiation results in a � 2 and therefore we know that

�N(x; y; z):�(N) at least implies a � 2. By taking this additional knowl-

edge into a

ount, the �xpoint 
omputation terminates with just this result

a � 2. We therefore have shown that the example hybrid system has prop-

erty AG az � y if and only if the parameter a has a value less than or equal

to two.

6.2 The Water Level Monitor

The hybrid system is given as follows:

_x = 1

_y = 1

y � 10

_x = 1

_y = 1

x � 2

_x = 1

_y = �2

x � 2

_x = 1

_y = �2

y � 5

Zero One

Three
Two

y

:

=

1

y = 10 j x := 0

x = 2

y = 5 j x := 0

x = 2

It is to be 
he
ked whether the water level (denoted by the data variable y)

always remains between 1 and 12, i.e., we have to prove the ICTL property

AG (1 � y ^ y � 12). A

ording to the dedu
tive model 
he
king approa
h

presented in this paper this means to prove the validity of the se
ond-order
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formula

9

Zero

One

Two

Three

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

Zero(x; 1)

8x; y Zero(x; y) !

8

>

>

<

>

>

:

y � 10 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y + Æ � 10 !

Zero(x + Æ; y + Æ)

y = 10 ! One(0; y)

8x; y One(x; y) !

8

>

>

<

>

>

:

x � 2 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ x + Æ � 2 !

One(x + Æ; y + Æ)

x = 2 ! Two(x; y)

8x; y Two(x; y) !

8

>

>

<

>

>

:

y � 5 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y � 2Æ � 5 !

Two(x + Æ; y � 2Æ)

y = 5 ! Three(0; y)

8x; y Three(x; y) !

8

>

>

<

>

>

:

x � 2 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ x + Æ � 2 !

Three(x + Æ; y � 2Æ)

x = 2 ! Zero(x; y)

A

ording to Lemma 5.3 this is equivalent to (by eliminating lo
ation One)

9

Zero

Two

Three

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

Zero(x; 1)

8x; y Zero(x; y) !

8

>

>

<

>

>

:

y � 10 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y + Æ � 10 !

Zero(x + Æ; y + Æ)

y = 10 ! Two(2; y + 2)

8x; y Two(x; y) !

8

>

>

<

>

>

:

y � 5 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y � 2Æ � 5 !

Two(x + Æ; y � 2Æ)

y = 5 ! Three(0; y)

8x; y Three(x; y) !

8

>

>

<

>

>

:

x � 2 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ x + Æ � 2 !

Three(x + Æ; y � 2Æ)

x = 2 ! Zero(x; y)

Note that this is exa
tly the formula we would have obtained from attempt-

ing to prove AG (1 � y ^ y � 12) for the hybrid system
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_x = 1

_y = 1

y � 10

_x = 1

_y = �2

x � 2

_x = 1

_y = �2

y � 5

Zero

Three
Two

y

:

=

1

y

=

1

0

j

x

:

=

2

;

y

:

=

y

+

2

y = 5 j x := 0

x = 2

Again by Lemma 5.3 this is equivalent to (by eliminating lo
ation Two)

9Zero;Three

0

B

B

B

B

B

B

B

B

B

B

B

B

�

Zero(x; 1)

8x; y Zero(x; y) !

8

>

>

<

>

>

:

y � 10 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y + Æ � 10 !

Zero(x + Æ; y + Æ)

y = 10 ! Three(0; 5)

8x; y Three(x; y) !

8

>

>

<

>

>

:

x � 2 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ x + Æ � 2 !

Three(x + Æ; y � 2Æ)

x = 2 ! Zero(x; y)

This se
ond-order formula would have equally been obtained by proving

AG (1 � y ^ y � 12) for the hybrid system

_x = 1

_y = 1

y � 10

_x = 1

_y = �2

x � 2

Zero

Three

y

:

=

1

y
=

10
j x

:=

0; y
:=

5

x = 2
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A �nal appli
ation of Lemma 5.3 then leads to (after eliminating lo
ation

Three)

9Zero

0

B

B

B

B

�

Zero(x; 1)

8x; y Zero(x; y) !

8

>

>

<

>

>

:

y � 10 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y + Æ � 10 !

Zero(x + Æ; y + Æ)

y = 10 ! Zero(2; 1)

Again, this would be exa
tly the formula we would get from the attempt to

prove AG (1 � y ^ y � 12) for some simpler hybrid system, namely

_x = 1

_y = 1

y � 10

Zero

y

:

=

1

y = 10 j x := 2; y := 1

This �nal se
ond-order formula trivially redu
es to >, and that in fa
t again

with the Simpli�
ation Lemma alone (sin
e the self-loop is subsumed by the

initial state), and so the desired property is proved valid.

7 Generalizations

7.1 Parameterization

The 
hara
teristi
 se
ond-order formula we obtain from an ICTL-formula,

a hybrid system and a ground initial state has no free symbols whatsoever

unless the formula, the system, or the initial state are parameterized with


onstants over the reals. In this 
ase the 
hara
teristi
 formula represents

a 
onstraint on these parameters. This 
onstraint is the ne

essary and

suÆ
ient 
ondition on the parameters for the ICTL-formula to hold. As an

example re
all the parameterized system property from page 23.

7.2 Approximations

The �xpoint 
omputations do not ne
essarily terminate in general. In the

standard rea
hability analysis of hybrid systems one therefore often 
onsid-

ers 
ertain more or less stri
t approximations of the set of rea
hable sets.

Evidently su
h approximations are also possible for the approa
h presented

here. For instan
e, one might 
onsider the 
onvex hull of the 
onstraint

formulas that arise from the elimination of some of the lo
ations. Also one

might think of arti�
ially terminating the �xpoint 
omputations after a 
er-

tain amount of iterations. In both 
ases we end up in de�ntions for the
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lo
ation to be eliminated that are unne
essarily \big". Similarly, there ex-

ist possibilities to approximate \smaller" 
andidates for the lo
ation to be

eliminated. For further details the reader is refered to the relevant literature.

7.3 Re
tangular Hybrid Systems

In this paper the approa
h is des
ribed merely in terms of linear hybrid

systems, i.e. data variables are assumed to 
hange their value by a 
ertain


onstant amount (whi
h might vary from data variable to data variable)

per time unit. Nevertheless, the whole approa
h also works for re
tangular

hybrid systems, i.e. for systems within whi
h the 
hange in the data variables

is only des
ribed by some interval over the reals. For instan
e, re
all the

de�nition of the rea
hability theory for some hybrid system (De�nition 4.2).

One part of it 
onsists of the 
lause 8Æ (Æ � 0 ^ inv(L)[x=x + k

x

L

Æ℄ !

L(x + k

x

L

Æ)), where k

x

L

denotes the real number that des
ribes the 
hange

of x in L within one time unit. If, however, we are given an interval, say

[a; b℄, rather than a �xed number we have to 
hange the 
orresponding part

of the rea
hability theory to 8Æ; � (Æ � 0 ^ a � � � b ^ inv(L)[x=x + �Æ℄ !

L(x + �Æ)). The non-linearity 
an easily be resolved and so we �nally end

up with linear formulas again. The Railroad-Gate-Controller from [AHH96℄


ertainly is one of the most famous examples of a re
tangular hybrid system.

8 Experimental Results

There exists a prototype implementation of the Elimination Approa
h (for

proving safety-properties) written in Si
stus-Prolog with the CLP(Q,R)-

library for 
onstraint handling. Brie
y, the overall pro
edure implemented

works as follows: (i) read the problem �le, (ii) 
ompute the 
ompound au-

tomaton (parameters are additional arguments), (iii) add the property to

be proved (and also delete some of the time transitions in 
ase this is re-

quired from some \urgent" or \as-soon-as-possible"-semanti
s), (iv) sele
t

one of the initial lo
ations, (v) eliminate the sele
ted lo
ation (thus possibly

introdu
ing new inital lo
ations), (vi) if �nished or trivial then stop; oth-

erwise pro
eed with step (iv). The approa
h of sele
ting initial lo
ations

for elimination has the obvious advantage that it will never be attempted

to eliminate an unrea
hable lo
ation. On the other hand, su
h a strategy

takes away mu
h of the freedom to 
hoose whatever lo
ation we want for

elimination. Another feature of the implementation is that it allows us to

abstra
t from (some of the lo
al) lo
ations of a 
ompound automaton. This

makes it possible to perform a (forward or ba
kward) rea
hability analysis

(see below) whi
h allows for a thorough 
omparison between rea
hability

and elimination approa
hes.

Of major interest was the question whether there 
an be anything better

(at least for safety properties) than forward rea
hability provided it at all
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terminates. After all, within forward rea
hability we 
ompute exa
tly the

set of rea
hable states; and in fa
t we need to know about all the rea
h-

able states for proving safety properties. Thus, forward rea
hability does

not 
ompute any redundant information. However, it sometimes performs

redundant 
omputations. This 
an happen whenever a rea
hability analy-

sis requires more than one pass through the rea
hable lo
ations before it

terminates. Systems for whi
h a single pass is suÆ
ient are probably best

examined by forward rea
hability.

We 
laim that the Elimination Approa
h presented in this paper 
an

help us to avoid su
h redundant 
omputations. This is the 
ase for instan
e

for the famous \audio-proto
ol"-example. For other, unfortunately rather

trivial systems like the \Leaking Gas Burner" or the \Billiards"-example,

the Elimination Approa
h showed a slightly better behavior than standard

rea
hability analysis. However, in su
h 
ases, where safety properties 
an

be proved in millise
onds anyway, this 
an hardly be 
alled \eviden
e".

The la
k of non-trivial hybrid system in the literature that require several

passes through some of their lo
ations made us 
ompose our own examples.

They are designed as simple as possible su
h that they may serve to illustrate

the e�e
t of the Elimination Approa
h 
ompared to rea
hability analysis

methods. Some su
h examples are given below.

8.1 Simulating Rea
hability Analysis

The Elimination Approa
h as des
ribed in this paper assumes that a pred-

i
ate symbol is introdu
ed for ea
h of the lo
ations of the (
ompound) au-

tomaton. This method therefore is neither a forward nor a ba
kward analysis

approa
h. However, if we put these lo
ation names into the argument list

and introdu
e a single and unique dummy predi
ate symbol instead that

repla
es ea
h of the older lo
ation names then it be
omes obvious that the

Elimination Approa
h { by eliminating the new dummy predi
ate { per-

forms a ba
kward rea
hability analysis. Also, if we perform this lo
ation

abstra
tion but eliminate with the dual form of the Elimination Theorem,

i.e., let P o

ur only negatively in � and in 	 then

9P [8x (P (x) _ �) ^	℄ � 	

h

P (�)=

�

�P (x):�

�

x

�

i

In this 
ase a forward rea
hability analysis is performed. For 
ompound

systems one 
an even perform something like a \mixed" approa
h by ab-

stra
ting from only some of the lo
al systems.

8.2 Some Further Examples

8.2.1 Railroad-Gate-Controller

This example is taken from [AHH96℄. It des
ribes the 
ontrol system for

a railroad gate that has to guarantee that the gate is 
losed whenever a
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train is near and that it is open in 
ases where it is safe to be open. The

whole system 
onsists of three 
omponent systems: a train, a gate, and

the 
ontroller with three, four and again three lo
ations respe
tively. This

suggests that the 
omposed system has at most 36 lo
ations. However, this

number is restri
ted by the syn
hronisation labels that forbid 
ertain edge


ompositions. As it turns out, the 
omposed automaton has 22 lo
ations,

but some of the guards denote what we 
all impossible guards, i.e., 
onstraint

formulas that will never be
ome true be
ause of the sour
e lo
ation invariant.

Su
h impossible guards usually 
annot be dis
overed synta
ti
ally, but they

obviously may redu
e the number of rea
hable lo
ations

9


onsiderably. In

fa
t, this railroad-gate-
ontroller example has only 7 rea
hable lo
ations and

there is only little non-determinism. This makes the example fairly trivial,

despite it looks rather 
ompli
ated at the �rst glan
e.

Both the Elimination Approa
h and forward rea
hability analysis prove

the safety requirement AG (x � 10 ! Gate.
losed) in about 0:5 se
onds on

a 333 MHz UltraSPARC. The dual version of the Elimination Approa
h and

ba
kward rea
hability analysis require 1:0 se
. and 1:3 se
. respe
tively.

10

8.2.2 A Silly Multiplier

This is an example where three positive numbers a, b, and 
 are multiplied

and the �nal produ
t is stored in the data variable p. The multipli
ation is

performed by su

essively adding 1 to p, similar to the nested for-loop

for (w:=0; w<
; w++)

for (v:=0; v<b; v++)

for (u:=0; u<a; u++) fp:=p+1g

9

Noti
e the di�eren
e between rea
hable lo
ations and rea
hable states. A lo
ation is

rea
hable if there exists a rea
hable state that has this very lo
ation as its �rst 
omponent.

If a lo
ation is not rea
hable then there exists no rea
hable state with this lo
ation.

10

Interestingly, forward rea
hability requires twi
e as many iterations as ba
kward rea
h-

ability, but also it is about twi
e as fast. This is explained by the fa
t that an iteration step

in the ba
kward analysis is far more 
ompli
ated than an iteration step during forward

analysis. It has to take mu
h more states, even impossible ones, into a

ount.
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_x = 1

_p = 1

_u = 0

_v = 0

_w = 0

x � 1

_x = 1

_p = 0

_u = 1

_v = 0

_w = 0

x � 1

_x = 1

_p = 0

_u = 0

_v = 1

_w = 0

x � 1

_x = 1

_p = 0

_u = 0

_v = 0

_w = 1

x � 1

x = 1

x := 0

x = 1

u < a

x := 0

x = 1

u = a

x := 0

x = 1

v = b

x := 0

x

=

1

v

<

b

x

:

=

0

u

:

=

0

F

x = 1

w = 


x = 1

w < 


x := 0

u := 0

v := 0

It is to be shown that the lo
ation F 
an be rea
hed { after all, as soon

as F is rea
hed, the data variable p 
ontains the multipli
ation result we

are interested in. (Ba
kward or forward) rea
hability analysis in a sense

simulates the behavior of the multiplier. I.e., sin
e this system is fully de-

terministi
, it takes a walk through the whole 
omputation. Evidently, this

is very time 
onsuming even if we only attempted to 
ompute 10� 10� 10;

it takes approximately 8000 iterations.

Now, 
ompare this with the Elimination Approa
h.

11

(In the automata

below irrelevant information within the lo
ations or at the transitions are

omitted for readability)

The Simpli�
ation Lemma allows us to eliminate the top left lo
ation in

one strike, resulting in

_x = 1

_p = 0

_u = 1

_v = 0

_w = 0

x � 1

_x = 1

_p = 0

_u = 0

_v = 1

_w = 0

x � 1

_x = 1

_p = 0

_u = 0

_v = 0

_w = 1

x � 1

x

=

1

;

u

<

a

;

x

:

=

0

;

p

:

=

p

+

1

x = 1; u = a; x := 0

x = 1

v = b

x := 0

x = 1; v < b

x := 0; u := 0; p := p + 1

F

x = 1

w = 


x

=

1

;

w

<




x

:

=

0

;

u

:

=

0

;

v

:

=

0

;

p

:

=

p

+

1

p

:

=

1

11

The prototype implementation of the Elimination Approa
h is designed for safety

properties only. Thus, in order to prove that lo
ation F 
an be rea
hed we have to show

that it is not the 
ase that lo
ation F will never be rea
hed.
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As the next 
anditate for a lo
ation elimination the prototype implementa-

tion 
hooses the bottom left lo
ation and after approx. 2a iterations it ends

up with

_x = 1

_p = 0

_v = 1

_w = 0

x � 1

_x = 1

_p = 0

_v = 0

_w = 1

x � 1

x = 1; v = b

x := 0

x = 1; w < 


x := 0; p := p + a; v := 0

x = 1; v < b

x := 0; p := p + a

F

x = 1

w = 


p := a

The next step is to eliminate the new bottom lo
ation. After about 2b

iterations it rea
hes

_x = 1

_p = 0

_w = 1

x � 1

x = 1; w < 


x := 0; p := p + a� b

F

x = 1

w = 


p

:

=

a

�

b

Now, in a �nal elimination the system attempts to get rid of the left lo
ation.

This requires another 2
 iterations and provides us with this �nal pi
ture

F

p := a� b� 


In this remaining trivial system there is only one lo
ation whi
h, in parti
-

ular, is also the initial lo
ation and whi
h therefore is trivially rea
hable.

The attempt to prove that F will never be rea
hed thus fails. Therefore

The lo
ation F 
an be rea
hed and, while entering it, the data variable p

will 
ontain the produ
t of the positive numbers a, b, and 
.

As for a 
on
rete example: in order to 
ompute the produ
t 10�10�10

the prototype implementation of the Elimination Approa
h requires about

0:8 se
onds on a 333 MHz UltraSpar
, whereas forward rea
hability analysis

(utilizing the same implementation) needs some 380 se
onds. The more

sphisti
ated symboli
 model 
he
ker HyTe
h, version 1.04, required some

12.3 se
onds on the same ma
hine (forward rea
hability).
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8.2.3 A Long Loop

The following example again demonstrates the e�e
t on long loops. In 
on-

trast to the multiplier example, however, the long loop is not inherent in the

system; it 
omes from the property to be proved.

_x = 1

_u = 1

_v = 1

_w = 1

x � 1

_x = 1

_u = 1

_v = 0

_w = 0

x � 2

_x = 1

_u = 1

_v = 1

_w = 0

x := 0

x

�

1

j

x

:

=

0

x

�

2

j

x

:

=

0

x; u; v; w := 0

Suppose that, for some reason, we want to show that AG (u � 154 !

5:9 � w � u + v). Although the system is fairly simple, the property to be

proved requires a rea
hability analysis to somehow (ba
kward) simulate the

system over a rather long period of time. In fa
t, forward rea
hability does

not terminate within a reasonable amount of time and ba
kward rea
hability

requires some 95 se
onds on a 333 MHz UltraSpar
. Unfortunately, HyTe
h

version 1.04, the Berkeley symboli
 model 
he
ker for embedded systems

runs into a library over
ow error after about 60 se
onds.

The implementation of the Elimination Approa
h, on the other hand,

�rst eliminates the two top lo
ations within a fra
tion of a se
ond (this

requires only the Simpli�
ation Lemma) and, as an intermediate result,


omes up with a system that 
onsists of merely one remaining lo
ation that

has a transition that leads to itself. It therefore has to be eliminated with

the Elimination Theorem and the implemented system does so in about 7.5

se
onds on a 333 MHz UltraSpar
.

8.2.4 Where Rea
hability Fails

The parti
ularity about the next example is that it 
ontains an \impossible"

lo
ation, i.e., one of the lo
ations { the bottom one { is unrea
hable be
ause

the guard (y = 2) of the transition that may lead to this very lo
ation 
an

impossibly be
ome true.
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_x = 1

_y = 1

x � 1

_x = 1

_y = 1

x � 1

_x = 1

_y = 1

x � 1

_x = 1

_y = 1

x � 1

x

:

=

0

y

=

2

x := 0

x := 0; y := 0

x := 0

x := 0; y := y � 1

x

:

=

0

;

y

:

=

0

In a sense, forward rea
hability analysis dete
ts this impossible transition,

although rather indire
tly, for it never tries to 
ompute states whi
h involve

this lo
ation. Nevertheless, forward rea
hability does not terminate, sin
e it

derives more and more new rea
hable states that involve the two rightmost

lo
ations. At the �rst glan
e, ba
kward rea
hability might have a better


han
e. Suppose we were about to prove that x � y is an overall invariant

of the system. If there were not the bottom lo
ation, ba
kward rea
hability

would have no problem to dete
t that the invariant indeed holds. However,

this invariant does not hold for the bottom lo
ation and the only reason why

this is non-
riti
al for the whole system is the mere fa
t that this lo
ation

is not rea
hable anyway. It is thus simply not ne
essary to try and prove

the invariant for this very lo
ation. However, ba
kward rea
hability 
annot

�nd out by itself that there is an impossible transition and therefore neither

terminates.

Now, what does the Elimination Approa
h (or a
tually its prototype

implementation) do with this example? After about 0:1 se
onds (on a 333

MHz UltraSpar
) it has eliminated the top three lo
ations and ends up with

the remaining bottom lo
ation, however, without any newly generated inital

transition. This means that there exists a trivial model for the remaining

set of formulas, namely the one that assigns ? (false) to the remaining

lo
ation predi
ate, and the system terminates with su

ess. The Elimination

Approa
h thus allows us to solve this problem in a tiny fra
tion of a se
ond.

8.3 Final Con
lusion

The Elimination Approa
h has been tested on quite a lot of examples taken

from the relevant literature, the various veri�er distributions, and also self-

made. Some of them are small and trivial like the Water Level Monitor,

or the Leaking Gas Burner. Unfortunately, it seems that almost all non-

trivial examples that 
an be found in the literature are designed su
h that
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a forward rea
hability analysis terminates after a single run through the

rea
hable lo
ations. Only those standard examples for whi
h the properties

to be proved for
e a rea
hability analysis to travel several (even many) times

through the rea
hable lo
ations showed how valuable the Elimination Ap-

proa
h 
an be. For instan
e, take the Billiards example from [ACH

+

95℄ and

modify the movement of the white ball su
h that it is pushed almost ver-

ti
ally (or almost horizonti
ally). Then any rea
hability analysis will have

to perform many iterations through the �xpoint 
omputation (one for ea
h

boun
e) and it will take quite some time to 
ome up with the desired result.

Two of the self-made examples from above are also along these lines. Both

the Silly Multiplier and the Long Lasting Loop require many iterations in

a rea
hability analysis. The Elimination Approa
h, however, is insensitive

to this fa
t. It simply eliminates the involved lo
ations one by one and

therefore never has to visit these lo
ations again.
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