
A Dedu
tive Model Che
king

Approa
h for Hybrid Systems

Andreas Nonnengart

MPI{I{1999{2{006 O
tober 1999

Author's Address

Max-Plan
k-Institut f�ur Informatik

Im Stadtwald, 66123 Saarbr�u
ken, Germany

Email: Andreas.Nonnengart�mpi-sb.mpg.de

WWW: http://www.mpi-sb.mpg.de/~nonnenga/

A
knowledgements

Thanks to Harald Ganzinger, Tom Henzinger, Andreas Podelski, Giorgio

Delzanno, and Supratik Mukhopadhyay for fruitful dis
ussions.

Abstra
t

In this paper we propose a veri�
ation method for hybrid systems that

is based on a su

essive elimination of the various system lo
ations in-

volved. Brie
y, with ea
h su
h elimination we
ompute a weakest pre
ondi-

tion (strongest post
ondition) on the prede
essor (su

essor) lo
ations su
h

that the property to be proved
annot be violated. This is done by repre-

senting a given veri�
ation problem as a se
ond-order predi
ate logi
 formula

whi
h is to be solved (proved valid) with the help of a se
ond-order quan-

ti�er elimination method. In
ontrast to many \standard" model
he
king

approa
hes the method as des
ribed in this paper does not perform a forward

or ba
kward rea
hability analysis. Experiments show that this approa
h is

parti
ularly interesting in
ases where a standard rea
hability analysis would

require to travel often through some of the given system lo
ations. In addi-

tion, the approa
h o�ers possibilities to pro
eed where \standard" rea
habil-

ity analysis approa
hes do not terminate.

Keywords

Hybrid Systems, Veri�
ation, Model Che
king, Quanti�er Elimination, Lo-

ation Elimination.

1 Introdu
tion

Hybrid Systems are real-time systems that are embedded in analog envi-

ronments. They
ontain dis
rete and
ontinuous
omponents and inter-

a
t with the physi
al world through sensors and a
tuators. Due to the

rapid development of
omputer te
hnology, hybrid systems dire
tly
on-

trol mu
h of what we depend on in our daily lives [AHH96℄. Sin
e they

typi
ally operate in safety-
riti
al situations, the development of rigorous

analysis te
hniques is of high importan
e. However, traditional program

veri�
ation is hardly useful, for it allows us, at best, to merely approxi-

mate
ontinuously
hanging environments by dis
rete sampling. Also, ear-

lier veri�
ation te
hniques based on temporal logi
s [CE81, CES86, EMSS90,

GH90, MP92, MW84, Non95, Non96, OL82, Pnu77, PH88, Sis85℄ lead only

halfway towards what is a
tually demanded. Only re
ently have there been

some attempts at developing a veri�
ation methodology for hybrid sys-

tems [ABL97, ACD90, ACH

+

95, ACHH93, AD94, AH92, AHH96, AHS96,

ANKS95, CHR91, GNRR93, Hen91, Hen95, Hen96, HNSY92, Ho95, Kop96,

LLW95, Sha93, SUM96℄.

A
ommon model for hybrid systems
an be found in hybrid automata.

Brie
y, su
h hybrid automata are �nite graphs whose nodes
orrespond to

global states. A
omputation of su
h an automaton is a sequen
e of state

hanges (steps). Within ea
h step the system state evolves
ontinuously

a

ording to a dynami
al law until a transition from one node to another one

o

urs. Transitions are instantaneous state
hanges that separate
ontinuous

state evolutions.

The paper is now organized as follows. We start with a formal de�ni-

tion of hybrid systems. After that we pro
eed with the formal de�nition of

the syntax and the semanti
s of Integrator Computation Tree Logi
, ICTL

[AHH96℄, that lets us formulate temporal properties of the hybrid system un-

der
onsideration. What follows is the introdu
tion of the dedu
tive model

he
king approa
h in general. This in
ludes both the logi
al representation

and the method to solve the veri�
ation problem. Some
ommon generaliza-

tions are brie
y examined in a subsequent se
tion. In order to provide with

some more intuition on the approa
h some examples follow whi
h also allow

us to
ompare the approa
h with standard rea
hability analysis methods.

Finally, we
on
lude that paper with a brief summary and an outlook at

what ought to be done in the near future.

1

2 Hybrid Systems

2.1 Syntax

Definition 2.1 (Constraint Terms and Constraint Formulas)

The set CT of Constraint Terms over a �xed variable set X is de�ned as

the smallest set
ontaining X, and real-valued
onstants, and, moreover,

is
losed under addition, subtra
tion, and multipli
ation with real-valued

onstants.

The set of CF of Constraint Formulas (over the variable set X) is de�ned

as the smallest set that is
losed under
onjun
tion and
ontains > (truth)

and ? (falsity) as well as all atoms of the form t

1

> t

2

, t

1

� t

2

, t

1

< t

2

,

t

1

� t

2

, and t

1

= t

2

, where t

1

and t

2

are
onstraint terms taken from CT.

As usual, we illustrate hybrid systems as graphs like

_x = 1

x � 1

_x = 1

x � 1

L N

x

:

=

0

x = 1 j x := 0

> j x := 0

Nodes L and N represent dis
rete lo
ations, whereas x is a data variable.

Within ea
h lo
ation we des
ribe the lo
ation invariant (x � 1 in the exam-

ple) and the
ontinuous a
tivity whi
h des
ribes how the values of the data

variables
hange in time. In the above example the value of x in
reases by 1

per time unit (say, se
ond), i.e., the �rst derivative of the fun
tion des
ribing

the behavior of x over time is the
onstant 1.

Edges are annotated with guards and dis
rete a
tions. Guards form a
on-

straint on the data variables to hold if a transition via the
orresponding

edge is to be performed. The dis
rete a
tion spe
i�es how the data vari-

ables are to be
hanged after taking the transition. In the above example

the guard of the edge from L to N is x = 1 and the
orresponding a
tion is

to reset x to 0.

The above hybrid system thus des
ribes the following behavior: it starts at

lo
ation L with the data variable x set to 0. Within L and N the value of

x in
reases by 1 every se
ond (so x is a
lo
k). The system leaves lo
ation

L after exa
tly one se
ond and resets x to 0. Similarly, it remains within N

for at most one se
ond and reenters L after resetting x to 0 again.

The following de�nition spe
i�es what hybrid systems are in general.

Definition 2.2 (Hybrid Systems)

Hybrid Systems are tuples of the form (X;L; E ;dif; inv; guard; a
t), where

� X is a �nite set of real-valued data variables,

� L is a �nite set of lo
ations, i.e., nodes of a graph,

2

� E � L �L is a �nite (multi)set of transitions, i.e., edges of the graph

with nodes from L,

� dif : L�X 7! CT is a mapping that asso
iates with ea
h lo
ation and

ea
h data variable a
onstraint term (with free variables taken from

X), representing the
hange of the data variable within this lo
ation

over time,

� inv : L 7! CF is a mapping that asso
iates with ea
h lo
ation a
on-

straint formula (with free variables taken from X), representing the

lo
ation invariant,

� guard : E 7! CF is a mapping that asso
iates with ea
h edge a
on-

straint formula (with free variables taken from X), representing the

ondition that has to be enabled in order to travel along the edge, and

� a
t : E � X 7! CT is a mapping that asso
iates with ea
h edge and

ea
h data variable a
onstraint term (with free variables taken from

X), representing the value of the variable after traveling along the

edge.

2.2 Semanti
s

We de�ne a state of a hybrid system as a pair (L; �) where L 2 L is a

lo
ation and � : X 7! R is a valuation of the data variables. � naturally

extends to (
onstraint) terms and (
onstraint) formulas. A state (L; �) is

alled admissible if �(inv(L)) holds. Given two admissible states � = (L; �)

and �

0

= (L

0

; �

0

) we say that �

0

is transition-rea
hable from � { denoted

by �

tr

7! �

0

{ if there exists a transition T = (L;L

0

) 2 E with sour
e L

and target L

0

, and both �(guard(T)) and �

0

(x) = �(a
t(T; x)) for ea
h

x 2 X. We
all �

0

timely-rea
hable from � with delay Æ { denoted by

�

Æ

7! �

0

, where Æ is a non-negative real number { if L = L

0

and for ea
h

x 2 X there exists a di�erentiable fun
tion f

x

: [0; Æ℄ 7! R, with the �rst

derivative

_

f

x

: (0; Æ) 7! R, su
h that (1) f

x

(0) = �(x) and f

x

(Æ) = �

0

(x) and

(2) for all � 2 R with 0 < � < Æ: both inv(L)[x

1

=f

x

1

(�); : : : ; x

n

=f

x

n

(�)℄ and

_

f

x

(�) = dif(L; x)[x

1

=f

x

1

(�); : : : ; x

n

=f

x

n

(�)℄ are true. �

0

is timely-rea
hable

from � { denoted by �

?

7! �

0

{ if there exists a non-negative Æ 2 R su
h that

�

Æ

7! �

0

. �

0

is said to be rea
hable from � if (�; �

0

) 2 (

?

7! [

tr

7!)

�

.

A run � of H with initial state �

0

= (L

0

; �

0

) is a maximal sequen
e of states

represented as

� = �

0

7!

t

0

f

0

�

1

7!

t

1

f

1

�

2

7!

t

2

f

2

�

3

7!

t

3

f

3

� � �

where t

i

2 R
�0

and f

i

: [0; t

i

℄ 7! (X 7! R), su
h that f

i

(0) = �

i

, and

moreover, inv(L

i

)[X=f

i

(t)(X)℄ holds for all 0 � t � t

i

, (L

i

; f

i

(t

i

))

tr

7! �

i+1

and for all 0 � t

0

� t

0

+Æ � t

i

: (L

i

; f

i

(t

0

))

Æ

7! (L

i

; f

i

(t

0

+Æ)). The set of states

3

ontained in su
h a run � is given as States(�) = f(L

i

; f

i

(t)) j t 2 R; 0 � t �

t

i

g. The set of all runs of a hybrid system H with initial state � is denoted

by runs(H; �). A position � of a run � = �

0

7!

t

0

f

0

�

1

7!

t

1

f

1

�

2

7!

t

2

f

2

�

3

7!

t

3

f

3

� � �

is a pair � = (i; r) 2 N � R su
h that 0 � r � t

i

. We denote the set of

positions of a run � as pos(�). Positions are ordered lexi
ographi
ally, i.e.,

(i; r) < (j; s) if and only if i < j or (i = j and r < s). Also, (i; r) � (j; s) if

and only if (i; r) < (j; s) or (i = j and r = s). By �(�) with � = (i; r) we

denote the state (L

i

; f

i

(r)). Thus States(�) = f�(�) j � 2 pos(�)g.

A run is said to be non-zeno if

P

t

i

diverges. In the sequel we shall assume

that the runs of the hybrid system under
onsideration are all non-zeno.

1

For the simple hybrid system from page 2 it is quite easy to �nd the set

of rea
hable states. It
ontains exa
tly all states of the form (L; �) or (N;�)

where � maps x to an arbitrary real value between 0 and 1. Intuitively, it

should thus be possible to prove that the value of the data variable x always

remains smaller than 1. But there are mu
h more interesting properties of

the above system that we want to be able to prove. As we noted already,

the system will always remain within lo
ation L for exa
tly one se
ond,

whereas it
an only remain within lo
ation N for at most one se
ond. Thus,

the a

umulated time spent in lo
ation N
an never ex
eed one half of the

overall running time of the system. Su
h properties should be provable

as well. This, however, demands for a requirement language that lets us

formulate these kinds of properties. One su
h language
an be found in

ICTL [AHH96℄ as des
ribed in the se
tion to follow.

3 Integrator Computation Tree Logi
 ICTL

3.1 ICTL Syntax

We des
ribe properties of a hybrid system with data variables X and lo
a-

tions L, in terms of ICTL formulas, where

� every
onstraint formula over X is an ICTL formula,

� every lo
ation name from L is an ICTL formula,

� if � and 	 are ICTL formulas, so are :�, � ^	, � _	, � ! 	, and

� � 	,

� if � and 	 are ICTL formulas, so are AG �, AF �, EG �, EF �,

�EU	, and �AU	,

1

The assumption of non-zenoness implies that hybrid systems are deadlo
k-free, i.e.,

there is no rea
hable state that has no su

essor. So-
alled livelo
ks, however, are not

ex
luded. This means that we absolutely allow states whi
h have only themselves as

future alternatives. The latter
ase just states that the situation does not
hange in time,

whereas the former
ase (deadlo
k) would
laim that time itself has
ome to an end.

4

� if � is an ICTL formula, z is a new data variable, and fL

1

; : : : ; L

n

g 2 L

is a subset of the lo
ation names then z

fL

1

;::: ;L

n

g

:� is an ICTL formula

(and z is added to the set X).

Intuitively, the temporal operators AG ;AF ;EG ;EF ; EU ; AU , mean

\always", \inevitably", \possibly always", \possibly", \possibly until", and

\inevitably until" respe
tively. Their formal semanti
s with respe
t to hy-

brid systems is de�ned below.

3.2 ICTL Semanti
s with respe
t to Hybrid Systems

Given a hybrid system H, by H

z

fL

1

;::: ;L

n

g

we mean the extended system we

obtain from adding the new
lo
k z whi
h is initialized with 0 and whi
h is

supposed to run with slope 1 within lo
ations L

1

; : : : ; L

n

and with slope 0,

i.e., it is stopped, for all other lo
ations. Noti
e that this implies that the

value of the new
lo
k z will never get below 0. Formally:

Let H = (X;L; E ;dif; inv; guard; a
t). Then

H

z

fL

1

;::: ;L

n

g

= (X [fzg;L; E ;dif

0

; inv

0

; guard; a
t)

where inv

0

(L) = inv(L) ^ 0 � z and

dif

0

(L; x) =

8

<

:

dif(L; x) if x 6= z

1 if x = z and L 2 fL

1

; : : : ; L

n

g

0 otherwise

for all data variables x 2 X and lo
ations L 2 L.

2

As usual, we de�ne the valuation �[z=0℄ as �[z=0℄(x) =

�

�(x) if x 6= z

0 otherwise.

Definition 3.1

Given a hybrid system H = (X;L; E ;dif; inv; guard; a
t) and a state � =

(L; �), the semanti
s of ICTL with respe
t to H and � is de�ned as:

H; � j=
 i� j= �(
), provided
 is a
onstraint formula

H; � j= N i� lo
ations N and L are identi
al

H; � j= :� i� H; � 6j= �

H; � j= � ^	 i� H; � j= � & H; � j= 	

and similarly for the other boolean
onne
tives

H; � j= AG � i� 8� (� 2 runs(H; �))

8� (� 2 pos(�))H; �(�) j= �))

2

A
tually, the fun
tion a
t would also have to be
hanged a

ordingly. However, if we

take the
onvention that we only des
ribe the a
tion on data variables that
hange their

value by taking the transition, it be
omes unne

essary to add something like a
t(T; z) = z.

5

H; � j= EF � i� 9� (� 2 runs(H; �) &

9� (� 2 pos(�) & H; �(�) j= �))

H; � j= EG � i� 9� (� 2 runs(H; �) &

8� (� 2 pos(�))H; �(�) j= �))

H; � j= AF � i� 8� (� 2 runs(H; �))

9� (� 2 pos(�) & H; �(�) j= �))

H; � j= �EU	 i� 9� (� 2 runs(H; �) &

9� (� 2 pos(�) & H; �(�) j= 	 &

8�

0

((�

0

2 pos(�) & (0; 0) � �

0

� �))

H; �(�

0

) j= �)))

H; � j= �AU	 i� 8� (� 2 runs(H; �))

9� (� 2 pos(�) & H; �(�) j= 	 &

8�

0

((�

0

2 pos(�) & (0; 0) � �

0

� �))

H; �(�

0

) j= �)))

H; � j= z

N

:� i� H

z

N

; (L; �[z=0℄) j= �, where N � L

Lemma 3.2

For the ICTL operators AG and EF the above semanti
s
an be
hanged to

H; � j= AG� i� H; �

0

j= � for every �

0

rea
hable from �

H; � j= EF� i� H; �

0

j= � for some �

0

rea
hable from �

Clearly, from the above de�nition it follows that AG � $:EF :� and

EF � $ >EU�. Also, EG � $:AF :� and AF � $ >AU�. All tem-

poral operators
an thus be des
ribed in terms of the two Until -operators.

Example 3.3

Re
all the property we wanted to express and prove for our example hybrid

system on page 2. In terms of ICTL this property
an be formulated as

y

fL;Ng

:z

fNg

:AG 2z � y

i.e., we assume two additional
lo
ks y and z, where y
ounts overall time

(it runs with slope 1 in ea
h lo
ation) and z a

umulates the time spent in

lo
ation N (it a
ts as a usual
lo
k in lo
ation N but is stopped in lo
ation

L). The pi
ture of our hybrid system then
hanges to

6

_x = 1 x � 1

_y = 1 0 � y

_z = 0 0 � z

_x = 1 x � 1

_y = 1 0 � y

_z = 1 0 � z

L N

x

:

=

0

y

:

=

0

;

z

:

=

0

x = 1 j x := 0

> j x := 0

For this extension we want to prove that AG 2z � y, i.e., we have to
he
k

whether the
onstraint 2z � y holds for all rea
hable states.

4 Dedu
tive Model Che
king

The general idea behind the dedu
tive model
he
king approa
h is as fol-

lows. Our ultimate aim is to automate what is des
ribed in De�nition 3.1.

To this end
onsider a hybrid system H, some lo
ation of H, say L, and

an ICTL formula �. For some valuations of the data variables in L, �

is true and for the others � is false. Let us
olle
t the former in the set

^

� = f� j H; (L; �) j= �g. Now, suppose we were able to des
ribe this

set

^

� as a (�nite)
onstraint formula, say d�e

L

. Then,
he
king whether

H; (L; �) j= � holds
an be reformulated as to
he
king whether �(d�e

L

) is

valid. And in
ase of merely linear
onstraints this
ould even be de
ided.

Our intermediate goal, therefore, is to �nd d�e

L

, the
hara
teristi

on-

straint formula for � in lo
ation L.

3

In order to a
hieve this, we
onsider

the stru
ture of the ICTL formula �. In the simplest
ase � is either a

onstraint formula or a lo
ation name. The latter
ase simply redu
es to

> or ?, depending on whether or not this lo
ation name is identi
al to L.

In the former
ase, we
an assume � to be its own
hara
teristi

onstraint

formula and so d�e

L

= �. Also, there are no diÆ
ulties with boolean
on-

ne
tives as long as the
hara
teristi

onstraint formulas for the respe
tive

omponents are known. For instan
e, d� ^ 	e

L

= d�e

L

^ d	e

L

whi
h is

a �nite
onstraint formula provided both d�e

L

and d	e

L

are. Evidently,

the more
ompli
ated and more interesting
ases are those where � has a

temporal operator as a top symbol. However, it is in general not possible to

�nd a
orresponding �nite
hara
teristi

onstraint formula, for otherwise

the validity of ICTL formulas for arbitrary (linear) hybrid systems would

be de
idable whi
h, unfortunately, is not the
ase. Therefore we
annot

3

The reader who is familiar with standard model
he
king approa
hes for hybrid sys-

tems probably noti
es a small
hange in perspe
tive sin
e we do not
ompute the set of

states that ful�ll �, but (representatives of)
onstraint formulas instead. This view is far

from arti�
ial; in fa
t, it is
ru
ial for the proposed approa
h.

7

expe
t to �nd a
hara
teristi

onstraint formula as easy as for the simple

ases above. Instead of attempting to
onstru
t d�e

L

dire
tly, we des
ribe

it as a formula of the se
ond-order predi
ate
al
ulus and try to simplify

this des
ription to a
onstraint formula if possible. How this
an be done is

des
ribed later. At this stage we are more
on
erned with the
onstru
tion

of the
hara
teristi

onstraint formula for � at L.

4.1 First-order Theories of Rea
hability and Inevitability

Here we restri
t our view to linear hybrid systems, where dif(L; x) is a

onstant, say k

x

L

, for ea
h lo
ation L and data variable x. We extend this

to sets of data variables X = fx

1

; : : : ; x

n

g in the natural way su
h that a

term like X + k

X

L

Æ represents the sequen
e x

1

+ k

x

1

L

Æ; : : : ; x

n

+ k

x

n

L

Æ.

Definition 4.1

An interpretation = = (D;=

L

; �) for a �rst-order theory asso
iated with a

hybrid system H with lo
ations L has a �xed domain D (the reals or the

rationals, say), a valuation � for the data variables in X, and a meaning

fun
tion =

L

for the lo
ations in L su
h that =

L

(L) 2 D

n

, where n is the

number of data variables in X. A model of a formula � is an interpretation

satisfying this formula.

We often also speak of a model as a set of ground atoms of the form

fL(=(t

1

); : : : ;=(t

n

)) j = j= L(t

1

; : : : ; t

n

)g; t

i

are
onstraint termsg, where

= is a model in the above sense. Interpretations (models) are partially or-

dered by set-in
lusion. A minimal model of � is a model of � su
h that none

of its proper subsets is also a model of �. We denote the set of minimal

models for a formula � by minMod(�). In
ase there exists only one unique

minimal model we shall also refer to this one as minMod(�).

Definition 4.2

Let H = (X;L; E ;dif; inv; guard; a
t) be a hybrid system. For ea
h L 2 L

we de�ne the �rst-order theory

4

8X L(X) !

8

>

>

<

>

>

:

inv(L) ^

8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ! L(X + k

X

L

Æ)) ^

^

T=(L;N)2E

guard(T) ! N(a
t(T;X))

as the lo
al rea
hability theory of L in H, R

L

H

for short. By the rea
hability

theory of H { whi
h we
all R

H

, or simply R if H is
lear from the
ontext

{ we understand the
onjun
tion of all lo
al rea
hability theories, i.e.,

R

H

=

^

L2L

R

L

H

4

For readability let us abbreviate L(a
t(T; x

1

); : : : ; a
t(T; x

n

)) with L(a
t(T;X)).

8

Hen
e, for ea
h lo
ation L 2 L we introdu
e an n-ary predi
ate with the

same name, where n is just the number of data variables in H, i.e., n = jXj.

Then, (lo
ation) atoms L(�

1

; : : : ; �

n

)
orrespond to states (L; �), where

�(x

i

) = �

i

with X = fx

1

; : : : ; ; x

n

g. For simpli
ity we abbreviate this with

L(�

1

; : : : ; �

n

)

�

=

(L; �). This notion of
orresponden
e between atoms and

states naturally extends to sets of atoms (interpretations, models) and sets

of states (e.g., members of a run).

The purpose of su
h a rea
hability theory is to have a logi
al represen-

tation of the rea
hable states. It is
onstru
ted in a way su
h that for ea
h

possible state (denoted by an atom L(X) that
orresponds to this very state)

the possible immediate future states
an be determined. For instan
e, given

the atom L(X) the lo
al rea
hability theory of L in H tells us that the
or-

responding state satis�es the lo
ation invariant inv(L) and also that there

are potential timed su

essors (8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ! L(X +

k

X

L

Æ))), and, �nally, potential transition su

essors (

V

T=(L;N)2E

guard(T) !

N(a
t(T;X))). The exa
t
onne
tion between rea
hability theories and

rea
hable states is given by the following lemma.

Lemma 4.3

If the
onjun
tion L(�(X)) ^ R

H

has a model at all then it has a unique

minimal model whi
h
orresponds to the set of states that are rea
hable

from (L; �) in the hybrid system H. More formally:

minMod(L(�(X)) ^R

H

)

�

=

f� j ((L; �); �) 2 (

?

7! [

tr

7!)

�

g

Proof: First note that a rea
hability theory is Horn in the lo
ation pred-

i
ates, that all other symbols have �xed interpretation, and that the only

boolean
onne
tive within
onstraint formulas is the logi
al
onjun
tion.

Therefore, if the theory has a model at all then it has a unique minimal

model.

What remains to be shown is that for every lo
ation L

0

and every data

variable valuation �

0

L

0

(�

0

(x

1

); : : : ; �

0

(x

n

)) 2 minMod(L(�(X)) ^R

H

)

,

((L; �); (L

0

; �

0

)) 2 (

?

7! [

tr

7!)

�

For the dire
tion from left to right take any proof of L

0

(�

0

(x

1

); : : : ; �

0

(x

n

))

from L(�(X)) ^ R

H

. The
laim then follows by an easy indu
tion on the

length of this proof.

As for the other dire
tion,
onsider the rea
hable state (L

0

; �

0

) that is

in
luded in some run �

0

7!

t

0

f

0

�

1

7!

t

1

f

1

�

2

7!

t

2

f

2

�

3

7!

t

3

f

3

� � � with �

0

= (L; �)

and �

0

= f

i

(t) for some 0 � t � t

i

. A simple indu
tion on i then shows that

the ground atom represented by L

0

(f

i

(0)) belongs to the minimal model of

L(�(X)) ^ R

H

. Moreover, sin
e 8X L

0

(X) ! 8Æ (Æ � 0 ^ inv(L

0

)[X=X +

9

k

X

L

0

Æ℄ ! L

0

(X + k

X

L

0

Æ)) is a
lause of the theory under
onsideration we also

know that the ground atom represented by L

0

(f

i

(t)) is a member of the

minimal model and we are done. 2

Example 4.4

For our simple example from page 6 the rea
hability theory is given by

8x; y; z L(x; y; z) !

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^

8Æ Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z !

L(x + Æ; y + Æ; z) ^

x = 1 ! N(0; y; z)

^

8x; y; z N(x; y; z) !

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^

8Æ 0 � Æ � 1� x ^ 0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ) ^

L(0; y; z)

The rea
hability theory will ultimately be responsible for the temporal op-

erators AG and EF . However, it is not well suited for the other temporal

operators we are interested in. We therefore, in addition, de�ne a simi-

lar �rst-order theory; this time for these other temporal operators, though.

Just as the rea
hability theory provides us with some information about the

states that
an be rea
hed, the inevitability theory to be de�ned below tells

us something about the states that are inevitable or unavoidable. It does

so by stating between whi
h possible future alternatives the system must

hoose. The following spe
i�es this.

Definition 4.5 (Inevitability Theory)

Let H = (X;L; E ;dif; inv; guard; a
t) be a hybrid system. For ea
h L 2 L

we de�ne the �rst-order theory

8X L(X) ! inv(L)

8X L(X) !

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

8Æ Æ � 0 ! L(X + k

X

L

Æ) _

9Æ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Æ � 0 ^

8Æ

0

0 � Æ

0

� Æ ! L(X + k

X

L

Æ

0

) ^

_

T=(L;N)2E

guard(T)[X=X + k

X

L

Æ℄ ^

N(a
t(T;X)[X=X + k

X

L

Æ℄)

as the lo
al inevitability theory of L in H, I

L

H

for short. By the inevitability

theory of H { whi
h we
all I

H

, or simply I if H is
lear from the
ontext

{ we understand the
onjun
tion of all lo
al inevitabiity theories, i.e.,

I

H

=

^

L2L

I

L

H

10

The �rst part of any lo
al inevitability theory is trivial. It just guarantees

the mere fa
t that for ea
h lo
ation predi
ate the
orresponding lo
ation

invariant is supposed to hold. The se
ond part is more
ompli
ated and

more interesting. Note that, given an arbitrary state represented by the

lo
ation predi
ate L(X), either the system remains forever in this lo
ation,

i.e., 8Æ Æ � 0 ! L(X+k

X

L

Æ), or it will sooner or later leave this very lo
ation.

In the latter
ase we know that there is a time delay Æ after whi
h one of

the guards of the outgoing edges is true and until then the system remains

within lo
ation L. This is exa
tly what is expressed by the
ompli
ated

se
ond part of the lo
al inevitability theories.

The importan
e of the inevitability theory is made pre
ise in the lemma

below.

Lemma 4.6

Ea
h minimal model of L(�(X))^I

H

orresponds to the members of one of

the possible runs

5

of H with initial state (L; �). Also, the members of any

possible run of H
orrespond to a model of I

H

^ L(�(X)). Formally:

�

8= = 2 minMod(L(�(X)) ^ I

H

))

9� � 2 runs(H; (L; �)) & =

�

=

States(�)

�

8� � 2 runs(H; (L; �)))

fL

0

(�

0

(X)) j (L

0

; �

0

) 2 States(�)g j= L(�(X)) ^ I

H

Proof: Consider the systemati

onstru
tion of a minimal model for the

theory L(�(X)) ^ I

H

. Evidently, this leads to run of H with initial state

(L; �).

On the other hand,
onsider an arbitrary run of H with initial state (L; �).

It is easy to see that the atoms that
orrespond to states of this run are

losed under L(�(X)) ^ I

H

. 2

Example 4.7

For our simple example from page 6 the inevitability theory is given by

8x; y; z L(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z L(x; y; z) !

8

>

>

<

>

>

:

8Æ Æ � 0 ! L(x + Æ; y + Æ; z) _

9Æ Æ � 0 ^

8Æ

0

(0 � Æ

0

� Æ ! L(x + Æ

0

; y + Æ

0

; z)) ^

x + Æ = 1 ^N(0; y + Æ; z)

8x; y; z N(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z N(x; y; z) !

8

>

>

<

>

>

:

8Æ Æ � 0 ! N(x + Æ; y + Æ; z + Æ) _

9Æ Æ � 0 ^

8Æ

0

(0 � Æ

0

� Æ ! N(x + Æ

0

; y + Æ

0

; z + Æ

0

)) ^

L(0; y + Æ; z + Æ)

5

Re
all that we only
onsider non-zeno runs of hybrid systems. Zeno runs
ould even

lead to in
onsisten
ies in the inevitability theory.

11

whi
h
an be simpli�ed to

8x; y; z L(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z L(x; y; z) ! 8Æ

0

(0 � Æ

0

� 1� x! L(x + Æ

0

; y + Æ

0

; z)) ^

N(0; y + 1� x; z)

8x; y; z N(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z N(x; y; z) ! 9Æ Æ � 0 ^

8Æ

0

(0 � Æ

0

� Æ ! N(x + Æ

0

; y + Æ

0

; z + Æ

0

)) ^

L(0; y + Æ; z + Æ)

4.2 The Dedu
tive Approa
h for Linear Hybrid Systems

Suppose we are given a hybrid system H, its rea
hability theory R together

with an initial state (L; �), and a property AG
 to be proved, where

is a
onstraint formula over the data variables X. Then we have to show

that
 holds for all the rea
hable states of H, i.e., it is true for ea
h atom

of the minimal model of the
orresponding rea
hability theory. Trivially,

this means that there exists a model (namely the minimal model) whose

elements all satisfy the
onstraint
. On the other hand, sin
e the minimal

model is by de�nition a subset of any model of the theory, we know that

having su
h a model means that also for the minimal model it holds that

ea
h of its elements satisfy
. Altogether, we know that AG
 holds at (L; �)

for H if and only if there exists a model of its rea
hability theory (together

with the atom that
orresponds to the initial state) su
h that
 holds for all

its elements, or, more formally,

6

if L(�(X)) ^R^

V

N2L

8XN(X) !
 has

a �rst-order model. This latter statement, however,
an be formulated in

terms of se
ond-order logi
, namely

9L

1

; : : : ; L

n

L(�(X)) ^R ^ 8X (L

1

(X) _ : : : _ L

n

(X) !
)

sin
e the existen
e of a model is tantamount to the existen
e of suitable

interpretations for the free symbols involved.

Example 4.8

Re
all that we wanted to prove AG 2z � y for the extended example system

on page 6. A

ording to the above observations this means that we have to

6

Re
all that the lo
ation names are the only predi
ate symbols that have a free inter-

pretation.

12

prove the validity of

9L;N

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

L(0; 0; 0)

8x; y; z L(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z L(x; y; z) ! x = 1 ! N(0; y; z)

8x; y; z L(x; y; z) ! 8Æ 0 � Æ � 1� x ^ 0 � y + Æ ^ 0 � z !

L(x + Æ; y + Æ; z)

8x; y; z N(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z N(x; y; z) ! L(0; y; z)

8x; y; z N(x; y; z) ! 8Æ 0 � Æ � 1� x ^

0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ)

8x; y; z L(x; y; z) ! 2z � y

8x; y; z N(x; y; z) ! 2z � y

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

As for the general
ase, assume that we have to show that AG �, where �

is an arbitrary ICTL formula. That means we have to verify that � holds

for every state that is rea
hable from the initial state, say (L; �), within the

hybrid system H. If � were a
onstraint formula or a lo
ation name, we

would know what to do from the observations above. Nevertheless, even

if � is not a
onstraint formula, we have a des
ription of its
hara
teristi

onstraint formula, namely d�e

L(X)

H

for ea
h lo
ation name L. I.e., proving

that H; (L; �) j= AG � holds
an be redu
ed to showing the validity of

�(d�e

L(X)

H

). This, and similar re
e
tions on the other temporal operators,

leads to the following de�nition.

Definition 4.9

The
hara
teristi

onstraint formula d�e

L(X)

H

asso
iated with the ICTL

formula �, the hybrid system H = (X;L; E ;dif; inv; guard; a
t), and the

lo
ation L 2 L is re
ursively de�ned by

d
e

L(X)

H

=

dL

0

e

L(X)

H

=

�

> if L and L

0

are identi
al

? otherwise

d:�e

L(X)

H

= :d�e

L(X)

H

d� ^	e

L(X)

H

= d�e

L(X)

H

^ d	e

L(X)

H

and similarly for the other boolean
onne
tives

dz

N

:�e

L(X)

H

=

�

d�e

L(X;z)

H

z

N

�

z

0

, where N � L

7

dAG �e

L(X)

H

= 9L

1

; : : : ; L

n

L(X) ^R

H

^

V

N2L

8XN(X) ! d�e

N(X)

H

dEG �e

L(X)

H

= 9L

1

; : : : ; L

n

L(X) ^ I

H

^

V

N2L

8XN(X) ! d�e

N(X)

H

7

As usual, the notation A

x

y

means A with every o

urren
e of x repla
ed by y.

13

The temporal operators EF and AF are to be treated as :AG : and

:EG : respe
tively. For the Until operators see Subse
tion 4.3 on page 15.

Intuitively, su
h a
hara
teristi

onstraint formula des
ribes the ne
essary

and suÆ
ient
ondition on the data variables su
h that the ICTL formula �

holds for the hybrid system H in lo
ation L. This, however, is exa
tly what

we need for our dedu
tive model
he
king approa
h. The following (main)

theorem makes this more pre
ise.

Theorem 4.10

Given a hybrid system H with data variables X, an initial state (L; �) and

an ICTL formula �. Then

H; (L; �) j= � i� j= �

�

d�e

L(X)

H

�

Proof: By indu
tion on the stru
ture of �.

For � being a
onstraint formula
 or a lo
ation name L the theorem holds

trivially. Also in
ase of a boolean
onne
tive there are no problems at all.

Therefore, let us only
onsider the more
ompli
ated
ases.

H; (L; �) j= z

N

:	

i� H

z

N

; (L; �[z=0℄) j= 	 (De�nition 3.1)

i� j= �[z=0℄

�

d	e

L(X;z)

H

z

N

�

(indu
tion hypothesis)

i� j= �

�

dz

N

:	e

L(X)

H

�

(De�nition 4.9)

H; (L; �) j= AG 	

i� H; � j= 	 for every � rea
hable from (L; �) (Lemma 3.2)

i� 8� ((L; �); �) 2 (

?

7! [

tr

7!)

�

)H; � j= 	

i� 8N;�

0

N(�

0

(X)) 2 minMod(L(�(X)) ^R

H

))H; (N;�

0

) j= 	

(Lemma 4.3)

i� 9= = j= L(�(X)) ^R

H

& 8N;�

0

(N;�

0

) 2 =) H; (N;�

0

) j= 	

i� 9= = j= L(�(X)) ^R

H

& 8N;�

0

(N;�

0

) 2 =) j= �

0

�

d	e

N(X)

H

�

(indu
tion hypothesis)

i� 9= = j= L(�(X)) ^R

H

& = j=

V

N2L

8X N(X) ! d	e

N(X)

H

i� 9= = j= L(�(X)) ^R

H

^

V

N2L

8X N(X) ! d	e

N(X)

H

i� j= 9L

1

; : : : ; L

n

L(�(X)) ^R

H

^

V

N2L

8X N(X) ! d	e

N(X)

H

i� j= �

�

dAG 	e

L(X)

H

�

14

H; (L; �) j= EG 	

i� 9� (� 2 runs(H; (L; �)) & 8� (� 2 pos(�))H; �(�) j=))

(De�nition 3.1)

i� 9= = j= L(�(X)) ^ I

H

& 8N;�

0

N(�

0

(X)) 2 =) H; (N;�

0

) j=))

(Lemma 4.6)

i� 9= = j= L(�(X)) ^ I

H

& 8(N;�

0

) (N;�

0

) 2 =) j= �

0

�

d	e

N(X)

H

�

(indu
tion hypothesis)

i� 9= = j= L(�(X)) ^ I

H

& = j=

V

N2L

8X N(X) ! d	e

N(X)

H

i� 9= = j= L(�(X)) ^ I

H

^

V

N2L

8X N(X) ! d	e

N(X)

H

i� j= 9L

1

; : : : ; L

n

L(�(X)) ^ I

H

^

V

N2L

8X N(X) ! d	e

N(X)

H

i� j= �

�

dEG 	e

L(X)

H

�

Finally, H; (L; �) j= EF 	 i� H; (L; �) 6j= AG :	 i� 6j= �

�

dAG :	e

L(X)

H

�

i�

8

j= �

�

dEF 	e

L(X)

H

�

and also H; (L; �) j= AF 	 i� H; (L; �) 6j= EG :	 i�

6j= �

�

dEG :	e

L(X)

H

�

i� j= �

�

dAF 	e

L(X)

H

�

. 2

4.3 Until-Formulas

The Until -operators �EU	 and �AU	 give rise to a slight
ompli
ation of

the dedu
tive model
he
king approa
h des
ribed in this paper. Let us �rst

illustrate their treatment with the help of a spe
ial
ase, namely � being

a
onstraint formula. In order to
he
k a property of the form
EU	 in

state �

0

for the hybrid system H we have to �nd out whether there exists

a run � = �

0

7!

t

0

f

0

�

1

7!

t

1

f

1

�

2

7!

t

2

f

2

� � � su
h that H; (L

i

; f

i

(t)) j= 	 for

some 0 � t � t

i

and for all states \inbetween" the
onstraint
 holds. The

rea
hability theory (together with the initial state) is only helpful in deter-

mining whether su
h a 	 is about to hold. It does not tell us, though, what

happens inbetween. In order to over
ome this problem, we introdu
e the

notion of a
-safe transition. Intuitively,
-safe transitions preserve the
on-

straint
. Now, the set of states rea
hable via
-safe transitions is de�nitely

a subset of the set of rea
hable states. Moreover, if a state with property

	 is rea
hable via
-safe transitions then there exists a pre�x of at least

one run of the hybrid system su
h that ea
h transition within this pre�x is

-safe { whi
h guarantees that the states o

urring in this pre�x have prop-

erty
 { and whi
h ends with a state having property 	. In other words,

8

Note that this \if and only if" holds be
ause �

�

dAG :	e

L(X)

H

�

ontains no free

symbols whatsoever, and therefore is either > or ?.

15

if a state with property 	 is rea
hable via
-safe transitions then
EU	

holds. The other dire
tion holds trivially anyway. Hen
e, what remains to

be done is to des
ribe the rea
hability theory for
-safe transitions. This,

however, is a
tually very simple, for we just have to add
 as an additional

lo
ation invariant for all lo
ations of the hybrid system. For instan
e, the

lo
al rea
hability theory of L then
hanges to

8X L(X) !

8

>

>

>

>

<

>

>

>

>

:

inv(L) ^
 ^

8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ^
[X=X + k

X

L

Æ℄ !

L(X + k

X

L

Æ)) ^

^

T=(L;N)2E

guard(T) ! N(a
t(T;X))

Note that adding this
onstraint to the invariants of all lo
ations ensures

that
 is also preserved for edge-transitions, (L;N) say. Also note, that the

above
hange in the rea
hability theory allows us to des
ribe the operator

EU	 where the interval in whi
h
 is supposed to hold in
ludes the two

interval borders. This might not be very satisfa
tory for many interesting

problems. Thus, if we want to ex
lude the left border, we have to
hange

the lo
al rea
hability theory for L to

8X L(X) !

8

>

>

>

>

<

>

>

>

>

:

inv(L) ^

8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ^
[X=X + k

X

L

Æ℄ !

L(X + k

X

L

Æ)) ^

^

T=(L;N)2E

guard(T) ^
[X=a
t(T;X)℄ ! N(a
t(T;X))

The di�eren
e to the earlier lo
al rea
hability theory is that
 is no longer

for
ed to hold for the initial state, but is guaranteed to hold after time and

edge transitions. Ex
luding the right border of the interval
an be done

by
onsidering (
 _)EU	 instead of
EU	. The latter way to des
ribe

rea
hability theories therefore seems to be the most general one.

For the general
ase, we have to
onsider ICTL formulas of the form

�EU	 where � is not ne
essarily a
onstraint formula. This
ompli
ates

matters again a bit be
ause the additional invariant to hold is d�e

L(X)

H

for

lo
ation L and thus di�ers for ea
h lo
ation.

Definition 4.11

We de�ne the rea
hability theory R

H

(

L

1

; : : : ;

L

n

), where n = jLj, for the

16

hybrid system H under the
onstraints

L

1

; : : : ;

L

n

as:

R

H

(

L

1

; : : : ;

L

n

) =

^

L

i

2L

8X L

i

(X) !

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

inv(L

i

) ^

8Æ (Æ � 0 ^ inv(L

i

)[X=X + k

X

L

i

Æ℄ ^

L

i

[X=X + k

X

L

i

Æ℄) ! L

i

(X + k

X

L

i

Æ) ^

^

T=(L

i

;L

j

)2E

guard(T) ^

L

j

[X=a
t(T;X)℄ !

L

j

(a
t(T;X))

Evidently, by the above De�nition, R

H

= R

H

(>; : : : ;>).

Definition 4.12

The
hara
teristi
 se
ond-order formula asso
iated with the ICTL-formula

�EU	 in lo
ation L for the hybrid system H is de�ned as:

d�EU	e

L(X)

H

= :9L

1

; : : : L

n

8

>

<

>

:

L(X) ^R

H

�

d�e

L

1

(X)

H

; : : : ; d�e

L

n

(X)

H

�

^

^

N2L

8X N(X) ! d	e

N(X)

H

How to des
ribe the operator AU in terms of EU
an be found in [AHH96℄.

5 Se
ond-Order Quanti�er Elimination

So far, we have de�ned how to obtain a se
ond-order
hara
teristi

onstraint

formula from a given veri�
ation problem (a hybrid system with initial state

and a property to be
he
ked). This se
ond-order formula is now to be

proved valid. To this end we make use of the Elimination Theorem [NS95,

NS99, NOS99℄ that allows us to transform a given se
ond-order formula into

an equivalent �rst-order formula if possible.

Notation 5.1

As usual, by �

x

y

we mean � with ea
h x

i

in the sequen
e x repla
ed by

the
orresponding y

i

from the sequen
e y. With �

�

P (�)=	

x

�

�

we refer to

� with every o

urren
e of the predi
ate symbol P repla
ed by the formula

	. The argument sequen
e � here allows us to name the argument list of

the respe
tive o

urren
es.

Theorem 5.2 (Elimination Theorem)

Let � and 	 be two �rst-order formulas whi
h are positive with respe
t to

the predi
ate symbol P . Then

9P

�

8x (P (x) ! �) ^	

�

� 	

h

P (�)=

�

�P (x):�(P)

�

x

�

i

where �P (x):�(P) =

^

i�!

�

i

(>) with �

0

(>) = >;�

n+1

(>) = �(�

n

(>))

17

The proof of this Theorem
an be found in [NS95℄ (but also see [NS99,

NOS99℄). There, in addition, some generalizations and dual forms are ex-

amined. For the purpose of this paper, however, the above form suÆ
es.

Note that evaluating su
h a greatest �xpoint, means to su

essively
ompute

ea
h �

i

(>) until we rea
h one that is entailed by its prede
essor �

i�1

(>).

The monotoni
ity of � with respe
t to P (P o

urs only positively within

�) then guarantees that ea
h further iteration would also be implied by

�

i�1

(>). In fa
t, for simpli
ity, it is often not ne
essary to fully
ompute

ea
h �

i

(>). It suÆ
es to
onsider only those
onjun
ts in �

i�1

(>) that are

not already subsumed by one of its prede
essors.

The above Elimination Theorem is fairly general for it does not take the

spe
ial appearan
e of the rea
hability and inevitability theories into a

ount.

Yet, in many interesting
ases { namely those where a lo
ation predi
ate is

to be eliminated for whi
h no edge transition to itself exists { we
an provide

with a spe
ial
ase of the Elimination Theorem whose appli
ation does not

require the
omputation of �xpoints. This spe
ial
ase is given below.

Corollary 5.3 (Simplifi
ation Lemma)

Suppose that 	
ontains L only positively and that � has no mention of L

at all. Then

9L

�

	 ^ 8X L(X) !

�

inv(L) ^ � ^

8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ! L(X + k

X

L

Æ))

��

,

	

�

L(�) = (inv(L) ^ 8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ! �[X=X + k

X

L

Æ℄))

X

�

�

Proof: By applying the Elimination Theorem. Re
all that � is supposed

to have no mention of L. We are thus able to
ompute the �xpoint of the

right-hand side of the impli
ation sign as:

�

1

(>) = inv(L) ^�

�

2

(>) = �

1

(>) ^ 8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ !

inv(L)[X=X + k

X

L

Æ℄ ^ �[X=X + k

X

L

Æ℄)

= �

1

(>) ^ 8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ! �[X=X + k

X

L

Æ℄)

�

3

(>) = �

2

(>) ^ 8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ !

8Æ

0

(Æ

0

� 0 ^ inv(L)[X=X + k

X

L

Æ + k

X

L

Æ

0

℄ !

�[X=X + k

X

L

Æ + k

X

L

Æ

0

℄))

= �

2

(>) ^ 8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ !

8Æ

0

(Æ

0

� 0 ^ inv(L)[X=X + k

X

L

(Æ + Æ

0

)℄ !

�[X=X + k

X

L

(Æ + Æ

0

)℄))

At this stage it is easy to see that 8X �

2

(>) ! �

3

(>) and therefore we

are done with the �xpoint
omputation and the result (after simpli�
ation)

18

inv(L)^8Æ (Æ � 0^ inv(L)[X=X +k

X

L

Æ℄ ! �[X=X +k

X

L

Æ℄). This �nal result

(the \
omputed" �xpoint) has to be substituted for every o

urren
e within

the formula 	 where the free variables have to be instantiated a

ordingly.

2

The above Lemma is useful be
ause it
an safe us a lot of �xpoint
ompu-

tations. It states that it is almost trivial to eliminate a lo
ation predi
ate

from a (rea
hability or inevitability) theory provided the lo
ation has no

self-loop (�
ontains no L in the preliminaries of the Lemma). Evidently,

appli
ations of the Simpli�
ation Lemma (and also the Elimination The-

orem) usually introdu
e new edges and therefore it is very unlikely that

all eliminations
an be performed only with the help of the above Lemma.

However, it is obvious that many eliminations are just of the above kind.

The purpose of both the Simpli�
ation Lemma and the Elimination The-

orem, is to su

essively eliminate existentially quanti�ed (lo
ation) predi-

ates. I.e., ea
h elimination redu
es the number of lo
ations of the hybrid

system by one. Su
h eliminations result in new properties and new transi-

tions that, in a sense, represent paths through the eliminated lo
ation.

As an illustration let us assume that we have to verify that AG x+y � 10

holds for a hybrid system that
ontains the following sub-system.

_x = 2

_y = 1

x � y

L

1

L

2

L

3

x � y

x = y j x := 0; y := 0

Suppose that we are now about to eliminate lo
ation L

2

. A

ording to the

approa
h presented in this paper this means that we have to
ompute { in

fa
t, �nd a �rst-order equivalent for { the se
ond-order formula

9L

2

2

6

6

6

6

6

6

4

8x; y L

1

(x; y) ! x � y ! L

2

(x; y) ^

8x; y L

2

(x; y) !

8

>

>

>

>

<

>

>

>

>

:

x � y ^

x + y � 10 ^

8Æ (Æ � 0 ^ x + 2Æ � y + Æ !

L

2

(x + 2Æ; y + Æ)) ^

x = y ! L

3

(0; 0)

9

>

>

>

>

=

>

>

>

>

;

3

7

7

7

7

7

7

5

The �ve
onjun
ts of the above se
ond-order formula des
ribe the transition

from L

1

to L

2

, the lo
ation invariant for L

2

, the property to be proved,

the time transition for lo
ation L

2

, and the edge transition from L

2

to L

3

respe
tively.

Now, what we would expe
t as the result of eliminating L

2

? Evidently,

lo
ation L

2

will vanish. And also, we will have to introdu
e a new edge from

19

lo
ation L

1

to lo
ation L

3

whi
h in a sense represents the sub-path through

L

2

. The guard for this new edge should be x � y whi
h is inherited from

the edge between L

1

and L

2

. The dis
rete a
tion for the new edge should be

x := 0; y := 0 whi
h is inherited from the edge between L

2

and L

3

. But this

annot be all, and indeed this is not all that is
omputed by the elimination.

As a
on
rete example suppose that we are in lo
ation L

1

with x = 4 and

y = 5. In the new system, i.e., after eliminating L

2

, we
an see that the

guard of the new edge holds and therefore we
an make a transition to L

3

while resetting both x and y to 0. Moreover, the property to be proved,

namely x + y � 10 is never violated. In the original system, however, we

ould also perform the transition from L

1

, this time with destination L

2

,

though. We
an leave L

2

only when x and y have an equal value, namely 6,

whi
h is rea
hed after exa
tly one time unit. After leaving L

2

we rea
h L

3

with both x and y reset to 0. But note, in the original system the property

to be proved (x + y � 10) has been violated in lo
ation L

2

, e.g., when both

data variables had the value 6.

It is thus not suÆ
ient to merely add the new edge; we also have to �nd the

ne
essary and suÆ
ient
ondition on the data variables in L

1

su
h that the

property to be proved
annot be violated within lo
ation L

2

. And indeed,

this is what the Elimination Theorem (and also the Simpli�
ation Lemma

in this
ase) allows us to
ompute. A

ording to the Simpli�
ation Lemma

and some further simpli�
ations based on variable eliminations in quanti-

�ed
onstraint formulas we
an see that the above se
ond-order formula is

equivalent to

8x; y L

1

(x; y) ! x � y ! L

3

(0; 0)

8x; y L

1

(x; y) ! x � y ! 2y � x + 5

The �rst formula des
ribes just the new edge to be introdu
ed. The se
ond

formula, however, tells us about the ne
essary and suÆ
ient
ondition on

the data variables for lo
ation L

1

su
h that it would be impossible to violate

x + y � 10 in lo
ation L

2

.

Thus, what we a
hieved by eliminating lo
ation L

2

is, that we now
an swit
h

to the somewhat simpler system we obtain by repla
ing the sub-system from

above by

L

1

L

3

x � y j x := 0; y := 0

For this simpli�ed system we then have to show that AG x+y � 10 (inherited

from the original problem) and also that x � y ! 2y � x + 5 for lo
ation

L

1

.

20

6 Examples

6.1 The Initial Simple Example

Re
all the hybrid system of page 6 for whi
h we wanted to prove that

AG 2z � y. A

ording to Example 4.8 on page 12 this means to
he
k

the validity of

9L;N

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

L(0; 0; 0)

8x; y; z L(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z L(x; y; z) ! x = 1 ! N(0; y; z)

8x; y; z L(x; y; z) ! 8Æ Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z !

L(x + Æ; y + Æ; z)

8x; y; z N(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z N(x; y; z) ! L(0; y; z)

8x; y; z N(x; y; z) ! 8Æ (Æ � 0 ^ x + Æ � 1 ^

0 � y + Æ ^ 0 � z + Æ) !

N(x + Æ; y + Æ; z + Æ)

8x; y; z L(x; y; z) ! 2z � y

8x; y; z N(x; y; z) ! 2z � y

I.e., we apply the Simpli�
ation Lemma and/or the Elimination Theorem

su

essively to the existentially quanti�ed lo
ation predi
ates L and N . For

instan
e, applying the Simpli�
ation Lemma to the part of the above se
ond-

order formula that is
on
erned with the lo
ation predi
ate L, i.e.,

9L

2

6

6

6

6

6

6

4

L(0; 0; 0) ^

8x; y; z N(x; y; z) ! L(0; y; z) ^

8x; y; z L(x; y; z) !

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^ 2z � y

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z !

L(x + Æ; y + Æ; z))

x = 1 ! N(0; y; z)

results in (after some easy simpli�
ations, e.g. with Fourier's algorithm)

N(0; 1; 0) ^

8x; y; z N(x; y; z) ! 0 � y ^ 0 � z ^ 2z � y ^N(0; y + 1; z):

It therefore remains to eliminate N in the resulting formula as given below.

9N

2

6

6

6

6

4

N(0; 1; 0) ^

8x; y; z N(x; y; z) !

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^ 2z � y ^

N(0; y + 1; z) ^

8Æ 0 � Æ � 1� x ^ 0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ)

Interestingly, this �rst elimination step resulted in a se
ond-order formula

whi
h we
ould equally obtain from the attempt to prove AG 2z � y for the

hybrid system

21

_x = 1 x � 1

_y = 1 0 � y

_z = 1 0 � z

N

x

:

=

0

y

:

=

1

;

z

:

=

0

> j x := 0; y := y + 1

In a sense, the new arrows { one for the initial situation and one des
ribing

a loop from N to itself { take over the responsibility of the old lo
ation L.

Now we have to eliminate the remaining se
ond-order quanti�
ation from

the above formula. This time, however, we
annot apply the Simpli�
ation

Lemma for the lo
ation N has got a self-loop after eliminating L. We

therefore have to pro
eed with the more general Elimination Theorem. I.e.,

we have to evaluate �N(x; y; z):�(N) where

�(N) =

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^ 2z � y ^

N(0; y + 1; z) ^

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ))

We do so by su

essively
omputing the �

i

(>).

�

0

(>) = >

�

1

(>) = x � 1 ^ 0 � y ^ 0 � z ^ 2z � y

�

2

(>) = �

1

(>) ^

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ ! 2z + Æ � y)

= �

1

(>) ^ 1 + 2z � x + y

�

3

(>) = �

2

(>) ^

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

1 + 2(z + Æ) � x + y + 2Æ)

= �

2

(>)

Hen
e, �N(x; y; z):�(N) � x � 1 ^ 0 � y ^ 0 � z ^ 1 + 2z � x + y and a

�nal instantiation with the values 0; 1; 0 for the variables x; y; z respe
tively

results in

0 � 1 ^ 0 � 1 ^ 0 � 0 ^ 1 + 0 � 0 + 1 � >

Thus, we have �nally proved that the original hybrid system indeed satis�es

AG 2z � y.

Now, let us
hange the property to be proved to AG 3z � y, i.e., we

onsider the same hybrid system as before (on page 6) but try to prove a

property that does not hold.

22

Then the elimination of L does not make a real di�eren
e, we just have

to substitute a 2 with a 3 in the �nal result. For the elimination of N ,

however, things
hange drasti
ally. We have to
ompute �N(x; y; z):�(N)

where

�(N) =

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^ 3z � y ^

N(0; y + 1; z) ^

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ))

The various �

i

(>) then result in

�

0

(>) = >

�

1

(>) = x � 1 ^ 0 � y ^ 0 � z ^ 3z � y

�

2

(>) = �

1

(>) ^ 8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

3z + 3Æ � y + Æ)

= �

1

(>) ^ 2 + 3z � 2x + y

Now, note that we ultimately have to instantiate the variables x, y,

and z in the �xpoint result by 0, 1, and 0 respe
tively. Also note, that

�N(x; y; z):�(N) ! �

i

(>) for ea
h i. If we take a look at �

2

(>) we observe

that its instantiation results in? and therefore we know that �N(x; y; z):�(N)

must be equivalent to ?, i.e., the property does not hold. It thus makes sense

to
he
k ea
h �

i

(>) after it has been generated for instantiation, for this

might lead to
onsiderable simpli�
ations.

As a �nal little variant of the example let us ex
hange 2z � y with

az � y, i.e., we introdu
e a parameter a to the property to be proved.

Again, the elimination of L does not make a real di�eren
e to the earlier

ases, we just have to substitute a 2 with an a in the elimination result. And

again, for the elimination of N things
hange indeed. We have to
ompute

�N(x; y; z):�(N) where

�(N) =

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^ az � y ^

N(0; y + 1; z) ^

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ))

The various �

i

(>) then result in

�

0

(>) = >

�

1

(>) = x � 1 ^ 0 � y ^ 0 � z ^ az � y

�

2

(>) = �

1

(>) ^ 8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

3z + 3Æ � y + Æ)

= �

1

(>) ^ a� 1 + 3z � y + (a� 1)x

23

Now, note that we ultimately have to instantiate the variables x, y,

and z in the �xpoint result by 0, 1, and 0 respe
tively. Also note, that

�N(x; y; z):�(N) ! �

i

(>) for ea
h i. If we take a look at �

2

(>) we ob-

serve that its instantiation results in a � 2 and therefore we know that

�N(x; y; z):�(N) at least implies a � 2. By taking this additional knowl-

edge into a

ount, the �xpoint
omputation terminates with just this result

a � 2. We therefore have shown that the example hybrid system has prop-

erty AG az � y if and only if the parameter a has a value less than or equal

to two.

6.2 The Water Level Monitor

The hybrid system is given as follows:

_x = 1

_y = 1

y � 10

_x = 1

_y = 1

x � 2

_x = 1

_y = �2

x � 2

_x = 1

_y = �2

y � 5

Zero One

Three
Two

y

:

=

1

y = 10 j x := 0

x = 2

y = 5 j x := 0

x = 2

It is to be
he
ked whether the water level (denoted by the data variable y)

always remains between 1 and 12, i.e., we have to prove the ICTL property

AG (1 � y ^ y � 12). A

ording to the dedu
tive model
he
king approa
h

presented in this paper this means to prove the validity of the se
ond-order

24

formula

9

Zero

One

Two

Three

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

Zero(x; 1)

8x; y Zero(x; y) !

8

>

>

<

>

>

:

y � 10 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y + Æ � 10 !

Zero(x + Æ; y + Æ)

y = 10 ! One(0; y)

8x; y One(x; y) !

8

>

>

<

>

>

:

x � 2 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ x + Æ � 2 !

One(x + Æ; y + Æ)

x = 2 ! Two(x; y)

8x; y Two(x; y) !

8

>

>

<

>

>

:

y � 5 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y � 2Æ � 5 !

Two(x + Æ; y � 2Æ)

y = 5 ! Three(0; y)

8x; y Three(x; y) !

8

>

>

<

>

>

:

x � 2 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ x + Æ � 2 !

Three(x + Æ; y � 2Æ)

x = 2 ! Zero(x; y)

A

ording to Lemma 5.3 this is equivalent to (by eliminating lo
ation One)

9

Zero

Two

Three

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

Zero(x; 1)

8x; y Zero(x; y) !

8

>

>

<

>

>

:

y � 10 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y + Æ � 10 !

Zero(x + Æ; y + Æ)

y = 10 ! Two(2; y + 2)

8x; y Two(x; y) !

8

>

>

<

>

>

:

y � 5 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y � 2Æ � 5 !

Two(x + Æ; y � 2Æ)

y = 5 ! Three(0; y)

8x; y Three(x; y) !

8

>

>

<

>

>

:

x � 2 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ x + Æ � 2 !

Three(x + Æ; y � 2Æ)

x = 2 ! Zero(x; y)

Note that this is exa
tly the formula we would have obtained from attempt-

ing to prove AG (1 � y ^ y � 12) for the hybrid system

25

_x = 1

_y = 1

y � 10

_x = 1

_y = �2

x � 2

_x = 1

_y = �2

y � 5

Zero

Three
Two

y

:

=

1

y

=

1

0

j

x

:

=

2

;

y

:

=

y

+

2

y = 5 j x := 0

x = 2

Again by Lemma 5.3 this is equivalent to (by eliminating lo
ation Two)

9Zero;Three

0

B

B

B

B

B

B

B

B

B

B

B

B

�

Zero(x; 1)

8x; y Zero(x; y) !

8

>

>

<

>

>

:

y � 10 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y + Æ � 10 !

Zero(x + Æ; y + Æ)

y = 10 ! Three(0; 5)

8x; y Three(x; y) !

8

>

>

<

>

>

:

x � 2 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ x + Æ � 2 !

Three(x + Æ; y � 2Æ)

x = 2 ! Zero(x; y)

This se
ond-order formula would have equally been obtained by proving

AG (1 � y ^ y � 12) for the hybrid system

_x = 1

_y = 1

y � 10

_x = 1

_y = �2

x � 2

Zero

Three

y

:

=

1

y
=

10
j x

:=

0; y
:=

5

x = 2

26

A �nal appli
ation of Lemma 5.3 then leads to (after eliminating lo
ation

Three)

9Zero

0

B

B

B

B

�

Zero(x; 1)

8x; y Zero(x; y) !

8

>

>

<

>

>

:

y � 10 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y + Æ � 10 !

Zero(x + Æ; y + Æ)

y = 10 ! Zero(2; 1)

Again, this would be exa
tly the formula we would get from the attempt to

prove AG (1 � y ^ y � 12) for some simpler hybrid system, namely

_x = 1

_y = 1

y � 10

Zero

y

:

=

1

y = 10 j x := 2; y := 1

This �nal se
ond-order formula trivially redu
es to >, and that in fa
t again

with the Simpli�
ation Lemma alone (sin
e the self-loop is subsumed by the

initial state), and so the desired property is proved valid.

7 Generalizations

7.1 Parameterization

The
hara
teristi
 se
ond-order formula we obtain from an ICTL-formula,

a hybrid system and a ground initial state has no free symbols whatsoever

unless the formula, the system, or the initial state are parameterized with

onstants over the reals. In this
ase the
hara
teristi
 formula represents

a
onstraint on these parameters. This
onstraint is the ne

essary and

suÆ
ient
ondition on the parameters for the ICTL-formula to hold. As an

example re
all the parameterized system property from page 23.

7.2 Approximations

The �xpoint
omputations do not ne
essarily terminate in general. In the

standard rea
hability analysis of hybrid systems one therefore often
onsid-

ers
ertain more or less stri
t approximations of the set of rea
hable sets.

Evidently su
h approximations are also possible for the approa
h presented

here. For instan
e, one might
onsider the
onvex hull of the
onstraint

formulas that arise from the elimination of some of the lo
ations. Also one

might think of arti�
ially terminating the �xpoint
omputations after a
er-

tain amount of iterations. In both
ases we end up in de�ntions for the

27

lo
ation to be eliminated that are unne
essarily \big". Similarly, there ex-

ist possibilities to approximate \smaller"
andidates for the lo
ation to be

eliminated. For further details the reader is refered to the relevant literature.

7.3 Re
tangular Hybrid Systems

In this paper the approa
h is des
ribed merely in terms of linear hybrid

systems, i.e. data variables are assumed to
hange their value by a
ertain

onstant amount (whi
h might vary from data variable to data variable)

per time unit. Nevertheless, the whole approa
h also works for re
tangular

hybrid systems, i.e. for systems within whi
h the
hange in the data variables

is only des
ribed by some interval over the reals. For instan
e, re
all the

de�nition of the rea
hability theory for some hybrid system (De�nition 4.2).

One part of it
onsists of the
lause 8Æ (Æ � 0 ^ inv(L)[x=x + k

x

L

Æ℄ !

L(x + k

x

L

Æ)), where k

x

L

denotes the real number that des
ribes the
hange

of x in L within one time unit. If, however, we are given an interval, say

[a; b℄, rather than a �xed number we have to
hange the
orresponding part

of the rea
hability theory to 8Æ; � (Æ � 0 ^ a � � � b ^ inv(L)[x=x + �Æ℄ !

L(x + �Æ)). The non-linearity
an easily be resolved and so we �nally end

up with linear formulas again. The Railroad-Gate-Controller from [AHH96℄

ertainly is one of the most famous examples of a re
tangular hybrid system.

8 Experimental Results

There exists a prototype implementation of the Elimination Approa
h (for

proving safety-properties) written in Si
stus-Prolog with the CLP(Q,R)-

library for
onstraint handling. Brie
y, the overall pro
edure implemented

works as follows: (i) read the problem �le, (ii)
ompute the
ompound au-

tomaton (parameters are additional arguments), (iii) add the property to

be proved (and also delete some of the time transitions in
ase this is re-

quired from some \urgent" or \as-soon-as-possible"-semanti
s), (iv) sele
t

one of the initial lo
ations, (v) eliminate the sele
ted lo
ation (thus possibly

introdu
ing new inital lo
ations), (vi) if �nished or trivial then stop; oth-

erwise pro
eed with step (iv). The approa
h of sele
ting initial lo
ations

for elimination has the obvious advantage that it will never be attempted

to eliminate an unrea
hable lo
ation. On the other hand, su
h a strategy

takes away mu
h of the freedom to
hoose whatever lo
ation we want for

elimination. Another feature of the implementation is that it allows us to

abstra
t from (some of the lo
al) lo
ations of a
ompound automaton. This

makes it possible to perform a (forward or ba
kward) rea
hability analysis

(see below) whi
h allows for a thorough
omparison between rea
hability

and elimination approa
hes.

Of major interest was the question whether there
an be anything better

(at least for safety properties) than forward rea
hability provided it at all

28

terminates. After all, within forward rea
hability we
ompute exa
tly the

set of rea
hable states; and in fa
t we need to know about all the rea
h-

able states for proving safety properties. Thus, forward rea
hability does

not
ompute any redundant information. However, it sometimes performs

redundant
omputations. This
an happen whenever a rea
hability analy-

sis requires more than one pass through the rea
hable lo
ations before it

terminates. Systems for whi
h a single pass is suÆ
ient are probably best

examined by forward rea
hability.

We
laim that the Elimination Approa
h presented in this paper
an

help us to avoid su
h redundant
omputations. This is the
ase for instan
e

for the famous \audio-proto
ol"-example. For other, unfortunately rather

trivial systems like the \Leaking Gas Burner" or the \Billiards"-example,

the Elimination Approa
h showed a slightly better behavior than standard

rea
hability analysis. However, in su
h
ases, where safety properties
an

be proved in millise
onds anyway, this
an hardly be
alled \eviden
e".

The la
k of non-trivial hybrid system in the literature that require several

passes through some of their lo
ations made us
ompose our own examples.

They are designed as simple as possible su
h that they may serve to illustrate

the e�e
t of the Elimination Approa
h
ompared to rea
hability analysis

methods. Some su
h examples are given below.

8.1 Simulating Rea
hability Analysis

The Elimination Approa
h as des
ribed in this paper assumes that a pred-

i
ate symbol is introdu
ed for ea
h of the lo
ations of the (
ompound) au-

tomaton. This method therefore is neither a forward nor a ba
kward analysis

approa
h. However, if we put these lo
ation names into the argument list

and introdu
e a single and unique dummy predi
ate symbol instead that

repla
es ea
h of the older lo
ation names then it be
omes obvious that the

Elimination Approa
h { by eliminating the new dummy predi
ate { per-

forms a ba
kward rea
hability analysis. Also, if we perform this lo
ation

abstra
tion but eliminate with the dual form of the Elimination Theorem,

i.e., let P o

ur only negatively in � and in 	 then

9P [8x (P (x) _ �) ^	℄ � 	

h

P (�)=

�

�P (x):�

�

x

�

i

In this
ase a forward rea
hability analysis is performed. For
ompound

systems one
an even perform something like a \mixed" approa
h by ab-

stra
ting from only some of the lo
al systems.

8.2 Some Further Examples

8.2.1 Railroad-Gate-Controller

This example is taken from [AHH96℄. It des
ribes the
ontrol system for

a railroad gate that has to guarantee that the gate is
losed whenever a

29

train is near and that it is open in
ases where it is safe to be open. The

whole system
onsists of three
omponent systems: a train, a gate, and

the
ontroller with three, four and again three lo
ations respe
tively. This

suggests that the
omposed system has at most 36 lo
ations. However, this

number is restri
ted by the syn
hronisation labels that forbid
ertain edge

ompositions. As it turns out, the
omposed automaton has 22 lo
ations,

but some of the guards denote what we
all impossible guards, i.e.,
onstraint

formulas that will never be
ome true be
ause of the sour
e lo
ation invariant.

Su
h impossible guards usually
annot be dis
overed synta
ti
ally, but they

obviously may redu
e the number of rea
hable lo
ations

9

onsiderably. In

fa
t, this railroad-gate-
ontroller example has only 7 rea
hable lo
ations and

there is only little non-determinism. This makes the example fairly trivial,

despite it looks rather
ompli
ated at the �rst glan
e.

Both the Elimination Approa
h and forward rea
hability analysis prove

the safety requirement AG (x � 10 ! Gate.
losed) in about 0:5 se
onds on

a 333 MHz UltraSPARC. The dual version of the Elimination Approa
h and

ba
kward rea
hability analysis require 1:0 se
. and 1:3 se
. respe
tively.

10

8.2.2 A Silly Multiplier

This is an example where three positive numbers a, b, and
 are multiplied

and the �nal produ
t is stored in the data variable p. The multipli
ation is

performed by su

essively adding 1 to p, similar to the nested for-loop

for (w:=0; w<
; w++)

for (v:=0; v<b; v++)

for (u:=0; u<a; u++) fp:=p+1g

9

Noti
e the di�eren
e between rea
hable lo
ations and rea
hable states. A lo
ation is

rea
hable if there exists a rea
hable state that has this very lo
ation as its �rst
omponent.

If a lo
ation is not rea
hable then there exists no rea
hable state with this lo
ation.

10

Interestingly, forward rea
hability requires twi
e as many iterations as ba
kward rea
h-

ability, but also it is about twi
e as fast. This is explained by the fa
t that an iteration step

in the ba
kward analysis is far more
ompli
ated than an iteration step during forward

analysis. It has to take mu
h more states, even impossible ones, into a

ount.

30

_x = 1

_p = 1

_u = 0

_v = 0

_w = 0

x � 1

_x = 1

_p = 0

_u = 1

_v = 0

_w = 0

x � 1

_x = 1

_p = 0

_u = 0

_v = 1

_w = 0

x � 1

_x = 1

_p = 0

_u = 0

_v = 0

_w = 1

x � 1

x = 1

x := 0

x = 1

u < a

x := 0

x = 1

u = a

x := 0

x = 1

v = b

x := 0

x

=

1

v

<

b

x

:

=

0

u

:

=

0

F

x = 1

w =

x = 1

w <

x := 0

u := 0

v := 0

It is to be shown that the lo
ation F
an be rea
hed { after all, as soon

as F is rea
hed, the data variable p
ontains the multipli
ation result we

are interested in. (Ba
kward or forward) rea
hability analysis in a sense

simulates the behavior of the multiplier. I.e., sin
e this system is fully de-

terministi
, it takes a walk through the whole
omputation. Evidently, this

is very time
onsuming even if we only attempted to
ompute 10� 10� 10;

it takes approximately 8000 iterations.

Now,
ompare this with the Elimination Approa
h.

11

(In the automata

below irrelevant information within the lo
ations or at the transitions are

omitted for readability)

The Simpli�
ation Lemma allows us to eliminate the top left lo
ation in

one strike, resulting in

_x = 1

_p = 0

_u = 1

_v = 0

_w = 0

x � 1

_x = 1

_p = 0

_u = 0

_v = 1

_w = 0

x � 1

_x = 1

_p = 0

_u = 0

_v = 0

_w = 1

x � 1

x

=

1

;

u

<

a

;

x

:

=

0

;

p

:

=

p

+

1

x = 1; u = a; x := 0

x = 1

v = b

x := 0

x = 1; v < b

x := 0; u := 0; p := p + 1

F

x = 1

w =

x

=

1

;

w

<

x

:

=

0

;

u

:

=

0

;

v

:

=

0

;

p

:

=

p

+

1

p

:

=

1

11

The prototype implementation of the Elimination Approa
h is designed for safety

properties only. Thus, in order to prove that lo
ation F
an be rea
hed we have to show

that it is not the
ase that lo
ation F will never be rea
hed.

31

As the next
anditate for a lo
ation elimination the prototype implementa-

tion
hooses the bottom left lo
ation and after approx. 2a iterations it ends

up with

_x = 1

_p = 0

_v = 1

_w = 0

x � 1

_x = 1

_p = 0

_v = 0

_w = 1

x � 1

x = 1; v = b

x := 0

x = 1; w <

x := 0; p := p + a; v := 0

x = 1; v < b

x := 0; p := p + a

F

x = 1

w =

p := a

The next step is to eliminate the new bottom lo
ation. After about 2b

iterations it rea
hes

_x = 1

_p = 0

_w = 1

x � 1

x = 1; w <

x := 0; p := p + a� b

F

x = 1

w =

p

:

=

a

�

b

Now, in a �nal elimination the system attempts to get rid of the left lo
ation.

This requires another 2
 iterations and provides us with this �nal pi
ture

F

p := a� b�

In this remaining trivial system there is only one lo
ation whi
h, in parti
-

ular, is also the initial lo
ation and whi
h therefore is trivially rea
hable.

The attempt to prove that F will never be rea
hed thus fails. Therefore

The lo
ation F
an be rea
hed and, while entering it, the data variable p

will
ontain the produ
t of the positive numbers a, b, and
.

As for a
on
rete example: in order to
ompute the produ
t 10�10�10

the prototype implementation of the Elimination Approa
h requires about

0:8 se
onds on a 333 MHz UltraSpar
, whereas forward rea
hability analysis

(utilizing the same implementation) needs some 380 se
onds. The more

sphisti
ated symboli
 model
he
ker HyTe
h, version 1.04, required some

12.3 se
onds on the same ma
hine (forward rea
hability).

32

8.2.3 A Long Loop

The following example again demonstrates the e�e
t on long loops. In
on-

trast to the multiplier example, however, the long loop is not inherent in the

system; it
omes from the property to be proved.

_x = 1

_u = 1

_v = 1

_w = 1

x � 1

_x = 1

_u = 1

_v = 0

_w = 0

x � 2

_x = 1

_u = 1

_v = 1

_w = 0

x := 0

x

�

1

j

x

:

=

0

x

�

2

j

x

:

=

0

x; u; v; w := 0

Suppose that, for some reason, we want to show that AG (u � 154 !

5:9 � w � u + v). Although the system is fairly simple, the property to be

proved requires a rea
hability analysis to somehow (ba
kward) simulate the

system over a rather long period of time. In fa
t, forward rea
hability does

not terminate within a reasonable amount of time and ba
kward rea
hability

requires some 95 se
onds on a 333 MHz UltraSpar
. Unfortunately, HyTe
h

version 1.04, the Berkeley symboli
 model
he
ker for embedded systems

runs into a library over
ow error after about 60 se
onds.

The implementation of the Elimination Approa
h, on the other hand,

�rst eliminates the two top lo
ations within a fra
tion of a se
ond (this

requires only the Simpli�
ation Lemma) and, as an intermediate result,

omes up with a system that
onsists of merely one remaining lo
ation that

has a transition that leads to itself. It therefore has to be eliminated with

the Elimination Theorem and the implemented system does so in about 7.5

se
onds on a 333 MHz UltraSpar
.

8.2.4 Where Rea
hability Fails

The parti
ularity about the next example is that it
ontains an \impossible"

lo
ation, i.e., one of the lo
ations { the bottom one { is unrea
hable be
ause

the guard (y = 2) of the transition that may lead to this very lo
ation
an

impossibly be
ome true.

33

_x = 1

_y = 1

x � 1

_x = 1

_y = 1

x � 1

_x = 1

_y = 1

x � 1

_x = 1

_y = 1

x � 1

x

:

=

0

y

=

2

x := 0

x := 0; y := 0

x := 0

x := 0; y := y � 1

x

:

=

0

;

y

:

=

0

In a sense, forward rea
hability analysis dete
ts this impossible transition,

although rather indire
tly, for it never tries to
ompute states whi
h involve

this lo
ation. Nevertheless, forward rea
hability does not terminate, sin
e it

derives more and more new rea
hable states that involve the two rightmost

lo
ations. At the �rst glan
e, ba
kward rea
hability might have a better

han
e. Suppose we were about to prove that x � y is an overall invariant

of the system. If there were not the bottom lo
ation, ba
kward rea
hability

would have no problem to dete
t that the invariant indeed holds. However,

this invariant does not hold for the bottom lo
ation and the only reason why

this is non-
riti
al for the whole system is the mere fa
t that this lo
ation

is not rea
hable anyway. It is thus simply not ne
essary to try and prove

the invariant for this very lo
ation. However, ba
kward rea
hability
annot

�nd out by itself that there is an impossible transition and therefore neither

terminates.

Now, what does the Elimination Approa
h (or a
tually its prototype

implementation) do with this example? After about 0:1 se
onds (on a 333

MHz UltraSpar
) it has eliminated the top three lo
ations and ends up with

the remaining bottom lo
ation, however, without any newly generated inital

transition. This means that there exists a trivial model for the remaining

set of formulas, namely the one that assigns ? (false) to the remaining

lo
ation predi
ate, and the system terminates with su

ess. The Elimination

Approa
h thus allows us to solve this problem in a tiny fra
tion of a se
ond.

8.3 Final Con
lusion

The Elimination Approa
h has been tested on quite a lot of examples taken

from the relevant literature, the various veri�er distributions, and also self-

made. Some of them are small and trivial like the Water Level Monitor,

or the Leaking Gas Burner. Unfortunately, it seems that almost all non-

trivial examples that
an be found in the literature are designed su
h that

34

a forward rea
hability analysis terminates after a single run through the

rea
hable lo
ations. Only those standard examples for whi
h the properties

to be proved for
e a rea
hability analysis to travel several (even many) times

through the rea
hable lo
ations showed how valuable the Elimination Ap-

proa
h
an be. For instan
e, take the Billiards example from [ACH

+

95℄ and

modify the movement of the white ball su
h that it is pushed almost ver-

ti
ally (or almost horizonti
ally). Then any rea
hability analysis will have

to perform many iterations through the �xpoint
omputation (one for ea
h

boun
e) and it will take quite some time to
ome up with the desired result.

Two of the self-made examples from above are also along these lines. Both

the Silly Multiplier and the Long Lasting Loop require many iterations in

a rea
hability analysis. The Elimination Approa
h, however, is insensitive

to this fa
t. It simply eliminates the involved lo
ations one by one and

therefore never has to visit these lo
ations again.

Referen
es

[ABL97℄ Lu
a A
eto, Augusto Burgue~no, and Kim G. Larsen. Model

he
king via rea
hability testing for timed automata. BRICS

Report Series RS-97-29, BRICS, Department of Computer S
i-

en
e, University of Aarhus, 1997.

[ACD90℄ R. Alur, C. Cour
oubetis, and D. L. Dill. Model
he
king for

real-time systems. In Pro
eedings of the 5th Annual Symposium

on Logi
 in Computer S
ien
e, pages 414{425, 1990.

[ACH

+

95℄ R. Alur, C. Cour
oubetis, N. Halbwa
hs, T. A. Henzinger, P.-

H. Ho, X. Ni
ollin, A. Olivero, J. Sifaksi, and S. Yovine. The

algorithmi
 analysis of hybrid systems. Theoreti
al Computer

S
ien
e, 138:3{34, 1995.

[ACHH93℄ R. Alur, C. Cour
oubetis, T. A. Henzinger, and P.-H. Ho. Hybrid

automata: An algorithmi
 approa
h to the spe
i�
ation and ver-

i�
ation of hybrid systems. In R. L. Grossman, A. Nerode, A. P.

Ravn, and H. Ris
hel, editors, Hybrid Systems, pages 209{229.

Springer Verlag, Le
ture Notes in Computer S
ien
e, vol. 736,

1993.

[AD94℄ R. Alur and D. L. Dill. A theory of timed automata. Theoreti
al

Computer S
ien
e, 126:183{235, 1994.

[AH92℄ R. Alur and T. A. Henzinger. Logi
s and models of real-time:

A survey. In J.W. de Bakker, K. Huizing, W.-P. de Roever, and

G. Rozenberg, editors, Real Time: Theory in Pra
ti
e, pages

74{106. Springer Verlag, New York, LNCS 600, 1992.

35

[AHH96℄ Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automati

symboli
 veri�
ation of embedded systems. IEEE Transa
tions

on Software Engineering, 22(3):181{201, 1996.

[AHS96℄ R. Alur, T. A. Henzinger, and E. Sontag, editors. Hybrid Systems

III. Le
ture Notes in Computer S
ien
e, Springer Verlag, 1996.

[ANKS95℄ P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors. Hy-

brid Systems II. Le
ture Notes in Computer S
ien
e, vol. 999,

Springer Verlag, 1995.

[CE81℄ E. M. Clarke and E. A. Emerson. Design and synthesis of syn-

hronization skeletons using bran
hing-time temporal logi
. In

Workshop Logi
 of Programs. Springer Verlag, Le
ture Notes in

Computer S
ien
e, vol. 131, 1981.

[CES86℄ E. M. Clarke, , E. A. Emerson, and A. P. Sisla. Automati
 ver-

i�
ation of �nite-state
on
urrent systems using temporal logi

spe
i�
ations. ACM Trans. Programming Languages and Sys-

tems, 8(2):244{263, 1986.

[CHR91℄ Zhao Chao
hen, C. A. R. Hoare, and Anders P. Ravn. A
al
ulus

of durations. Information Pro
essing Letters, 40:269{276, 1991.

[EMSS90℄ E. A. Emerson, A. Mok, A. P. Sistla, and J. Srinivasan. Quan-

titative temporal reasoning. In CAV 90: Computer Aided Ver-

i�
ation, pages 163{145. Le
ture Notes in Computer S
ien
e,

vol. 531, Springer Verlag, New York, 1990.

[GH90℄ Dov Gabbay and I.M. Hodkinson. An axiomatization of the tem-

poral logi
 with until and sin
e over the real numbers. Journal

of Logi
 and Computation, 1(2):229{260, 1990.

[GNRR93℄ R. L. Grossman, A. Nerode, A. P. Ravn, and H. Ris
hel, editors.

Hybrid Systems. Springer Verlag, Le
ture Notes in Computer

S
ien
e, vol. 736, 1993.

[Hen91℄ T. A. Henzinger. The Temporal Spe
i�
ation and Veri�
ation of

Real-Time Systems. PhD thesis, Stanford University, Stanford,

Ca., 1991.

[Hen95℄ T. A. Henzinger. Hybrid automata with �nite bisimulations.

In ICALP 95: Automata, Languages, and Programming, pages

324{335. Springer Verlag, Le
ture Notes in Computer S
ien
e,

vol. 944, 1995.

[Hen96℄ T. A. Henzinger. The theory of hybrid automata. In Pro
eedings

of the 11th LICS, pages 278{292. IEEE Comp. So
. Press, 1996.

36

[HNSY92℄ T. A. Henzinger, X. Ni
ollin, J. Sifakis, and S. Yovine. Symboli

model
he
king for real-time systems. In Pro
eedings of the 7th

Annual Symposium on Logi
 in Computer S
ien
e, pages 394{

406. IEEE Computer So
iety Press, New York, 1992.

[Ho95℄ Pei-Hsin Ho. Automati
 Analysis of Hybrid Systems. PhD thesis,

Cornell University, 1995.

[Kop96℄ P. Kopke. The Theory of Re
tangular Hybrid Systems. PhD

thesis, Cornell University, 1996.

[LLW95℄ Fran�
ois Laroussinie, Kim G. Larsen, and Carsten Weise. From

timed automata to logi
 { and ba
k. BRICS Report Series RS-

95-2, BRICS, Department of Computer S
ien
e, University of

Aarhus, 1995.

[MP92℄ Z. Manna and A. Pnueli. The Temporal Logi
 of Rea
tive and

Con
urrent Systems: Spe
i�
ation. Springer Verlag, New York,

1992.

[MW84℄ Z. Manna and P. Wolper. Synthesis of
ommuni
ating pro
esses

from temporal logi
 spe
i�
ations. ACM Trans. Prog. Lan. Syst.,

6(1):68{93, 1984.

[Non95℄ Andreas Nonnengart. A Resolution-Based Cal
ulus for Temporal

Logi
s. PhD thesis, Universit�at des Saarlandes, Saarbr�u
ken,

Germany, De
ember 1995.

[Non96℄ Andreas Nonnengart. Resolution-based
al
uli for modal and

temporal logi
s. In Slaney M
Robbie, editor, Pro
eedings of the

13th CADE, pages 598{612. Springer Verlag, LNAI 1104, 1996.

[NOS99℄ Andreas Nonnengart, Hans J�urgen Ohlba
h, and Andrzej Sza las.

Elimination of predi
ate quanti�ers. In Hans J�urgen Ohlba
h

and Uwe Reyle, editors, Logi
, Language and Reasoning { Es-

says in Honour of Dov Gabbay, page ??? Kluwer, Dordre
ht,

Netherlands, 1999. ISBN: 0-7923-5687-X.

[NS95℄ Andreas Nonnengart and Andrzej Sza las. A �xpoint ap-

proa
h to se
ond-order quanti�er elimination with appli
a-

tions to
orresponden
e theory. Te
hni
al Report MPI-I-95-2-

007, Max-Plan
k-Institute for Computer S
ien
e, Saarbr�u
ken,

Germany, Mar
h 1995. Available at: http://www.mpi-

sb.mpg.de/�nonnenga.

[NS99℄ Andreas Nonnengart and Andrzej Szalas. A �xpoint approa
h

to se
ond-order quanti�er elimination with appli
ations to
or-

responden
e theory. in: [Or l99℄, 1999.

37

[OL82℄ J. S. Owi
ki and L. Lamport. Proving liveness properties of

on
urrent programs. ACM Trans. Prog. Lan. Syst., 4(3):455{

495, 1982.

[Or l99℄ Ewa Or lowska, editor. Logi
 at Work: Essays Dedi
ated to the

Memory of Helena Rasiowa, volume 24 of Studies in Fuzziness

and Soft Computing. Physi
a-Verlag,
/o Springer Verlag, 1999.

ISBN: 3-7908-1164-5.

[PH88℄ A. Pnueli and E. Harel. Appli
ations of temporal logi
 to the

spe
i�
ation of real-time systems. In Formal Te
hniques in Real-

Time and Fault-Tolerant Systems, pages 84{93. Le
ture Notes in

Computer S
ien
e, vol. 331, Springer Verlag, New York, 1988.

[Pnu77℄ A. Pnueli. The temporal logi
 of programs. In Pro
eedings of the

18th Annual Symposium on Foundations of Computer S
ien
e,

pages 46{57. IEEE Computer So
iety Press, New York, 1977.

[Sha93℄ N. Shankar. Veri�
ation of real-time systems using PVS. In

Costas Cour
oubetis, editor, Pro
eedings of the CAV '93, pages

280{291. Springer Verlag, LNCS 697, 1993.

[Sis85℄ E. M. Sistla, A. P. Clarke. The
omplexity of propositional linear

temporal logi
s. Journal of the ACM, 32(3):733{749, 1985.

[SUM96℄ Henny B. Sipma, Tom�as E. Uribe, and Zohar Manna. Dedu
tive

model
he
king. In Pro
eedings of the 8th International Confer-

en
e on Computer Aided Veri�
ation, pages 208 { 219. Springer

Verlag, LNCS 1102, 1996.

38

���

�

��

k

I N F O R M A T I K

Below you �nd a list of the most re
ent te
hni
al reports of the Max-Plan
k-Institut f�ur Informatik. They

are available by anonymous ftp from ftp.mpi-sb.mpg.de under the dire
tory pub/papers/reports. Most

of the reports are also a

essible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any

questions
on
erning ftp or WWW a

ess, please
onta
t reports�mpi-sb.mpg.de. Paper
opies (whi
h

are not ne
essarily free of
harge)
an be ordered either by regular mail or by e-mail at the address below.

Max-Plan
k-Institut f�ur Informatik

Library

attn. Anja Be
ker

Im Stadtwald

66123 Saarbr�u
ken

GERMANY

e-mail: library�mpi-sb.mpg.de

MPI-I-1999-3-005 T.A. Henzinger, J. Raskin, P. S
hobbens Axioms for Real-Time Logi
s

MPI-I-1999-3-004 J. Raskin, P. S
hobbens Proving a
onje
ture of Andreka on temporal logi

MPI-I-1999-3-003 T.A. Henzinger, J. Raskin, P. S
hobbens Fully De
idable Logi
s, Automata and Classi
al

Theories for De�ning Regular Real-Time Languages

MPI-I-1999-3-002 J. Raskin, P. S
hobbens The Logi
 of Event Clo
ks

MPI-I-1999-3-001 S. Vorobyov New Lower Bounds for the Expressiveness and the

Higher-Order Mat
hing Problem in the Simply Typed

Lambda Cal
ulus

MPI-I-1999-2-005 J. Wu Symmetries in Logi
 Programs

MPI-I-1999-2-004 V. Cortier, H. Ganzinger, F. Ja
quemard,

M. Veanes

De
idable fragments of simultaneous rigid rea
hability

MPI-I-1999-2-003 U. Waldmann Can
ellative Superposition De
ides the Theory of

Divisible Torsion-Free Abelian Groups

MPI-I-1999-2-001 W. Charatonik Automata on DAG Representations of Finite Trees

MPI-I-1999-1-007 C. Burnikel, K. Mehlhorn, M. Seel A simple way to re
ognize a
orre
t Voronoi diagram of

line segments

MPI-I-1999-1-006 M. Nissen Integration of Graph Iterators into LEDA

MPI-I-1999-1-005 J.F. Sibeyn Ultimate Parallel List Ranking ?

MPI-I-1999-1-004 M. Nissen, K. Weihe How generi
 language extensions enable \open-world"

desing in Java

MPI-I-1999-1-003 P. Sanders, S. Egner, J. Korst Fast Con
urrent A

ess to Parallel Disks

MPI-I-1999-1-002 N.P. Boghossian, O. Kohlba
her,

H.-. Lenhof

BALL: Bio
hemi
al Algorithms Library

MPI-I-1999-1-001 A. Crauser, P. Ferragina A Theoreti
al and Experimental Study on the

Constru
tion of SuÆx Arrays in External Memory

MPI-I-98-2-018 F. Eisenbrand A Note on the Membership Problem for the First

Elementary Closure of a Polyhedron

MPI-I-98-2-017 M. Tzakova, P. Bla
kburn Hybridizing Con
ept Languages

MPI-I-98-2-014 Y. Gurevi
h, M. Veanes Partisan Corroboration, and Shifted Pairing

MPI-I-98-2-013 H. Ganzinger, F. Ja
quemard, M. Veanes Rigid Rea
hability

MPI-I-98-2-012 G. Delzanno, A. Podelski Model Che
king In�nite-state Systems in CLP

MPI-I-98-2-011 A. Degtyarev, A. Voronkov Equality Reasoning in Sequent-Based Cal
uli

MPI-I-98-2-010 S. Ramangalahy Strategies for Conforman
e Testing

MPI-I-98-2-009 S. Vorobyov The Unde
idability of the First-Order Theories of One

Step Rewriting in Linear Canoni
al Systems

MPI-I-98-2-008 S. Vorobyov AE-Equational theory of
ontext uni�
ation is

Co-RE-Hard

MPI-I-98-2-007 S. Vorobyov The Most Nonelementary Theory (A Dire
t Lower

Bound Proof)

MPI-I-98-2-006 P. Bla
kburn, M. Tzakova Hybrid Languages and Temporal Logi

MPI-I-98-2-005 M. Veanes The Relation Between Se
ond-Order Uni�
ation and

Simultaneous Rigid E-Uni�
ation

MPI-I-98-2-004 S. Vorobyov Satis�ability of Fun
tional+Re
ord Subtype

Constraints is NP-Hard

MPI-I-98-2-003 R.A. S
hmidt E-Uni�
ation for Subsystems of S4

MPI-I-98-2-002 F. Ja
quemard, C. Meyer, C. Weidenba
h Uni�
ation in Extensions of Shallow Equational

Theories

MPI-I-98-1-031 G.W. Klau, P. Mutzel Optimal Compa
tion of Orthogonal Grid Drawings

MPI-I-98-1-030 H. Br�onniman, L. Kettner, S. S
hirra,

R. Veltkamp

Appli
ations of the Generi
 Programming Paradigm in

the Design of CGAL

MPI-I-98-1-029 P. Mutzel, R. Weiskir
her Optimizing Over All Combinatorial Embeddings of a

Planar Graph

MPI-I-98-1-028 A. Crauser, K. Mehlhorn, E. Althaus,

K. Brengel, T. Bu
hheit, J. Keller,

H. Krone, O. Lambert, R. S
hulte,

S. Thiel, M. Westphal, R. Wirth

On the performan
e of LEDA-SM

MPI-I-98-1-027 C. Burnikel Delaunay Graphs by Divide and Conquer

MPI-I-98-1-026 K. Jansen, L. Porkolab Improved Approximation S
hemes for S
heduling

Unrelated Parallel Ma
hines

MPI-I-98-1-025 K. Jansen, L. Porkolab Linear-time Approximation S
hemes for S
heduling

Malleable Parallel Tasks

MPI-I-98-1-024 S. Burkhardt, A. Crauser, P. Ferragina,

H. Lenhof, E. Rivals, M. Vingron

q-gram Based Database Sear
hing Using a SuÆx Array

(QUASAR)

MPI-I-98-1-023 C. Burnikel Rational Points on Cir
les

MPI-I-98-1-022 C. Burnikel, J. Ziegler Fast Re
ursive Division

MPI-I-98-1-021 S. Albers, G. S
hmidt S
heduling with Unexpe
ted Ma
hine Breakdowns

MPI-I-98-1-020 C. R�ub On Walla
e's Method for the Generation of Normal

Variates

MPI-I-98-1-019 2nd Workshop on Algorithm Engineering WAE '98 -

Pro
eedings

MPI-I-98-1-018 D. Dubhashi, D. Ranjan On Positive In
uen
e and Negative Dependen
e

MPI-I-98-1-017 A. Crauser, P. Ferragina, K. Mehlhorn,

U. Meyer, E. Ramos

Randomized External-Memory Algorithms for Some

Geometri
 Problems

MPI-I-98-1-016 P. Krysta, K. Lory�s New Approximation Algorithms for the A
hromati

Number

MPI-I-98-1-015 M.R. Henzinger, S. Leonardi S
heduling Multi
asts on Unit-Capa
ity Trees and

Meshes

MPI-I-98-1-014 U. Meyer, J.F. Sibeyn Time-Independent Gossiping on Full-Port Tori

MPI-I-98-1-013 G.W. Klau, P. Mutzel Quasi-Orthogonal Drawing of Planar Graphs

MPI-I-98-1-012 S. Mahajan, E.A. Ramos,

K.V. Subrahmanyam

Solving some dis
repan
y problems in NC*

MPI-I-98-1-011 G.N. Frederi
kson, R. Solis-Oba Robustness analysis in
ombinatorial optimization

MPI-I-98-1-010 R. Solis-Oba 2-Approximation algorithm for �nding a spanning tree

with maximum number of leaves

MPI-I-98-1-009 D. Frigioni, A. Mar
hetti-Spa

amela,

U. Nanni

Fully dynami
 shortest paths and negative
y
le

dete
tion on diagraphs with Arbitrary Ar
 Weights

MPI-I-98-1-008 M. J�unger, S. Leipert, P. Mutzel A Note on Computing a Maximal Planar Subgraph

using PQ-Trees

