A Deductive Model Checking
Approach for Hybrid Systems

Andreas Nonnengart

MPI-1-1999-2-006 October 1999

Author’s Address

Max-Planck-Institut fiir Informatik

Im Stadtwald, 66123 Saarbriicken, Germany
Email: Andreas.Nonnengart@mpi-sb.mpg.de
WWW: http://www.mpi-sb.mpg.de/ nonnenga/

Acknowledgements

Thanks to Harald Ganzinger, Tom Henzinger, Andreas Podelski, Giorgio
Delzanno, and Supratik Mukhopadhyay for fruitful discussions.

Abstract

In this paper we propose a verification method for hybrid systems that
is based on a successive elimination of the various system locations in-
volved. Briefly, with each such elimination we compute a weakest precondi-
tion (strongest postcondition) on the predecessor (successor) locations such
that the property to be proved cannot be violated. This is done by repre-
senting a given verification problem as a second-order predicate logic formula
which is to be solved (proved valid) with the help of a second-order quan-
tifier elimination method. In contrast to many “standard” model checking
approaches the method as described in this paper does not perform a forward
or backward reachability analysis. Experiments show that this approach is
particularly interesting in cases where a standard reachability analysis would
require to travel often through some of the given system locations. In addi-
tion, the approach offers possibilities to proceed where “standard” reachabil-
ity analysis approaches do not terminate.

Keywords

Hybrid Systems, Verification, Model Checking, Quantifier Elimination, Lo-
cation Elimination.

1 Introduction

Hybrid Systems are real-time systems that are embedded in analog envi-
ronments. They contain discrete and continuous components and inter-
act with the physical world through sensors and actuators. Due to the
rapid development of computer technology, hybrid systems directly con-
trol much of what we depend on in our daily lives [AHH96]. Since they
typically operate in safety-critical situations, the development of rigorous
analysis techniques is of high importance. However, traditional program
verification is hardly useful, for it allows us, at best, to merely approxi-
mate continuously changing environments by discrete sampling. Also, ear-
lier verification techniques based on temporal logics [CE81, CES86, EMSS90,
GH90, MP92, MW84, Non95, Non96, OL82, Pnu77, PH88, Sis85] lead only
halfway towards what is actually demanded. Only recently have there been
some attempts at developing a verification methodology for hybrid sys-
tems [ABL97, ACD90, ACH"95, ACHH93, AD94, AH92, AHH96, AHS96,
ANKS95, CHR91, GNRR93, Hen91, Hen95, Hen96, HNSY92, Ho95, Kop96,
LLW95, Sha93, SUM96].

A common model for hybrid systems can be found in hybrid automata.
Briefly, such hybrid automata are finite graphs whose nodes correspond to
global states. A computation of such an automaton is a sequence of state
changes (steps). Within each step the system state evolves continuously
according to a dynamical law until a transition from one node to another one
occurs. Transitions are instantaneous state changes that separate continuous
state evolutions.

The paper is now organized as follows. We start with a formal defini-
tion of hybrid systems. After that we proceed with the formal definition of
the syntax and the semantics of Integrator Computation Tree Logic, ICTL
[AHH96], that lets us formulate temporal properties of the hybrid system un-
der consideration. What follows is the introduction of the deductive model
checking approach in general. This includes both the logical representation
and the method to solve the verification problem. Some common generaliza-
tions are briefly examined in a subsequent section. In order to provide with
some more intuition on the approach some examples follow which also allow
us to compare the approach with standard reachability analysis methods.
Finally, we conclude that paper with a brief summary and an outlook at
what ought to be done in the near future.

2 Hybrid Systems

2.1 Syntax

DEFINITION 2.1 (CONSTRAINT TERMS AND CONSTRAINT FORMULAS)
The set CT of Constraint Terms over a fixed variable set X is defined as
the smallest set containing X, and real-valued constants, and, moreover,
is closed under addition, subtraction, and multiplication with real-valued
constants.

The set of CF of Constraint Formulas (over the variable set X) is defined
as the smallest set that is closed under conjunction and contains T (truth)
and L (falsity) as well as all atoms of the form t; > to, t1 > ta, t1 < to,
t1 < t9, and t1 = ty, where t; and ty are constraint terms taken from CT.

As usual, we illustrate hybrid systems as graphs like

L N

Nodes L and N represent discrete locations, whereas z is a data variable.
Within each location we describe the location invariant (z < 1 in the exam-
ple) and the continuous activity which describes how the values of the data
variables change in time. In the above example the value of = increases by 1
per time unit (say, second), i.e., the first derivative of the function describing
the behavior of z over time is the constant 1.
Edges are annotated with guards and discrete actions. Guards form a con-
straint on the data variables to hold if a transition via the corresponding
edge is to be performed. The discrete action specifies how the data vari-
ables are to be changed after taking the transition. In the above example
the guard of the edge from L to N is z = 1 and the corresponding action is
to reset z to 0.
The above hybrid system thus describes the following behavior: it starts at
location L with the data variable = set to 0. Within L and N the value of
x increases by 1 every second (so z is a clock). The system leaves location
L after exactly one second and resets z to 0. Similarly, it remains within N
for at most one second and reenters L after resetting x to 0 again.

The following definition specifies what hybrid systems are in general.

DEFINITION 2.2 (HYBRID SYSTEMS)
Hybrid Systems are tuples of the form (X, L, £, dif, inv, guard, act), where

e X is a finite set of real-valued data variables,

e [is a finite set of locations, i.e., nodes of a graph,

e £ C L x L is a finite (multi)set of transitions, i.e., edges of the graph
with nodes from L,

e dif: L x X — CT is a mapping that associates with each location and
each data variable a constraint term (with free variables taken from
X), representing the change of the data variable within this location
over time,

e inv: L — CF is a mapping that associates with each location a con-
straint formula (with free variables taken from X), representing the
location invariant,

e guard: £ — CF is a mapping that associates with each edge a con-
straint formula (with free variables taken from X), representing the
condition that has to be enabled in order to travel along the edge, and

e act: £ x X — CT is a mapping that associates with each edge and
each data variable a constraint term (with free variables taken from
X), representing the value of the variable after traveling along the
edge.

2.2 Semantics

We define a state of a hybrid system as a pair (L,¢$) where L € L is a
location and ¢: X — R is a valuation of the data variables. ¢ naturally
extends to (constraint) terms and (constraint) formulas. A state (L,) is
called admissible if ¢(inv(L)) holds. Given two admissible states o = (L, ¢)
and o' = (L', ¢') we say that o is transition-reachable from o — denoted
by o & o' — if there exists a transition T = (L,L') € £ with source L
and target L', and both ¢(guard(T)) and ¢'(z) = ¢(act(T,z)) for each
z € X. We call o' timely-reachable from o with delay 6 — denoted by
o o , where § is a non-negative real number — if L = L' and for each
x € X there exists a differentiable function f: [0,0] — R, with the first
derivative f,: (0,8) — R, such that (1) f,(0) = ¢(x) and f,(8) = ¢(z) and
(2) for all € € R with 0 < € < §: both inv(L)[z1/fz,(€),... ,2n/fz, ()] and
fole) = diflL, z)[x1/f2,(€), ... ,Tn/ s, (€)] are true. o' is timely-reachable
from o — denoted by o s ¢’ — if there exists a non-negative § € R such that
o5 o', o is said to be reachable from o if (o,0') € (K> U ¥5)*.

A run p of H with initial state o9 = (Lg,) is a maximal sequence of states
represented as

_ to t1 to t3 ..
p =00 '_>f0 ! '_>f1 g2)_>f2 93 '_>f3

where t; € RZ% and f;: [0,¢;] — (X — R), such that f;(0) = ¢;, and
moreover, inv(L;)[X/f;(t)(X)] holds for all 0 < t < t;, (L;, fi(t;)) ©= oit1
and for all 0 < ' < /48 < t; : (Lg, fi(t") > (Ls, fi(t'+6)). The set of states

contained in such a run p is given as States(p) = {(L;, fi(t)) |t € R,0 <t <
t;}. The set of all runs of a hybrid system # with initial state o is denoted
by runs(#, o). A position 7 of a run p = oy »—>§% o1 »—>§}1 o9 |—>'}22 o3 »—>§%
is a pair 7 = (i,7) € N x R such that 0 < r < ;. We denote the set of
positions of a run p as pos(p). Positions are ordered lexicographically, i.e.,
(i,7) < (4,8) if and only if i < j or (i = j and r < s). Also, (1,7) < (j,s) if
and only if (i,7) < (j,s) or (i = j and r = s). By p(n) with 7 = (i,7) we
denote the state (L;, f;(r)). Thus States(p) = {p(7) | # € pos(p)}.

A run is said to be non-zeno if Y t; diverges. In the sequel we shall assume
that the runs of the hybrid system under consideration are all non-zeno.!

For the simple hybrid system from page 2 it is quite easy to find the set
of reachable states. It contains exactly all states of the form (L, ¢) or (N, ¢)
where ¢ maps = to an arbitrary real value between 0 and 1. Intuitively, it
should thus be possible to prove that the value of the data variable x always
remains smaller than 1. But there are much more interesting properties of
the above system that we want to be able to prove. As we noted already,
the system will always remain within location L for exactly one second,
whereas it can only remain within location N for at most one second. Thus,
the accumulated time spent in location N can never exceed one half of the
overall running time of the system. Such properties should be provable
as well. This, however, demands for a requirement language that lets us
formulate these kinds of properties. One such language can be found in
ICTL [AHH96] as described in the section to follow.

3 Integrator Computation Tree Logic ICTL

3.1 ICTL Syntax

We describe properties of a hybrid system with data variables X and loca-
tions L, in terms of ICTL formulas, where

e every constraint formula over X is an ICTL formula,
e every location name from £ is an ICTL formula,

e if ® and ¥ are ICTL formulas, so are =@, DAY, dV ¥, & - P, and
d=0,

e if & and ¥ are ICTL formulas, so are AG &, AF &, EG &, EF 9,
OEUVY, and @ AU,

!The assumption of non-zenoness implies that hybrid systems are deadlock-free, i.e.,
there is no reachable state that has no successor. So-called livelocks, however, are not
excluded. This means that we absolutely allow states which have only themselves as
future alternatives. The latter case just states that the situation does not change in time,
whereas the former case (deadlock) would claim that time itself has come to an end.

e if & isan ICTL formula, z is a new data variable, and {L1,... ,L,} € L
is a subset of the location names then z{#1In} & is an ICTL formula
(and z is added to the set X).

Intuitively, the temporal operators AG ,AF ,EG ,EF , EU, AU, mean
“always”, “inevitably”, “possibly always”, “possibly”, “possibly until”, and
“inevitably until” respectively. Their formal semantics with respect to hy-
brid systems is defined below.

3.2 ICTL Semantics with respect to Hybrid Systems

AL In}

Given a hybrid system H, by H we mean the extended system we
obtain from adding the new clock z which is initialized with 0 and which is
supposed to run with slope 1 within locations Ly,... , L, and with slope 0,
i.e., it is stopped, for all other locations. Notice that this implies that the
value of the new clock z will never get below 0. Formally:

Let H = (X, L, &, dif, inv, guard, act). Then

gttt (X U{z},L,&,dif,invV, guard, act)
where inv/(L) = inv(L) A0 < z and

difi L,z) ifx+# 2z
dif (L,z) = ¢ 1 ifr=zand L € {Ly,...,L,}
0 otherwise

for all data variables z € X and locations L € £.2 ‘
As usual, we define the valuation ¢[z/0] as ¢[z/0](z) = { g(I) ifw 72

otherwise.

DEFINITION 3.1
Given a hybrid system H = (X, L, &, dif, inv, guard, act) and a state o =
(L, ¢), the semantics of ICTL with respect to H and o is defined as:

H,o=c iff = ¢(c), provided c is a constraint formula
H,o =N iff locations N and L are identical
H,o =P iff H,olfEd

Hyol=dAV iff HolEP&H, 0T
and similarly for the other boolean connectives

H,o = AG® iff Vp(p €runs(H,0) =
Vr (m € pos(p) = H, p(r) = P))

2 Actually, the function act would also have to be changed accordingly. However, if we
take the convention that we only describe the action on data variables that change their
value by taking the transition, it becomes unneccessary to add something like act(T, z) = z.

H,o = EF ® iff Jp(p € runs(H,o0) &
Ir (m € pos(p) & H, p(7) = D))

H,o = EG® iff 3p(p €runs(H,o) &
Vr (7 € pos(p) =

~—

H,o = AF & iff Vp (p € runs(H, o)
dr (7 € pos(p
H,o =®EUY iff Fp (p € runs(H,o)
A (r € pos(p) & H,p(r) E T &
vr' (' € p
H, p(r’
H,o = PAUV iff Vp (p €runs(H,o) =
dr (m € pos(p) & H,p(7) E ¥ &
V' (7' € pos(p) & (0,0) <7’ <7m) =
M, p(r') = @)))

Hol=No iff WY (L,¢[z)0) E®, where N C L

&
P
=
a

I
L

~ O
T
=

LEMMA 3.2
For the ICTL operators AG and EF the above semantics can be changed to

H,oc EAG® iff H,o' = ® for every o' reachable from o
H,o = EF® iff H,o' = ® for some o’ reachable from o

Clearly, from the above definition it follows that AG ® < —EF —® and
EF & & TEU®. Also, EG ® ++ -AF -® and AF ® & T AU ®. All tem-
poral operators can thus be described in terms of the two Until-operators.

EXAMPLE 3.3
Recall the property we wanted to express and prove for our example hybrid
system on page 2. In terms of ICTL this property can be formulated as

y{L’N}.z{N}.AG 2z <y

i.e., we assume two additional clocks y and z, where y counts overall time
(it runs with slope 1 in each location) and z accumulates the time spent in
location N (it acts as a usual clock in location N but is stopped in location
L). The picture of our hybrid system then changes to

Tlz:=0

For this extension we want to prove that AG 2z <y, i.e., we have to check
whether the constraint 2z < y holds for all reachable states.

4 Deductive Model Checking

The general idea behind the deductive model checking approach is as fol-
lows. Our ultimate aim is to automate what is described in Definition 3.1.
To this end consider a hybrid system H, some location of H, say L, and
an ICTL formula ®. For some valuations of the data variables in L, ®
is true and for the others @ is false. Let us collect the former in the set
b = {¢ | H,(L,p) = ®}. Now, suppose we were able to describe this
set ¢ as a (finite) constraint formula, say [®]”. Then, checking whether
H,(L,$) = ® holds can be reformulated as to checking whether ¢([®]7) is
valid. And in case of merely linear constraints this could even be decided.
Our intermediate goal, therefore, is to find [®]%, the characteristic con-
straint formula for ® in location L.> In order to achieve this, we consider
the structure of the ICTL formula ®. In the simplest case @ is either a
constraint formula or a location name. The latter case simply reduces to
T or L, depending on whether or not this location name is identical to L.
In the former case, we can assume ® to be its own characteristic constraint
formula and so [®]% = ®. Also, there are no difficulties with boolean con-
nectives as long as the characteristic constraint formulas for the respective
components are known. For instance, [® A U]F = [®]F A [U]F which is
a finite constraint formula provided both [®]! and [U]F are. Evidently,
the more complicated and more interesting cases are those where ® has a
temporal operator as a top symbol. However, it is in general not possible to
find a corresponding finite characteristic constraint formula, for otherwise
the validity of ICTL formulas for arbitrary (linear) hybrid systems would
be decidable which, unfortunately, is not the case. Therefore we cannot

3The reader who is familiar with standard model checking approaches for hybrid sys-
tems probably notices a small change in perspective since we do not compute the set of
states that fulfill &, but (representatives of) constraint formulas instead. This view is far
from artificial; in fact, it is crucial for the proposed approach.

expect to find a characteristic constraint formula as easy as for the simple
cases above. Instead of attempting to construct [®]” directly, we describe
it as a formula of the second-order predicate calculus and try to simplify
this description to a constraint formula if possible. How this can be done is
described later. At this stage we are more concerned with the construction
of the characteristic constraint formula for ® at L.

4.1 First-order Theories of Reachability and Inevitability

Here we restrict our view to linear hybrid systems, where dif(L,z) is a
constant, say k7, for each location L and data variable z. We extend this
to sets of data variables X = {z1,...,z,} in the natural way such that a
term like X + k0 represents the sequence x1 + k7'6, ... ,z, + k7" 0.

DEFINITION 4.1

An interpretation & = (D, S, ¢) for a first-order theory associated with a
hybrid system H with locations £ has a fixed domain D (the reals or the
rationals, say), a valuation ¢ for the data variables in X, and a meaning
function S for the locations in L such that Sg(L) € D", where n is the
number of data variables in X. A model of a formula ® is an interpretation
satisfying this formula.

We often also speak of a model as a set of ground atoms of the form
{L(S(t1),--- ,S(tn)) | S | L(t1,... ,tn)}, t; are constraint terms}, where
& is a model in the above sense. Interpretations (models) are partially or-
dered by set-inclusion. A minimal model of ® is a model of ® such that none
of its proper subsets is also a model of ®. We denote the set of minimal
models for a formula ® by minMod(®). In case there exists only one unique
minimal model we shall also refer to this one as minMod(®).

DEFINITION 4.2
Let H = (X, L, &, dif, inv, guard, act) be a hybrid system. For each L € L
we define the first-order theory*

inv(L) A

Vo (6 > 0Ainv(L)[X/X + k3] = L(X + k3 8)) A
vX LX) = A guard(T) > N(act(T, X)) '

T=(L,N)e€

as the local reachability theory of L in H, R%_[for short. By the reachability
theory of H — which we call Ry, or simply R if H is clear from the context
— we understand the conjunction of all local reachability theories, i.e.,

Ry = [\ RE
Lel

*For readability let us abbreviate L(act(T,x1),... ,act(T,z,)) with L(act(T, X)).

Hence, for each location L € L we introduce an n-ary predicate with the
same name, where n is just the number of data variables in #, i.e., n = | X|.

Then, (location) atoms L(aq,...,q,) correspond to states (L, ¢), where
d(z;) = o with X = {z1,...,,x,}. For simplicity we abbreviate this with
L(ai,... ,ay) = (L,¢). This notion of correspondence between atoms and

states naturally extends to sets of atoms (interpretations, models) and sets
of states (e.g., members of a run).

The purpose of such a reachability theory is to have a logical represen-
tation of the reachable states. It is constructed in a way such that for each
possible state (denoted by an atom L(X) that corresponds to this very state)
the possible immediate future states can be determined. For instance, given
the atom L(X) the local reachability theory of L in # tells us that the cor-
responding state satisfies the location invariant inv(L) and also that there
are potential timed successors (V§ (§ > 0 A inv(L)[X/X + k¥ 6] — L(X +
kX6))), and, finally, potential transition successors (Nr=(1,n)ee guard(T) —
N(act(T, X))). The exact connection between reachability theories and
reachable states is given by the following lemma.

LEMMA 4.3

If the conjunction L(¢(X)) A Ry has a model at all then it has a unique
minimal model which corresponds to the set of states that are reachable
from (L, ¢) in the hybrid system H. More formally:

minMod(L(¢(X)) ARz) = {o | (L, $),0) € (= U £3)*}

Proof: First note that a reachability theory is Horn in the location pred-
icates, that all other symbols have fixed interpretation, and that the only
boolean connective within constraint formulas is the logical conjunction.
Therefore, if the theory has a model at all then it has a unique minimal
model.

What remains to be shown is that for every location L' and every data
variable valuation ¢’

L'(¢ (z1),... ,¢'(z)) € minMod(L(H(X)) A Ry)
=4

(L,9), (L',4)) € (- U)"

For the direction from left to right take any proof of L'(¢'(z1),... ,¢'(z,))
from L(¢(X)) A Ry. The claim then follows by an easy induction on the
length of this proof.

As for the other direction, consider the reachable state (L', ¢') that is
included in some run oy |—>'}% o1 »—)3}1 o9 |—>'}22 o3 |—>';% -+ with o9 = (L, ¢)
and ¢' = f;(t) for some 0 <t < t;. A simple induction on 4 then shows that
the ground atom represented by L'(f;(0)) belongs to the minimal model of
L(¢(X)) A Ry. Moreover, since VX L'(X) — V§ (6 > 0 A inv(L)[X/X +

kX6 — L'(X + k,0)) is a clause of the theory under consideration we also
know that the ground atom represented by L'(f;(t)) is a member of the
minimal model and we are done. g

ExXAMPLE 4.4
For our simple example from page 6 the reachability theory is given by

(2 <1IADL<yAD<=z A
Vio>0ANz+0<1IA0<y+oA0<2 —
L(z+d6,y+46,2) A
. z=1— N(0,y,2)

Vz,y,z L(z,y,2z) —

(2 <1IA0<yAD<z A

Vi0<i<1—2zA0<y+IAN0<2+0 —
N(z+d4,y+d,2+06) A

[L(0,y,2)

Vz,y,z N(z,y,2) — <

The reachability theory will ultimately be responsible for the temporal op-
erators AG and EF . However, it is not well suited for the other temporal
operators we are interested in. We therefore, in addition, define a simi-
lar first-order theory; this time for these other temporal operators, though.
Just as the reachability theory provides us with some information about the
states that can be reached, the inevitability theory to be defined below tells
us something about the states that are inevitable or unavoidable. It does
so by stating between which possible future alternatives the system must
choose. The following specifies this.

DEFINITION 4.5 (INEVITABILITY THEORY)
Let H = (X, L, &, dif, inv, guard, act) be a hybrid system. For each L € L
we define the first-order theory

VX L(X) — inv(L)
(V66 >0— L(X +EX6) V

(>0 A

VX L(X) — Ny V' 0 <8 <5 L(X +EkX6") A

\/ guard(T)[X/X + k4] A
N(act(T, X)[X/X + k¥ d])

L | T=(L,N)e€

as the local inevitability theory of L in H, I,f[for short. By the inevitability
theory of H — which we call Ty, or simply T if ‘H is clear from the context
— we understand the conjunction of all local inevitabiity theories, i.e.,

Iy = \Z4
LeL

10

The first part of any local inevitability theory is trivial. It just guarantees
the mere fact that for each location predicate the corresponding location
invariant is supposed to hold. The second part is more complicated and
more interesting. Note that, given an arbitrary state represented by the
location predicate L(X), either the system remains forever in this location,
i.e., V6§ >0 — L(X+k;), or it will sooner or later leave this very location.
In the latter case we know that there is a time delay 0 after which one of
the guards of the outgoing edges is true and until then the system remains
within location L. This is exactly what is expressed by the complicated
second part of the local inevitability theories.

The importance of the inevitability theory is made precise in the lemma
below.

LEMMA 4.6

Fach minimal model of L(¢(X)) AZy corresponds to the members of one of
the possible runs® of H with initial state (L, $). Also, the members of any
possible run of H correspond to a model of Ty; A L(¢(X)). Formally:

VS S € minMod(L(p(X)) A Zy) =
dp p € runs(H, (L, ¢)) & I = States(p)

Vp p € runs(H, (L, d)) =
{L'(¢/(X)) | (L', ¢') € States(p)} = L(¢(X)) A Tn
Proof: Consider the systematic construction of a minimal model for the
theory L(¢(X)) A Zy. Evidently, this leads to run of H with initial state
(L7 ¢) :
On the other hand, consider an arbitrary run of % with initial state (L, ¢).

It is easy to see that the atoms that correspond to states of this run are
closed under L(¢(X)) A Zy. O

EXAMPLE 4.7
For our simple example from page 6 the inevitability theory is given by

Va,y,z L(xz,y,2) - 2<1A0<yA0<z

(V66 >0— L(z+06,y+0d,2) V
356 >0AN
VY (0<§ <d6d—Lxz+d,y+d,2) A
| z+0=1AN(0,y+46,2)
Va,y,z N(z,y,2) > 2 <1A0<yA0<z

(V66 >0— N(z+d0,y+d,2+08) V
50 >0A

Vo' (0<d§ <d— N(z+d,y+d,24+9)) A
[L0,y + 0,z +9)

Vz,y,z L(z,y,z) —

Vz,y,z N(z,y,2) —

SRecall that we only consider non-zeno runs of hybrid systems. Zeno runs could even
lead to inconsistencies in the inevitability theory.

11

which can be simplified to

Va,y,z L(z,y,2) > 2<1A0<yA0<z

Vo,y,z L(z,y,z) - V&' (0<§ <1—z— Lz+d,y+d,2)A
NO,y+1—uz,2)

Vz,y,z N(z,y,2) > 2 <1A0<yA0<z

Va,y,z N(z,y,z) — 360 >0 A
Vo' (0<§ <d = N(z+d,y+d,2+) A
L0,y + 0,z +9)

4.2 The Deductive Approach for Linear Hybrid Systems

Suppose we are given a hybrid system H, its reachability theory R together
with an initial state (L, ¢), and a property AG ¢ to be proved, where c
is a constraint formula over the data variables X. Then we have to show
that ¢ holds for all the reachable states of H, i.e., it is true for each atom
of the minimal model of the corresponding reachability theory. Trivially,
this means that there exists a model (namely the minimal model) whose
elements all satisfy the constraint ¢. On the other hand, since the minimal
model is by definition a subset of any model of the theory, we know that
having such a model means that also for the minimal model it holds that
each of its elements satisfy c. Altogether, we know that AG c holds at (L, ¢)
for H if and only if there exists a model of its reachability theory (together
with the atom that corresponds to the initial state) such that ¢ holds for all
its elements, or, more formally,® if L(¢(X)) ARA Ayez VX N(X) — ¢ has
a first-order model. This latter statement, however, can be formulated in
terms of second-order logic, namely

ALy, ..., Ly LX) AR AVX (Ly(X) V...V Lp(X) = ¢)

since the existence of a model is tantamount to the existence of suitable
interpretations for the free symbols involved.

EXAMPLE 4.8
Recall that we wanted to prove AG 2z < y for the extended example system
on page 6. According to the above observations this means that we have to

SRecall that the location names are the only predicate symbols that have a free inter-
pretation.

12

prove the validity of

[1(0,0,0)

Ve,y,z L(z,y,z) > z<1A0<yA0<z

Ve,y,z L(z,y,z) — z=1—= N(0,y,2)

Ve,y,z L(z,y,z) > V90<0<1—zA0<y4+dA0<2z —
Lz + 4,y +6,2)

Ve,y,z N(r,y,2) > 2<1A0<yA0<z

Ve,y,z N(z,y,z) = L(0,y,2)

Vz,y,z N(z,y,z) > V60<d<1—zA
0<y+dA0<2+d —

N(z+ 0,y +0,z+9)
Ve,y,z L(z,y,z) — 22<y
Vz,y,z N(z,y,z) = 2z2<y

L, N

As for the general case, assume that we have to show that AG ®, where ®
is an arbitrary ICTL formula. That means we have to verify that ® holds
for every state that is reachable from the initial state, say (L, ¢), within the
hybrid system H. If ® were a constraint formula or a location name, we
would know what to do from the observations above. Nevertheless, even
if ® is not a constraint formula, we have a description of its characteristic
constraint formula, namely [®] Z(X) for each location name L. I.e., proving
that H,(L,¢) E AG ® holds can be reduced to showing the validity of

d([P] ;(X)). This, and similar reflections on the other temporal operators,
leads to the following definition.

DEFINITION 4.9

The characteristic constraint formula (@]%(X) associated with the ICTL
formula ®, the hybrid system H = (X, L,&,dif, inv, guard, act), and the
location L € L is recursively defined by

Ay =
(L’]L(X) B T if L and L' are identical
H - 1 otherwise

el = e

L(X L(X L(X
@AY = e AT

and similarly for the other boolean connectives
P z

(zN.(Iﬂ;:_L(X) = (({)]f{(fff))0, where N C L7
[AG &)1 = 3Ly, Ly LX) ARy A Ayer VX N(X) = [0]150)
[EG®)XY) = 3r,,.. Ly LX) ATy A Ayer VX N(X) — [&]0)

"As usual, the notation A7 means A with every occurrence of z replaced by y.

13

The temporal operators EF and AF are to be treated as ~AG — and
—EG — respectively. For the Until operators see Subsection 4.3 on page 15.

Intuitively, such a characteristic constraint formula describes the necessary
and sufficient condition on the data variables such that the ICTL formula &
holds for the hybrid system # in location L. This, however, is exactly what
we need for our deductive model checking approach. The following (main)
theorem makes this more precise.

THEOREM 4.10
Given a hybrid system H with data variables X, an initial state (L, ¢) and
an ICTL formula ®. Then

H(Lg) o it o([e)

Proof: By induction on the structure of .

For ® being a constraint formula ¢ or a location name L the theorem holds
trivially. Also in case of a boolean connective there are no problems at all.
Therefore, let us only consider the more complicated cases.

H, (L,) = 2N

iff H (L, $[z/0]) E T (Definition 3.1)
iff = ¢[z/0] (|'\Il'| Zg{;”) (induction hypothesis)
) ([zf\f Rl ’) (Definition 4.9)

H,(L,¢) = AG ¥
iff H,o = U for every o reachable from (L, ¢) (Lemma 3.2)
iff Vo ((L,¢),0) € (HUSB) =H,0E=T
if VN, ¢ N(¢'(X)) € minMod(L($(X)) ARy) = H, (N, ¢) E U

(Lemma 4.3)
iff IS S E LGX)) ARy & VYN, ¢ (N,¢) € S=H,(N,d))=

T3S | L($(X)) ARy & VN, ¢/ (N,¢) € S)=¢’([15
(induction hypothesis)

i 33 S L(G(X)) ARy & S = Ayep VX N(X) =[]
39S | L($(X) AR A Ayer VX N(X) = [015)
3L, Lo LG(X)) A Ru A Ayep VX N(X) = [w]5)
it o (raG v)iY)

14

H,(L,¢) = EG ¥

iff 3p (p € runs(H, (L, ¢)) & Vr (7w € pos(p) = H, p(7) E ¥))
(Definition 3.1)

33 S e LA(X)) ATy & YN, ¢ N(@(X)) €3 = H, (N, ¢) 1))
(Lemma 4.6)

iff 33 S | L($(0)) ATy & VN, @) (N, ¢) €S = = o' ([w]31Y))
(induction hypothesis)

i 33 S L(B(X)) ATy & S Ayee VX N(X) = [0]5)
i 33 S L(G(X)) ATo A Ayee VX N(X) = 0750
N(X)

if = 3Ly, .., Ly LX) ATy A Ayee VX N(X) = [0]
it ¢ (TG w15

Finally, H, (L, ¢) = EF U iff H, (L, ¢) ¥ AG - iff j£ ¢ ((AG ﬂ\m;"())
i = ¢ ((EF \If];(X)) and also H, (L, $) = AF U iff #, (L, $) = EG -V iff
o (TBG ~015) iff (= o (TAF 91300). 0

4.3 Until-Formulas

The Until-operators ® EUW and ® AU W give rise to a slight complication of
the deductive model checking approach described in this paper. Let us first
illustrate their treatment with the help of a special case, namely ® being
a constraint formula. In order to check a property of the form ¢ EUY in
state o for the hybrid system H we have to find out whether there exists
arun p = oy »—>'}% o1 »—>'}11 02 »—>§32 .-+ such that H,(L;, fi(t)) E ¥ for
some 0 <t < t; and for all states “inbetween” the constraint ¢ holds. The
reachability theory (together with the initial state) is only helpful in deter-
mining whether such a ¥ is about to hold. It does not tell us, though, what
happens inbetween. In order to overcome this problem, we introduce the
notion of a c-safe transition. Intuitively, c-safe transitions preserve the con-
straint c. Now, the set of states reachable via c-safe transitions is definitely
a subset of the set of reachable states. Moreover, if a state with property
U is reachable via c-safe transitions then there exists a prefix of at least
one run of the hybrid system such that each transition within this prefix is
c-safe — which guarantees that the states occurring in this prefix have prop-
erty ¢ — and which ends with a state having property ¥. In other words,

¥Note that this “if and only if” holds because ¢ (|'AG ﬁ\Il]qL{(X)) contains no free

symbols whatsoever, and therefore is either T or L.

15

if a state with property ¥ is reachable via c-safe transitions then ¢ EUW
holds. The other direction holds trivially anyway. Hence, what remains to
be done is to describe the reachability theory for c-safe transitions. This,
however, is actually very simple, for we just have to add c as an additional
location invariant for all locations of the hybrid system. For instance, the
local reachability theory of L then changes to

inv(L) Ac A
Vo (6 > 0N inv(LD)[X/X + k8] Ac[X/X + k6] —
VX L(X) — L(X + k3 6) A
/\ guard(T) — N (act(T, X))
T=(L,N)e&

Note that adding this constraint to the invariants of all locations ensures
that ¢ is also preserved for edge-transitions, (L, N) say. Also note, that the
above change in the reachability theory allows us to describe the operator
¢ EUY where the interval in which ¢ is supposed to hold includes the two
interval borders. This might not be very satisfactory for many interesting
problems. Thus, if we want to exclude the left border, we have to change
the local reachability theory for L to

inv(L) A
Vo (6 > 0N inv(L)[X/X + k8] Ac[X/X + k6] —
VX L(X) — L(X + k3 6) A
/\ guard(T) A ¢[X /act(T, X)] — N (act(T, X))
T—=(L,N)e€

The difference to the earlier local reachability theory is that ¢ is no longer
forced to hold for the initial state, but is guaranteed to hold after time and
edge transitions. FExcluding the right border of the interval can be done
by considering (¢ V W) EUV instead of ¢ EUW. The latter way to describe
reachability theories therefore seems to be the most general one.

For the general case, we have to consider ICTL formulas of the form
® EUWV where ® is not necessarily a constraint formula. This complicates
matters again a bit because the additional invariant to hold is [®] %(X) for
location L and thus differs for each location.

DEFINITION 4.11
We define the reachability theory Ry(cL,,.-.. ,cL,), where n = |L|, for the

16

hybrid system H under the constraints cr,,,... ,cr, as:

Ryuleryy---scrn,) =
(inv(L;) A
V6 (6 > 0 A inv(Li)[X/X + k7,0] A
/\VX Li(X) — CLZ.[X/X-I-kI)iﬂ)—)Li(X-I-ki(i(S) A
LieL /\ guard(T) A cp,;[X/act(T, X)] —
| To(ols)es Lj(act(T, X))

Evidently, by the above Definition, Ry = Ry(T,...,T).

DEFINITION 4.12

The characteristic second-order formula associated with the ICTL-formula
® EUV in location L for the hybrid system H is defined as:

L(X) ARy ((@1;{;“), o (qﬂi;“‘)) A
A VX N(X) = (w5
NeL

How to describe the operator AU in terms of EU can be found in [AHH96].

@ EU LX) = -3L,,... L,

5 Second-Order Quantifier Elimination

So far, we have defined how to obtain a second-order characteristic constraint
formula from a given verification problem (a hybrid system with initial state
and a property to be checked). This second-order formula is now to be
proved valid. To this end we make use of the Elimination Theorem [NS95,
NS99, NOS99] that allows us to transform a given second-order formula into
an equivalent first-order formula if possible.

NOTATION 5.1

As usual, by @g we mean ® with each x; in the sequence T replaced by
the corresponding y; from the sequence y. With ® [P(a) / \I!%] we refer to
® with every occurrence of the predicate symbol P replaced by the formula
W. The argument sequence & here allows us to name the argument list of
the respective occurrences.

THEOREM 5.2 (ELIMINATION THEOREM)
Let ® and ¥ be two first-order formulas which are positive with respect to
the predicate symbol P. Then

where yP(f).@(P):/\@i(T) with ®%(T) = T,®"t(T) = &("(T))

i<w

3P (VE(P@) = ®)AT) = [P(a)/ (vP(z).0(P))

Q| 8l

17

The proof of this Theorem can be found in [NS95] (but also see [NS99,
NOS99]). There, in addition, some generalizations and dual forms are ex-
amined. For the purpose of this paper, however, the above form suffices.
Note that evaluating such a greatest fixpoint, means to successively compute
each ®'(T) until we reach one that is entailed by its predecessor ®~'(T).
The monotonicity of ® with respect to P (P occurs only positively within
®) then guarantees that each further iteration would also be implied by
®'~1(T). In fact, for simplicity, it is often not necessary to fully compute
each ®(T). It suffices to consider only those conjuncts in ®'~!(T) that are
not already subsumed by one of its predecessors.

The above Elimination Theorem is fairly general for it does not take the
special appearance of the reachability and inevitability theories into account.
Yet, in many interesting cases — namely those where a location predicate is
to be eliminated for which no edge transition to itself exists — we can provide
with a special case of the Elimination Theorem whose application does not
require the computation of fixpoints. This special case is given below.

COROLLARY 5.3 (SIMPLIFICATION LEMMA)
Suppose that ¥ contains L only positively and that ® has no mention of L
at all. Then

inv(L) A® A
3L [‘“VX LX) = { V6 (8> 0 A inv(L)[X/X + k6] — L(X + kX d)) H
=

U [L(a) / (inv(L) AYS (8 > 0 Ainv(L)[X/X + kX 6] — ®[X/X + k7 §])X]

Proof: By applying the Elimination Theorem. Recall that ® is supposed
to have no mention of L. We are thus able to compute the fixpoint of the
right-hand side of the implication sign as:

'(T) = inv(L)A®
M2(T) = TYT)AVYS (6 >0Ainv(L)[X/X +kpd] —
inv(L)[X/X + k3 6] A ®[X/X + k7 d))
= THT)AVS (8 > 0Ainv(L)[X/X + k¥6] — ®[X/X + ki d])
M3(T) = T2T)AVYS (6 >0Ainv(L)[X/X +kyo] —
Vo' (8" > 0 Ainv(L)[X/X + kX6 + k3 6] —
PX/X + k36 +krd'))
= T2(T)AVS (6 > 0N inv(L)[X/X + ko] —
Vo' (8" > 0 Ainv(L)[X/X + kX (6 +6)] —
BIX/X + k¥ (54 0)]))
At this stage it is easy to see that VX TI'’(T) — I'}(T) and therefore we
are done with the fixpoint computation and the result (after simplification)

18

inv(L) AVS (6 > ONinv(L)[X/X + kX 06] — ®[X/X + k3 6]). This final result
(the “computed” fixpoint) has to be substituted for every occurrence within
the formula W where the free variables have to be instantiated accordingly.
a

The above Lemma, is useful because it can safe us a lot of fixpoint compu-
tations. It states that it is almost trivial to eliminate a location predicate
from a (reachability or inevitability) theory provided the location has no
self-loop (® contains no L in the preliminaries of the Lemma). Evidently,
applications of the Simplification Lemma (and also the Elimination The-
orem) usually introduce new edges and therefore it is very unlikely that
all eliminations can be performed only with the help of the above Lemma.
However, it is obvious that many eliminations are just of the above kind.

The purpose of both the Simplification Lemma and the Elimination The-
orem, is to successively eliminate existentially quantified (location) predi-
cates. lL.e., each elimination reduces the number of locations of the hybrid
system by one. Such eliminations result in new properties and new transi-
tions that, in a sense, represent paths through the eliminated location.

As an illustration let us assume that we have to verify that AG z+y < 10
holds for a hybrid system that contains the following sub-system.

L1 L3

Suppose that we are now about to eliminate location Ly. According to the
approach presented in this paper this means that we have to compute — in
fact, find a first-order equivalent for — the second-order formula

[Vo,y Li(z,y) > 2 <y — La(z,y) A
<y A
r+y<10 A
Ve,y Lo(z,y) = ¢ Y6 (6>0ANz+20<y+d —
Lo(z + 26,y +0)) A
x =1y — L3(0,0)

3L,

The five conjuncts of the above second-order formula describe the transition
from L to Lo, the location invariant for Lo, the property to be proved,
the time transition for location Lo, and the edge transition from Lo to L3
respectively.

Now, what we would expect as the result of eliminating Lo? Evidently,
location Lo will vanish. And also, we will have to introduce a new edge from

19

location L; to location L3 which in a sense represents the sub-path through
Ly. The guard for this new edge should be x < y which is inherited from
the edge between L; and Ls. The discrete action for the new edge should be
z := 0;y := 0 which is inherited from the edge between Lo and L3. But this
cannot be all, and indeed this is not all that is computed by the elimination.
As a concrete example suppose that we are in location Ly with z = 4 and
y = 5. In the new system, i.e., after eliminating Lo, we can see that the
guard of the new edge holds and therefore we can make a transition to L3
while resetting both =z and y to 0. Moreover, the property to be proved,
namely z + y < 10 is never violated. In the original system, however, we
could also perform the transition from Lq, this time with destination Lo,
though. We can leave Ly only when z and y have an equal value, namely 6,
which is reached after exactly one time unit. After leaving Lo we reach Lj
with both z and y reset to 0. But note, in the original system the property
to be proved (z + y < 10) has been violated in location Ls, e.g., when both
data variables had the value 6.

It is thus not sufficient to merely add the new edge; we also have to find the
necessary and sufficient condition on the data variables in L; such that the
property to be proved cannot be violated within location Ls. And indeed,
this is what the Elimination Theorem (and also the Simplification Lemma
in this case) allows us to compute. According to the Simplification Lemma
and some further simplifications based on variable eliminations in quanti-
fied constraint formulas we can see that the above second-order formula is
equivalent to

vxayLl(Iay) — T Sy_>L3(070)
Vr,y Li(z,y) w2 <y —2y<z+5

The first formula describes just the new edge to be introduced. The second
formula, however, tells us about the necessary and sufficient condition on
the data variables for location L; such that it would be impossible to violate
z 4+ y < 10 in location Lo.

Thus, what we achieved by eliminating location Ls is, that we now can switch
to the somewhat simpler system we obtain by replacing the sub-system from
above by

L1 L3

For this simplified system we then have to show that AG z+y < 10 (inherited
from the original problem) and also that z < y — 2y < z + 5 for location
L.

20

6 Examples

6.1 The Initial Simple Example

Recall the hybrid system of page 6 for which we wanted to prove that
AG 2z < y. According to Example 4.8 on page 12 this means to check
the validity of

[L(0,0,0)

Ve,y,z L(z,y,z) > 2<1A0<yA0<z

Ve,y,z L(z,y,z) - z=1— N(0,y,2)

Ve,y,z L(z,y,z) > V60>0ANz+d<1IAN0<y+iA0<2z —
L(z 46,y +6,2)

Ve,y,z N(z,y,2) > 2 <1A0<yA0<z

Vz,y,z N(z,y,z) = L(0,y,2)

Ve,y,z N(z,y,2) > V6 (0>0Az+d<1A
0<y+dA0<2z+4+4) —

N(z+6,y+9d,2+9)

L, N

Ve,y,z L(z,y,z) — 2z2<y
| Vz,y, 2 N(z,y,z) — 2z2<y

I.e., we apply the Simplification Lemma and/or the Elimination Theorem
successively to the existentially quantified location predicates L and N. For
instance, applying the Simplification Lemma, to the part of the above second-
order formula that is concerned with the location predicate L, i.e.,

" 1(0,0,0) A

Vz,y,z N(z,y,z) = L(0,y,2) A

r<1IANOLSyAO<L<2zA22<y

Vo (6 >0ANz4+0<1IAN0<y4+dA0<z —
L(z+ 6,y + 0,2))

z=1— N(0,y,2)

3L
Vz,y,z L(z,y,z) —

results in (after some easy simplifications, e.g. with Fourier’s algorithm)

N(0,1,0) A
Va,y,z N(z,y,2) = 0<yA0<2zA22<yAN(0,y+1,2).

It therefore remains to eliminate IV in the resulting formula as given below.

N(0,1,0) A
r<1IAO<S<yAO<2zA2z2<y A
aN N0,y +1,2) A
vo,y,2 N(z,y,2) = Vi0<0<1—aA0<y+dA0<2+05 —
N(zx+d,y+9d,2+9)

Interestingly, this first elimination step resulted in a second-order formula
which we could equally obtain from the attempt to prove AG 2z < y for the
hybrid system

21

N Tlz:=0y:=y+1

In a sense, the new arrows — one for the initial situation and one describing
a loop from N to itself — take over the responsibility of the old location L.
Now we have to eliminate the remaining second-order quantification from
the above formula. This time, however, we cannot apply the Simplification
Lemma for the location N has got a self-loop after eliminating L. We
therefore have to proceed with the more general Elimination Theorem. L.e.,
we have to evaluate vN(z,y, z).I'(N) where

r<1INANOLSyAOD<L<2zA22<y A

N(O,y+1,2) A

Vo (0>0AN24+0<1IAN0<y4+dA0<z+4+§ —
N(z+6,y+6,z+0))

T(N) =

We do so by successively computing the I'*(T).

roTm = T
I''(T) = 2<1IA0<yA0<2zA22<y
r((T) = TYT) A

Vo0 >0AN2+d<IA0<y+IAN0<2z+0—22+5<y)
= TY{MAl+22<z+y
3(T) = T%T) A
V6 (0>0Az+6<1IA0<y+dA0<2z+d —
1+2(z+0) <z +y+26)
= T¥T)

Hence, vN(z,y,2).T(N) =2 <1A0<yA0<zA1+22<zx+yanda
final instantiation with the values 0, 1,0 for the variables z, y, z respectively
results in

0<IANOLSIAODOLSOALIH0L0+1=T

Thus, we have finally proved that the original hybrid system indeed satisfies
AG2z <y.

Now, let us change the property to be proved to AG 3z < y, i.e., we
consider the same hybrid system as before (on page 6) but try to prove a
property that does not hold.

22

Then the elimination of I does not make a real difference, we just have
to substitute a 2 with a 3 in the final result. For the elimination of N,
however, things change drastically. We have to compute vN(z,y, z).I'(IN)
where

r<1IANOLS<yAO<zA3z<y A

NO,y+1,2) A

Vo (0>0AN24+0<1IAN0<y4+dA0<z+4+4§ —
N(z + 0,y + 0,z +9))

T(N) =

The various T*(T) then result in

roT = T
I''(T) = 2<IA0<yA0<2zA32<y
IX(T) = TYHT)AVS (0>0A2+0<IA0<y+6A0<2+6 —

32430 <y+9)
= IYT)A2+32<2z+y

Now, note that we ultimately have to instantiate the variables z, vy,
and z in the fixpoint result by 0, 1, and 0 respectively. Also note, that
vN(z,y,2).I'(N) — T'(T) for each i. If we take a look at ['*(T) we observe
that its instantiation results in L and therefore we know that v N (z,y, z).I'(N)
must be equivalent to L, i.e., the property does not hold. It thus makes sense
to check each T(T) after it has been generated for instantiation, for this
might lead to considerable simplifications.

As a final little variant of the example let us exchange 2z < y with
az < y, i.e., we introduce a parameter a to the property to be proved.
Again, the elimination of L does not make a real difference to the earlier
cases, we just have to substitute a 2 with an @ in the elimination result. And
again, for the elimination of N things change indeed. We have to compute
vN(z,y,z).T'(N) where

r<1IANO<S<yAO<zAaz<y A

NO,y+1,2) A

Vo (0 >0N24+0<1IAN0<y4+dA0<z+4+4§ —
N(z+ 0,y + 0,2z +9))

I'(N) =

The various I';(T) then result in

T = 7T
ry(T) r<1IAN0<yAO<zAaz<y
I*(T) = TYT)AV6(6>0Az+0<IA0<y+6A0<z2+45 —
32435 <y+9)
= I'(MAa—-14+32<y+(a— 1z

23

Now, note that we ultimately have to instantiate the variables z, vy,
and z in the fixpoint result by 0, 1, and 0 respectively. Also note, that
vN(z,y,2z).T(N) — T%T) for each i. If we take a look at T'?(T) we ob-
serve that its instantiation results in a < 2 and therefore we know that
vN(z,y,z).T'(N) at least implies ¢ < 2. By taking this additional knowl-
edge into account, the fixpoint computation terminates with just this result
a < 2. We therefore have shown that the example hybrid system has prop-
erty AG az < y if and only if the parameter a has a value less than or equal
to two.

6.2 The Water Level Monitor

The hybrid system is given as follows:

zZero

y=10]|z:=0

Three

It is to be checked whether the water level (denoted by the data variable y)
always remains between 1 and 12, i.e., we have to prove the ICTL property
AG (1 <y Ay <12). According to the deductive model checking approach
presented in this paper this means to prove the validity of the second-order

24

formula

Zero(z,1)

(y<10A1<yAy<12
Voo>0Ay+d<10 —
Zero(x + 0,y +0)

y =10 — One(0,y)

r<2A1<yAy <12

Voo>0ANz+06<2 —
One(z + 6,y +)

Vz,y Zero(z,y) —

\ 7

Zero Vz,y One(z,y) —

3 gilvi | =2 — Two(z,y)
4 > < <
Three y>bANl1<yAy <12

VOO>0Ay—20>5 —
Two(z + §,y — 26)

y =5 — Three(0, y)

z<2A1<yAy <12

VOO >0ANz+5<2 —
Three(z + d,y — 20)

x =2 — Zero(z,y)

Vz,y Two(z,y) —

N\ /7

Vx,y Three(z,y) —

\

According to Lemma 5.3 this is equivalent to (by eliminating location One)

Zero(z,1)
(y<10A1<yAy<12
V86> 0Ay+d<10 —
Zero(x + 0,y +0)
y =10 — Two(2,y + 2)
Zero ((y>5AN1<yAy<12
3 Two YOO>0Ay—20>5 —
Three vr,y Two(z,y) = Two(z -I?—Jé, y — 20)
y =5 — Three(0, y)
(2 <2A1<yAy<12
Voo>0ANz+6<2 —

Three(z 4 0,y — 26)
x =2 — Zero(z,y)

Vz,y Zero(z,y) —

Vz,y Three(z,y) —

\

Note that this is exactly the formula we would have obtained from attempt-
ing to prove AG (1 <y Ay < 12) for the hybrid system

25

zZero

Three

Again by Lemma 5.3 this is equivalent to (by eliminating location Two)

Zero(z, 1)

(y<10AN1<yAy<12
V66> 0Ay+d<10 —
Zero(z + 0,y + 0)

y = 10 — Three(0, 5)

(2 <2A1<yAy<12

Voo >0ANz+5<2 —
Three(z + d,y — 20)

x =2 — Zero(z,y)

Vx,y Zero(z,y) —
dZero, Three

Vz,y Three(z,y) —

\

This second-order formula would have equally been obtained by proving
AG (1 <y Ay <12) for the hybrid system

Zero

y=10]z:=0;y:=5

Three

26

A final application of Lemma 5.3 then leads to (after eliminating location
Three)

Zero(zx, 1)
y<1I0AN1<yAy <12
3Zero Vio>0Ay+0<10 —
Vz,y Zero(z,y) — Zero(z + 6,y +)
y =10 — Zero(2,1)

Again, this would be exactly the formula we would get from the attempt to
prove AG (1 < y Ay < 12) for some simpler hybrid system, namely

Zero
g.‘: 1

\

y=10|z:=2;y:=1

This final second-order formula trivially reduces to T, and that in fact again
with the Simplification Lemma alone (since the self-loop is subsumed by the
initial state), and so the desired property is proved valid.

7 Generalizations

7.1 Parameterization

The characteristic second-order formula we obtain from an ICTL-formula,
a hybrid system and a ground initial state has no free symbols whatsoever
unless the formula, the system, or the initial state are parameterized with
constants over the reals. In this case the characteristic formula represents
a constraint on these parameters. This constraint is the neccessary and
sufficient condition on the parameters for the ICTL-formula to hold. As an
example recall the parameterized system property from page 23.

7.2 Approximations

The fixpoint computations do not necessarily terminate in general. In the
standard reachability analysis of hybrid systems one therefore often consid-
ers certain more or less strict approximations of the set of reachable sets.
Evidently such approximations are also possible for the approach presented
here. For instance, one might consider the convex hull of the constraint
formulas that arise from the elimination of some of the locations. Also one
might think of artificially terminating the fixpoint computations after a cer-
tain amount of iterations. In both cases we end up in defintions for the

27

location to be eliminated that are unnecessarily “big”. Similarly, there ex-
ist possibilities to approximate “smaller” candidates for the location to be
eliminated. For further details the reader is refered to the relevant literature.

7.3 Rectangular Hybrid Systems

In this paper the approach is described merely in terms of linear hybrid
systems, i.e. data variables are assumed to change their value by a certain
constant amount (which might vary from data variable to data variable)
per time unit. Nevertheless, the whole approach also works for rectangular
hybrid systems, i.e. for systems within which the change in the data variables
is only described by some interval over the reals. For instance, recall the
definition of the reachability theory for some hybrid system (Definition 4.2).
One part of it consists of the clause V§ (§ > 0 A inv(L)[z/z + kTd] —
L(z + k70)), where k7 denotes the real number that describes the change
of z in L within one time unit. If, however, we are given an interval, say
[a, b], rather than a fixed number we have to change the corresponding part
of the reachability theory to V6,8 (6 > 0Aa < S <bAinv(L)[z/z + 8] —
L(z 4 p0)). The non-linearity can easily be resolved and so we finally end
up with linear formulas again. The Railroad-Gate-Controller from [AHH96]
certainly is one of the most famous examples of a rectangular hybrid system.

8 Experimental Results

There exists a prototype implementation of the Elimination Approach (for
proving safety-properties) written in Sicstus-Prolog with the CLP(Q,R)-
library for constraint handling. Briefly, the overall procedure implemented
works as follows: (i) read the problem file, (ii) compute the compound au-
tomaton (parameters are additional arguments), (iii) add the property to
be proved (and also delete some of the time transitions in case this is re-
quired from some “urgent” or “as-soon-as-possible”-semantics), (iv) select
one of the initial locations, (v) eliminate the selected location (thus possibly
introducing new inital locations), (vi) if finished or trivial then stop; oth-
erwise proceed with step (iv). The approach of selecting initial locations
for elimination has the obvious advantage that it will never be attempted
to eliminate an unreachable location. On the other hand, such a strategy
takes away much of the freedom to choose whatever location we want for
elimination. Another feature of the implementation is that it allows us to
abstract from (some of the local) locations of a compound automaton. This
makes it possible to perform a (forward or backward) reachability analysis
(see below) which allows for a thorough comparison between reachability
and elimination approaches.

Of major interest was the question whether there can be anything better
(at least for safety properties) than forward reachability provided it at all

28

terminates. After all, within forward reachability we compute exactly the
set of reachable states; and in fact we need to know about all the reach-
able states for proving safety properties. Thus, forward reachability does
not compute any redundant information. However, it sometimes performs
redundant computations. This can happen whenever a reachability analy-
sis requires more than one pass through the reachable locations before it
terminates. Systems for which a single pass is sufficient are probably best
examined by forward reachability.

We claim that the Elimination Approach presented in this paper can
help us to avoid such redundant computations. This is the case for instance
for the famous “audio-protocol”-example. For other, unfortunately rather
trivial systems like the “Leaking Gas Burner” or the “Billiards”-example,
the Elimination Approach showed a slightly better behavior than standard
reachability analysis. However, in such cases, where safety properties can
be proved in milliseconds anyway, this can hardly be called “evidence”.

The lack of non-trivial hybrid system in the literature that require several
passes through some of their locations made us compose our own examples.
They are designed as simple as possible such that they may serve to illustrate
the effect of the Elimination Approach compared to reachability analysis
methods. Some such examples are given below.

8.1 Simulating Reachability Analysis

The Elimination Approach as described in this paper assumes that a pred-
icate symbol is introduced for each of the locations of the (compound) au-
tomaton. This method therefore is neither a forward nor a backward analysis
approach. However, if we put these location names into the argument list
and introduce a single and unique dummy predicate symbol instead that
replaces each of the older location names then it becomes obvious that the
Elimination Approach — by eliminating the new dummy predicate — per-
forms a backward reachability analysis. Also, if we perform this location
abstraction but eliminate with the dual form of the Elimination Theorem,
i.e., let P occur only negatively in ® and in ¥ then

IP Nz (P(T)VE) A U] =T [F(a) / (yﬁ(f).(I))g
In this case a forward reachability analysis is performed. For compound
systems one can even perform something like a “mixed” approach by ab-
stracting from only some of the local systems.
8.2 Some Further Examples
8.2.1 Railroad-Gate-Controller

This example is taken from [AHH96]. It describes the control system for
a railroad gate that has to guarantee that the gate is closed whenever a

29

train is near and that it is open in cases where it is safe to be open. The
whole system consists of three component systems: a train, a gate, and
the controller with three, four and again three locations respectively. This
suggests that the composed system has at most 36 locations. However, this
number is restricted by the synchronisation labels that forbid certain edge
compositions. As it turns out, the composed automaton has 22 locations,
but some of the guards denote what we call impossible guards, i.e., constraint
formulas that will never become true because of the source location invariant.
Such impossible guards usually cannot be discovered syntactically, but they
obviously may reduce the number of reachable locations® considerably. In
fact, this railroad-gate-controller example has only 7 reachable locations and
there is only little non-determinism. This makes the example fairly trivial,
despite it looks rather complicated at the first glance.

Both the Elimination Approach and forward reachability analysis prove
the safety requirement AG (z < 10 — Gate.closed) in about 0.5 seconds on
a 333 MHz UltraSPARC. The dual version of the Elimination Approach and
backward reachability analysis require 1.0 sec. and 1.3 sec. respectively.'?

8.2.2 A Silly Multiplier

This is an example where three positive numbers a, b, and ¢ are multiplied
and the final product is stored in the data variable p. The multiplication is
performed by successively adding 1 to p, similar to the nested for-loop

for (w:=0; w<c; w++)
for (v:=0; v<b; v++)
for (u:=0; u<a; u++) {p:=p+1}

9Notice the difference between reachable locations and reachable states. A location is
reachable if there exists a reachable state that has this very location as its first component.
If a location is not reachable then there exists no reachable state with this location.

OTnterestingly, forward reachability requires twice as many iterations as backward reach-
ability, but also it is about twice as fast. This is explained by the fact that an iteration step
in the backward analysis is far more complicated than an iteration step during forward
analysis. It has to take much more states, even impossible ones, into account.

30

SRRy SHLY

IA NI
SRRy SHLY

IA I
[l eslanlan) L

—_—oOO—

SES
[l
O)—‘

8 2.2

IAQIE
8 2.2

IAIEI
—o—OoOO—

—oORO

It is to be shown that the location F' can be reached — after all, as soon
as F' is reached, the data variable p contains the multiplication result we
are interested in. (Backward or forward) reachability analysis in a sense
simulates the behavior of the multiplier. Le., since this system is fully de-
terministic, it takes a walk through the whole computation. Evidently, this
is very time consuming even if we only attempted to compute 10 x 10 x 10;
it takes approximately 8000 iterations.

Now, compare this with the Elimination Approach.!’ (In the automata
below irrelevant information within the locations or at the transitions are
omitted for readability)

The Simplification Lemma allows us to eliminate the top left location in
one strike, resulting in

8 2.2

IAQIETI

8 2.2

IAQIET I
8 2.2

IAIEI
—oOoOOo

—oORO—

UThe prototype implementation of the Elimination Approach is designed for safety
properties only. Thus, in order to prove that location F' can be reached we have to show
that it is not the case that location F' will never be reached.

31

As the next canditate for a location elimination the prototype implementa-
tion chooses the bottom left location and after approx. 2a iterations it ends
up with

i=1
e=¢ ®
w= z=1
<1 w=c

r=1lw<c r=1Lv=0>
z:=0,p:=p+a,v:=0 z:=0
._ z=1
p=a 529 z=1v<b

w =0 z:=0,p:=p+a
<1

The next step is to eliminate the new bottom location. After about 2b
iterations it reaches

®

SEShSASE

IALIE
= O
Il
o

g8

Now, in a final elimination the system attempts to get rid of the left location.
This requires another 2¢ iterations and provides us with this final picture

®

In this remaining trivial system there is only one location which, in partic-
ular, is also the initial location and which therefore is trivially reachable.
The attempt to prove that F' will never be reached thus fails. Therefore
The location F' can be reached and, while entering it, the data variable p
will contain the product of the positive numbers a, b, and c.

As for a concrete example: in order to compute the product 10 x 10 x 10
the prototype implementation of the Elimination Approach requires about
0.8 seconds on a 333 MHz UltraSparc, whereas forward reachability analysis
(utilizing the same implementation) needs some 380 seconds. The more
sphisticated symbolic model checker HyTech, version 1.04, required some
12.3 seconds on the same machine (forward reachability).

p:=axbxc

32

8.2.3 A Long Loop

The following example again demonstrates the effect on long loops. In con-
trast to the multiplier example, however, the long loop is not inherent in the
system; it comes from the property to be proved.

i=1 =1
x,u,v,w::O U:]. x:=0 U:].
v=1 v =0
w=1 w =0
r<l1 Tz <2

Suppose that, for some reason, we want to show that AG (u > 154 —
5.9 X w < u+ v). Although the system is fairly simple, the property to be
proved requires a reachability analysis to somehow (backward) simulate the
system over a rather long period of time. In fact, forward reachability does
not terminate within a reasonable amount of time and backward reachability
requires some 95 seconds on a 333 MHz UltraSparc. Unfortunately, HyTech
version 1.04, the Berkeley symbolic model checker for embedded systems
runs into a library overflow error after about 60 seconds.

The implementation of the Elimination Approach, on the other hand,
first eliminates the two top locations within a fraction of a second (this
requires only the Simplification Lemma) and, as an intermediate result,
comes up with a system that consists of merely one remaining location that
has a transition that leads to itself. It therefore has to be eliminated with
the Elimination Theorem and the implemented system does so in about 7.5
seconds on a 333 MHz UltraSparc.

8.2.4 Where Reachability Fails

The particularity about the next example is that it contains an “impossible”
location, i.e., one of the locations — the bottom one — is unreachable because
the guard (y = 2) of the transition that may lead to this very location can
impossibly become true.

33

In a sense, forward reachability analysis detects this impossible transition,
although rather indirectly, for it never tries to compute states which involve
this location. Nevertheless, forward reachability does not terminate, since it
derives more and more new reachable states that involve the two rightmost
locations. At the first glance, backward reachability might have a better
chance. Suppose we were about to prove that z < y is an overall invariant
of the system. If there were not the bottom location, backward reachability
would have no problem to detect that the invariant indeed holds. However,
this invariant does not hold for the bottom location and the only reason why
this is non-critical for the whole system is the mere fact that this location
is not reachable anyway. It is thus simply not necessary to try and prove
the invariant for this very location. However, backward reachability cannot
find out by itself that there is an impossible transition and therefore neither
terminates.

Now, what does the Elimination Approach (or actually its prototype
implementation) do with this example? After about 0.1 seconds (on a 333
MHz UltraSparc) it has eliminated the top three locations and ends up with
the remaining bottom location, however, without any newly generated inital
transition. This means that there exists a trivial model for the remaining
set of formulas, namely the one that assigns | (false) to the remaining
location predicate, and the system terminates with success. The Elimination
Approach thus allows us to solve this problem in a tiny fraction of a second.

8.3 Final Conclusion

The Elimination Approach has been tested on quite a lot of examples taken
from the relevant literature, the various verifier distributions, and also self-
made. Some of them are small and trivial like the Water Level Monitor,
or the Leaking Gas Burner. Unfortunately, it seems that almost all non-
trivial examples that can be found in the literature are designed such that

34

a forward reachability analysis terminates after a single run through the
reachable locations. Only those standard examples for which the properties
to be proved force a reachability analysis to travel several (even many) times
through the reachable locations showed how valuable the Elimination Ap-
proach can be. For instance, take the Billiards example from [ACH'95] and
modify the movement of the white ball such that it is pushed almost ver-
tically (or almost horizontically). Then any reachability analysis will have
to perform many iterations through the fixpoint computation (one for each
bounce) and it will take quite some time to come up with the desired result.
Two of the self-made examples from above are also along these lines. Both
the Silly Multiplier and the Long Lasting Loop require many iterations in
a reachability analysis. The Elimination Approach, however, is insensitive
to this fact. It simply eliminates the involved locations one by one and
therefore never has to visit these locations again.

References

[ABL97] Luca Aceto, Augusto Burgueno, and Kim G. Larsen. Model
checking via reachability testing for timed automata. BRICS
Report Series RS-97-29, BRICS, Department of Computer Sci-
ence, University of Aarhus, 1997.

[ACD90] R. Alur, C. Courcoubetis, and D. L. Dill. Model checking for
real-time systems. In Proceedings of the 5th Annual Symposium
on Logic in Computer Science, pages 414-425, 1990.

[ACH"™95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-
H. Ho, X. Nicollin, A. Olivero, J. Sifaksi, and S. Yovine. The
algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138:3-34, 1995.

[ACHH93] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid
automata: An algorithmic approach to the specification and ver-
ification of hybrid systems. In R. L. Grossman, A. Nerode, A. P.
Ravn, and H. Rischel, editors, Hybrid Systems, pages 209-229.
Springer Verlag, Lecture Notes in Computer Science, vol. 736,
1993.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183-235, 1994.

[AH92] R. Alur and T. A. Henzinger. Logics and models of real-time:
A survey. In J.W. de Bakker, K. Huizing, W.-P. de Roever, and
G. Rozenberg, editors, Real Time: Theory in Practice, pages
74-106. Springer Verlag, New York, LNCS 600, 1992.

35

[AHHY6]

[AHS96]

[ANKS95]

[CES1]

[CESS6]

[CHRY1]

[EMSS90]

[GH90]

[GNRR93]

[Hen91]

[Hen95]

[Hen96]

Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic
symbolic verification of embedded systems. IEEE Transactions
on Software Engineering, 22(3):181-201, 1996.

R. Alur, T. A. Henzinger, and E. Sontag, editors. Hybrid Systems
III. Lecture Notes in Computer Science, Springer Verlag, 1996.

P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors. Hy-
brid Systems II. Lecture Notes in Computer Science, vol. 999,
Springer Verlag, 1995.

E. M. Clarke and E. A. Emerson. Design and synthesis of syn-
chronization skeletons using branching-time temporal logic. In
Workshop Logic of Programs. Springer Verlag, Lecture Notes in
Computer Science, vol. 131, 1981.

E. M. Clarke, , E. A. Emerson, and A. P. Sisla. Automatic ver-
ification of finite-state concurrent systems using temporal logic
specifications. ACM Trans. Programming Languages and Sys-
tems, 8(2):244-263, 1986.

Zhao Chaochen, C. A. R. Hoare, and Anders P. Ravn. A calculus
of durations. Information Processing Letters, 40:269-276, 1991.

E. A. Emerson, A. Mok, A. P. Sistla, and J. Srinivasan. Quan-
titative temporal reasoning. In CAV 90: Computer Aided Ver-
ification, pages 163-145. Lecture Notes in Computer Science,
vol. 531, Springer Verlag, New York, 1990.

Dov Gabbay and I.M. Hodkinson. An axiomatization of the tem-
poral logic with until and since over the real numbers. Journal
of Logic and Computation, 1(2):229-260, 1990.

R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors.
Hybrid Systems. Springer Verlag, Lecture Notes in Computer
Science, vol. 736, 1993.

T. A. Henzinger. The Temporal Specification and Verification of
Real-Time Systems. PhD thesis, Stanford University, Stanford,
Ca., 1991.

T. A. Henzinger. Hybrid automata with finite bisimulations.
In ICALP 95: Automata, Languages, and Programming, pages
324-335. Springer Verlag, Lecture Notes in Computer Science,
vol. 944, 1995.

T. A. Henzinger. The theory of hybrid automata. In Proceedings
of the 11th LICS, pages 278-292. IEEE Comp. Soc. Press, 1996.

36

[HNSY92] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic

[Ho95]

[Kop96]

[LLW95]

[MP92]

[MW84]

[Non95]

[Non96]

[NOS99]

[NS95]

[NS99]

model checking for real-time systems. In Proceedings of the Tth
Annual Symposium on Logic in Computer Science, pages 394—
406. IEEE Computer Society Press, New York, 1992.

Pei-Hsin Ho. Automatic Analysis of Hybrid Systems. PhD thesis,
Cornell University, 1995.

P. Kopke. The Theory of Rectangular Hybrid Systems. PhD
thesis, Cornell University, 1996.

Francgois Laroussinie, Kim G. Larsen, and Carsten Weise. From
timed automata to logic — and back. BRICS Report Series RS-
95-2, BRICS, Department of Computer Science, University of
Aarhus, 1995.

7. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer Verlag, New York,
1992.

7. Manna and P. Wolper. Synthesis of communicating processes
from temporal logic specifications. ACM Trans. Prog. Lan. Syst.,
6(1):68-93, 1984.

Andreas Nonnengart. A Resolution-Based Calculus for Temporal
Logics. PhD thesis, Universitiat des Saarlandes, Saarbriicken,
Germany, December 1995.

Andreas Nonnengart. Resolution-based calculi for modal and
temporal logics. In Slaney McRobbie, editor, Proceedings of the
13th CADE, pages 598-612. Springer Verlag, LNAI 1104, 1996.

Andreas Nonnengart, Hans Jiirgen Ohlbach, and Andrzej Szalas.
Elimination of predicate quantifiers. In Hans Jiirgen Ohlbach
and Uwe Reyle, editors, Logic, Language and Reasoning — Fs-
says in Honour of Dov Gabbay, page 77?7 Kluwer, Dordrecht,
Netherlands, 1999. ISBN: 0-7923-5687-X.

Andreas Nonnengart and Andrzej Szalas. A fixpoint ap-
proach to second-order quantifier elimination with applica-
tions to correspondence theory. Technical Report MPI-I-95-2-
007, Max-Planck-Institute for Computer Science, Saarbriicken,
Germany, March 1995. Available at: http://www.mpi-
sb.mpg.de/~nonnenga.

Andreas Nonnengart and Andrzej Szalas. A fixpoint approach
to second-order quantifier elimination with applications to cor-
respondence theory. in: [Or199], 1999.

37

[OL82]

[Or199]

[PHSS]

[Pnu77]

[Sha93]

[Sis85]

[SUMOY6]

J. S. Owicki and L. Lamport. Proving liveness properties of
concurrent programs. ACM Trans. Prog. Lan. Syst., 4(3):455—
495, 1982.

Ewa Orlowska, editor. Logic at Work: Essays Dedicated to the
Memory of Helena Rasiowa, volume 24 of Studies in Fuzziness
and Soft Computing. Physica-Verlag, ¢/o Springer Verlag, 1999.
ISBN: 3-7908-1164-5.

A. Pnueli and E. Harel. Applications of temporal logic to the
specification of real-time systems. In Formal Techniques in Real-
Time and Fault-Tolerant Systems, pages 84-93. Lecture Notes in
Computer Science, vol. 331, Springer Verlag, New York, 1988.

A. Pnueli. The temporal logic of programs. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science,
pages 46-57. IEEE Computer Society Press, New York, 1977.

N. Shankar. Verification of real-time systems using PVS. In
Costas Courcoubetis, editor, Proceedings of the CAV ’93, pages
280-291. Springer Verlag, LNCS 697, 1993.

E. M. Sistla, A. P. Clarke. The complexity of propositional linear
temporal logics. Journal of the ACM, 32(3):733-749, 1985.

Henny B. Sipma, Tomds E. Uribe, and Zohar Manna. Deductive
model checking. In Proceedings of the 8th International Confer-
ence on. Computer Aided Verification, pages 208 — 219. Springer
Verlag, LNCS 1102, 1996.

38

o

INFORMATIK

Below you find a list of the most recent technical reports of the Max-Planck-Institut fiir Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which

are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library

attn. Anja Becker

Im Stadtwald

66123 Saarbriicken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-1-1999-3-005
MPI-1-1999-3-004
MPI-1-1999-3-003

MPI-1-1999-3-002
MPI-1-1999-3-001

MPI-1-1999-2-005
MPI-1-1999-2-004

MPI-1-1999-2-003

MPI-1-1999-2-001
MPI-1-1999-1-007

MPI-I-1999-1-006
MPI-I-1999-1-005
MPI-1-1999-1-004

MPI-1-1999-1-003
MPI-1-1999-1-002

MPI-1-1999-1-001

MPI-1-98-2-018

MPI-1-98-2-017
MPI-1-98-2-014
MPI-1-98-2-013
MPI-1-98-2-012
MPI-1-98-2-011
MPI-1-98-2-010
MPI-1-98-2-009

T.A. Henzinger, J. Raskin, P. Schobbens
J. Raskin, P. Schobbens
T.A. Henzinger, J. Raskin, P. Schobbens

J. Raskin, P. Schobbens
S. Vorobyov

J. Wu

V. Cortier, H. Ganzinger, F. Jacquemard,
M. Veanes

U. Waldmann

W. Charatonik
C. Burnikel, K. Mehlhorn, M. Seel

M. Nissen
J.F. Sibeyn
M. Nissen, K. Weihe

P. Sanders, S. Egner, J. Korst

N.P. Boghossian, O. Kohlbacher,
H.-. Lenhof

A. Crauser, P. Ferragina
F. Eisenbrand

M. Tzakova, P. Blackburn

Y. Gurevich, M. Veanes

H. Ganzinger, F. Jacquemard, M. Veanes
G. Delzanno, A. Podelski

A. Degtyarev, A. Voronkov

S. Ramangalahy

S. Vorobyov

Axioms for Real-Time Logics
Proving a conjecture of Andreka on temporal logic

Fully Decidable Logics, Automata and Classical
Theories for Defining Regular Real-Time Languages

The Logic of Event Clocks

New Lower Bounds for the Expressiveness and the
Higher-Order Matching Problem in the Simply Typed
Lambda Calculus

Symmetries in Logic Programs

Decidable fragments of simultaneous rigid reachability

Cancellative Superposition Decides the Theory of
Divisible Torsion-Free Abelian Groups

Automata on DAG Representations of Finite Trees

A simple way to recognize a correct Voronoi diagram of
line segments

Integration of Graph Iterators into LEDA
Ultimate Parallel List Ranking ?

How generic language extensions enable “open-world”
desing in Java

Fast Concurrent Access to Parallel Disks
BALL: Biochemical Algorithms Library

A Theoretical and Experimental Study on the
Construction of Suffix Arrays in External Memory

A Note on the Membership Problem for the First
Elementary Closure of a Polyhedron

Hybridizing Concept Languages

Partisan Corroboration, and Shifted Pairing
Rigid Reachability

Model Checking Infinite-state Systems in CLP
Equality Reasoning in Sequent-Based Calculi
Strategies for Conformance Testing

The Undecidability of the First-Order Theories of One
Step Rewriting in Linear Canonical Systems

MPI-1-98-2-008

MPI-1-98-2-007

MPI-1-98-2-006
MPI-1-98-2-005

MPI-1-98-2-004

MPI-1-98-2-003
MPI-1-98-2-002

MPI-1-98-1-031
MPI-1-98-1-030

MPI-1-98-1-029

MPI-1-98-1-028

MPI-1-98-1-027
MPI-1-98-1-026

MPI-1-98-1-025

MPI-1-98-1-024

MPI-1-98-1-023
MPI-1-98-1-022
MPI-1-98-1-021
MPI-1-98-1-020

MPI-1-98-1-019

MPI-1-98-1-018
MPI-1-98-1-017

MPI-1-98-1-016

MPI-1-98-1-015

MPI-1-98-1-014
MPI-1-98-1-013
MPI-1-98-1-012

MPI-1-98-1-011
MPI-1-98-1-010

MPI-1-98-1-009

MPI-1-98-1-008

S. Vorobyov

S. Vorobyov

P. Blackburn, M. Tzakova
M. Veanes

S. Vorobyov

R.A. Schmidt

F. Jacquemard, C. Meyer, C. Weidenbach

G.W. Klau, P. Mutzel

H. Brénniman, L. Kettner, S. Schirra,
R. Veltkamp

P. Mutzel, R. Weiskircher

A. Crauser, K. Mehlhorn, E. Althaus,
K. Brengel, T. Buchheit, J. Keller,
H. Krone, O. Lambert, R. Schulte,

S. Thiel, M. Westphal, R. Wirth

C. Burnikel
K. Jansen, L. Porkolab

K. Jansen, L. Porkolab

S. Burkhardt, A. Crauser, P. Ferragina,
H. Lenhof, E. Rivals, M. Vingron

C. Burnikel

C. Burnikel, J. Ziegler
S. Albers, G. Schmidt
C. Riib

D. Dubhashi, D. Ranjan

A. Crauser, P. Ferragina, K. Mehlhorn,
U. Meyer, E. Ramos

P. Krysta, K. Lory$

M.R. Henzinger, S. Leonardi

U. Meyer, J.F. Sibeyn
G.W. Klau, P. Mutzel

S. Mahajan, E.A. Ramos,
K.V. Subrahmanyam

G.N. Frederickson, R. Solis-Oba
R. Solis-Oba

D. Frigioni, A. Marchetti-Spaccamela,
U. Nanni

M. Jiinger, S. Leipert, P. Mutzel

AE-Equational theory of context unification is
Co-RE-Hard

The Most Nonelementary Theory (A Direct Lower
Bound Proof)

Hybrid Languages and Temporal Logic

The Relation Between Second-Order Unification and
Simultaneous Rigid E-Unification

Satisfiability of Functional+Record Subtype
Constraints is NP-Hard

E-Unification for Subsystems of S4

Unification in Extensions of Shallow Equational
Theories

Optimal Compaction of Orthogonal Grid Drawings

Applications of the Generic Programming Paradigm in
the Design of CGAL

Optimizing Over All Combinatorial Embeddings of a
Planar Graph

On the performance of LEDA-SM

Delaunay Graphs by Divide and Conquer

Improved Approximation Schemes for Scheduling
Unrelated Parallel Machines

Linear-time Approximation Schemes for Scheduling
Malleable Parallel Tasks

g-gram Based Database Searching Using a Suffix Array
(QUASAR)

Rational Points on Circles
Fast Recursive Division
Scheduling with Unexpected Machine Breakdowns

On Wallace’s Method for the Generation of Normal
Variates

2nd Workshop on Algorithm Engineering WAE ’98 -
Proceedings

On Positive Influence and Negative Dependence

Randomized External-Memory Algorithms for Some
Geometric Problems

New Approximation Algorithms for the Achromatic
Number

Scheduling Multicasts on Unit-Capacity Trees and
Meshes

Time-Independent Gossiping on Full-Port Tori
Quasi-Orthogonal Drawing of Planar Graphs

Solving some discrepancy problems in NC*

Robustness analysis in combinatorial optimization

2-Approximation algorithm for finding a spanning tree
with maximum number of leaves

Fully dynamic shortest paths and negative cycle
detection on diagraphs with Arbitrary Arc Weights

A Note on Computing a Maximal Planar Subgraph
using PQ-Trees

