
Journal of Neuroscience Methods 130 (2003) 143–157

Combining deconvolution and fluctuation analysis
to determine quantal parameters and release rates
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Abstract

Analysis methods are described which integrate information from fluctuation analysis with that from deconvolution. Together the two
approaches allow to derive a consistent quantitative description of quantal release (both evoked, spontaneous and asynchronous) under
conditions in which quantal parameters may change during a repetitively applied stimulation protocol. Specifically, our methods take into
account the effects of accumulating transmitter in the synaptic cleft and postsynaptic receptor desensitization, which may develop during
strong stimulation. Several ways to handle non-stationarities are described. Examples are provided for the Calyx of Held, a glutamatergic
synapse, in which both the pre- and the postsynaptic compartments can be voltage-clamped.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Synaptic transmission is a highly probabilistic process.
Stochastic events occur on at least two levels of resolu-
tion: first, the release of quanta of transmitter (Katz, 1969),
which typically activate tens or hundreds of channels each
and second, the opening and closing of individual channels
(Anderson and Stevens, 1973; Katz and Miledi, 1972). Un-
der many circumstances the resulting stochastic fluctuations
in postsynaptic signals are just noise, which the researcher
wants to minimize. However, early-on it was recognized
that this noise carries information on the molecular events
underlying the signals (Anderson and Stevens, 1973; Katz
and Miledi, 1972) and methods which extract this infor-
mation were developed (for overview, seeColquhoun and
Hawkes, 1981; Fesce, 1990; Neher and Stevens, 1977). The
theories underlying such techniques usually make idealizing
assumptions about the stochastic processes involved, such
as stationarity of continuous current records or stationarity
in ensemble records in the sense that starting conditions for
all records of an ensemble are identical. Many such identical
traces or long stretches of stationary record are desirable for

∗ Corresponding author. Tel.:+49-551-201-1630;
fax: +49-551-201-1688.

E-mail address:eneher@gwdg.de (E. Neher).

good signal to noise ratio of the estimates. Unfortunately,
most synapses and molecules involved, however, do not
conform: channels desensitize or inactivate on several time
scales, and synapses facilitate or depress. Rarely is it possi-
ble to obtain tens or even hundreds of stationary records for
ensemble analysis, because the preparation ‘runs down’ and
access resistance starts to deteriorate. Moreover, fluctuations
from various sources, such as channel noise and quantal
noise, often overlap. Fortunately, however, conditions at
glutamatergic synapses are such that simple manipulations
mitigate or even effectively eliminate the adverse effects of
such uncooperative behavior. This review tries to summarize
recent experiences, mainly from our laboratory, in adapting
noise analysis techniques to the specific circumstances of
a glutamatergic synapse. We also show how information
from noise analysis can be combined with the technique
of deconvolution to overcome a serious obstacle in the
application of this technique to synapses in brain slices,
namely accumulation of transmitter in the synaptic cleft and
concomitant cross-talk between neighboring release sites
(Barbour and Häusser, 1997). Although most of the results
mentioned in this review derive from experiments at the
Calyx of Held—a giant glutamatergic terminal, which al-
lows simultaneous voltage clamping of pre- and postsynap-
tic compartments—the analysis can also readily be applied
to other synapses, as will be discussed below. We will start
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with noise analysis, because an understanding of some as-
pects of this technique is necessary for its combination with
deconvolution.

2. Noise analysis on the basis of Campbell’s theorem

In synaptic physiology we are very often confronted with
records that consist of random superpositions of miniature
currents or miniature potentials. These may occur sponta-
neously, as a consequence of manipulations which elevate
intracellular [Ca2+], or due to asynchronous release after
intense stimulation. At the Calyx of Held, which allows
controlled presynaptic depolarization, miniature excitatory
postsynaptic currents (mEPSCs) can be elicited within a
wide range of release rates. Campell’s theorem, which is
an outflow of the electronics communication technology of
early last century (Rice, 1944), is ideally suited to handle
such signals. The theorem considers streams of stochasti-
cally occurring elementary signals (such as noise spikes on
a telephone line), which occur statistically independently
at a certain mean rate and superimpose linearly. If such
elementary events are relatively brief compared to the total
observation intervalT, and if the rate of occurrenceξ, is
stationary within this interval, then the theorem states (in
its simplest form!) that both the mean signal and the vari-
ance of the signal should be proportional to this rate. The
proportionality constant between mean and rate is the area
under the elementary signal and the relevant constant for
the variance is the area under the square of the elementary
signal. Furthermore, the same approach can be extended
to the higher moments of the signal (i.e. the normalized
integral over thenth power of the signal) such as skew-
ness (third power) and kurtosis (fourth power). In all cases
so-called ‘cumulants’, which are combinations of moments
up to the given power, have to be considered (see below and
Appendix A).

Segal et al. (1985)and Fesce et al. (1986)perfected
this approach for studies at the neuromuscular junction.
They considered elementary signals of peak amplitude
h, with normalized time courseF(t) occurring at rateξ.
With this notation an mEPSC, occurring at timet′ has the
time coursehF(t − t′) and Campbell’s theorem can be
written as

λn = ξhn
∫

[F(t)]n dt ≡ ξhnIn (1)

Here,λn is the nth cumulant, the integration extends over
the whole time during whichF(t) is non-zero andIn was
introduced as a short-hand notation for

∫
[F(t)]n dt. The ap-

plication of Campell’s theorem to the casesn = 2 (vari-
ance) andn = 1 (mean) results inλ2/λ1 = hI2/I1, which
is the well-known result that the elementary signal ampli-
tude is proportional to the ratio of variance and mean. In
fact, for single channel responses (elementary signals are
square pulses withI2/I1 = 1) the single channel amplitude

is just the ratio ofλ2 andλ1. For instantaneously rising and
exponentially decaying signals (such as ‘ideal’ mEPSCs),
the ratioI2/I1 = 1/2 as already pointed out byKatz and
Miledi (1972). Likewise, the ratiosIν/Iν−1 can be evaluated
for any given shape of the elementary signal and, in princi-
ple, any ratio between successive cumulants can be used to
determineh.

In the analysis described so far, many simplifying as-
sumptions were made: background noise was neglected,
ideal stationarity was assumed, and the ‘elementary signal’
was assumed to have a well-determined time course (as
may be appropriate for noise spikes in electronic circuits).
Particularly, the last assumption is usually invalid for bi-
ological signals, since we know, for instance, that single
channel signals are not identical to each other. They have a
characteristic distribution of open times and, likewise, most
mEPSCs have some dispersion in their amplitudes. These
aspects, however, are readily accommodated, if one can
assume that the elementary events, indeed, are statistically
independent among themselves and also are independent
of the signals which generate background noise. In this
case, the basic laws regarding the linear superposition of
random variables state that for such signals the cumulants
add linearly (seeAppendix A). This is trivial for the mean
values but it also holds for the variance in the following
sense: if a random signal,y, is the sum of two independent
signals y1 and y2, then the varianceσ2

y of y is the sum of

the variancesσ2
y1

andσ2
y2

. Applying this law tells us that we
can subtract the variance of the background noise from the
measured total noise in order to obtain the variance of the
mEPSCs and, in addition, we can (mentally!) subdivide all
single channel events into subclasses of certain durations,
and apply Campbell’s theorem for each class individually.
In the case of single channel responses this is particularly
simple because for each subclass the same result is obtained
(h = λ2/λ1; I2/I1 = 1), such that the overall result is again
the simple ratioλ2/λ1. In the case of mEPSCs with a size
distribution,g(h), of amplitudes and the same shape factors
(In) for the different sizes the situation is somewhat more
complicated:

λ2 = σ2
y = ξ

∫
I2h

2g(h)dh = ξ〈h2〉I2 (2)

λ1 = 〈y〉 = ξ

∫
I1hg(h)dh = ξ〈h〉I1 (3)

such that

λ2

λ1
= 〈h〉 〈h

2〉
〈h〉2

I2

I1
(4)

Here,〈y〉 and 〈h〉 denote the expectation value ofy andh,
respectively, and the equation was written in a form, which
subdivides the result into that obtained for a uniform or nar-
row amplitude distribution (λ2/λ1 = 〈h〉I2/I1) and a ‘cor-
rection factor’,〈h2〉/〈h〉2, which reflects the relative width
of the amplitude distribution. For a Gaussian with mean



E. Neher, T. Sakaba / Journal of Neuroscience Methods 130 (2003) 143–157 145

h̄ and widthσn this correction factor is(1 + (σ2
n/〈h〉2)).

It should also be noted that the assumption of ‘statistical
independence’ of elementary events implies a low degree of
activation of the physiological processes involved. Thus, for
the case of ion channel signals we imply low open probabil-
ity p. In the case of release of quanta from presynaptic termi-
nals, we imply the limit of Poisson statistics (because for a
large degree of activation, requiring Binomial statistics, the
probability of release of a quantum depends on how many
quanta are still available for release or how many quanta
have already been released).

3. Separating channel noise from quantal noise:
employing higher moments or predicting channel
variance from mean current

When mEPSCs summed, they may build up to a substan-
tial average current, which fluctuates strongly due to the
random arrival of new events. However, part of these fluc-
tuations also come from random open–close fluctuations of
channels during the decaying phases of previous mEPSCs
(Faber et al., 1992). Also, transmitter may build up in the
synaptic cleft and elicit so-called ‘residual current’ (Barbour
et al., 1994; Carter and Regehr, 2000; Faber and Korn, 1988;
Hartzell et al., 1975; Kinney et al., 1997; Otis et al., 1996;
Trussell et al., 1993) by activating postsynaptic channels.
Thus, total variance measured in the postsynaptic record has
three sources: background varianceλ2,o, ion channel vari-
anceλ2,c and the variance of interest,λ2,q (q for quantal
noise).λ2,o in most cases can be measured as the variance
before or after activation of mEPSCs or as they-axis inter-
cept in a plot of total variance against mean current,Ip (if
stretches of record with different degrees of synaptic activa-
tion are available). Channel varianceλ2,c in most cases of
interest is the product of a mean single channel amplitude
i and mean postsynaptic currentIp, such that (assuming all
three sources of noise can be considered statistically inde-
pendent) we can write

λ2 = λ2,o + iIp + λ2,q (5)

A critical question is: can we assume statistical indepen-
dence of channel variance and quantal variance? This is not
trivial, since, of course, quanta are made up of fluctuating
ion channels. The answer, however, is that it is safe to do
so in most cases of interest. Arguments in favor of this as-
sertion are given byNeher and Sakaba (2001b), where the
assumption was also tested by numerous Monte Carlo sim-
ulations. Thus, withEq. (5) we can calculateλ2,q, if we
know total varianceλ2, background varianceλ2,o, the mean
current, and the single channel amplitudei. The latter may
either be known from single channel recordings of receptor
channels or else it can be determined by a separate experi-
ment, in which the transmitter is applied to the postsynap-
tic cell (by ionophoresis, bath perfusion, or local perfusion).
When variance from a narrow time window of the recorded

current is plotted as a function of mean current,Ip, the de-
sired value fori is the slope of the plot at lowIp (note that
the meaning of some of these quantities will be modified be-
low, when we consider filtered signals and when we discuss
an alternative for obtainingi).

We are interested in estimating the mean amplitude of the
synaptic quantum and its mean frequency of occurrence,ξ.
We can obtain both quantities by applyingEq. (1) for the
casesn = 1 (mean) andn = 2 (variance), now considering
explicitly the complication due to background noiseλ2,o
and channel noise and also allowing for background current,
Ip,o and the residual current,Ires, originating from residual
transmitter (glutamate) in the synaptic cleft:

Ip = λ1 = Ip,o + ξhI1 + Ires (6)

σ2
I = λ2 = λ2,o + i(Ip − Ip,o) + ξh2I2 (7)

It is readily seen that the quantities of interest,h andξ can
be calculated from these two equations, if background cur-
rent Ip,o, background noiseλ2,o and the residual currentIres
(originating from accumulation of cleft transmitter) are ei-
ther zero or known. The case of vanishing cleft transmitter
represents the ‘classical’ approach as used by many investi-
gators (Del Castillo and Katz, 1954). However, at the Calyx
of Held and for many other glutamatergic synapses (Barbour
et al., 1994; Carter and Regehr, 2000; Kinney et al., 1997;
Mennerick and Zorumski, 1995; Otis et al., 1996; Trussell
et al., 1993) Ires = 0 holds only for very weak stimulation
(Borst and Sakmann, 1996), such that alternatives have to
be looked for in many measurement paradigms. One alter-
native is the special deconvolution approach, described be-
low, in which the residual current is estimated by a fit to a
simple diffusion model of residual glutamate. Another ap-
proach invokes the higher cumulants of the noise fluctua-
tions (Fesce, 1990; Neher and Sakaba, 2001b) in order to
obtain additional equations to solve for the additional un-
known quantityIres. This is particularly convenient, because
it is relatively safe to assume that both background noise
and channel noise have a Gaussian amplitude distribution,
for which the contributions to the higher cumulants vanish.
On the other hand, it is a well-known fact that estimates of
higher cumulants are very noisy, such that one needs to av-
erage over long stretches of data to obtain reliable values.
Keeping this in mind, one can write down the equations for
the skewness (λ3) and for the kurtosis (λ4):

λ3 = ξh3I3 (8)

λ4 = ξh4I4 (9)

In theory, it would be easy to solve these two equations for
ξ andh:

h = λ4I3

λ3I4
and ξ = λ4

3I
3
4

λ3
4I

4
3

(10)

However, this will work only rarely in practice due to the
noisiness of the estimates. For instance,Neher and Sakaba
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(2001b)showed by Monte Carlo simulations, that one needs
to average over 500 ms of stationary record in order to obtain
at best an estimate forξ with a coefficient of variation of
0.4. This is the case for release rates up to 1 event/ms. The
estimates are even worse for higher release rates, since the
amplitude distribution approaches a Gaussian with vanishing
skewness and kurtosis (seeAppendix A) whenever many
events overlap. In contrast, the estimates of variance for the
same stretch of simulated data had a coefficient of variation
smaller than 0.1, which even improved with higher quantal
release rates. Thus, one has to carefully consider various
aspects ofEqs. (6)–(9)for an optimal solution regarding
the quantities of interest. This will depend on the particular
circumstances of a given experiment. The relevant factors
include length and stationarity of data stretches available,
mean frequency of events, and the magnitude of residual
current. One approach used byNeher and Sakaba (2001b)
was to solveEqs. (7)–(9)for the single channel currenti,
according to

i =
(
λ2 − λ2,o

Ip − Ip,o

)(
1 − λ2

3I2I4

(λ2 − λ2,o)λ4I
2
3

)
(11)

and to apply this to stretches of data, for which release
rates are low, but residual current dominates. The late decay-
ing phase of an EPSC following massive stimulation fulfills
these requirements. Under these conditions the last term in
Eq. (11)is just a small correction to the leading term, such
that it is not necessary to determineλ3 andλ4 accurately.

Assumingi is constant for a given cell or, at least, for a
given record (note thecaveatin Fig. 1, legend), this value
was used for analyzing other sections of the record by solv-
ing (6) and (7) forξ andh, such that

h = λ3I2

λ2 − λ2,o − i(Ip − Ip,o)
(12)

Fig. 1. An example of fluctuation analysis at the Calyx of Held synapse.
(A) The presynaptic terminal was depolarized from−80 mV to +80 mV
(Vpre) and subsequently repolarized to+55 mV (for 100 ms) which evoked
slowly rising AMPA-EPSC (moderate release period, see inset). The
terminal was subsequently repolarized to 0 mV for 20 ms to deplete
available quanta, and finally repolarized to the holding potential (−80 mV).
The same protocol was usually repeated 10 times, and variance (variance),
skewness (skew) and fourth cumulant (fourth) were calculated after mean
subtraction and band-pass filtering. The extracellular solution contained
cyclothiazide, an inhibitor of AMPA-receptor desensitization. Modified
from Neher and Sakaba (2001b). (B) The late phase of the EPSC (excerpt
from time range shown in (A)) is expanded, and variance signal (middle
panel) and estimatedi′ (bottom panel) are plotted. The contribution of
channel variance is shown as a broken trace in the middle panel, using
an i′ value of 30 fA. Note thati′ has a tendency to decrease for smaller
EPSCs, a feature which is consistently observed. (C) The moderate release
period at expanded time scale. mEPSC amplitudes and quantal release
rates were calculated according to (B.8) and (B.3) from skewness and
variance (middle and the lowest panels, circles with dotted lines). In the
lowest panel, release rates estimated from the deconvolution method are
superimposed (continuous traces), using the mean mEPSC amplitude of
18 pA, as determined from skew and variance.

ξ = (λ2 − λ2,o − i(Ip − Ip,o))
3I2

3

λ2
3I

3
2

(13)

This way, one can obtainh andξ on sufficiently long station-
ary stretches of data without having to know the contribution
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of the residual current. Still, estimates which include the
skew are noisier than those avoiding it. This is particularly
true for estimates of release rates. To calculate the latter,
one may therefore try to determineh from a suitable stretch
of data and, assuming it is constant (in the absence of post-
synaptic desensitization), calculate release rates just from
variance, with

ξ = λ2 − λ2,o − i(Ip − Ip,o)

h2I2
(14)

We can see that there is a variety of ways available to look at
noise data. Below we will discuss examples and will point
out that in practice the analysis should not be performed on
the raw data records but on band-pass filtered records. The
equations introduced so far hold as well for such band-pass
filtered records, except that quantitiesh, I and Iν (however
not Ip) will have to be reinterpreted as band-pass filtered val-
ues. Also, the equations above were simplified in the sense
that the dispersion of mEPSC amplitudes was not included.
Full equations considering both of these effects are given in
Appendix B.

4. Techniques to minimize the adverse effects of
non-stationarities

In order to applyEqs. (6)–(14)one has to evaluate the
moments of the signal (e.g. mean and variance) over suffi-
ciently long windows of stationary data, in order to obtain
estimates with adequate coefficients of variation (CV). The
question is: What is ‘sufficiently’ long?Neher and Sakaba
(2001b) determined CVs for random superpositions of
mEPSCs by Monte Carlo simulation and asked the question:
How long does the analysis window have to be, in order to
achieve adequate CV? It turned out that this ‘time resolution’
is remarkably good (Table 2 and Fig. 3 ofNeher and Sakaba,
2001b). For variance 1–3 ms of recording is sufficient, de-
pending on the mEPSC rate. For the higher moments and
the quantities derived from them more averaging is needed;
the more, the higher the rate (see below). For instance, for
an estimate ofh, according toEq. (12)at 2 events/ms an av-
eraging time of 8 ms is required; for a rate-estimateξ under
the same conditions 40 ms is required (because it involves
higher powers ofλ3 andλ2). In all cases, the analysis was
performed on band-pass-filtered signals. The need and ben-
efits of band-pass-filtering was analyzed already bySegal
et al. (1985). The need of low-pass filtering is obvious:
one does not want to include noise power at frequencies,
which are beyond the main components of the mEPSC. The
need for additional high-pass-filtering (to define an optimal
frequency-band) derives from three arguments:

(1) Campell’s theorem requests that the observation interval
is long relative to the interval during which the elemen-
tary signal is non-zero. mEPSCs decay over several ms,
such that without filtering the windows of analysis could

not be shorter than about 10 ms. Optimal (matched!) fil-
tering converts an mEPSC into a delta-pulse-like signal,
well below an ms, and thus an analysis window of only
a few ms is sufficient.

(2) High-pass-filtering effectively removes non-stationari-
ties.

(3) According to the central limit theorem the amplitude
distribution of a superposition of independent random
events approaches a Gaussian, whenever their number
increases beyond a certain value. High-pass-filtering
makes the individual events shorter, such that for a
given stream of mEPSCs the number of overlapping
events is smaller. Thus, the amplitude distribution is
less Gaussian, i.e. the skew and kurtosis are, relatively
speaking, higher. When designing a high-pass-filter,
however, care has to be taken, to preserve the asym-
metry of the elementary waveform. Otherwise the
skewness will—by definition—be very small.

Some more design principles of filters are discussed in
Neher and Sakaba (2001b). Fortunately, all equations de-
rived so far apply equally well to filtered signals. The only
change with respect to what was written so far is that the
quantitiesI1, . . . , I4 have to be evaluated as time integrals
over the filtered signals. Likewise, the single channel ampli-
tude is no longer a ‘real’ amplitude, but that of the filtered
single channel current. In the equations given byNeher and
Sakaba (2001b)and in Appendix B this is indicated by a
prime, which is a superscript for all quantities in question
(such asI ′

1, I
′
2, . . . , I

′).
In practice, the following steps are required for a fluctu-

ation analysis as described inNeher and Sakaba (2001b):

(1) Series resistance compensation of postsynaptic voltage-
clamp traces. This is important, because relative clamp
errors increase with thenth power of the cumulant order.

(2) Software band-pass-filtering.
(3) Calculation of moments and cumulants on a sliding data

window. The data window has to be long enough, such
that the CV of all relevant moments and cumulants is
≤1/3 (otherwise errors will explode, when forming ra-
tios, etc.).

(4) Calculation of the parameters of interest, using appro-
priate calibration constants (seeAppendix B).

Calibration constants:Iν-values and moments of the am-
plitude distribution can either be calculated on the basis of
the known mEPSC time course and amplitude distribution
after band-pass-filtering or else be determined by Monte
Carlo simulation. Software, which performs the analysis, is
available on our department’s website:http://www.mpibpc.
gwdg.de/abteilungen/140/software/index.html.

So far, the analysis was described for the case that only a
single record of a given type is available. High-pass-filtering
was the only means considered to remove non-stationarities
and trends. Results can be very much improved, when
several records of similar time course are available (for

http://www.mpibpc.gwdg.de/abteilungen/140/software/index.html
http://www.mpibpc.gwdg.de/abteilungen/140/software/index.html
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instance several traces with slowly decaying asynchronous
mEPSCs after stimulation). This allows averaging the es-
timates from individual records and further elimination
of non-stationarities by mean-subtraction. Mean subtrac-
tion can be performed in several ways. For the calculation
of variance it is most convenient to subtract consecutive
records from one another before applying the analysis. The
variance of such difference records is twice the variance
of a single record. It can be shown that averaging esti-
mates of variances from all possible consecutive difference
records (interleaved differences!) results in an estimate al-
most as good as subtracting individual records from the
mean-record (Scheuss and Neher, 2001; Sigworth, 1980).
At the same time slow trends are eliminated much more
effectively by this method. Unfortunately, the same proce-
dure cannot be applied for skewness, because skewness is
canceled out by subtraction. However, subtraction of in-
dividual traces from the mean is quite effective, if five or
more traces are available. The combination of mean sub-
traction and high-pass-filtering makes it possible to handle
non-stationarities remarkably well, as shown byNeher and
Sakaba (2001b)in simulations.

5. Examples of fluctuation analysis at a
glutamatergic synapse

Fig. 1A shows an example of the analysis at the Calyx
of Held synapse. The presynaptic terminal was depolarized
to +80 mV and subsequently repolarized to+55 mV for
100 ms to induce a slowly rising EPSC (moderate release pe-
riod). Subsequently, the terminal was held at 0 mV for 20 ms
to evoke massive release. As the terminal was clamped back
to −80 mV, the EPSC decayed slowly. The same stimula-
tion protocol was applied 10 times, and variance, skewness,
and fourth cumulants were calculated over a sliding win-
dow of 10 ms length for each trace after mean-subtraction
and band-pass-filtering (see above). Variance, skewness,
and fourth cumulant were averaged over the 10 traces.
They increase slowly during the moderate release period,
suggesting that release rates increase slowly. However, the
fluctuations in skew and fourth cumulant are too large to
reliably estimate release rates and mEPSC amplitudes from
Eq. (10) (or (B.7) and (B.11)). During the depolarization
to 0 mV, all three traces are truncated in the figures, be-
cause the rapid rise and fall of EPSCs introduces strong
non-stationarities, which cannot be removed completely
by mean-subtraction and band-pass-filtering in this experi-
ment. After repolarization to−80 mV, the variance decays
with similar time course as the EPSC, whereas skewness
and fourth cumulant decay more rapidly. This indicates that
quantal release rates rapidly decrease to zero, and that the
remaining variance is mainly composed of AMPA-receptor
channel variance. In other words, the late EPSC is a conse-
quence of the delayed clearance of transmitter at the synap-
tic cleft. Such a qualitative use of higher cumulants may

help to judge the presence of ‘spill over’ and to distinguish
it from asynchronous release (Barbour and Häusser, 1997).

However, a more quantitative analysis is possible: using
the decay phase of the EPSC, the single channel amplitude
i′ was calculated according toEq. (11). Fig. 1B shows the
EPSC, the variance, the contribution of channel variance to
total variance (Eq. (B.14)of Appendix B), andi′ in the time
window between 0.21 and 0.31 s (indicated by the bar). It is
seen thati′ is quite constant in this time window (although
there is some trend to decrease with decreasing EPSC, which
is observed consistently). Since the EPSC covers about the
same range of values as the EPSC in the early ‘moderate re-
lease period’ ofFig. 1A we can use the estimated value of
i′ to subtract channel variance from total variance.Fig. 1C
(upper panel) shows the superimposed EPSC traces during
the moderate release period. We useEqs. (12) and (13)(or
(B.3) and (B.9)) to calculate the mEPSC size and quantal
release rates (middle two panels). For comparison, release
rates as estimated from the deconvolution method (described
below) are also shown in the lowest panel ofFig. 1C. During
the ‘moderate release period’, the quantal amplitude is esti-
mated to be around 20 pA, and it stayed constant. This value
is within the range of those for spontaneously occurring
mEPSCs (20–40 pA). Release rates increase slowly during
the moderate release period, finally up to 5 m/s (for details,
seeNeher and Sakaba, 2001b). Although estimates from
the deconvolution method tend to be larger, both methods
(skew/variance and deconvolution) give similar results. The
type of analysis, presented here, is not restricted to synapses,
in which the terminal can be voltage-clamped. In fact, it is
straightforward to determine the cumulants during episodes
of asynchronous release following trains of afferent nerve
stimulation and to calculate mEPSC amplitudes and rates as
a function of time after the train, as will be discussed below.

6. Non-stationary noise analysis of evoked responses

The approach, described above started from the anal-
ysis of stationary stretches of data. We showed that
high-pass-filtering and mean-subtraction allows this ap-
proach to be extended in a remarkable way to non-stationary
cases as well. Synaptic responses, evoked by afferent nerve
stimulation represent an extreme case of non-stationary.
It should be possible to extend the approach described
above to ensembles of evoked responses the same way
Sigworth (1980)extended fluctuation analysis of voltage
clamp Na+-current records to the extreme case of step de-
polarization evoked responses. Traditionally, however, in
synaptic physiology the analysis of nerve-evoked responses
is restricted to measure peak values of repetitively evoked
composite EPSCs and to consider these as representing the
fluctuating number of released quanta. Elaborate techniques
are available to extract the quantal parameters from such
fluctuations by analyzing stretches of stationary data (i.e.
records for which the mean peak amplitude keeps constant
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over many repetitions). Here, we will shortly discuss two
aspects of such an analysis: (i) the slight asynchrony of
quantal release and the extent to which it compromises
the assumption that the peak EPSC represents the number
of released quanta and (ii) the technique of non-stationary
mean–variance analysis, in which trains of stimuli are ap-
plied repetitively and covariance between successive stimuli
within trains is analyzed in addition to the variance. This
technique allows separate estimations of changes in the
quantal parametersq andm, which occur during such trains
(Scheuss and Neher, 2001; Scheuss et al., 2002).

6.1. Asynchrony of release in quantal analysis

It is generally assumed in quantal analysis that the peak of
an evoked EPSC represents the number of released quanta
and that the mean amplitude of a single quantum is the ra-
tio of the peak amplitude over the number of quanta. This
is true, however, only when release is ideally synchronized
or else if the jitter in release is much smaller than the decay
time of the mEPSC, conditions, which are not exactly met
at the Calyx of Held.Borst and Sakmann (1996)showed
that the distribution of quantal delays at low external [Ca2+]
has a width of about 1 ms, which is appreciably longer than
the rise time of mEPSCs and comparable to the decay time.
Thus, the peaks of the mEPSC will not all contribute maxi-
mally to the peak EPSC and those starting after the peak of
the EPSC will be neglected altogether. To interpret the vari-
ance of the peak readings, one has to ask what fraction of
their peak amplitudes individual mEPSCs contribute at the
time of the peak EPSC. If the latency distribution and the
time course of mEPSCs is known, the distribution of such
fractional numbers can be calculated and convolved with the
amplitude distribution. The coefficient of variation of this
modified amplitude distribution should then be used to cal-
culate the correction factor for amplitude dispersion. Also,
one can calculate how much the peak EPSC is attenuated
by calculating release rates as a function of time by one of
the fluctuation methods described above (or else by decon-
volution of the evoked response, as described below) and
convolving these with the mEPSC waveform. This is shown
in Fig. 2, where this problem is analyzed by Monte Carlo
simulation. The lower trace is the time course of release rate
as typically observed by deconvolution of nerve-evoked EP-
SCs (e.g.Schneggenburger and Neher, 2000). The continu-
ous upper curve is its reconvolution with the mEPSC, which
reproduces the EPSC. The two broken lines, marked ‘1’ and
‘2’, are convolutions of delta functions with the mEPSC, i.e.
EPSCs that would be expected if all mEPSCs were ideally
synchronized. Those broken curves differ in the number of
mEPSCs assumed. In curve ‘1’ all mEPSCs are included.
Curve ‘2’ includes all mEPSCs which start up to the peak
of the EPSC. This example shows that the peak of the mea-
sured EPSC is only about 85% of what it would be in the
case of ideal synchronization of vesicles (or about 90% if
only mEPSCs up to the peak are counted).
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Fig. 2. Simulation of asynchrony within EPSCs. EPSCs were simulated
assuming an mEPSC of 32 pA amplitude, with 0.2 ms rise time constant
and 1 ms decay time constant (90%). A second slow decay (10%) had
10 ms time constant. The trace ‘EPSC’ (left ordinate) was simulated using
the release rate function as displayed (right ordinate). As a template for
‘release rate’ a lognormal function with a halfwidth of 0.44 ms was used,
which is very similar to experimental release rates. It was scaled such that
the total release (its integral) was 250 vesicles. Trace ‘1’ was simulated
using a delta function comprising 250 vesicles at time zero as release
rate. Trace ‘2’ was simulated using another delta function comprising 238
vesicles. This is just the number of vesicles, which is released during the
EPSC up to the time of its peak.

6.2. Non-stationary mean variance analysis

Some of the most interesting questions of quantal analysis
are connected to short-term plastic changes during trains of
stimuli. If facilitation or depression is observed, one would
like to know whether this is due to postsynaptic changes
(such as desensitization, which most likely would show up
as a change inq) or else due to changes on the presynap-
tic side (which may result in a change in quantal content).
Ideally one would like to estimateq and m for each re-
sponse in a train. For this purpose, the mean–variance ap-
proach, as described bySilver et al. (1998)and Clements
(2003)can be extended by applying it to repetitive trains of
pulses. Enough time has to be allowed between trains for
the synapse to recover completely. Then, means (ȳν) and
variances (σ2

y,ν) of all EPSCs in the trains can be calculated
individually for eachν (ν = number of EPSC within train).
Plottingσ2

y,ν against̄yν will result in a parabola, from which
quantal sizeq and the binomial parametersN andP can be
determined, if

• q is constant for all stimuli,
• a large enough range of release probability is covered

within the train, and
• the vesicle population is homogeneous.

Oleskevich et al. (2000)andReid and Clements (1999)ap-
plied this technique to pairs of pulses and to trains at various
frequencies. They described deviations from the parabola,
which were interpreted to indicate changes inq as a result
of desensitization.Meyer et al. (2001)used the technique at
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the Calyx of Held, to study the influences of both desensiti-
zation and saturation of postsynaptic receptors on the fluc-
tuations. They showed that cyclothiazide (CTZ) can protect
from desensitization for short times and that the binomial
parameterN may be an upper limit estimate for the number
of active zones. A systematic Monte Carlo study of the in-
fluences of desensitization, saturation and heterogeneity in
release probability on variance and mean estimates was per-
formed byScheuss and Neher (2001). They considered a
model of short-term depression in which depression can be
the result of either receptor desensitization or depletion of a
pool of release-ready vesicles. To this purpose they assumed
the release probabilityp to be a product of vesicle availabil-
ity pa, reflecting the occupancy of a given release site andpr,
the probability of release of an available vesicle. In such a
model, all the quantities measurable by fluctuation analysis
depend only on the productpapr and not on the probabilities
individually, such that, unfortunately, these quantities can-
not be determined individually (see alsoVere-Jones, 1966;
Quastel, 1997). However, the study ofScheuss and Neher
(2001)showed that under certain conditions consideration of
covariance between subsequent responses within trains to-
gether with mean–variance analysis allows estimates of the
quantal parametersqν andmν for each stimulus numberν
within trains individually (even ifqν andmν change during
a train). In this formulation,mν is the product ofpa, pr, and
the number of release sitesN.

If the frequency of stimulation within trains is high
enough, such that only little recruitment of vesicles occurs
between pulses and if no mechanisms other than pool de-
pletion contribute to covariance, then the quantal sizeq∗

ν

for the νth stimulus in a train is simply given by (Scheuss
and Neher, 2001)

q∗
ν = Varν

Īν
− Covν,ν+1

Iν+1
(15)

Here, Varν andIν are variance and mean of theνth response,
Covν,ν+1 is the covariance between responsesν andν + 1,
and the asterisk (∗) denotes that the value is not corrected for
dispersion of mEPSC amplitudes. The first term in this equa-
tion (which is equal to the initial slope of a variance–mean
parabola) is the well-known result for the case of lowp. The
second term can be considered as a correction, which be-
comes larger, whenp is increased. This is intuitively clear,
since correlation between two consecutive responses (within
the framework of the model considered) arises from deple-
tion of the pool of releasable vesicles, which happens only
whenp is substantial (note thatp is the product ofpr and
pa). Unfortunately, mechanisms other than pool depletion
may contribute to such correlations, such as postsynaptic
receptor desensitization and saturation. Both of these mech-
anisms will result in negative correlation, just as pool de-
pletion does. Thus, the measured covariance may represent
an overcorrection, if used inEq. (15)and the equation can
only provide an upper and lower bound toq∗

i , if used with
and without the correction term, respectively. However, in

the analysis ofScheuss et al. (2002)it turned out that the
covariance term was small relative to the first term for all
responses in the train, except for the first one. This is be-
cause depression, which was already prominent for the sec-
ond pulse, reducedp sufficiently. Thus, the covariance term
in Eq. (15)can be considered as an indicator whether or not
the low-p limit has been reached. A caveat has to be added
at this point: this conclusion will not hold in the case that
negative correlation resulting from the mechanisms consid-
ered above is canceled by positive correlation produced by
some other mechanisms.

Fig. 3 reproduces some of the results ofScheuss et al.
(2002). Details of the experiment are given in the figure leg-
end. The analysis showed that in the control case (without
drugs) the quantal sizeq∗ was reduced by almost a fac-
tor of 2 for the second pulse in a train (Fig. 3D). For the
first response the covariance term increased theq∗

1 estimate
by about 50%, if fully applied, and the resulting value was
slightly larger than the value measured independently from
spontaneously occurring mEPSCs. The uncorrectedq∗

1 esti-
mate, on the other hand, was lower than the mEPSC-derived
value. It was concluded that probably some of the observed
covariance was of postsynaptic origin. Experiments were
also performed in the presence of CTZ and kynurenic acid
(Kyn), two drugs, which are known to delay desensitiza-
tion and to prevent receptor saturation, respectively. As ex-
pected, the decrease inq∗ during trains was much less in
CTZ alone, and virtually disappeared in the presence of both
drugs (Fig. 3D). Theq∗

i values were used together with mean
EPSC values to calculate the quantal content (Fig. 3E). This
revealed a presynaptic action of CTZ in the form of an in-
crease in quantal content, which was particularly prominent
for the second and third pulse in a train.

7. Deconvolution and fluctuation analysis

The advantage of voltage-clamping the presynaptic ter-
minal can be fully exploited only if a method is at hand
to extract rates of transmitter release from the postsynaptic
current. For any presynaptic depolarization lasting longer
than an action potential the problems of asynchrony in
release, discussed above, will seriously blur the interpre-
tation of EPSCs. The standard method to calculate release
rates from postsynaptic currents is deconvolution (Aumann
and Parnas, 1991; Borges et al., 1995; Diamond and Jahr,
1995; Van der Kloot, 1988a, 1988b; Vorobieva et al.,
1999). Unfortunately, the method cannot be applied in its
usual form to the Calyx due to the presence of ‘residual
current’—a current resulting from glutamate accumulating
in the synaptic cleft—whenever stimulus-strength or dura-
tion exceeds certain limits. However, a major advantage of a
voltage-clamped presynaptic terminal is exactly the ability to
apply strong stimuli, because this allows one to deplete vesi-
cle pools at the end of a stimulation protocol, such that earlier
responses can be related to the number of remaining vesicles.
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Fig. 3. Covariance analysis at the Calyx of Held. (A) The nerve-fiber was stimulated extracellularly with a frequency of 100 Hz, and the postsynaptic
principal neuron was whole-cell clamped at−80 mV. Nine example traces of first and second EPSCs in a train from consecutive sweeps (gray) and their
mean (black) are shown. (B) Correlation between the amplitudes of the consecutive EPSCs are shown. Arrows identify traces belonging to the same train.
(C) Average covariance in the amplitude of consecutive EPSCs in the five stimulus trains (100 Hz) are shown. Experiments are done under three conditions;
control, in the presence of CTZ (cyclothiazide), in the presence of CTZ and Kyn (Kynurenic acid). Covariance between the first two responses in trains is
significantly different from zero. (D) Plot of the average quantal sizes estimated from the covariance method. Same symbols as shown in part C. (E) Plot
of the average quantal content estimated from the covariance method. Same symbols as in part C. From (A) to (E), modified fromScheuss et al. (2002).

The basic assumption of the deconvolution method is that
the measured response is a linear superposition of a certain
number of elementary events. This assumption is violated
whenever ‘residual current’ develops. The method of de-
convolution that we have developed and used for all of our
voltage-clamp studies at the Calyx of Held solves this prob-
lem by incorporating a simple model of glutamate diffusion
in the synaptic cleft into the deconvolution algorithm. The
role of the diffusion model is to estimate for a given time
point along the EPSC trace the residual current, based on
the preceding release. This current is subtracted from the
measured EPSC and the remaining current is deconvolved.
The diffusion kernel and the mEPSC time course have to
be known for a given synapse. We usually represent the
mEPSC time course by a function decaying with one or two
exponential components and include the time constant(s) of
decay and, if applicable, the relative size of the components
among the fitting parameters. The diffusion kernel involves
a mean diffusional distancerD, a diffusion coefficientD, and
an exponentnD. The rationale for the approach is given in
Neher and Sakaba (2001a). Unfortunately, the equations for
the diffusion kernel given both inSakaba and Neher (2001)
contain misprints. The correct formula, which was used in
the calculations in both papers is, therefore, given here. The
kernelc(t), which enters into Eq. (3) ofNeher and Sakaba
(2001a)is

c(t) = const

tnD
exp

(−rD
2

4Dt

)
, (16)

where ‘const’ is part of a fitting parameter, which scales the
contribution of the residual current. In total, up to six param-

eters have to be determined for a given synapse. This may
appear to be a difficult task. However, it can readily be solved
with the help of fluctuation analysis and a suitable ‘fitting
protocol’, which we routinely apply a few times at the be-
ginning and the end of a recording session. Applying the ‘fit-
ting protocol’ periodically also helps to check stability of the
recording. In the following we describe this fitting protocol,
while at the same time explaining some aspects of the dif-
fusion model. More detailed descriptions of the procedures
can be found inNeher and Sakaba (2001a)and in a help text,
which can be downloaded together with analysis programs
(in IGOR) from our department’s webpage (http://www.
mpibpc.gwdg.de/abteilungen/140/software/index.html).

A ‘fitting protocol’ typically starts with a very short
episode of Ca2+ influx, which is adjusted such that it elicits
not more than about 1–2 nA in postsynaptic current (Fig. 4).
This stimulus is followed by pauses and further episodes
of Ca2+ influx of increasing duration. The whole fitting
protocol is typically 300 ms in length. We deconvolve this
record with a set of default starting parameters and first
concentrate on the deconvolution result during and follow-
ing the first short depolarization. During this episode the
parameters describing the glutamate accumulation/diffusion
process should not matter, since little glutamate has been
released. Indeed, it has been shown that EPSCs under such
conditions are well represented by linear summation of
mEPSCs (Borst and Sakmann, 1996). If the mEPSC param-
eters are correct, the deconvolution result should be a short
pulse, returning to base line within about an ms after the
end of the depolarization, since little asynchronous release
is elicited by the first depolarization. We confirm the ab-

http://www.mpibpc.gwdg.de/abteilungen/140/software/index.html
http://www.mpibpc.gwdg.de/abteilungen/140/software/index.html
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Fig. 4. Fitting protocol for the deconvolution method. The presynaptic terminal was depolarized from−80 to +80 mV (a), and periodically repolarized
to 0 mV with different durations to evoke EPSCs with different amplitudes (b). At the end of the protocol, the terminal was held at 0 mV for 10 ms, to
deplete the releasable pool. The residual current due to delayed clearance of glutamate from the synaptic cleft (dotted trace superimposed on the EPSC)
was estimated from the diffusion model. This current component was subtracted from the original EPSC and the remaining current component was
deconvolved with the mEPSC in order to estimate quantal release rates (c). In (d), fluctuation (variance) analysis was used to check whether release rates
drop to a low level in between pulses. Calculated variance was scaled according toEq. (B.1)assuming that quantal size is the same as that of spontaneously
occurring mEPSCs. We designate the value as arbitrary unit (a.u.) of variance (dotted trace, right axis). Release rates estimated from the deconvolution
method (left axis) were superimposed, such that signals of similar amplitude (1 vesicle m/s and 1 a.u.) are expected. FromNeher and Sakaba (2001a).

sence of asynchronous release by performing a fluctuation
analysis according toEq. (B.1)on the episode between the
first two pulses. Usually slight adjustments of mEPSC pa-
rameters are necessary to match the deconvolution with the
fluctuation results. It should also be noted that estimated re-
lease rates from the deconvolution method are less sensitive
to mEPSC parameters if mEPSCs decay slowly (Eq. (7) of
Neher and Sakaba, 2001a), which is the case in the pres-
ence of CTZ. Subsequent stimulation episodes are stronger
and elicit large EPSCs, residual current (see broken line in
part b), and also some degree of asynchronous release. We
measure asynchronous release in episodes between pulses
by fluctuation analysis and adjust the remaining fitting pa-
rameters, such that the deconvolution result during these
episodes agrees with the fluctuation result (Fig. 4d). This,
in effect, constitutes a fit of the diffusion parameters to
the residual current on all these episodes. The assumption
underlying our method is that this fit faithfully interpo-

lates the release episodes in between stimuli. The amount
of asynchronous release during the decay phase of EPSCs
should be kept small in the fitting protocol, in order to esti-
mate residual current precisely (it will be ideal if the EPSC
decay consists only of the residual current). At the same
time, EPSC amplitudes during the fitting protocol must
cover the whole range of EPSC amplitudes, which will
be encountered in the experiment to be analyzed. Because
residual current is a supra-linear function of the amount
of transmitter release, deconvolution of EPSCs, which are
larger in amplitude than those of the fitting protocol, leads
to serious errors in the outcome. At the Calyx of Held, the
duration of the presynaptic depolarizing pulses was adjusted
so that EPSCs in the fitting protocol cover a wide range of
amplitudes. The presynaptic terminal was held at−80 mV
or +80 mV in between pulses to evoke little asynchronous
release. In the case of an unclamped presynaptic terminal
(as in many other synapses), a train of nerve stimulations
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can be used for fitting the deconvolution parameters. In that
case, it is also recommended to combine deconvolution with
fluctuation analysis to check independently the amount of
asynchronous release.

At the Calyx of Held, the parameters for the deconvolution
method usually are (under CTZ):

• Time course of mEPSCs (under CTZ):τfast = 2–3 ms
(30–50% of the total),τslow = 10–20 ms.

• n (exponent of the glutamate channel activation)
= 1.2–1.4.

• nD (exponent of the glutamate diffusion) = 0.6–0.8.
• Diffusion distance: 2–3�m.
• D (diffusion coefficient of glutamate): 30�m2/s.

Release rates inFig. 4 are calculated using such param-
eters, and it can be seen that residual current (due to gluta-
mate accumulation, broken line inFig. 4b) develops slowly,
and mainly contributes to the late phase of EPSCs, consis-
tent with the observation at other Calyx synapses (Otis et al.,
1996).

8. Outlook

Deconvolution and fluctuation analysis complement each
other in an ideal way. Deconvolution gives best results for
large, rapidly changing EPSCs. In fact, if mEPSCs were
step-like functions with decay times much longer than rise
times the deconvolution result would be just the time deriva-
tive of the EPSC with a small correction due to the mEPSC
decay (Van der Kloot, 1988a). Fluctuation analysis, on the
other hand, is most readily performed on relatively sta-
tionary stretches of small amplitude postsynaptic currents,
although mean subtraction and band-pass-filtering can ef-
fectively eliminate the adverse effects of non-stationarities.
For this, however, several repetitions of a given record have
to be available. When considered together, results from
deconvolution and the various forms of fluctuation analysis
constitute powerful tools to dissect influences of residual
glutamate, asynchronous release, and postsynaptic changes,
such as desensitization and saturation of receptors. Among
the latter, the role of saturation has drawn the least attention
so far (but seeMeyer et al., 2001). In some of our work,
we used kynurenic acid, a low affinity antagonist to avoid
saturation. However, this approach has very adverse effects
on fluctuation analysis, since variance, skew and kurtosis
decrease with the square, third, or fourth power of the
blocking factor, respectively. A better way to handle satu-
ration may be to explicitly adopt a suitable dose–response
curve for the agonist to the algorithms for deconvolution
and for interpreting fluctuation results. This will, of course,
introduce new parameters, such as a dissociation constant
and the saturation level. On the other hand it may provide
information on the properties of the postsynaptic receptors.

The methods we describe should be readily applicable to
other synapses, although our own experience, so far, is re-

stricted to the Calyx of Held. This should be particularly
true for the fluctuation analysis part, which was originally
formulated byFesce (1990)for the neuromuscular junction.
We extend this treatment here to include ‘residual glutamate’
in the synaptic cleft and the resulting ‘residual current’.
This problem is particularly severe for relatively young ca-
lyces. The contribution of residual current may be much
reduced at more mature synapses (Joshi and Wang, 2002;
Taschenberger et al., 2002) and may be negligible at many
types of synapses. In these cases, our equations can be used
by simply settingi′ to zero. The correctness of this sim-
plification may be checked by varyingi′ within a reason-
able range (note thati′ is a band-pass-filtered single channel
current) and verifying that the expected contribution of any
residual current to variance is negligible. For calculation of
the calibration constants (Eqs. (B.2), (B.4), (B.6), (B.10)
and (B.12)) information on the amplitude distribution and
mEPSC time course is required for a given synapse. In our
programs, this is supplied by measured mEPSC amplitude
distributions and by specifying the risetime and decay time
constants of mEPSCs. However, these quantities might be
replaced by reasonable assumptions—at some loss of accu-
racy in absolute numbers—in case the mEPSCs cannot be
measured at a given synapse. With such assumptions and
neglecting residual currentEqs. (B.3) and (B.9)should be
applicable to many types of synapses for the measurement
of both mEPSC mean amplitude and release rate (as func-
tions of time) during episodes of asynchronous release after
evoked responses or for spontaneous release.

The deconvolution procedure, as described here, strongly
relies on the ‘fitting protocol’, which requires that the presy-
napse can be voltage-clamped. However, again, the main
problem at the Calyx of Held is ‘residual current’ which
may be much less at other synapses. When residual current
is only a minor contribution, it is well conceivable that the
remaining fitting parameters (time constants of the mEP-
SCs) can either be predetermined or else fitted in a protocol
where short bursts of nerve evoked EPSCs replace the depo-
larizations, which we use for the voltage-clamped terminal.
Then self consistent release rates and mEPSC amplitudes
can be derived from the combined analysis of deconvolu-
tion and variance according toEqs. (B.8) and (B.8a)(with
i′ = 0 and the weighing factorβ of Eq. (2) in Neher and
Sakaba (2001a)set to zero). All the calculations described
here should, of course, be equally applicable to IPSCs. We
expect the approach to be particularly helpful for analyzing
IPSCs, because asynchronous release is very prominent in
many inhibitory synapses (Lu and Trussell, 2000).
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Appendix A. Some principles of statistics

Some basic principles regarding random variables are re-
peatedly used throughout this chapter. Detailed discussions
of these can be found in textbooks on basic statistics, such as
Spiegel (1975), Bevington (1969)andKendall (1947)(see
alsoFesce, 1990; Heinemann and Sigworth, 1991). A short
summary is given here.

A.1. Additivity of cumulants (or semi-invariants)

If two or more random variables are statistically indepen-
dent from each other, then the cumulant of the sum of these
variables is equal to the sum of the cumulants. This theo-
rem is well-known to hold for the mean and the variance,
but it also holds for skewness, kurtosis and other cumulants
(also called semi-invariants). Cumulants,λn, are defined in
terms of momentsµn of random variables. Ifµn is thenth
moment of the functionf(x), according to

µn =
∫ +∞

−∞
f(x)n dx (A.1)

then the cumulantsλn are given by (for simplicity we write
the equations for high-pass-filtered or mean subtracted
traces):

λ1 = µ1 = 0 (mean) (A.2)

λ2 = µ2 (variance) (A.3)

λ3 = µ3 (skewness) (A.4)

λ4 = µ4 − 3µ2
2 (kurtosis) (A.5)

In electrophysiology, this law is readily applied to random
signals, for instance currents originating fromN indepen-
dently switching channels orN independently releasing ac-
tive zones. For these one can write

λ2,N = Nλ2 (A.6)

λ4,N = Nλ4 (A.7)

where λ2,N and �4,N are the cumulants of the recorded
currents, whereasλ2 andλ4 are cumulants of single chan-
nel (or single active zone) signals. Note that such a simple
equation does not hold for the raw fourth moment (λ4 =
µ4 − 3µ2)!! and that they hold for variance and skewness
only for mean-subtracted traces.

A.2. Multipliers to random variables

If a random variablef2(x) is a scaled version of another
random variablef1(x), according to

f2(x) = αf1(x) (A.8)

then the cumulantsλn,2 of f2(x) are related to those,λn,1 of
f1(x) by

λn,2 = αnλn,1 (A.9)

A.3. The cumulants of Gaussian noise

A Gaussian distribution has very special properties
with respect to its cumulants, especially if we consider
high-pass-filtered (or mean-subtracted) signals: all its cu-
mulants, except for the variance, vanish. Therefore, the
Gaussian is completely characterized by the variance (λ2).
The fact that the skewness vanishes is a simple consequence
of its symmetry. The fourth cumulant (kurtosis) vanishes
because the fourth momentµ4 of a Gaussian is 3λ2 (see
definition of kurtosis above).

A.4. Higher cumulants of superpositions of
many random events

Higher cumulants are only useful for ‘sparse’ signals,
i.e. signals for which only a small number of random
events superimpose. This is because of the ‘central limit
theorem’, which states that the statistical distributions of
superpositions of independent random variables approach
Gaussian distributions, when the number of superimpos-
ing events increases. Together with the general result
(above) that higher moments of Gaussians vanish, this
leads to very unfavorable conditions for the analysis of
higher moments, when the frequency of elementary events
increases.

Appendix B. Summary of equations

Here, we summarize equations for estimating mean am-
plitudes〈h〉 of synaptic quanta and rates of release〈ξ〉 of
quanta from cumulants.〈ξ〉 and 〈h〉 can be considered as
time-dependent, since they are usually evaluated on short
windows, which slide along data records. Most of these
equations are fromNeher and Sakaba (2001b), where, how-
ever, they were given without correction terms for offset cur-
rent and background variance. Some equations are derived
in the text (Eqs. (6)–(13)), however, without the complica-
tion of the dispersion in mEPSC amplitudes.

B.1. Meaning of symbols

A prime notifies the fact that high-pass-filtered or mean-
subtracted quantities have to be used.

〈h〉 mean amplitude of elementary quanta (mEPSCs)
in amperes (〈h2〉, 〈h3〉 and〈h4〉 are the higher
moments of the amplitude distributions)

〈ξ〉 mean frequency of occurrence of quanta within
a short analysis window. This quantity should be
considered as a function of time of the window
in most cases

λ′
2 the variance after band-pass-filtering of the

current record
λ′

3 the skew after band-pass-filtering of the
current record
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λ′
4 the fourth cumulant (also called fourth

semi-invariant or kurtosis) after filtering
i′ the apparent single channel conductance after

filtering. SeeEq. (B.15)for its definition
Ip the measured postsynaptic current before

band-pass-filtering (possibly low-pass-filtered)
Ip,o the offset of the postsynaptic current, which is

not related to synaptic transmission, including
leak-current

λ′
2,o the background variance of the postsynaptic

current after filtering, including amplifier noise
and cellular background noise

I ′
2 the integral over the square of the peak-normalized

mEPSC waveform after filtering
I ′
3 the integral over the third power of the

peak-normalized mEPSC waveform after filtering
I ′
4 the integral over the fourth power of the

peak-normalized mEPSC waveform after filtering
H ′

v a calibration factor used in the conversion of
variance into mEPSC amplitude and rates.
SeeEq. (B.2)for its definition

H ′
s a calibration factor used in the conversion of skew

into mEPSC amplitude. SeeEq. (B.10)for
its definition

H ′
4 a calibration factor used in the conversion of the

fourth cumulant into mEPSC amplitude.
SeeEq. (B.12)for its definition

Z′
s a calibration factor used to convert skew and

variance into release rates. SeeEq. (B.4)
for its definition

Z′
4 a calibration factor used to convert skew and

the fourth cumulant into release rates.
SeeEq. (B.6)for its definition

B.2. Calculating release rates

B.2.1. From variance, applying corrections for background
variance (λ′

2,o), channel variance, and offset current Ip,o

〈ξ〉 = (λ′
2 − λ′

2,o − i′(Ip − Ip,o))
H ′

v

〈h〉2
(B.1)

H ′
v = 〈h〉2

〈h2〉I ′
2

(B.2)

This calculation requires knowledge of the absolute mEPSC
amplitude (seeEq. (B.8a), for a calculation of〈ξ〉 using
variance and deconvolution).

B.2.2. From skew and variance, applying corrections for
background variance, channel variance, and offset currents

〈ξ〉 = (λ′
2 − λ′

2,o − i′(Ip − Ip,o))
3

λ′2
3

· Z′
s (B.3)

Z′
s = 〈h3〉2

〈h2〉3

I ′2
3

I ′3
2

(B.4)

For this calculation knowledge of mEPSC amplitude is not
required; however the ratio〈h3〉2/〈h2〉3 has to be known for
calculation ofZ′

s. This ratio is invariant when the mEPSC
amplitude distribution expands or shrinks, as is expected for
uniform desensitization of receptors.

B.2.3. From kurtosis (fourth cumulant) and skewness

〈ξ〉 =
(
λ′4

3

λ′3
4

)
Z′

4 (B.5)

Z′
4 = 〈h4〉3

〈h3〉4

I ′3
4

I ′4
3

(B.6)

This calculation is independent of background current, back-
ground variance, and offset current. It requires only the
knowledge of〈h4〉3/〈h3〉4.

B.2.4. From kurtosis and skewness, when mEPSC
amplitude is known

〈ξ〉 = λ′2
3

λ′
4

H ′
s

H ′
4

1

〈h2〉I2
(B.7)

This calculation uses lower powers ofλ′
3 andλ′

4, and there-
fore is less noisy. When mEPSC amplitude is known, it is
also straightforward to calculate the rate from skew alone,
according to

ξ = λ′
3

〈h3〉I ′
3

(B.7a)

B.3. Calculating the mean mEPSC amplitude

B.3.1. From variance and deconvolution, applying
corrections for background variance, channel variance,
and offset current

It is assumed that a deconvolution was performed, using
the assumed mEPSC amplitudeh0 and resulting in a decon-
volution rateξ0 (usually a time dependent quantity!). Then
the actual rate can be calculated asξ = ξ0h0/〈h〉. Insertion
into Eq. (B.1)yields,

〈h〉 = (λ′
2 − λ′

2,o − i′(Ip − Ip,o))
H ′

v

(ξ0h0)
(B.8)

and

〈ξ〉 = (ξoho)
2

(λ′
2 − λ′

2,o − i′(Ip − Ip,o))H ′
v

(B.8a)

B.3.2. From skew and variance, applying corrections for
background variance, channel variance, and offset current

〈h〉 = λ′
3

(λ′
2 − λ′

2,o − i′(Ip − Ip,o))
H ′

s (B.9)

H ′
s = 〈h2〉〈h〉

〈h3〉
I ′
2

I ′
3

(B.10)
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B.3.3. From kurtosis (fourth moment) and skewness

〈h〉 = λ′
4

λ′
3
H ′

4 (B.11)

H ′
4 = 〈h3〉〈h〉

〈h4〉
I ′
3

I ′
4

(B.12)

B.3.4. Calculating the variance contribution of mEPSCs
(V ′

m) to total variance from skew and kurtosis

V ′
m = ξ〈h2〉I2 = λ′2

3

λ′
4

H ′
s

H ′
4

(B.13)

This calculation does not require knowledge about channel
variance, nor background variance.

B.3.5. Calculating the variance contribution of channel
fluctuations (V ′

c) from total variance, skew and kurtosis

V ′
c = λ′

2 − λ′
2,o − λ′2

3

λ′
4

Hs

H4
(B.14)

B.3.6. Calculating the apparent single channel current i′
as the ratio betweenV ′

c and (Ip − Ip,o)

i′ = λ′
2 − λ′

2,o

(Ip − Ip,o)

(
1 − 1

λ′
2 − λ′

2,o

λ′2
3

λ′
4

H ′
s

H ′
4

)
. (B.15)
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