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Abstract

Analysis methods are described which integrate information from fluctuation analysis with that from deconvolution. Together the two
approaches allow to derive a consistent quantitative description of quantal release (both evoked, spontaneous and asynchronous) unde
conditions in which quantal parameters may change during a repetitively applied stimulation protocol. Specifically, our methods take into
account the effects of accumulating transmitter in the synaptic cleft and postsynaptic receptor desensitization, which may develop during
strong stimulation. Several ways to handle non-stationarities are described. Examples are provided for the Calyx of Held, a glutamatergic
synapse, in which both the pre- and the postsynaptic compartments can be voltage-clamped.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction good signal to noise ratio of the estimates. Unfortunately,
most synapses and molecules involved, however, do not
Synaptic transmission is a highly probabilistic process. conform: channels desensitize or inactivate on several time
Stochastic events occur on at least two levels of resolu- scales, and synapses facilitate or depress. Rarely is it possi-
tion: first, the release of quanta of transmitt€atz, 1969, ble to obtain tens or even hundreds of stationary records for
which typically activate tens or hundreds of channels each ensemble analysis, because the preparation ‘runs down’ and
and second, the opening and closing of individual channels access resistance starts to deteriorate. Moreover, fluctuations
(Anderson and Stevens, 1973; Katz and Miledi, 19Tth- from various sources, such as channel noise and quantal
der many circumstances the resulting stochastic fluctuationsnoise, often overlap. Fortunately, however, conditions at
in postsynaptic signals are just noise, which the researcherglutamatergic synapses are such that simple manipulations
wants to minimize. However, early-on it was recognized mitigate or even effectively eliminate the adverse effects of
that this noise carries information on the molecular events such uncooperative behavior. This review tries to summarize
underlying the signalsAnderson and Stevens, 1973; Katz recent experiences, mainly from our laboratory, in adapting
and Miledi, 1972 and methods which extract this infor- noise analysis techniques to the specific circumstances of
mation were developed (for overview, s€elquhoun and  a glutamatergic synapse. We also show how information
Hawkes, 1981; Fesce, 1990; Neher and Stevens,)191é from noise analysis can be combined with the technique
theories underlying such techniques usually make idealizing of deconvolution to overcome a serious obstacle in the
assumptions about the stochastic processes involved, suclapplication of this technigue to synapses in brain slices,
as stationarity of continuous current records or stationarity namely accumulation of transmitter in the synaptic cleft and
in ensemble records in the sense that starting conditions forconcomitant cross-talk between neighboring release sites
all records of an ensemble are identical. Many such identical (Barbour and Hausser, 199°Although most of the results
traces or long stretches of stationary record are desirable formentioned in this review derive from experiments at the
Calyx of Held—a giant glutamatergic terminal, which al-
« Corresponding author. Tek:49-551-201-1630; Ipws simultaneous voltage clamping of pre- an.d postsynz_ap—
fax: +49-551-201-1688. tic compartments—the analysis can also readily be applied
E-mail address:eneher@gwdg.de (E. Neher). to other synapses, as will be discussed below. We will start
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with noise analysis, because an understanding of some asis just the ratio of., andi;. For instantaneously rising and
pects of this technique is necessary for its combination with exponentially decaying signals (such as ‘ideal’ mEPSCs),
deconvolution. the ratiol>/1; = 1/2 as already pointed out biyatz and
Miledi (1972). Likewise, the ratiod, /1,1 can be evaluated
for any given shape of the elementary signal and, in princi-
2. Noise analysis on the basis of Campbell’s theorem ple, any ratio between successive cumulants can be used to
determineh.

In synaptic physiology we are very often confronted with  In the analysis described so far, many simplifying as-
records that consist of random superpositions of miniature sumptions were made: background noise was neglected,
currents or miniature potentials. These may occur sponta-ideal stationarity was assumed, and the ‘elementary signal’
neously, as a consequence of manipulations which elevatewas assumed to have a well-determined time course (as
intracellular [C&*], or due to asynchronous release after may be appropriate for noise spikes in electronic circuits).
intense stimulation. At the Calyx of Held, which allows Particularly, the last assumption is usually invalid for bi-
controlled presynaptic depolarization, miniature excitatory ological signals, since we know, for instance, that single
postsynaptic currents (MEPSCs) can be elicited within a channel signals are not identical to each other. They have a
wide range of release rates. Campell’s theorem, which is characteristic distribution of open times and, likewise, most
an outflow of the electronics communication technology of MEPSCs have some dispersion in their amplitudes. These
early last centuryRice, 1944, is ideally suited to handle  aspects, however, are readily accommodated, if one can
such signals. The theorem considers streams of stochastiassume that the elementary events, indeed, are statistically
cally occurring elementary signals (such as noise spikes onindependent among themselves and also are independent
a telephone line), which occur statistically independently of the signals which generate background noise. In this
at a certain mean rate and superimpose linearly. If suchcase, the basic laws regarding the linear superposition of
elementary events are relatively brief compared to the total random variables state that for such signals the cumulants
observation intervall, and if the rate of occurrencg is add linearly (se&\ppendix A). This is trivial for the mean
stationary within this interval, then the theorem states (in values but it also holds for the variance in the following
its simplest form!) that both the mean signal and the vari- sense: if a random signa, is the sum of two independent
ance of the signal should be proportional to this rate. The signals y and y, then the variancer)z, of y is the sum of
proportionality constant between mean and rate is the areathe \/ari;,mcesr)?l ando“z)z_ Applying this law tells us that we
under the elementary signal and the relevant constant forcan subtract the variance of the background noise from the
the variance is the area under the square of the elementaryneasured total noise in order to obtain the variance of the
signal. Furthermore, the same approach can be extendednEPSCs and, in addition, we can (mentally!) subdivide all
to the higher moments of the signal (i.e. the normalized single channel events into subclasses of certain durations,
integral over thenth power of the signal) such as skew- and apply Campbell’s theorem for each class individually.
ness (third power) and kurtosis (fourth power). In all cases In the case of single channel responses this is particularly
so-called ‘cumulants’, which are combinations of moments simple because for each subclass the same result is obtained
up to the given power, have to be considered (see below andh = 1,/11; I/1; = 1), such that the overall result is again
Appendix A). the simple ratioko/A1. In the case of MEPSCs with a size

Segal et al. (1985pnd Fesce et al. (1986perfected  distribution,g(h), of amplitudes and the same shape factors
this approach for studies at the neuromuscular junction. (1,,) for the different sizes the situation is somewhat more
They considered elementary signals of peak amplitude complicated:

h, with normalized time coursé&(t) occurring at ratet.

With this notation an mEPSC, occurring at tirtiehas the 1, = 0% = 5/ Iboh?g(h) dh = £(h%) I 2)
time coursehF(+ — ¢) and Campbell's theorem can be
written as

ha= ) =& [ nihgan dh = e ®
=" [LFO) =, ®

such that
Here, 1, is thenth cumulant, the integration extends over ;, (h2) I
the whole time during whiclF(t) is non-zero and,, was = h>WI_ (4)
introduced as a short-hand notation §d#(»)]" dz. The ap- ! !
plication of Campell's theorem to the cases= 2 (vari- Here, (y) and (h) denote the expectation value plandh,
ance) anth = 1 (mean) results iny/A1 = hly/I1, which respectively, and the equation was written in a form, which

is the well-known result that the elementary signal ampli- subdivides the result into that obtained for a uniform or nar-
tude is proportional to the ratio of variance and mean. In row amplitude distributionX>/A1 = (h)I>/1;1) and a ‘cor-
fact, for single channel responses (elementary signals arerection factor’,(h2)/(h)?, which reflects the relative width
square pulses witlhy /17 = 1) the single channel amplitude of the amplitude distribution. For a Gaussian with mean
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h and widtho, this correction factor ig1 + ((,3/<h>2))_ current is plotted as a function of mean currdpt.the de-
It should also be noted that the assumption of ‘statistical sired value foii is the slope of the plot at low, (note that
independence’ of e|ementary events |mp||e5 alow degree Ofthe meaning of some of these quantities will be modified be-
activation of the physiological processes involved. Thus, for low, when we consider filtered signals and when we discuss
the case of ion channel signals we imply low open probabil- an alternative for obtaining.
ity p. In the case of release of quanta from presynaptic termi- We are interested in estimating the mean amplitude of the
nals, we imply the limit of Poisson statistics (because for a Synaptic quantum and its mean frequency of occurrefce,
large degree of activation, requiring Binomial statistics, the We can obtain both quantities by applyigg. (1) for the
probability of release of a quantum depends on how many cases: = 1 (mean) and: = 2 (variance), now considering
quanta are still available for release or how many quanta explicitly the complication due to background noisg,
have already been released). and channel noise and also allowing for background current,
Ip,o and the residual currenltes, originating from residual
transmitter (glutamate) in the synaptic cleft:

3. Separating channel noise from qugntal noise: Ip= 1= Ipo+ENly + Ires (6)
employing higher moments or predicting channel
variance from mean current 012 =A2=Az0+i(lp—Ipo)+ Enl, (7

When mEPSCs summed, they may build up to a substan-It i readily seen that the quantities of intergsgndé can
tial average current, which fluctuates strongly due to the Pe calculated from these two equations, if background cur-
random arrival of new events. However, part of these fluc- '€Ntlp,o, background noiséz o and the residual curreives
tuations also come from random open—close fluctuations of (Criginating from accumulation of cleft transmitter) are ei-
channels during the decaying phases of previous mEPscdher zero or known. The case of vanishing cleft trans.m|tter.
(Faber et al., 1992 Also, transmitter may build up in the ~ represents the ‘plassmal’ approach as used by many investi-
synaptic cleft and elicit so-called ‘residual curret@agbour ~ 9ators Del Castillo and Katz, 19094However, at the Calyx
etal., 1994; Carter and Regehr, 2000; Faber and Korn, 1988;0f Held and for many other glutamatergic synap&zsbour
Hartzell et al., 1975; Kinney et al., 1997; Ofis et al., 1996; ©t al., 1994; Carter and Regehr, 2000; Kinney et al., 1997;
Trussell et al., 1998by activating postsynaptic channels. Mennerick and Zorumski, 1995; Otis et al., 1996; Tru;sell
Thus, total variance measured in the postsynaptic record ha$t @l 1993 Ires = 0 holds only for very weak stimulation

three sources: background variarice,, ion channel vari-  (Borst and Sakmann, 19f6such that alternatives have to
anceizc and the variance of interestp 4 (q for quantal be looked for in many measurement paradigms. One alter-
noise).A2,0 in Most cases can be measured as the varianceative is the special deconvolution approach, described be-
before or after activation of MEPSCs or as jhaxis inter- low, in which the residual current is estimated by a fit to a
cept in a plot of total variance against mean curréntjf simple diffusion model of residual glutamate. Another ap-

stretches of record with different degrees of synaptic activa- Proach invokes the higher cumulants of the noise fluctua-
tion are available). Channel variangg. in most cases of ~ tions (Fesce, 1990; Neher and Sakaba, 2Q0mborder to
interest is the product of a mean single channel amplitude 0Ptain additional equations to solve for the additional un-
i and mean postsynaptic currept such that (assuming all known quantityl;es. This is particularly convenient, because

three sources of noise can be considered statistically inde-It IS relatively safe to assume that both background noise
pendent) we can write and channel noise have a Gaussian amplitude distribution,

) for which the contributions to the higher cumulants vanish.
r2=h20+ilp+A2q (5) On the other hand, it is a well-known fact that estimates of
A critical question is: can we assume statistical indepen- higher cumulants are very noisy, such that one needs to av-
dence of channel variance and quantal variance? This is notrage over long stretches of data to obtain reliable values.
trivial, since, of course, quanta are made up of fluctuating Keeping this in mind, one can write down the equations for
ion channels. The answer, however, is that it is safe to do the skewnessig) and for the kurtosisi):

S0 in most cases of interest. Arguments in favor of this as- Az = hl, (8)
sertion are given bjNeher and Sakaba (2001hyhere the
assumption was also tested by numerous Monte Carlo sim-i4 = £h*14 9)

ulations. Thus, withEq. (5) we can calculate., 4, if we

know total variance.», background varianck o, the mean In theory, it would be easy to solve these two equations for

current, and the single channel amplitid@he latter may & @ndh:

either be known from single channel recordings of receptor Aals kglj’

channels or else it can be determined by a separate experi = *als and §= 3[4 (10)
413

ment, in which the transmitter is applied to the postsynap-
tic cell (by ionophoresis, bath perfusion, or local perfusion). However, this will work only rarely in practice due to the
When variance from a narrow time window of the recorded noisiness of the estimates. For instandeher and Sakaba
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(2001b)showed by Monte Carlo simulations, that one needs

to average over 500 ms of stationary record in order to obtain§ =

at best an estimate fdr with a coefficient of variation of

0.4. This is the case for release rates up to 1 event/ms. TheThis way, one can obtaimandé on sufficiently long station-
estimates are even worse for higher release rates, since thary stretches of data without having to know the contribution

amplitude distribution approaches a Gaussian with vanishing
skewness and kurtosis (ség@pendix A whenever many
events overlap. In contrast, the estimates of variance for the
same stretch of simulated data had a coefficient of variation
smaller than 0.1, which even improved with higher quantal
release rates. Thus, one has to carefully consider various
aspects ofegs. (6)—(9)for an optimal solution regarding
the quantities of interest. This will depend on the particular
circumstances of a given experiment. The relevant factors
include length and stationarity of data stretches available,
mean frequency of events, and the magnitude of residual
current. One approach used bigher and Sakaba (2001b)
was to solveEgs. (7)—(9)for the single channel curremt
according to

P <)»2 - kz,o>
Ip = Ipo

and to apply this to stretches of data, for which release
rates are low, but residual current dominates. The late decay-
ing phase of an EPSC following massive stimulation fulfills
these requirements. Under these conditions the last term in
Eq. (11)is just a small correction to the leading term, such
that it is not necessary to determiig andi4 accurately.

Assumingi is constant for a given cell or, at least, for a
given record (note theaveatin Fig. 1, legend), this value
was used for analyzing other sections of the record by solv-
ing (6) and (7) fort andh, such that

h— A3l
A2 —A20—i(lp — Ipo)

A2lol
31214 ) (11)

(h2 — A2,0)Aal}

(12)

Fig. 1. An example of fluctuation analysis at the Calyx of Held synapse.
(A) The presynaptic terminal was depolarized frer80 mV to +80 mV

(Vpre) and subsequently repolarized-+&5 mV (for 100 ms) which evoked
slowly rising AMPA-EPSC (moderate release period, see inset). The
terminal was subsequently repolarized to OmV for 20ms to deplete
available quanta, and finally repolarized to the holding potent8(mV).

The same protocol was usually repeated 10 times, and variance (variance),
skewness (skew) and fourth cumulant (fourth) were calculated after mean
subtraction and band-pass filtering. The extracellular solution contained
cyclothiazide, an inhibitor of AMPA-receptor desensitization. Modified
from Neher and Sakaba (2001[fB) The late phase of the EPSC (excerpt
from time range shown in (A)) is expanded, and variance signal (middle
panel) and estimatedd (bottom panel) are plotted. The contribution of
channel variance is shown as a broken trace in the middle panel, using
ani’ value of 30fA. Note thai’ has a tendency to decrease for smaller
EPSCs, a feature which is consistently observed. (C) The moderate release
period at expanded time scale. mEPSC amplitudes and quantal release
rates were calculated according to (B.8) and (B.3) from skewness and
variance (middle and the lowest panels, circles with dotted lines). In the
lowest panel, release rates estimated from the deconvolution method are
superimposed (continuous traces), using the mean mEPSC amplitude of
18pA, as determined from skew and variance.
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of the residual current. Still, estimates which include the not be shorter than about 10 ms. Optimal (matched!) fil-

skew are noisier than those avoiding it. This is particularly tering converts an mEPSC into a delta-pulse-like signal,

true for estimates of release rates. To calculate the latter,  well below an ms, and thus an analysis window of only

one may therefore try to determihedrom a suitable stretch a few ms is sufficient.

of data and, assuming it is constant (in the absence of post(2) High-pass-filtering effectively removes non-stationari-

synaptic desensitization), calculate release rates just from  ties.

variance, with (3) According to the central limit theorem the amplitude
3o — oo — illp — Ipo) distribution of a superpositio.n of independent _random

= : 2] : (14) events approaches a Gausgan, whengver thelr_nur_nber

2 increases beyond a certain value. High-pass-filtering

We can see that there is a variety of ways available to lookat ~ Makes the individual events shorter, such that for a
noise data. Below we will discuss examples and will point ~ given stream of mEPSCs the number of overlapping
out that in practice the analysis should not be performed on ~ €vents is smaller. Thus, the amplitude distribution is
the raw data records but on band-pass filtered records. The less Gaussian, i.e. the skew and kurtosis are, relatively
equations introduced so far hold as well for such band-pass ~ SPeaking, higher. When designing a high-pass-filter,
filtered records, except that quantitiesl andl, (however however, care has to be taken, to preserve the asym-
notlp) will have to be reinterpreted as band-pass filtered val- ~ metry of the elementary waveform. Otherwise the
ues. Also, the equations above were simplified in the sense ~ Skewness will—by definition—be very small.

that the dispersion of MEPSC amplitudes was not included.
Full equations considering both of these effects are given in

3

Some more design principles of filters are discussed in
Neher and Sakaba (2001kjortunately, all equations de-

Appendix B rived so far apply equally well to filtered signals. The only
change with respect to what was written so far is that the

) S quantitiesly, ... , I4 have to be evaluated as time integrals

4. Techniques to minimize the adverse effects of over the filtered signals. Likewise, the single channel ampli-
non-stationarities tude is no longer a ‘real’ amplitude, but that of the filtered

single channel current. In the equations giverNsher and
In order to applyEgs. (6)—(14)one has to evaluate the  gakaba (2001bind in Appendix B this is indicated by a
moments of the signal (e.g. mean and variance) over suffi- nrime, which is a superscript for all quantities in question
ciently long windows of stationary data, in order to obtain (such asi}, I, ... . I).

estimates with adequate coefficients of variation (CV). The * | practice, the following steps are required for a fluctu-
question is: What is ‘sufficiently’ longRieher and Sakaba  44ion analysis as described Meher and Sakaba (2001b)
(2001b) determined CVs for random superpositions of

MEPSCs by Monte Carlo simulation and asked the question: (1) Series resistance compensation of postsynaptic voltage-
How long does the analysis window have to be, in order to clamp traces. This is important, because relative clamp
achieve adequate CV? It turned out that this ‘time resolution’ errors increase with thath power of the cumulant order.

is remarkably good (Table 2 and Fig. 3éher and Sakaba, (2) Software band-pass-filtering.

20018. For variance 1-3 ms of recording is sufficient, de- (3) Calculation of moments and cumulants on a sliding data
pending on the mEPSC rate. For the higher moments and  window. The data window has to be long enough, such
the quantities derived from them more averaging is needed;  that the CV of all relevant moments and cumulants is
the more, the higher the rate (see below). For instance, for  <1/3 (otherwise errors will explode, when forming ra-
an estimate ofi, according td=q. (12)at 2 events/ms an av- tios, etc.).

eraging time of 8 ms is required; for a rate-estimatender (4) Calculation of the parameters of interest, using appro-
the same conditions 40 ms is required (because it involves  priate calibration constants (sé@pendix B).

higher powers of.3 and>). In all cases, the analysis was . .

performed on band-pass-filtered signals. The need and ben- Calibration constantd;-values and moments of the am-

efits of band-pass-filtering was analyzed alreadySegal plitude distribution can either be calculated on the basis of
et al. (1985) The need of low-pass filtering is obvious: the known mEPSC time course and amplitude distribution

one does not want to include noise power at frequencies,"’“cter band-pass-filtering or else be determined by Monte

which are beyond the main components of the mEPSC. TheCarlo simulation. Software, which performs the analysis, is

need for additional high-pass-filtering (to define an optimal @vailable on our department’s websitatp://www.mpibpc.
frequency-band) derives from three arguments: gwdg.de/abteilungen/140/software/index.html
So far, the analysis was described for the case that only a

(1) Campell's theorem requests that the observation interval single record of a given type is available. High-pass-filtering
is long relative to the interval during which the elemen- was the only means considered to remove non-stationarities
tary signal is non-zero. mMEPSCs decay over several ms,and trends. Results can be very much improved, when
such that without filtering the windows of analysis could several records of similar time course are available (for
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instance several traces with slowly decaying asynchronoushelp to judge the presence of ‘spill over’ and to distinguish
MEPSCs after stimulation). This allows averaging the es- it from asynchronous releasBdrbour and Hausser, 1997
timates from individual records and further elimination However, a more quantitative analysis is possible: using
of non-stationarities by mean-subtraction. Mean subtrac- the decay phase of the EPSC, the single channel amplitude
tion can be performed in several ways. For the calculation i’ was calculated according t6q. (11) Fig. 1B shows the
of variance it is most convenient to subtract consecutive EPSC, the variance, the contribution of channel variance to
records from one another before applying the analysis. Thetotal variance Eq. (B.14)of Appendix B, andi’ in the time
variance of such difference records is twice the variance window between 0.21 and 0.31 s (indicated by the bar). Itis
of a single record. It can be shown that averaging esti- seen that’ is quite constant in this time window (although
mates of variances from all possible consecutive difference there is some trend to decrease with decreasing EPSC, which
records (interleaved differences!) results in an estimate al-is observed consistently). Since the EPSC covers about the
most as good as subtracting individual records from the same range of values as the EPSC in the early ‘moderate re-
mean-record $cheuss and Neher, 2001; Sigworth, 1980 lease period’ ofrig. 1A we can use the estimated value of
At the same time slow trends are eliminated much more i’ to subtract channel variance from total varian€e. 1C
effectively by this method. Unfortunately, the same proce- (upper panel) shows the superimposed EPSC traces during
dure cannot be applied for skewness, because skewness ithe moderate release period. We &s. (12) and (13for
canceled out by subtraction. However, subtraction of in- (B.3) and (B.9)) to calculate the mEPSC size and quantal
dividual traces from the mean is quite effective, if five or release rates (middle two panels). For comparison, release
more traces are available. The combination of mean sub-rates as estimated from the deconvolution method (described
traction and high-pass-filtering makes it possible to handle below) are also shown in the lowest paneFaf. 1C During
non-stationarities remarkably well, as shownNgher and the ‘moderate release period’, the quantal amplitude is esti-
Sakaba (2001hbip simulations. mated to be around 20 pA, and it stayed constant. This value
is within the range of those for spontaneously occurring
MEPSCs (20-40 pA). Release rates increase slowly during
5. Examples of fluctuation analysis at a the moderate release period, finally up to 5m/s (for details,
glutamatergic synapse seeNeher and Sakaba, 2001MAlthough estimates from
the deconvolution method tend to be larger, both methods
Fig. 1A shows an example of the analysis at the Calyx (skew/variance and deconvolution) give similar results. The
of Held synapse. The presynaptic terminal was depolarizedtype of analysis, presented here, is not restricted to synapses,
to +80mV and subsequently repolarized 465 mV for in which the terminal can be voltage-clamped. In fact, it is
100 ms to induce a slowly rising EPSC (moderate release pe-straightforward to determine the cumulants during episodes
riod). Subsequently, the terminal was held at 0 mV for 20 ms of asynchronous release following trains of afferent nerve
to evoke massive release. As the terminal was clamped backstimulation and to calculate mEPSC amplitudes and rates as
to —80mV, the EPSC decayed slowly. The same stimula- a function of time after the train, as will be discussed below.
tion protocol was applied 10 times, and variance, skewness,
and fourth cumulants were calculated over a sliding win-
dow of 10 ms length for each trace after mean-subtraction 6. Non-stationary noise analysis of evoked responses
and band-pass-filtering (see above). Variance, skewness,
and fourth cumulant were averaged over the 10 traces. The approach, described above started from the anal-
They increase slowly during the moderate release period,ysis of stationary stretches of data. We showed that
suggesting that release rates increase slowly. However, thenigh-pass-filtering and mean-subtraction allows this ap-
fluctuations in skew and fourth cumulant are too large to proach to be extended in a remarkable way to non-stationary
reliably estimate release rates and mEPSC amplitudes fromcases as well. Synaptic responses, evoked by afferent nerve
Eqg. (10) (or (B.7) and (B.11)). During the depolarization stimulation represent an extreme case of non-stationary.
to OmV, all three traces are truncated in the figures, be- It should be possible to extend the approach described
cause the rapid rise and fall of EPSCs introduces strongabove to ensembles of evoked responses the same way
non-stationarities, which cannot be removed completely Sigworth (1980)extended fluctuation analysis of voltage
by mean-subtraction and band-pass-filtering in this experi- clamp Na -current records to the extreme case of step de-
ment. After repolarization te-80 mV, the variance decays polarization evoked responses. Traditionally, however, in
with similar time course as the EPSC, whereas skewnesssynaptic physiology the analysis of nerve-evoked responses
and fourth cumulant decay more rapidly. This indicates that is restricted to measure peak values of repetitively evoked
guantal release rates rapidly decrease to zero, and that theomposite EPSCs and to consider these as representing the
remaining variance is mainly composed of AMPA-receptor fluctuating number of released quanta. Elaborate techniques
channel variance. In other words, the late EPSC is a conse-are available to extract the quantal parameters from such
guence of the delayed clearance of transmitter at the synap{luctuations by analyzing stretches of stationary data (i.e.
tic cleft. Such a qualitative use of higher cumulants may records for which the mean peak amplitude keeps constant



E. Neher, T. Sakaba/Journal of Neuroscience Methods 130 (2003) 143-157 149

over many repetitions). Here, we will shortly discuss two 1000
aspects of such an analysis: (i) the slight asynchrony of
quantal release and the extent to which it compromises 800

the assumption that the peak EPSC represents the number
of released quanta and (ii) the technique of non—stationaryg
mean-variance analysis, in which trains of stimuli are ap- =
plied repetitively and covariance between successive stimuli
within trains is analyzed in addition to the variance. This
technique allows separate estimations of changes in the
gquantal parametexgandm, which occur during such trains
(Scheuss and Neher, 2001; Scheuss et al.,)2002
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6.1. Asynchrony of release in quantal analysis 0 1 nfs 3 4

Itis generally assumed in quantal analysis that the peak ofFig. 2. Simulation of asynchrony within EPSCs. EPSCs were simulated
an evoked EPSC represents the number of released quantassuming an mEPSC of 32 pA amplitude, with 0.2ms rise time constant
and tha the mesn amplfude ofa single quantum is th ra-S1° 10 (oo e o S03), & e o s (00 B
T[IO of the peak amplitude over the n_umber of quanta. ThIS the release rate function as displayed (right ordinate). As a template fogr
is true, however, only when release is ideally synchronized ‘release rate’ a lognormal function with a halfwidth of 0.44 ms was used,
or else if the jitter in release is much smaller than the decay which is very similar to experimental release rates. It was scaled such that
time of the mEPSC, conditions, which are not exactly met the total release (its integral) was 250 vesicles. Trace ‘1’ was simulated
o the Caly o HeldBorst and Sakmann (1998hawed 120 5 Sl Won obiens 20 s oL e 2o e i
that the _dIStrIbUtlon of quantal _delf_;lys at IOW_ eXtemaﬁqa vesicles. This is just the number c?f vesicles, which is releasedpdurir?g the
has a width of about 1 ms, which is appreciably longer than gpgc yp to the time of its peak.
the rise time of MEPSCs and comparable to the decay time.
Thus, the peaks of the mEPSC will not all contribute maxi- ) ] )
mally to the peak EPSC and those starting after the peak of6-2. Non-stationary mean variance analysis
the EPSC will be neglected altogether. To interpret the vari- i i i i
ance of the peak readings, one has to ask what fraction of Some of the most interesting questions ofquan_tal anf_:lly5|s
their peak amplitudes individual mEPSCs contribute at the &€ connected to short-term plastic changes during trains of
time of the peak EPSC. If the latency distribution and the stimuli. If facilitation or depression is observed, one would
time course of MEPSCs is known, the distribution of such like to know whether this is due to postsynaptic changes
fractional numbers can be calculated and convolved with the (SUch as desensitization, which most likely would show up
amplitude distribution. The coefficient of variation of this 2S @ change im) or else due to changes on the presynap-
modified amplitude distribution should then be used to cal- fi¢ Side (which may result in a change in quantal content).
culate the correction factor for amplitude dispersion. Also, !deally one would like to estimatg and m for each re-
one can calculate how much the peak EPSC is attenuatedPONSe in a train. For this purpose, the mean-variance ap-
by calculating release rates as a function of time by one of Proach, as described ilver et al. (1998jand Clements
the fluctuation methods described above (or else by decon-(2003)can be extended by applying it to repetitive trains of
volution of the evoked response, as described below) andPulses. Enough time has to be allowed between trains for
convolving these with the mEPSC waveform. This is shown the synapse to recover completely. Then, meany gnd
in Fig. 2, where this problem is analyzed by Monte Carlo Variances¢; ) of all EPSCs in the trains can be calculated
simulation. The lower trace is the time course of release rateindividually for eachv (v = number of EPSC within train).
as typically observed by deconvolution of nerve-evoked EP- Plottingo?, againsty, will result in a parabola, from which
SCs (e.gSchneggenburger and Neher, 20rthe continu- quantal_ sizeg and the binomial parameteksandP can be
ous upper curve is its reconvolution with the mEPSC, which determined, if
reproduces the EPSC. The two broken lines, marked ‘1" and qiis constant for all stimuli,
e e e TP SC, .+ & 52 enough range o release probabity is covered

; . : within the train, and

synchronized. Those broken curves differ in the number of
MEPSCs assumed. In curve ‘1" all mMEPSCs are included.
Curve ‘2’ includes all mEPSCs which start up to the peak  Oleskevich et al. (200@ndReid and Clements (1998p-
of the EPSC. This example shows that the peak of the mea-plied this technique to pairs of pulses and to trains at various
sured EPSC is only about 85% of what it would be in the frequencies. They described deviations from the parabola,
case of ideal synchronization of vesicles (or about 90% if which were interpreted to indicate changegyias a result
only mEPSCs up to the peak are counted). of desensitizationMeyer et al. (2001used the technique at

e the vesicle population is homogeneous.
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the Calyx of Held, to study the influences of both desensiti- the analysis ofScheuss et al. (2002 turned out that the
zation and saturation of postsynaptic receptors on the fluc-covariance term was small relative to the first term for all
tuations. They showed that cyclothiazide (CTZ) can protect responses in the train, except for the first one. This is be-
from desensitization for short times and that the binomial cause depression, which was already prominent for the sec-
parameteN may be an upper limit estimate for the number ond pulse, reducep sufficiently. Thus, the covariance term
of active zones. A systematic Monte Carlo study of the in- in Eqg. (15)can be considered as an indicator whether or not
fluences of desensitization, saturation and heterogeneity inthe low{ limit has been reached. A caveat has to be added
release probability on variance and mean estimates was perat this point: this conclusion will not hold in the case that
formed by Scheuss and Neher (2000)hey considered a  negative correlation resulting from the mechanisms consid-
model of short-term depression in which depression can beered above is canceled by positive correlation produced by
the result of either receptor desensitization or depletion of a some other mechanisms.
pool of release-ready vesicles. To this purpose they assumed Fig. 3 reproduces some of the results $€heuss et al.
the release probability to be a product of vesicle availabil-  (2002) Details of the experiment are given in the figure leg-
ity pa, reflecting the occupancy of a given release site@nd  end. The analysis showed that in the control case (without
the probability of release of an available vesicle. In such a drugs) the quantal sizg* was reduced by almost a fac-
model, all the quantities measurable by fluctuation analysis tor of 2 for the second pulse in a traifig. 3D). For the
depend only on the produptpr and not on the probabilities  first response the covariance term increased;jhestimate
individually, such that, unfortunately, these quantities can- by about 50%, if fully applied, and the resulting value was
not be determined individually (see alsere-Jones, 1966; slightly larger than the value measured independently from
Quastel, 1991 However, the study oScheuss and Neher spontaneously occurring mEPSCs. The uncorregieskti-
(2001)showed that under certain conditions consideration of mate, on the other hand, was lower than the mEPSC-derived
covariance between subsequent responses within trains tovalue. It was concluded that probably some of the observed
gether with mean—variance analysis allows estimates of thecovariance was of postsynaptic origin. Experiments were
quantal parameterg, andm, for each stimulus numbar also performed in the presence of CTZ and kynurenic acid
within trains individually (even ify, andm, change during (Kyn), two drugs, which are known to delay desensitiza-
a train). In this formulations, is the product ops, pr, and tion and to prevent receptor saturation, respectively. As ex-
the number of release sités pected, the decrease @i during trains was much less in

If the frequency of stimulation within trains is high CTZ alone, and virtually disappeared in the presence of both
enough, such that only little recruitment of vesicles occurs drugs Fig. 3D). Theqg} values were used together with mean
between pulses and if no mechanisms other than pool de-EPSC values to calculate the quantal contéid.(3E). This
pletion contribute to covariance, then the quantal size  revealed a presynaptic action of CTZ in the form of an in-
for the vth stimulus in a train is simply given bys€heuss  crease in quantal content, which was particularly prominent

and Neher, 2001 for the second and third pulse in a train.
ar, Cov,

C[: _ e v v, v+1 (15)
Iv IU+]_

7. Deconvolution and fluctuation analysis

Here, Vay, andl, are variance and mean of théh response,

Cov, 41 is the covariance between responsesdv + 1, The advantage of voltage-clamping the presynaptic ter-
and the asterisk< denotes that the value is not corrected for minal can be fully exploited only if a method is at hand
dispersion of MEPSC amplitudes. The first term in this equa- to extract rates of transmitter release from the postsynaptic
tion (which is equal to the initial slope of a variance—-mean current. For any presynaptic depolarization lasting longer
parabola) is the well-known result for the case of lmWhe than an action potential the problems of asynchrony in
second term can be considered as a correction, which beselease, discussed above, will seriously blur the interpre-
comes larger, whep is increased. This is intuitively clear, tation of EPSCs. The standard method to calculate release
since correlation between two consecutive responses (withinrates from postsynaptic currents is deconvolutidarbann

the framework of the model considered) arises from deple- and Parnas, 1991; Borges et al., 1995; Diamond and Jahr,
tion of the pool of releasable vesicles, which happens only 1995; Van der Kloot, 1988a, 1988b; \orobieva et al.,
whenp is substantial (note that is the product ofp, and 1999. Unfortunately, the method cannot be applied in its
pa). Unfortunately, mechanisms other than pool depletion usual form to the Calyx due to the presence of ‘residual
may contribute to such correlations, such as postsynapticcurrent—a current resulting from glutamate accumulating
receptor desensitization and saturation. Both of these mech-in the synaptic cleft—whenever stimulus-strength or dura-
anisms will result in negative correlation, just as pool de- tion exceeds certain limits. However, a major advantage of a
pletion does. Thus, the measured covariance may representoltage-clamped presynaptic terminal is exactly the ability to
an overcorrection, if used i&q. (15)and the equation can  apply strong stimuli, because this allows one to deplete vesi-
only provide an upper and lower bounddp, if used with cle pools at the end of a stimulation protocol, such that earlier
and without the correction term, respectively. However, in responses can be related to the number of remaining vesicles.
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Fig. 3. Covariance analysis at the Calyx of Held. (A) The nerve-fiber was stimulated extracellularly with a frequency of 100 Hz, and the postsynaptic
principal neuron was whole-cell clamped-a80 mV. Nine example traces of first and second EPSCs in a train from consecutive sweeps (gray) and their
mean (black) are shown. (B) Correlation between the amplitudes of the consecutive EPSCs are shown. Arrows identify traces belonging to the same train
(C) Average covariance in the amplitude of consecutive EPSCs in the five stimulus trains (100 Hz) are shown. Experiments are done under thege condition
control, in the presence of CTZ (cyclothiazide), in the presence of CTZ and Kyn (Kynurenic acid). Covariance between the first two responses in trains i
significantly different from zero. (D) Plot of the average quantal sizes estimated from the covariance method. Same symbols as shown in part C. (E) Plot
of the average guantal content estimated from the covariance method. Same symbols as in part C. From (A) to (E), mod8igtktresret al. (2002)

The basic assumption of the deconvolution method is that eters have to be determined for a given synapse. This may
the measured response is a linear superposition of a certairappear to be a difficult task. However, it can readily be solved
number of elementary events. This assumption is violated with the help of fluctuation analysis and a suitable ‘fitting
whenever ‘residual current’ develops. The method of de- protocol’, which we routinely apply a few times at the be-
convolution that we have developed and used for all of our ginning and the end of a recording session. Applying the ‘fit-
voltage-clamp studies at the Calyx of Held solves this prob- ting protocol’ periodically also helps to check stability of the
lem by incorporating a simple model of glutamate diffusion recording. In the following we describe this fitting protocol,
in the synaptic cleft into the deconvolution algorithm. The while at the same time explaining some aspects of the dif-
role of the diffusion model is to estimate for a given time fusion model. More detailed descriptions of the procedures
point along the EPSC trace the residual current, based oncan be found ilNeher and Sakaba (2001a)d in a help text,
the preceding release. This current is subtracted from thewhich can be downloaded together with analysis programs
measured EPSC and the remaining current is deconvolved(in IGOR) from our department’s webpagattp://www.

The diffusion kernel and the mEPSC time course have to mpibpc.gwdg.de/abteilungen/140/software/index.html

be known for a given synapse. We usually represent the A ‘fitting protocol’ typically starts with a very short
mEPSC time course by a function decaying with one or two episode of C&" influx, which is adjusted such that it elicits
exponential components and include the time constant(s) ofnot more than about 1-2 nA in postsynaptic curréing.(4).
decay and, if applicable, the relative size of the componentsThis stimulus is followed by pauses and further episodes
among the fitting parameters. The diffusion kernel involves of C&" influx of increasing duration. The whole fitting

a mean diffusional distancg, a diffusion coefficienD, and protocol is typically 300 ms in length. We deconvolve this
an exponenhp. The rationale for the approach is given in record with a set of default starting parameters and first
Neher and Sakaba (2001&)nfortunately, the equations for  concentrate on the deconvolution result during and follow-
the diffusion kernel given both iBakaba and Neher (2001) ing the first short depolarization. During this episode the
contain misprints. The correct formula, which was used in parameters describing the glutamate accumulation/diffusion
the calculations in both papers is, therefore, given here. Theprocess should not matter, since little glutamate has been
kernelc(t), which enters into Eq. (3) dileher and Sakaba released. Indeed, it has been shown that EPSCs under such

(2001a)is conditions are well represented by linear summation of
const 2 MEPSCsBorst and Sakmann, 199af the mEPSC param-
—rD .
c(t) = - exp< D1 ) , (16) eters are correct, the deconvolution result should be a short
f pulse, returning to base line within about an ms after the

where ‘const’ is part of a fitting parameter, which scales the end of the depolarization, since little asynchronous release
contribution of the residual current. In total, up to six param- is elicited by the first depolarization. We confirm the ab-


http://www.mpibpc.gwdg.de/abteilungen/140/software/index.html
http://www.mpibpc.gwdg.de/abteilungen/140/software/index.html
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Fig. 4. Fitting protocol for the deconvolution method. The presynaptic terminal was depolarized-86no +80 mV (a), and periodically repolarized

to O0mV with different durations to evoke EPSCs with different amplitudes (b). At the end of the protocol, the terminal was held at 0mV for 10 ms, to
deplete the releasable pool. The residual current due to delayed clearance of glutamate from the synaptic cleft (dotted trace superimpose@)on the EPS
was estimated from the diffusion model. This current component was subtracted from the original EPSC and the remaining current component was
deconvolved with the mEPSC in order to estimate quantal release rates (c). In (d), fluctuation (variance) analysis was used to check whethes release ra
drop to a low level in between pulses. Calculated variance was scaled accoré@igg(®.1)assuming that quantal size is the same as that of spontaneously
occurring mEPSCs. We designate the value as arbitrary unit (a.u.) of variance (dotted trace, right axis). Release rates estimated from ttierdeconvolu
method (left axis) were superimposed, such that signals of similar amplitude (1 vesicle m/s and 1a.u.) are expectedhér@and Sakaba (2001a)

sence of asynchronous release by performing a fluctuationlates the release episodes in between stimuli. The amount
analysis according t&g. (B.1)on the episode between the of asynchronous release during the decay phase of EPSCs
first two pulses. Usually slight adjustments of mEPSC pa- should be kept small in the fitting protocol, in order to esti-
rameters are necessary to match the deconvolution with themate residual current precisely (it will be ideal if the EPSC
fluctuation results. It should also be noted that estimated re-decay consists only of the residual current). At the same
lease rates from the deconvolution method are less sensitivdime, EPSC amplitudes during the fitting protocol must
to mEPSC parameters if mMEPSCs decay slowly (Eq. (7) of cover the whole range of EPSC amplitudes, which will
Neher and Sakaba, 200Qlavhich is the case in the pres- be encountered in the experiment to be analyzed. Because
ence of CTZ. Subsequent stimulation episodes are strongeresidual current is a supra-linear function of the amount
and elicit large EPSCs, residual current (see broken line in of transmitter release, deconvolution of EPSCs, which are
part b), and also some degree of asynchronous release. Wéarger in amplitude than those of the fitting protocol, leads
measure asynchronous release in episodes between pulsde serious errors in the outcome. At the Calyx of Held, the
by fluctuation analysis and adjust the remaining fitting pa- duration of the presynaptic depolarizing pulses was adjusted
rameters, such that the deconvolution result during theseso that EPSCs in the fitting protocol cover a wide range of
episodes agrees with the fluctuation restig( 49. This, amplitudes. The presynaptic terminal was held-80 mV

in effect, constitutes a fit of the diffusion parameters to or +80mV in between pulses to evoke little asynchronous
the residual current on all these episodes. The assumptiorrelease. In the case of an unclamped presynaptic terminal
underlying our method is that this fit faithfully interpo- (as in many other synapses), a train of nerve stimulations
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can be used for fitting the deconvolution parameters. In that stricted to the Calyx of Held. This should be particularly
case, itis also recommended to combine deconvolution with true for the fluctuation analysis part, which was originally
fluctuation analysis to check independently the amount of formulated byFesce (1990for the neuromuscular junction.

asynchronous release.
Atthe Calyx of Held, the parameters for the deconvolution
method usually are (under CTZ2):

e Time course of mMEPSCs (under CTZ},st = 2-3ms
(30-50% of the total)zsjow = 10-20 ms.

n (exponent of the glutamate channel
=1.2-1.4.

np (exponent of the glutamate diffusion) = 0.6-0.8.
Diffusion distance: 2—am.

D (diffusion coefficient of glutamate): 30m?/s.

activation)

Release rates iRig. 4 are calculated using such param-

We extend this treatment here to include ‘residual glutamate’
in the synaptic cleft and the resulting ‘residual current’.
This problem is particularly severe for relatively young ca-
lyces. The contribution of residual current may be much
reduced at more mature synapsésshi and Wang, 2002;
Taschenberger et al., 200@nd may be negligible at many
types of synapses. In these cases, our equations can be used
by simply settingi’ to zero. The correctness of this sim-
plification may be checked by varying within a reason-
able range (note thatis a band-pass-filtered single channel
current) and verifying that the expected contribution of any
residual current to variance is negligible. For calculation of

eters, and it can be seen that residual current (due to glutathe calibration constantE(s. (B.2), (B.4), (B.6), (B.10)

mate accumulation, broken line Fig. 4b) develops slowly,

and (B.12) information on the amplitude distribution and

and mainly contributes to the late phase of EPSCs, consis-mEPSC time course is required for a given synapse. In our

tent with the observation at other Calyx synapgeatiq et al.,
1996.

8. Outlook

programs, this is supplied by measured mEPSC amplitude
distributions and by specifying the risetime and decay time

constants of mEPSCs. However, these quantities might be
replaced by reasonable assumptions—at some loss of accu-
racy in absolute numbers—in case the mEPSCs cannot be
measured at a given synapse. With such assumptions and

Deconvolution and fluctuation analysis complement each neglecting residual curreriigs. (B.3) and (B.9should be

other in an ideal way. Deconvolution gives best results for
large, rapidly changing EPSCs. In fact, if mEPSCs were
step-like functions with decay times much longer than rise
times the deconvolution result would be just the time deriva-
tive of the EPSC with a small correction due to the mEPSC
decay Yan der Kloot, 1988p Fluctuation analysis, on the

other hand, is most readily performed on relatively sta-

applicable to many types of synapses for the measurement
of both mEPSC mean amplitude and release rate (as func-
tions of time) during episodes of asynchronous release after
evoked responses or for spontaneous release.

The deconvolution procedure, as described here, strongly
relies on the ‘fitting protocol’, which requires that the presy-
napse can be voltage-clamped. However, again, the main

tionary stretches of small amplitude postsynaptic currents, problem at the Calyx of Held is ‘residual current’ which

although mean subtraction and band-pass-filtering can ef-may be much less at other synapses. When residual current

fectively eliminate the adverse effects of non-stationarities. is only a minor contribution, it is well conceivable that the

For this, however, several repetitions of a given record have remaining fitting parameters (time constants of the mEP-

to be available. When considered together, results from SCs) can either be predetermined or else fitted in a protocol

deconvolution and the various forms of fluctuation analysis where short bursts of nerve evoked EPSCs replace the depo-

constitute powerful tools to dissect influences of residual larizations, which we use for the voltage-clamped terminal.

glutamate, asynchronous release, and postsynaptic change3hen self consistent release rates and mEPSC amplitudes

such as desensitization and saturation of receptors. Amongcan be derived from the combined analysis of deconvolu-

the latter, the role of saturation has drawn the least attentiontion and variance according t6gs. (B.8) and (B.8ajwith

so far (but seeMeyer et al., 2001 In some of our work, i’ = 0 and the weighing factog of Eq. (2) in Neher and

we used kynurenic acid, a low affinity antagonist to avoid Sakaba (2001adet to zero). All the calculations described

saturation. However, this approach has very adverse effectshere should, of course, be equally applicable to IPSCs. We

on fluctuation analysis, since variance, skew and kurtosis expect the approach to be particularly helpful for analyzing

decrease with the square, third, or fourth power of the IPSCs, because asynchronous release is very prominent in

blocking factor, respectively. A better way to handle satu- many inhibitory synapsed.( and Trussell, 2000)

ration may be to explicitly adopt a suitable dose—response

curve for the agonist to the algorithms for deconvolution

and for interpreting fluctuation results. This will, of course, Acknowledgements

introduce new parameters, such as a dissociation constant

and the saturation level. On the other hand it may provide We thank Volker Scheuss for discussions and Holgar
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Appendix A. Some principles of statistics A.3. The cumulants of Gaussian noise

Some basic principles regarding random variables are re- A Gaussian distribution has very special properties
peatedly used throughout this chapter. Detailed discussionswith respect to its cumulants, especially if we consider
of these can be found in textbooks on basic statistics, such asigh-pass-filtered (or mean-subtracted) signals: all its cu-
Spiegel (1975)Bevington (1969)and Kendall (1947)(see mulants, except for the variance, vanish. Therefore, the
alsoFesce, 1990; Heinemann and Sigworth, 9%lshort Gaussian is completely characterized by the variangg (
summary is given here. The fact that the skewness vanishes is a simple consequence
of its symmetry. The fourth cumulant (kurtosis) vanishes
because the fourth momept; of a Gaussian is 3 (see
definition of kurtosis above).

If two or more random variables are statistically indepen-
dent from each other, then the cumulant of the sum of theseA.4. Higher cumulants of superpositions of
variables is equal to the sum of the cumulants. This theo- many random events
rem is well-known to hold for the mean and the variance,
but it also holds for skewness, kurtosis and other cumulants Higher cumulants are only useful for ‘sparse’ signals,
(also called semi-invariants). Cumulantg, are defined in i.e. signals for which only a small number of random
terms of momentg,, of random variables. If., is thenth events superimpose. This is because of the ‘central limit
moment of the functioffi(x), according to theorem’, which states that the statistical distributions of

A.1. Additivity of cumulants (or semi-invariants)

+00 superpositions of independent random variables approach
Un = f()" dx (A1) Gaussian distributions, when the number of superimpos-
- ing events increases. Together with the general result

then the cumulants, are given by (for simplicity we write  (above) that higher moments of Gaussians vanish, this
the equations for high-pass-filtered or mean subtractedleads to very unfavorable conditions for the analysis of

traces): higher moments, when the frequency of elementary events
M=p1=0 (mean (A.2) increases.

A2 = u2 (variance (A.3)

ha= s (skewness (A4) Appendix B. Summary of equations

Aa = [ia — 3M% (kurtosis (A.5) Here, we summarize equations for estimating mean am-

plitudes (h) of synaptic quanta and rates of relegsg of
In electrophysiology, this law is readily applied to random quanta from cumulants£) and (h) can be considered as
signals, for instance currents originating frdinhindepen-  time-dependent, since they are usually evaluated on short
dently switching channels d¥ independently releasing ac-  windows, which slide along data records. Most of these
tive zones. For these one can write equations are fromleher and Sakaba (2001here, how-

Ao N = Nio (A.6) ever, they were given without correction terms for offset cur-
’ rent and background variance. Some equations are derived
daN = Nhg (A7) in the text Egs. (6)—(13), however, without the complica-

where joy and A4y are the cumulants of the recorded tON Of the dispersion in mEPSC amplitudes.

currents, whereas; and 4 are cumulants of single chan-
nel (or single active zone) signals. Note that such a simple
equation does not hold for the raw fourth momeky &

ua — 3u2)!! and that they hold for variance and skewness
only for mean-subtracted traces.

B.1. Meaning of symbols

A prime notifies the fact that high-pass-filtered or mean-
subtracted quantities have to be used.

(h) mean amplitude of elementary quanta (MEPSCs)
in amperes (2), (h3) and(h?) are the higher
moments of the amplitude distributions)

mean frequency of occurrence of quanta within

a short analysis window. This quantity should be

A.2. Multipliers to random variables

If a random variabld>(x) is a scaled version of another (&)

random variabld1(x), according to
f2(x) = afi(x)

then the cumulants, » of f2(x) are related to those,, 1 of
f1(x) by
)\n,Z = an)hn,l

(A.8)

(A.9)

considered as a function of time of the window
in most cases

A the variance after band-pass-filtering of the
current record

A5 the skew after band-pass-filtering of the
current record
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the fourth cumulant (also called fourth
semi-invariant or kurtosis) after filtering

i’ the apparent single channel conductance after
filtering. SeekEq. (B.15)for its definition

the measured postsynaptic current before
band-pass-filtering (possibly low-pass-filtered)
the offset of the postsynaptic current, which is
not related to synaptic transmission, including
leak-current

the background variance of the postsynaptic
current after filtering, including amplifier noise
and cellular background noise

the integral over the square of the peak-normalized
mMEPSC waveform after filtering

the integral over the third power of the
peak-normalized mEPSC waveform after filtering
the integral over the fourth power of the
peak-normalized mEPSC waveform after filtering
a calibration factor used in the conversion of
variance into mEPSC amplitude and rates.
SeeEq. (B.2)for its definition

a calibration factor used in the conversion of skew
into mMEPSC amplitude. Sdeg. (B.10)for

its definition

a calibration factor used in the conversion of the
fourth cumulant into mEPSC amplitude.

SeeEq. (B.12)for its definition

a calibration factor used to convert skew and
variance into release rates. Jeg. (B.4)

for its definition

a calibration factor used to convert skew and

the fourth cumulant into release rates.

SeeEq. (B.6)for its definition

B.2. Calculating release rates

B.2.1. From variance, applying corrections for background
variance ¢, ), channel variance, and offset currentJ

/ li ./ Hl/)
é) = ()Lz — A2t (Ip - Ip,o))—(h>2 (B-l)
, (w2
= (hz)Ié (B.2)
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For this calculation knowledge of mMEPSC amplitude is not
required; however the ratig>)2/(h?)3 has to be known for
calculation ofZL. This ratio is invariant when the mEPSC
amplitude distribution expands or shrinks, as is expected for
uniform desensitization of receptors.

B.2.3. From kurtosis (fourth cumulant) and skewness

)\/4
(& = (73) Z, (B.5)
4
31
:WWFE (B.6)

This calculation is independent of background current, back-
ground variance, and offset current. It requires only the
knowledge of(h*)3/(h3)%.

B.2.4. From kurtosis and skewness, when mEPSC

amplitude is known

_M3Hg 1
Ay Hy (h?) I

(&) (B.7)

This calculation uses lower powers Xdf andij, and there-
fore is less noisy. When mEPSC amplitude is known, it is
also straightforward to calculate the rate from skew alone,
according to
’3
(n3) 15

£ = (B.7a)

B.3. Calculating the mean mEPSC amplitude

B.3.1. From variance and deconvolution, applying
corrections for background variance, channel variance,
and offset current

It is assumed that a deconvolution was performed, using
the assumed mEPSC amplituaieand resulting in a decon-
volution rate£g (usually a time dependent quantity!). Then
the actual rate can be calculatedsas &pho/(h). Insertion
into Eq. (B.1)yields,

o l ./ H1/1
(h) = ()kz - }‘2,0 —1 (Ip - Ip,o))

B.8
(éoho) (B.8)

This calculation requires knowledge of the absolute mEPSC and

amplitude (seeEqg. (B.8a) for a calculation of(¢) using
variance and deconvolution).

B.2.2. From skew and variance, applying corrections for

background variance, channel variance, and offset currents

Ay — Ay — i (Ip — Ino))3
— ( 2 2,0 ( p p’O)) . Z/ (B.3)
)“/2 S
3

(8)

(h%)
W23

2 I
(h >3 I

|

7=

(B.4)

NW

_ (§oho)?
(A, — )»’2,0 —i'(Ip — Ip,0) H},

() (B.8a)

B.3.2. From skew and variance, applying corrections for
background variance, channel variance, and offset current

— )\'é !
"= (A =0 = i"(Ip = Ipo)) s &9
. (h?)(h) I}
= _Iz (B.10)
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B.3.3. From kurtosis (fourth moment) and skewness Diamond JS, Jahr CE. Asynchronous release of synaptic vesicles deter-
mines the time course of AMPA receptor-mediated EPSC. Neuron
! 1995;15:1097-107.
(h) = _:1H4/1 (B-ll) Faber DS, Korn H. Synergism at central synapses due to lateral diffusion
3 of transmitter. PNAS 1988;85:8708-12.
3 , Faber DS, Young WS, Legendre P, Korn H. Intrinsic quantal variability due
;7 _ (h?)(h) é (B 12) to stochastic properties of receptor—transmitter interactions. Science
47 I ' 1992;258:1494-8.

Fesce R. Stochastic approaches to the study of synaptic function. Prog
Neurobiol 1990;35:85-133.

B.3.4. Calculating the variance contribution of mEPSCs Fesce R, Segal JR, Hurlbut WP. Fluctuation analysis of nonideal shot noise.

4 H .
(V,,) to total variance from skew and kurtosis Application to the neuromuscular junction. J Gen Physiol 1986;88:25—
57.
, 2 )\’g Hé Hartzell HC, Kuffler SW, Yoshikami D. Post-synaptic potentiation: inter-
Vm = Eho) 2 = )\_’ﬁ (B.13) action between quanta of acetylcholine at the skeletal neuromuscular
4 774

synapse. J Physiol 1975;251:427-63.
|Heinemann SH, Sigworth FJ. Open channel noise. VI. Analysis of am-

Thi Iculation not require knowl hann X ; ' X
§ calculation does not equire kno edge about channe plitude histograms to determine rapid kinetic parameters. Biophys J

variance, nor background variance. 1991:60:577_87.

Joshi I, Wang LY. Developmental profiles of glutamate receptors and
B.3.5. Calculating the variance contribution of channel synaptic transmission at a single synapse in the mouse auditory brain-
fluctuations ¥) from total variance, skew and kurtosis stem. J Physiol 2002;540:861-73.

Katz B. The release of neural transmitter substances. Liverpool: Liverpool

)J2 H University Press; 1969.
vV, = )\/2 _ )”/2 _ 37 (B.14) Katz B, Miledi R. The statistical nature of the acetylcholine potential and
¢ -0 )L;l Hy its molecular components. J Physiol 1972;224:665-700.
Kendall MG. The advanced theory of statistics. London: Charles Griffin
B.3.6. Calculating the apparent single channel currént i & Company; 1947. p. 49-74.

Kinney GA, Overstreet LS, Slater NT. Prolonged physiological entrapment
of glutamate in the synaptic cleft of cerebellar unipolar brush cells. J
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