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Molecular dynamics simulation of vibrational energy relaxation of highly
excited molecules in fluids. I. General considerations

V. S. Vikhrenko,a),b) C. Heidelbach, D. Schwarzer, V. B. Nemtsov,a) and J. Schroeder
Max-Planck-Institut fu¨r Biophysikalische Chemie, Am Fassberg 11, D-37077 Go¨ttingen, Germany

~Received 13 August 1998; accepted 15 December 1998!

Methods of implementation of classical molecular dynamics simulations of moderate size molecule
vibrational energy relaxation and analysis of their results are proposed. Two different approaches
are considered. The first is concerned with modeling a real nonequilibrium cooling process for the
excited molecule in a solvent initially at equilibrium. In addition to the solute total, kinetic, and
potential energy evolution, that define the character of the process and the rate constant or relaxation
time, a great deal of important information is provided by a normal mode specific analysis of the
process. Expressions for the decay of the normal mode energies, the work done by particular modes,
and the vibration–rotation interaction are presented. The second approach is based on a simulation
of a solute–solvent system under equilibrium conditions. In the framework of linear nonequilibrium
statistical thermodynamics and normal mode representation of the solute several expressions for the
rate constant are derived. In initial form, they are represented by integrals of the time correlation
functions of the capacities of the solute–solvent interaction atomic or normal mode forces and
include the solute heat capacity. After some approximations, which are adequate for specific cases,
these expressions are transformed to combinations of those for individual oscillators with force–
force time correlation functions. As an attempt to consider a strongly nonequilibrium situation we
consider a two-temperature model and discuss the reason why the rate constant can be independent
on the solute energy or temperature. Expressions for investigation of the energy redistribution in the
solvent are derived in two forms. One of them is given in the usual form of a heat transfer equation
with the source term describing the energy flux from the excited solute. The other form describes the
energy redistribution in the solvent in terms of capacity time correlation functions and can be more
convenient if memory effects and spatial dispersion play an important role in energy redistribution
in the solvent. ©1999 American Institute of Physics.@S0021-9606~99!51211-7#

I. INTRODUCTION

Vibrational energy relaxation~VER! of highly excited
molecules is a fundamental process involved in many chemi-
cal reactions in the gas and liquid phase. Therefore, great
experimental and theoretical effort has been expended over
the last decades to get a quantitative understanding about the
energy flux from a vibrationally excited solute to a bath gas
or solvent.1–16 If the solute is a diatomic molecule excited
below the dissociation threshold VER is the main mecha-
nism for transferring energy from an individual mode to the
bath. In larger molecules intramolecular vibrational energy
redistribution~IVR! to other solute modes can compete with
energy transfer. For vibrationally highly excited~.10 000
cm21! polyatomic molecules containing several tens of at-
oms, IVR is believed to be sufficiently fast17–21 such that
during collisional deactivation the energy is well equilibrated
among the vibrational modes of the solute.

Nevertheless, one may expect that the contribution to the
overall energy transfer of the solute varies from mode to
mode as suggested by simple theoretical considerations. This

is confirmed by numerous classical trajectory calcu-
lations10,11 as well as molecular dynamics~MD!
simulations,16 which show that the efficiency of energy
transfer is enhanced by the presence of low-frequency vibra-
tional modes in the solute. So far, however, these trajectory
calculations were only analyzed in terms of step size distri-
bution functionsP(E8,E) that define the probability that a
solute with initial energyE after a collision has the energy
E8. The contribution of individual modes to the energy
transfer was not analyzed. One motivation behind this work
is to develop a formalism that on the basis of normal mode
analysis extracts mode specific information of VER from
MD simulations. First results on the system azulene
~C10H8!–CO2 have been reported elsewhere.21

After Zwanzig22 introduced force time correlation func-
tions to describe VER in liquids, a great variety of different
approaches have been developed23,24 ~see also the introduc-
tion in Ref. 25 for a short review of recent papers! and used
to calculate VER rates of diatomic molecules in liquids,25–30

in satisfactory agreement with experimental data. It has been
shown31 that for a harmonic oscillator bilinearly coupled to a
harmonic bath classical and quantum mechanical approaches
yield equivalent results for VER rates. Also, for more real-
istic models32,33 the classical description of VER provides a
reasonable representation of a quantum mechanical system,
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suggesting that VER rates for a quantum mechanical system
can be obtained from classical MD simulations. Examples of
quantitative agreement between classical and quantum me-
chanical computations of IVR in polyatomics are
available,34,35 too. However, similar classical considerations
do not have to be necessarily true for VER of bigger mol-
ecules like azulene. Here, e.g., dependent on whether it is
treated classically or quantum mechanically, the presence of
low- and high-frequency modes leads to different energy dis-
tributions among the modes of the molecule that might alter
the energy transfer mechanism. Also, zero-point energy is
not known to be exactly handled by classical simulations.
Nevertheless, reasonable agreement between experimental12

and calculated16,21 VER rates from classical MD simulations
of azulene in low- and high-density CO2 suggest that these
deficiencies are of minor importance.

In principle, there are two different ways to investigate
VER by means of MD simulations. One can model the non-
equilibrium energy transfer process from an energetically ex-
cited solute to the solvent, or the simulation is performed
with solute and solvent being in equilibrium. The latter
method yields certain time correlation functions which con-
tain information about the corresponding nonequilibrium
VER process. Both techniques have been applied to a single
oscillator in a bath and were shown to give nearly equivalent
results if the oscillator frequency is relatively low.27 In this
paper we present methods to extract mode specific informa-
tion on VER from both types of MD simulations of bigger
molecules.

Furthermore, we want to address the question of energy
transfer from solute to solvent by vibration–rotation interac-
tion. For small molecules this deactivation channel can be of
great importance.17,23,36–41 Rotational energy transfer was
studied in trajectory simulations10,11 for moderate size mol-
ecules, and it is of interest to investigate the role of
vibration–rotation interaction in energy transfer of such mol-
ecules in dense fluid solvents.

Finally, we investigate the behavior of the solvent in the
vicinity of the solute during the energy transfer process. In-
stantaneous normal mode analysis28–30 provides important
information about equilibrium and dynamical properties of a
solute–solvent system. However, for moderate size solutes
this method encounters many technical difficulties up to
now. There are a few examples6,12 where the phenomeno-
logical heat conduction equation was used to describe the
energy redistribution in the solvent. However, from experi-
mental data12,14 and MD simulations16 it was shown that
there is no substantial heating of the solvent around the ex-
cited solute. This observation suggests that the heat conduc-
tivity of the solvent is quite efficient, making the solvent–
solute energy exchange the rate limiting step in VER.
Nevertheless, a strongly nonequilibrium liquid state is main-
tained in the nearest vicinity of the solute during VER, which
can be used to check and improve modern statistical–
mechanical theories of strongly nonequilibrium processes
with memory and spatial dispersion.42–44

The paper is organized as follows. Expressions for ana-
lyzing nonequilibrium MD simulations on VER in terms of
mode specificity and vibration–rotation interaction are de-

rived in the next section. These expressions are also used as
a starting point in the third section devoted to a statistical–
mechanical description of the solute–solvent system. We
present a formalism to calculate relaxation times and extract
mode specific information from equilibrium time correlation
functions~TCF! of appropriate capacities and forces. Expres-
sions for analyzing energy redistribution in the solvent are
presented as well. The paper is finished by some concluding
remarks.

II. NONEQUILIBRIUM COMPUTER SIMULATION OF
VIBRATIONAL ENERGY RELAXATION

Usually experimental studies on collisional deactivation
of polyatomic molecules are carried out at a very small con-
centration of excited molecules in a solvent. Hence, for MD
simulations of these processes, a model system can be con-
sidered as containing a single solute molecule surrounded by
solvent molecules. The system should be treated as a statis-
tical mechanical ensemble, i.e., results appear as mean values
of certain quantities over numerous realizations of the pro-
cess, in accordance with the conditions of the ensemble cho-
sen. For many characteristics under investigation, the type of
ensemble is not important and usually an equilibrium or non-
equilibrium microcanonical ensemble is used in MD simula-
tions, whereas canonical or grand canonical ensembles are
more suitable for theoretical considerations.

The interpretation of MD simulations requires specifica-
tion of a set of dynamical quantities that can shed light on
the process under investigation. Vibrational energy and its
time derivative are the most important original characteris-
tics of VER. Their calculation in the framework of the dy-
namical model described below is considered in the present
section.

A. Description of the dynamical model

Let us consider the standard representation of the energy
of the system under investigation as a sum of two compo-
nents:

E5E11E2 , ~2.1!

whereE1 and E2 are the energy of the solute and solvent
molecules, respectively, given by

E15
1

2 (
i 51

ns

mi ġi
21U intra~g1 ,...,gns

!, E25 (
m51

N

Em ,

~2.2!

Em5 (
p51

nv S 1

2
mmpq̇mp

2 1(
i 51

ns

F~mp!i1 (
n51

N

(
q51

nv

F~mp!~nq!D
1Umintra~qm1 ,...,qmnv

!. ~2.3!

All vectors are defined in the inertial laboratory frame.
ns and nv are the number of atoms per solute and solvent
molecule, respectively. The second and third terms on the
right-hand side~rhs! of Eq. ~2.3! take into account the
solvent–soluteF (mp) i and solvent–solventF (mp)(nq) interac-
tion by using atom–atom potentials. The last contribution
represents the solvent intramolecular potential energy. Indi-
cesm,n are attributed to the solvent molecules;p andq de-
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note atoms of solvent molecules, andi designates the solute
atoms.qmp is the position vector of atomp of the mth sol-
vent molecule;gi indicates the position of thei th solute
atom.

The intramolecular energy can be represented in terms of
stretches, bends, dihedrals, improper torsions, etc.,45 and is
not equal to a sum of pairwise interaction potentials. The
energy of the solute–solvent interaction is completely as-
signed to the solvent part of the system energy because the
main point of interest is the evolution of the solute energy.

Forces between different molecules are defined by spa-
tial derivatives of the atom–atom potentials,

Fi ~mp!52F~mp!i52
]F i ~mp!

]gi
,

~2.4!

F~mp!~nq!52F~nq!~mp!52
]F~nq!~mp!

]qmp
, nÞm.

The force that acts on thei th solute atom from themth
solvent molecule and intermolecular solvent–solvent interac-
tion forces are equal to the sum of the corresponding atom–
atom forces,

Fim5 (
p51

nv

Fi ~mp! , Fmn5 (
q51

nv

(
p51

nv

F~mp!~nq! . ~2.5!

Due to many-body interactions intramolecular forces cannot
be represented by sums of two-body interactions. In the fol-
lowing they are marked by superscript~i!:

Fi
~ i !52

]U intra

]gi
, Fmp

~ i ! 52
]Umintra

]qmp
. ~2.6!

The total external forceR(e) and the external torqueMC
(e)

about the solute center of massC are defined by external
forcesFi

(e) on the solute atoms,

R~e!5(
i 51

ns

Fi
~e! , MC

~e!5(
i 51

ns

giC3Fi
~e! , Fi

~e!5 (
m51

N

Fim .

~2.7!

B. Description of vibration–rotation interaction

Since the behavior of the vibrational degrees of freedom
of the solute can be rather different from the dynamics of its
translational and rotational motion,37,40 it is necessary to
separate their contribution fromE1 .

According to the Eckart–Sayvetz46–48 conditions, one
should introduce a solute coordinate system defined by the
equations

(
i 51

nS

migiC50, ~2.8!

(
i 51

nS

miai3DgiC50, DgiC5giC2ai , ~2.9!

giC5gi2gC , gC5
1

M (
i 51

nS

migi , M5(
i 51

nS

mi . ~2.10!

HeregC defines the position of the solute center of massC,
mi andgiC are the mass and the position of the nucleusi in

the center of mass coordinate system,ai defines the equilib-
rium position of thei th nucleus. The orientation of the Eck-
art frame necessary for calculating the equilibrium positions
ai of the nuclei and their displacementsDgiC is defined41,46

via instantaneous nuclei configurationgiC according to Eq.
~2.9! by introducing Eckart vectors.46

The second Eckart–Sayvertz condition@Eq. ~2.9!# is lin-
ear in displacements of the solute nucleigiC from their equi-
librium positions and so is most appropriate for a normal
mode analysis. The time derivative of Eq.~2.9! in the Eckart
frame leads to the expression

(
i 51

nS

miai3ui50, ~2.11!

which shows that the motion in the Eckart frame possesses
nonzero angular momentum becauseai define equilibrium
nuclei positions andui are nuclei velocities in the Eckart
frame.

Decomposition of thei th nucleus velocity into transla-
tional, rotational, and vibrational contributions results in

vi5ġi5vC1v3giC1ui , vC5ġC , ~2.12!

v5I l
21

–(
i 51

nS

miai3viC , viC5ġiC5vi2vC , ~2.13!

I l5I01DI l , I05(
i 51

nS

mi~ai
2E2aiai !,

DI l5(
i 51

nS

mi@ai–DgiCE2~ 1
2!~aiDgiC1DgiCai !#, ~2.14!

wherevC , ui , andv are the center of mass and the vibra-
tional nucleus velocities, and the angular velocity of the Eck-
art frame, respectively.E is the unit matrix;I0 is the mo-
ments of inertia matrix for the equilibrium solute
configuration. Definitions of matricesI l andDI l in Eq. ~2.14!
follow from the sum entering Eq.~2.13!, in combination with
Eqs.~2.12! and ~2.11!.

A different definition of a solute frame corresponds to
the principle axes of an instantaneous configuration41,46,49of
the molecule. The angular momentum due to vibrational ve-
locities ui8 in this frame @they are defined by an equation
identical to Eq.~2.12! with v8 andu8 instead ofv andu# is
equal to zero,

(
i 51

nS

migiC3ui850, ~2.15!

and the angular velocity of the principle axes frame can be
calculated easily as

v85I21
–(

i 51

nS

migiC3viC . ~2.16!

Here the matrix of instantaneous moments of inertia,

I5(
i 51

nS

mi~giC–giCE2giCgiC!, ~2.17!
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differs in second order in displacements from moments of
inertia I l in the Eckart frame.

The angular momentum of the solute about its center of
mass,

LC5I–v8, ~2.18!

obeys the simple equation of motion,50

L̇C5MC
~e! . ~2.19!

Such a simple expression does not exist forI–v.
With account of the velocity decomposition~2.12! and

Eqs. ~2.9!–~2.11!, the solute energy~2.2! is presented as a
sum of translational, rotational, and vibrational contributions,

E15E1tr1E1rot1E1vibr , ~2.20!

E1tr5
1

2
MvC

2 , E1vibr5
1

2 (
i 51

nS

miui
21U intra~g1 ,...,gns

!,

~2.21!

E1rot5
1

2
v8–I–v81

v1v8

2
•I•Dv1v•L vibr ,

Dv5v2v8, ~2.22!

L vibr5(
i 51

nS

giC3miui5(
i 51

nS

DgiC3miui . ~2.23!

Hear the angular momentumL vibr of the vibrational motion
in the Eckart frame is introduced. For the same reason as
discussed after Eq.~2.3!, the last term of Eq.~2.23!, which
includes the vibrational velocities, is related to the rotational
part of the solute energy. To facilitate further differentiation
of the solute energy with respect to time, Eq.~2.22! is writ-
ten in such a way that its first term is expressed in terms of
v8 rather thanv.

After the time derivative of Eq.~2.20! with account of
Eqs. ~2.21!–~2.23! and ~2.19! is evaluated, the result can
easily be specified into several contributions:

Ė1tr5R~e!
–vC , Ė1rot5MC

~e!
–v1Nv–r , ~2.24!

Ė1vibr5(
i 51

n

Fi
~e!
–ui2Nv–r , ~2.25!

where the whole capacity of vibration–rotation coupling is
given as a sum over four terms:

Nv–r5N1v–r1N2v–r1N3v–r1N4v–r, ~2.26!

which represent four different channels of the vibration–
rotation interaction:

N1v–r52~ 1
2!v8–İ–v8, ~2.27!

N2v–r5
d

dt S v1v8

2
–I–DvD , ~2.28!

N3v–r5
d

dt
~v–L vibr!, ~2.29!

N4v–r52MC
~e!
–Dv, ~2.30!

and İ designates the part of the time derivative of the matrix
of moments of inertia that is not connected with the principle
axes rotational motion of the solute,

İ5(
i 51

nS

mi@2giC–ui8E2~giCui81ui8giC!#, ~2.31!

The first channel is connected to variations in the instan-
taneous moments of inertia, the second comes from the dif-
ference between the angular velocities of the Eckart and the
principle axes frames, the third channel is caused straightfor-
wardly by the vibrational velocities, and the last one is at-
tributed to the external forces. It is hardly to be expected that
the interaction terms could be estimated analytically, even
for moderate size molecules. But the derived equations
~2.27!–~2.30! can be used directly in MD simulations.

For the alternative definition of the solute frame, using
principle axes,u has to be replaced byu8 in Eq. ~2.21!, and
only the first term in Eq.~2.22! remains. Therefore, in the
time derivative of the rotational energy only a single
rotation–vibration interaction term defined by Eq.~2.27! sur-
vives. Of course, this does not mean that the translation–
rotation coupling is weaker in the latter treatment. Straight-
forward trajectory calculations41 for isolated three-atomic
molecules have shown that usually the coupling is weaker
for the Eckart frame.

C. The normal mode analysis of solute vibrations

Now we proceed to analyze Eq.~2.21! for the solute
vibrational energy. After introduction of mass-weighted co-
ordinates and velocities,48

ḡi5AmiDgi , ūi5Amiui , ~2.32!

and considering the harmonic part of the solute intramolecu-
lar energy one can define the respective part of the solute
energy as follows:

E1
harm5

1

2 (
i 51

n

ūi–ūi1
1

2 (
i , j 51

nS

ḡi–Ci j –ḡj ,

~2.33!

Ci j 5
1

Amimj
S ]2U intra

]gi ]gj
D

0

.

Subscript 0 indicates that matrixCi j is calculated at the sol-
ute equilibrium configuration.

Let Pj b be the orthogonal normalized eigenvector matrix
that diagonalizes the mass-weighted force constant matrix
Ci j ,

(
i , j 51

nS

Pa i
t
–Ci j •Pj b5va

2dab , ~2.34!

whereva is the frequency of the soluteath vibrational mode
and dab is the Kroneckerd symbol. Then the connection
between Cartesian displacements and vibrational velocities
of solute nuclei and solute normal coordinatesqa and veloci-
ties q̇a takes the form

qa5(
i 51

nS

Pa i
t
•AmiDgi , q̇a5(

i 51

nS

Pa i
t
–Amiui ; ~2.35!
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Dgi5
1

Ami
(
a51

3nS26

Piaqa , ui5
1

Ami
(
a51

3nS26

Piaq̇a . ~2.36!

Summation in the last two expressions is carried out over all
the solute vibrational degrees of freedom. Superscriptt
marks the transposed matrix. By introducing the normal
forces,

Qa5(
i 51

nS

Fi
~e!
–

1

Ami

Pia5(
i 51

nS

Pa i
t
–

1

Ami

Fi
~e! , ~2.37!

the capacity of interaction of the solute vibrational sub-
system with the solvent brakes up into 3ns26 ~in accor-
dance with the number of vibrational degrees of freedom!
terms,

Nvibr5(
i 51

nS

Fi
~e!
–ui5 (

a51

3nS26

Qaq̇a . ~2.38!

Each of the terms in Eq.~2.38! describes the main part of the
energy exchange between the corresponding solute normal
mode and the solvent.

In general, the force on thei th solute nucleus can be
divided into externalFi

(e) and internalFi
( i ) parts,

Fi5Fi
~e!1Fi

~ i ! , Fi
~ i !52]U intra/]gi . ~2.39!

The capacity of the internal forces,

Nintra5(
i 51

nS

Fi
~ i !
–ui5 (

a51

3nS26

Qa
~ i !q̇a , ~2.40!

determines the intramolecular energy redistribution. Each
term of the sum describes the part of energy flux to a par-
ticular vibrational modea from the other modes caused by
the nonlinearity of the intramolecular potential. This is con-
sidered in some detail in the Appendix.

We note that the representation of capacities via normal
velocities and normal forces isexact, irrespective of the ac-
curacy of the harmonic approximation for the intramolecular
motion. The orthogonal transformation of the bilinear forms
of forces and velocities in Eqs.~2.35! and ~2.37! by an or-
thogonal matrix is identical. The interpretation of the results,
however, strongly depends on the validity of the underlying
harmonic approximation.

III. STATISTICAL–MECHANICAL DESCRIPTION OF
VIBRATIONAL ENERGY RELAXATION

Highly excited molecules possessing many vibrational
degrees of freedom have a rather high kinetic temperature
~determined as the average kinetic energy per vibrational de-
gree of freedom! as compared with the ambient solvent.
Hence, the state of the system is highly nonequilibrium and,
in general, linear nonequilibrium statistical theory may not
be used to describe the relaxation process. However, the ex-
perimental results unambiguously indicate12,13 that in many
cases the process is characterized by a single relaxation time
and the rate of solute–solvent energy exchange remains pro-
portional to the excess energy during the whole process.
Thus, it seems reasonable to determine the relaxation time by
considering a slightly nonequilibrium system that can be de-

scribed in the linear approximation. The results of such a
linear statistical–mechanical description in terms of equilib-
rium time correlation functions of the corresponding quanti-
ties could be used to study different aspects of the relaxation
process by MD simulations of equilibrium systems.

Subsequently, one can try to answer the question to why
this linear treatment is applicable to the description of highly
nonequilibrium systems and under what conditions a nonex-
ponential decay behavior can be expected.

A. Relevant variables and their time evolution

The main quantities of interest in the study of VER are
the energies of the solute vibrational degrees of freedom, its
translation and rotation, and of the solvent. We make a start-
ing assumption that the nonequilibrium mean values of these
quantities describe the nonequilibrium macroscopic state of
the system under consideration sufficiently well, at least with
respect to VER, and they will be considered as relevant vari-
ables. This assumption is supported by fairly good agreement
between our results of nonequilibrium16,21,52 and equi-
librium53 MD simulations of the azulene–CO2 system at low
and high pressure. For a statistical–mechanical calculation of
kinetic coefficients like rate constant time derivatives of the
relevant variables are necessary.

In accordance with the preceding section we introduce
the microscopic energy densityĤ(r ) as a sum of three com-
ponents:

Ĥ~r !5Ĥ1vibr~r !1Ĥ1rt~r !1Ĥ2~r !, ~3.1!

where the energy density of the solute molecule is attributed
to its center of mass locationg,

Ĥ1vibr5E1vibrd~r2g!, ~3.2!

Ĥ1rt5E1rtd~r2g!, E1rt5E1rot1E1tr , ~3.3!

and the energy density of solvent molecules is ascribed to
their center of mass positionsqm ,

Ĥ25 (
m51

N

Emd~r2qm!. ~3.4!

d(r2qm) is the Dirac’sd function.
As suggested in Refs. 37 and 40 the solute rotational and

translational degrees of freedom are not included in the sol-
vent subsystem because one of the aims of our consideration
is the investigation of the role these degrees of freedom play
in the energy transfer from solute to solvent during vibra-
tional energy relaxation.

When the equations of motion of the solvent and solute
atoms,

mi g̈i5Fi
~ i !1 (

m51

N

Fim , ~3.5!

mmpq̈mp5Fmp
~ i ! 1 (

n51
nÞm

N

F~mp!n1(
i 51

nS

F~mp!i ,

~3.6!

F~mp!n5 (
q51

nV

F~mp!~nq! ,

5277J. Chem. Phys., Vol. 110, No. 11, 15 March 1999 Vikhrenko et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.76.223.157 On: Fri, 09 Oct 2015 08:12:50



are taken into account, one obtains the time derivatives of the
energy densities as

Ḣ̂k~r !5I k~r !1“ r–Jk~r ![B̂k~r !, k51vibr, 1rt, 2,
~3.7!

whereB̂k(r ) are microscopic fluxes of the relevant variables.
The rhs of Eqs.~3.7! consists of source/sink terms,

I 1vibr~r !5~Nvibr2Nv–r!d~r2g!, ~3.8!

I rt~r !5~R~e!
–vC1MC

~e!
•v1Nv–r!d~r2g!, ~3.9!

I 2~r !52 (
m51

N S vC–(
i 51

nS

Fim1v–(
i 51

nS

giC3Fim

1(
i 51

nS

ui–FimD d~r2qm!1
1

2 (
n,m51

N

(
p,q51

nV

~ q̇nq1q̇mp!

–F~nq!~mp!d~r2qm!, ~3.10!

which are defined by capacities of the corresponding forces,
and the flow contributions,

Jk~r !52ġEkd~r2g!, k51vibr, 1rt; ~3.11!

J2~r !52 (
m51

N

q̇mEmd~r2qm!. ~3.12!

The decomposition~2.12! of a solute nucleus velocity is
taken into account in Eq.~3.10!.

The representation of the rhs of Eqs.~3.7! by two terms
is not unique. For example, one usually represents51,54 the
second term ofI 2(r ) as a flow term,

1

2 (
n,m51

N

(
p,q51

nV

~ q̇nq1q̇mp!–F~nq!~mp!d~r2qm!

>“ r–S 1

4 (
n,m51

N

(
p,q51

nV

~qm2qn!

3~ q̇nq1q̇mp!–F~nq!~mp!d~r2qm!D ,

and adjoins it toJ2(r ),

Ĩ 2~r !52 (
m51

N S vC–(
i 51

nS

Fim1v–(
i 51

nS

giC3Fim

1(
i 51

nS

ui–FimD d~r2qm!, ~3.13!

J̃2~r !5 (
m51

N S 2q̇mEm1
1

4 (
n51

N

(
p,q51

nV

~qm2qn!

3~ q̇nq1q̇mp!–F~nq!~mp!D d~r2qm!. ~3.14!

Such a definition of the solvent energy flow leads to a con-
ventional definition of a macroscopic energy flow via heat
conductivity. However, for the purposes of this work it is
more convenient to represent the energy density time deriva-
tives in the form adopted in Eqs.~3.7!–~3.12!. This enables

us to trace the energy redistribution between different vol-
ume elements of the solvent during the solute relaxation pro-
cess.

To construct macroscopic equations of motion the non-
equilibrium ensembles method54–57 is used. In accordance
with its main condition,54,55 the nonequilibrium and the qua-
siequilibrium mean values of the microscopic densities
Ĥk(r ) are equal. We mark such mean values by brackets
^¯&qe , whereaŝ ¯& is used for equilibrium mean values,
and introduce the deviations of the energy densities from
their equilibrium values,

hk~r ,t !5^DĤk&qe , DĤk5Ĥk2^Ĥk&. ~3.15!

The inverse nonequilibrium temperatures~or quasi-
temperatures57! in energy unitsbk5(kBTk)

21 ~kB is Boltz-
mann’s constant! are considered as the thermodynamic pa-
rameters conjugated to the corresponding energy densities.
We suppose that temperatureskBTk are equal to their kinetic
values that are defined as the double mean kinetic energy per
degree of freedom for the corresponding subsystem, and will
not discuss different definitions58,59 of temperature here. For
the moment we takebk to denote the deviation of the inverse
temperature from its equilibrium value until we will redefine
it later.

The nonequilibrium mean values of relevant variables
obey55 the evolution equations with spatial dispersion and
memory,

]hk~r ,t !

]t
1(

l
E Vkl~r ,r 8!b l~r 8,t !dr 8

5(
l
E dr 8E

2`

t

dt8 ee~ t82t !Jkl~r ,t,r 8,t8!b l~r 8,t8!,

k,l 51vibr, 1rt, 2, ~3.16!

where the frequency matrix,

Vkl~r ,r 8!5^D Ḣ̂k~r !DĤ l~r 8!&, ~3.17!

and the memory matrix,

Jkl~r ,t,r 8,t8!5^QB̂k~r ,t !exp@ iQLQ~ t82t !#QB̂l~r 8,t8!&,

~3.18!
are defined as equilibrium mean values of the corresponding
microscopic fluxes~3.7!. The small parametere goes to zero
in the thermodynamic limit~N→`, V→` at N/V5const,V
is the volume of the system!. The Liouville operatorL is
defined in terms of potential and kinetic energy of the system
under consideration, and its action is equivalent to differen-
tiation with respect to time2 iLÂ5 Ȧ̂. Q5(12P), whereP
is Mori’s projection operator,60 which acts on dynamical
quantitiesÂ and projects them onto the space of the relevant
variables,

PÂ5^Â&1(
k,l

^DĤ DĤ&kl
21^Â DĤ l&DĤk . ~3.19!

Cofactors of the frequency matrix have opposite time
parity and hence equilibrium mean values of their products
vanish. Thus, the frequency matrix is a zero matrix.
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Similar time parity consideration shows thatPB̂k50 and
QB̂k5B̂k and the memory matrix consists of nonmodified
fluxes. However, the memory matrix includes the reduced
Liouville operatorQLQ that modifies the time evolution of
the fluxes entering the memory matrix. Under the assumption
of sufficiently different time scales of evolution of the mean
values of relevant variableshk(r ,t) and the time correlation
functions of fluxesB̂k , this modification may be neglected.55

It means that the time correlation functions can be directly
calculated by averaging products of the fluxes at two equi-
distant moments of time during equilibrium MD simulation
runs.

Each of the nine elements of the memory matrix consists
of four components. Among them there are time correlation
functions of source/sink terms, flow terms, and a combina-
tion of source/sink and flow terms as well.

In the equilibrium state the system is considered as a
uniform isotropic medium. In this case the correlation func-
tions depend only on the distancer 95r 82r between points
and the time lagt95t82t,

Jkl~r ,t,r 8,t8!5Jkl~r 9,t9!. ~3.20!

To close the system of evolution equations~3.16!, the
connection55 between the mean values of the microscopic
and thermodynamic parameters has to be written:

hk~r ,t !52(
l
E Ckl~r ,r 8!bk~r 8,t !, ~3.21!

where the static correlation matrix, which is composed of
nonlocal heat capacities,

Ckl~r ,r 8!5^DĤk~r !DĤ l~r 8!&5Ckl~r 9!, ~3.22!

is introduced.

The system under investigation contains only one solute
particle. Hence, it is necessary to prevent information loss
about the statistical characteristics of this particle among the
numerous solvent molecules. To this end, we consider the
solvent particles in the frame of the solute particle.61 All the
mean values have to be calculated in such a way that the
solute is singled out and not smeared over the system vol-
ume. Such a formulation of the problem, however, results in
a violation of translational and rotational symmetry of the
system. Hence, the correlation functions~3.20!, ~3.22! can-
not be considered as functions of the distancer 9, but will
depend on both vectorsr 8, r defined in the solute particle
frame. To simplify the consideration we neglect such sym-
metry breaking in the first approximation. This technical
complication can be handled when computer simulations of a
required level will be available.

B. Evolution of solute vibrational energy

In the preceding section the general equation~3.16! of
evolution of different energy densities for the description of
VER and its corresponding frequency and memory matrices
were derived, the former being the zero matrix in our case.
Now we proceed to analyze the equation describing the evo-
lution of the solute vibrational energy that contains the main
characteristics of VER. We will specify properties of the
memory matrix relating to this equation and under physically
reasonable assumptions derive and analyze expressions for
the relaxation time, enabling us to extract mode and atom
specific information on VER.

1. Vibrational energy relaxation rate

The first of the evolution equations~3.16! for the solute
vibrational energy has the form

]h1vibr~r ,t !

]t
5(

l
E dr 8E

2`

t

dt8 ee~ t82t !^I 1vibr~r ,t !I l~r 8,t8!&b l~r 8,t8!2(
l

“–E dr 8E
2`

t

dt8 ee~ t82t !

3^I 1vibr~r ,t !Jl~r 8,t8!&b l~r 8,t8!1(
l

“–E dr 8E
2`

t

dt8 ee~ t82t !^J1vibr~r ,t !I l~r 8,t8!&b l~r 8,t8!

2(
l

“–E dr 8E
2`

t

dt8 ee~ t82t !^J1vibr~r ,t !Jl~r 8,t8!&–“b l~r 8,t8!. ~3.23!

The last term of the rhs of this equation was integrated by
parts. This led to the appearance of the inverse temperature
gradient. The dependence of the time correlation functions
on distancer 9 only was taken into account when differentia-
tion variabler 8 was changed tor in the second term.

The time correlation functions in the second and third
terms of Eq.~3.23! are defined as products of scalar and
vector quantities and in direction are parallel tor 9. Due to
the specific role of the solute, these correlation functions are
not equal to zero. However, they include products of veloci-
ties of different degrees of freedom. Hence, this peculiarity

exists only attÞt8 due to dynamical correlations, and there-
fore the contribution of these terms is perhaps not essential.
This conclusion becomes even more founded if in the time
correlation functions the velocities involved belong to
weakly coupled degrees of freedom, as in the case of the
solute normal mode velocities on one hand and solvent ve-
locities on the other hand.

The energy density for the solute vibrational energy can
be represented as

h1vibr~r ,t !5h1vibr~ t !F1~r ,t !, ~3.24!
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whereF1(r ,t) is the normalized distribution function of the
solute andh1vibr(t) is the mean value of the solute vibra-
tional energy at timet. The distribution function evolution
describes spatial diffusion of the solute that has no connec-
tion with energy transfer from solute to solvent. To exclude
energy flux due to solute translation one has to integrate Eq.
~3.23! over r such that the last three terms of Eq.~3.23!
vanish and the evolution equation takes the form

dh1vibr~ t !

dt
5(

l
E drE dr 8E

2`

t

dt8 ee~ t82t !

3^I 1vibr~r ,t !I l~r 8,t8!&b l~r 8,t8!. ~3.25!

So far only the most common approximations of non-
equilibrium statistical thermodynamics were used. Equation
~3.25! can be significantly simplified by adopting more par-
ticular suggestions. The rhs of this equation includes inte-
grals over time correlation functions that are multiplied by
thermodynamic parameters. As the characteristic time scale
of evolution for the thermodynamics parameters (t th) and for
the time correlation functions of dynamical variables (tdyn)
are different~it is supposed thatt th@tdyn! one can take the
former out of the time integral. The first spatial integral over
r can be handled due to uniformity of the solvent. In view of
the fact that there is only one solute particle, it yields unity.
The second integral overr 8 implies that the initial value
problem should be solved because the solvent temperature
field has to be defined by the solution of the full system of
equations ~3.16!. Fortunately, there are many
indications12,14,16that heating of the solvent in the vicinity of
the solute is small in comparison to the vibrational kinetic
temperature of the solvent. Hence, the rhs of Eq.~3.25! con-
tains only inverse temperatures that are independent of spa-
tial variables, becauseb1vibr and b1rt are assigned to the
solute and have no spatial dependence.

Further simplifications follow from the weak contribu-
tion of the vibration–rotation interaction to vibrational en-
ergy transfer.21,52 Hence, on the rhs of Eq.~3.25! only the
term with vibrational capacity and inverse vibrational tem-
perature survives. To eliminate the inverse temperature from
this equation, the simplest approximation of Eq.~3.21!,

h1vibr52~c1kBT2!b1vibr , ~3.26!

can be used. Herec1 is a heat capacity of the solute mol-
ecule.

As a result, the rate equation for the solute vibrational
energy follows:

dh1vibr~ t !

dt
52k1h1vibr~ t !, k15$NvibruNvibr%/c1kBT2,

~3.27!

where the notation

$aub%5E
0

`

^a~ t !b~0!&dt ~3.28!

for the time integral of a time correlation function is used.

2. Analysis of the vibrational energy relaxation rate
expressions

Two different representations~normal mode and atomic!
of the vibrational capacity are available according to Eq.
~2.38! and they lead to different but equivalent final expres-
sions,

k15 (
a,b51

3nS26

k1ab , k1ab5$Qaq̇auQbq̇b%/c1kBT2, ~3.29!

k15 (
i , j 51

nS

k1i j , k1i j 5$Fi
~e!
–ui uFj

~e!
–uj%/c1kBT2. ~3.30!

The normal mode description permits us to interpret the
solute in terms of weakly interacting quasiparticles~normal
modes! in case of not too strong nonlinear interactions. How-
ever, the description of the energy flux between such a sys-
tem and its environment, as a rule, cannot be realized in
terms of energy exchange through individual modes. The
external forces in accordance with Eq.~2.37! contribute to
many normal forces simultaneously connecting the normal
modes to each other, even in the case of harmonic solute. It
results in a solvent assisted solute intermode energy redistri-
bution and multimode character of solute–solvent energy ex-
change that displays it through nondiagonal elements of ma-
trix k1ab in Eq. ~3.29! and is clearly manifested in
nonequilibrium simulations.21,52

In the case of strong intermode coupling, none of the
coefficientsk1ab can be given an exact physical interpreta-
tion. However, by analogy with energy transfer in a many-
component system, it may be interpreted as energy transfer
by the a mode due to the temperature difference between
modeb and the solvent. Then, a possible interpretation of
the sum,

k1a5 (
b51

3ns26

k1ab , ~3.31!

as the rate coefficient of the solute–solvent energy transfer
through modea seems plausible. These partial rate coeffi-
cients can be interpreted as individual mode rates of energy
exchange only approximately, and this interpretation is
strongly dependent on values of nondiagonal elements of the
matrix k1ab . When the coupling between different normal
force capacities is weak, the nondiagonal elements can be
neglected, and in this approximation the rate coefficient,

k15 (
a51

3ns26

k1a , k1a>k1aa , ~3.32!

is represented by individual channels of energy exchange
through each vibrational degree of freedom. This expression
includes time correlation functions of two different sorts of
variables, namely velocities and forces. Hence, it is possible
to approximately uncouple the correlation functions and rep-
resent them by a product of correlation functions,

^Qa~ t !q̇a~ t !Qa~0!q̇a~0!&5^q̇a~ t !q̇a~0!&^Qa~ t !Qa~0!&.

~3.33!
The time dependence of the normal velocities on char-

acteristic normal force time scales is well described by har-
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monic functions with frequencies of the corresponding nor-
mal vibrations. Taking into account the equipartitioning of
energy, it follows that

^q̇a~ t !q̇a~0!&5^q̇a
2~0!&cosvat5kBT cosvat, ~3.34!

$Qaq̇auQaq̇a%5~kBT!2za~va!, ~3.35!

where the frequency-dependent normal force friction coeffi-
cient is introduced,

za~v!5~kBT!21E
0

`

^Qa~ t !Qa~0!&cosvt dt. ~3.36!

The normal forces acting on nuclei at their actual positions
enter into this expression.

When the representation~3.30! is used with a similar
decoupling approximation, the atomic friction coefficients,

z i~v!5~3kBT!21E
0

`

^Fi~ t !–Fi~0!&cosvt dt, ~3.37!

due to strong interatomic interaction have to be calculated
for the whole vibrational spectrum of the solute and summed
with corresponding weight coefficients for each vibrational
mode. Naturally, some of these weight coefficients could be
very small.

Another approximation to uncouple velocities and coor-
dinates in Eq.~3.29! can be achieved by expanding the nor-
mal forces in solute normal coordinate power series.23,24,27,62

In the zeroth-order approximation one gets~3.35!, ~3.36!
with normal forcesQa

(0)(t) defined at the equilibrium posi-
tions of nuclei in Eckart’s frame. In this case the expressions
for the partial rate coefficients are just the same as usually
derived from the Landau–Teller formula.23–25It is necessary
to note, however, that in our case, to preserve the original
dynamics of the flexible solute, the normal forces for a flex-
ible solvent and solute as well as forces at equilibrium posi-
tions of solute nuclei have to be calculated. After additional
approximations one arrives at expressions that include the
normal forces under different restrictions on solute and/or
solvent motion.

Of course, such approximations are questionable, espe-
cially for polyatomic solutes, and should be tested by direct
molecular dynamics calculations comparing rhs’s and lhs’s
of expressions of the type given in Eqs.~3.35!–~3.37!. If all
terms except zeroth order in the power series will be found to
be small, both expressions for the friction coefficients at ac-
tual and equilibrium nuclei positions will result in compa-
rable values.

It is known from investigations of small size molecules
that for some systems25,26,40the normal force friction coeffi-
cients decrease exponentially~or even more rapidly! with
frequency. In other cases62 the frequency dependence of fric-
tion coefficients is more complicated but still their decay is
fast as a function of frequency. Hence, if such a behavior of
friction coefficients also prevailed for moderate size mol-
ecules, the rate coefficient for the vibrational energy transfer
could be represented by a few first terms of the sum

k15 (
a51

3ns26

za~va!/~c1 /kB!. ~3.38!

This means that the part of the solute intramolecular en-
ergy, which is initially stored in high-frequency vibrational
modes, can pass to the solvent only after intramolecular en-
ergy redistribution to low-frequency modes, which are
coupled more strongly to the surrounding solvent. However,
direct molecular dynamics simulations have shown21,52,53

that this is not the case, and almost all vibrational modes
participate in the energy transfer from the excited solute to
the solvent.

The heat capacity of the solute vibrational subsystem in
the harmonic approximation is

c1 /kB53ns26, ~3.39!

and this denominator in Eq.~3.38! indicates that the energy
transfer rate is reduced if not all channels of the individual
vibrational degrees of freedom are equally effective.63

The vibrational energy relaxation time is the reciprocal
value of the rate coefficient

t51/k1 , ~3.40!

and can be calculated from simulated trajectories using ex-
pressions~3.29! or ~3.30!.

3. A two-temperature model

Strong deviations of the system from equilibrium can be
considered in the framework of a two-temperature
model,54,55 when the temperatures of the soluteT1 and the
solventT2'T ~T is the temperature in the bulk of the sol-
vent! are supposed to be significantly different from each
other. Equation~3.25! still remains valid. However, the ap-
proximations described after this equation in the case under
consideration lead to a difference of the reciprocal tempera-
tures, which is, of course, nonlinear with respect to the tem-
perature difference,

dh1vibr~ t !

dt
52E

0

`

^Nvibr~ t1t8!Nvibr~ t !&dt8

3~T1~ t !2T!/T1~ t !T. ~3.41!

However, for calculating the time correlation function in
this expression, one has to average over the quasiequilibrium
distribution, i.e., the expression

^q̇a~ t1t8!q̇a~ t !&qe5kBT1~ t !cosvat8 ~3.42!

is valid instead of Eq.~3.34! while the solvent temperatureT
should be preserved in Eq.~3.36! because the force correla-
tion functions are mainly defined by solvent characteristics.

The variations of the vibrational energy and temperature
of the solute are connected by the heat capacity,

dh1vibr5c1~T1!dT1 . ~3.43!

The heat capacity depends on the intramolecular potential
energy and thus on the solute temperature because at higher
temperatures a wider area of the configurational space of the
solute is covered. This dependence can be calculated during
nonequilibrium simulations of VER. For not too anharmonic
intramolecular potentials, a weak dependence of the heat ca-
pacity on temperature can be assumed and Eq.~3.39! gives
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its accurate estimation. Thus, the denominator of the rhs in
Eq. ~3.41! cancels and the equation can be rewritten in the
form

dT1~ t !

dt
52k1@T1~ t !2T#, ~3.44!

which differs from Eq.~3.27! in that the rate coefficient in
the latter includes the heat capacity at current solute tempera-
ture T1 instead of the solvent temperatureT in the former.
The difference between the capacities will define the differ-
ence between the rate constants or the relaxation times ob-
tained by equilibrium and nonequilibrium simulations. The
variation of the characteristic heat capacity with a solute
temperature will result in a nonexponential dependence of
energy on time during the process of the vibrational relax-
ation.

Another reason for a nonexponential solute vibrational
energy decay is related to the case when solute thermal qua-
siequilibrium state cannot be maintained during VER due to
the structure of the intramolecular potential energy surface.
More than one subsystem and quasitemperature have to be
introduced in this case, resulting in more complex behavior
of VER.

Although more exact calculations could reveal other rea-
sons for nonexponential energy decays this crude estimation
shows that the time integral of the time correlation function
of the solute–solvent interaction force capacity is roughly
proportional to the product of solvent and excited solute tem-
peratures. This results in the cancellation of nonlinearity aris-
ing from the inverse temperature difference, in agreement
with the experimental results.12–15

C. Translational and rotational motion of the solute

The equations for evolution of the translational and the
rotational energies of the solute follow from Eq.~3.16!. After
approximations similar to those discussed in the preceding
subsections we obtain the equation

dh1K~ t !

dt
5$NKuNK%~b1K2b2!, K5T,R, ~3.45!

NT5R~e!
–vC , NR5MC

~e!
–v. ~3.46!

SubscriptsT andR are related to translational and rotational
motion, respectively. Weak coupling between rotation and
translation is supposed leading to two independent equations
for each type of motion. Also, we take into account results of
nonequilibrium simulations,52 which indicate negligibly
small energy transfer due to the vibration–rotation interac-
tion. Hence, only the diagonal terms are retained on the rhs
of Eq. ~3.45!. Of course, all these suggestions can be checked
by simulating appropriate time correlation functions.

The inverse temperature difference on the rhs of Eq.
~3.45! is determined by the structure of source/sink terms in
Eqs. ~3.9! and ~3.10!, which contain similar contributions
with opposite signs. Here this difference is indicated explic-
itly because the solute rotational and translational energy de-
cays on a subpicosecond time scale16 and the corresponding
temperatures become nearly equal to the solvent temperature
in the vicinity of the solute.

Treating the external force and torque that act on the
solute as fluctuatingd-correlated random quantities we ob-
tain for corresponding terms of Eq.~3.45!,

$NTuNT%>^vC~0!vC~0!&••$R~e!uR~e!%53~j t /M !~kBT!2,

~3.47!

$NRuNR%>^v~0!v~0!&••$MC
~e!uMC

~e!%

5 (
g51

3

~j rg /I g!~kBT!2, ~3.48!

where tensor notations are used and centered points between
tensors designate their inner products,M is the total mass of
the solute,j t andj rg are the friction constants for the solute
translational and rotational motion, respectively,

j t5~3kBT!21E
0

`

R~e!~ t !–R~e!~0!dt,

~3.49!

j rg5~kBT!21E
0

`

MCg
~e!~ t !MCg

~e!~0!dt,

I g are the principle inertia moments of the solute,g51,2,3
label the coordinate axes. The coincidence of the principal
axes frames for mass and friction force distributions is sup-
posed.

Since the heat capacities of solute translational and rota-

tional motions are each equal to (3
2)kB , Eqs.~3.45! by anal-

ogy with Sec. III B 1 define the characteristic times of trans-
lational and rotational energy relaxation,

t t52M /j t , t r5~2/3! (
g51

3

j rg /I g . ~3.50!

Their values are two times higher than for momentum or
angular momentum relaxation. The same value for the ki-
netic energy relaxation time follows when the solution of the
ordinary Langevin equation for a spherical particle is
used.64,65

D. Energy redistribution in the solvent

Equations~3.10!, ~3.12! or ~3.13!, ~3.14! allow us to
trace the redistribution of the solute energy transferred to the
solvent by computer simulations of nonequilibrium vibra-
tional energy relaxation processes. An analogous investiga-
tion, which is even more informative due to time correlation
functions involved, is possible on the basis of equilibrium
computer simulations. To this end, Eq.~3.16! has to be con-
sidered fork52. The transformations described just after Eq.
~3.23! should be used in this case, too.

During the solute vibrational energy relaxation its vibra-
tional, translational, and rotational temperature should be
considered as independent of the solute position due to spa-
tial uniformity of the solvent. Hence, all the gradients of
b1vibr andb1rt become equal to zero and the evolution equa-
tion takes the form
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]h2~r ,t !

]t
5(

l
E dr 8E

2`

t

dt8 ee~ t82t !^I 2~r ,t !I l~r 8,t8!&b l~r 8,t8!22E dr 8E
2`

t

dt8 ee~ t82t !^I 2~r ,t !J2~r 8,t8!&•“b2~r 8,t8!

2“–E dr 8E
2`

t

dt8 ee~ t82t !^J2~r ,t !J2~r 8,t8!&–“b2~r 8,t8!. ~3.51!

The second term of the rhs of this equation contains a
factor 2 as a result of a combination of two terms due to
spatial symmetry properties of the respective time correlation
function and it is nonzero only in the vicinity of the solute.
After decomposition of velocities and spatial variables in the
time correlation function ofI 2 andJ2 , it can be represented
as a product of the diffusion coefficient and mean force on
the solute, and the term can obviously be considered as
small. The last term of Eq.~3.51! in accordance with Eq.
~3.12! represents the redistribution of energy due to diffu-
sional motion of solvent particles. Thus, to a first approxi-
mation, contributions of these two terms can be neglected.

The sum in the first term of Eq.~3.51! runs over values
1 vibr, 1rt, and 2 ofl. It was noted already that rotational and
translational motion of solute is of minor importance for vi-
brational energy relaxation. Hence, corresponding terms can
be dropped.I 1 andI 2 consist of capacities of solute–solvent
and solvent–solvent interactions, which include velocities of
different species. Again, time correlation functions involving
these velocities can be neglected. Then Eq.~3.51! attains the
form

]h2~r ,t !

]t
52p12~r !b1vibr~ t !

1E
V
p22~r ,r 8!@b2~r !2b2~r 8!#dr 8, ~3.52!

where transfer coefficients,

p12~r !5E
0

`E
V
dr 8 (

m,n51

N

(
i , j 51

N

^Nin~r ,0!Njm~r 8,t8!&dt8,

~3.53!

p22~r ,r 8!5E
0

`

(
m,n,m8,n8

N

(
q,p,q8,p8

nS

^N~nq!~mp!~r ,0!

3N~n8q8!~m8p8!~r 8,t8!&dt8, ~3.54!

characterize solute–solvent and solvent–solvent energy ex-
change rates, respectively, and are defined by corresponding
microscopic capacities,

Njm~r ,t !5uj~ t !–Fjm~ t !d~r2rm!,
~3.55!

N~nq!~mp!~r ,t !5 1
2@ q̇nq~ t !1q̇mp~ t !#–F~nq!~mp!~ t !d~r2rm!.

For an alternative definition of the solvent sink and flow
terms~3.13!, ~3.14!, contributions of different parts of the rhs
of Eq. ~3.51! should be reconsidered. With respect to solute
nuclei velocities, the first term permits the same rearrange-
ment as in the previous case. It will result in the same ex-
pression for the solute–solvent energy exchange as in Eq.
~3.52!. The term with“b2 can be neglected again, because it

includes time correlation functions of velocities of different
species. However, the last term now gives rise to a nonlocal
heat conduction term in the evolution equation. Neglecting
for simplicity this nonlocality we present the final result in
the form of a heat conduction equation with the source term

c2

]T2~r ,t !

]t
5“–~k2 ¹T2!1

p12~r !

kBT2T1 vibr

3@T1 vibr~ t !2T2~r ,t !#, ~3.56!

wherec2 andk2 are heat capacity and thermal conductivity
of solvent, respectively. Apart from experimental values the
former can be calculated by Eq.~3.22! and for the latter the
integral of time correlation function of energy flow~3.14!
might be used.54,55

Experimental values of the transmission coefficientp12

are not available, so it has to be calculated by Eq.~3.53!.
This expression permits us to determine the distance at
which the main part of the transferred solute energy is ab-
sorbed by the solvent due to direct solute–solvent interac-
tion. This distance is defined by a competition between the
interaction force and the distribution functions that increase
or decrease with separation between solute and solvent. It is
evident that this distance ranges within the first coordination
sphere.

Using simplifying assumptions, the temperature gradient
in the vicinity of the solute may be estimated. For a typical
excitation energy of 1 eV and a relaxation time of 10 ps, the
energy flow through a 1 nmradius spherical surface is on the
order of 109 W/m2. Using a thermal conductivity of;0.1
W/mK, the temperature gradient attains very high values of
the order of 1010K/m51 K/Å. Under these conditions the
nonlocality can play an important role and the description of
the solvent energy redistribution in terms of Eq.~3.52! will
probably be more reliable in comparison with Eq.~3.56!. In
the former, the nonlocality in the term that describes the
intrasolvent energy redistribution is taken into account in a
more direct fashion by interatomic forces, and its derivation
does not include the series expansion in the inverse tempera-
ture gradients used in Eq.~3.56!.

IV. CONCLUDING REMARKS

The foundations and possibilities of the nonequilibrium
and equilibrium approaches for the investigation of VER by
means of computer simulations have been discussed in de-
tail. Normal mode analysis of the solute molecule vibrations
was used as a basis of the procedures developed in the
framework of both approaches for the interpretation of simu-
lation results.
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For nonequilibrium simulations the main characteristics
of the cooling process, besides the time behavior of total,
kinetic, and potential solute energy, are the capacities of nor-
mal forces and the solute–solvent energy exchange through
normal modes and individual atoms. The separation of vibra-
tional and rotational motion is carried out by the use of Eck-
art’s as well as the solute instantaneous principle axes frame.
The expression for study of vibration–rotation interaction,
and its influence on VER is also formulated in terms of ca-
pacities, and in the case of Eckart’s frame it consists of four
terms that describe different aspects of the interaction while
in the other case the only term is presented.

The use of the equilibrium simulations for the investiga-
tion of VER is not so straightforward and involves
statistical–mechanical description of the process. On the ba-
sis of linear nonequilibrium statistical thermodynamics the
expression for the rate constant or relaxation time in terms of
normal force or atomic force capacities time correlation
functions and the solute heat capacity is deduced. The same
expression is derived in the framework of the two-
temperature model. After additional approximations the ex-
pression is reduced to the frequency-dependent normal force
friction coefficients and can be considered as a generalization
of the single oscillator expression obtained from the
Landau–Teller formula. Two points should be made here. At
first, our result is fully classical in origin. And second, the
solute heat capacity enters into the expression.

Several conditions have to be met to ensure an exponen-
tial decay of excitation. First of all, fast IVR~in comparison
with VER! is needed to maintain a quasiequilibrium distri-
bution of energy over internal vibrational degrees of free-
dom. The characteristic time scale of evolution of the time
correlation functions of the normal force capacities or the
normal forces is also required to be considerably smaller
than the VER time that defines the evolution time scale for
thermodynamic variables~temperatures or energy densities!.

If the solute internal structure results in splitting of the
internal degrees of freedom on two or more weakly con-
nected subsystems, each of which has its own channels of
energy exchange with the solvent, the state of the solute
cannot be described by one thermodynamic parameter. Then,
instead of one evolution equation@e.g., Eq. ~3.25!#, one
should consider a system of equations, which, in general,
leads to more complicated behavior of the solute.

The results of the two-temperature model suggest that
the values of the rate constants defined by nonequilibrium
and equilibrium MD simulations will not be significantly dif-
ferent. In this case, equilibrium simulations will also contain
complementary information about nonequilibrium VER. The
time and spectral behavior of different time correlation func-
tions are of primary importance.
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APPENDIX: COUPLING BETWEEN NORMAL
COORDINATES

The solute intramolecular energy can be rewritten in
terms of normal coordinates:

E1intra5K11U1 ,
~A1!

K15
1

2 (
a51

3nS26

q̇a
2, U15

1

2 (
a51

3nS26

va
2qa

21U1nl1U1ext.

HearU1nl includes nonlinear and vibration–rotation coupling
terms;U1ext is the energy of the solute in the solvent poten-
tial field.

The normal coordinates obey the Lagrange equations:

q̈a1va
2qa5Qa1Qanl

~ i ! 1Qar–v , ~A2!

Qanl
~ i ! 5Qa

~ i !2va
2qa , a51,2,...,3n26; ~A3!

Qar–v takes into account vibration–rotation coupling.
For the harmonic part of energy of each mode one ob-

tains the equation

Ėaharm5Navibr1Nanl1Nar–v ,

Eaharm5~ q̇a
21va

2qa
2 !/2, Navibr5Qaq̇a , ~A4!

Nanl5Qanlq̇a , Nar–v5Qar–vq̇a .

We do not develop the expression forQar–v because the
rotation-vibration interaction has a rather complicated struc-
ture and, moreover, it is expected to be of minor importance
for energy redistribution in molecules of moderate size like
azulene. The total contribution of this interaction can be es-
timated by Eqs.~2.26!–~2.30!.

The two most important components of the rhs of Eq.
~A4! are the capacities of external forcesNavibr and the non-
linear intramolecular interactionsNanl . The latter includes
energy flux from the harmonic part of modea to its anhar-
monic part and to other vibrational modes. The two terms
permit us to trace the energy flux within the vibrationally
excited solute molecule during its relaxation to the equilib-
rium state.

Energy exchange between different modes is realized via
nonlinear parts of the normal forces. An additional mecha-
nism of intermode energy exchange is based on the rotation–
vibration coupling. It can easily be seen that, for example,
vibrational angular momentum@Eq. ~2.23!# in the normal-
mode representation consists of products of two different
normal mode coordinates and velocities. After time differen-
tiation, however, it will comprise components that depend on
more than two normal coordinates and velocities. Also, the
nonlinear normal forcesQanl cannot be represented by nor-
mal mode pair interactions. Hence, the intramolecular energy
redistribution from a particular normal mode will not be
separable into contributions involving only pairwise energy
exchange between modes. The intramolecular energy flux
has essentially multimode character. In addition to this, in-
tramolecular energy redistribution is strongly dependent on
solute–solvent interactions.
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A certain improvement in the description of intermode
energy redistribution may be achieved by taking into account
specific components of the anharmonicities.41
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