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Molecular dynamics simulation of vibrational energy relaxation of highly
excited molecules in fluids. |. General considerations

V. S. Vikhrenko,®® C. Heidelbach, D. Schwarzer, V. B. Nemtsov,® and J. Schroeder
Max-Planck-Institut fu Biophysikalische Chemie, Am Fassberg 11, D-3707#iGgen, Germany

(Received 13 August 1998; accepted 15 December )1998

Methods of implementation of classical molecular dynamics simulations of moderate size molecule
vibrational energy relaxation and analysis of their results are proposed. Two different approaches
are considered. The first is concerned with modeling a real nonequilibrium cooling process for the
excited molecule in a solvent initially at equilibrium. In addition to the solute total, kinetic, and
potential energy evolution, that define the character of the process and the rate constant or relaxation
time, a great deal of important information is provided by a normal mode specific analysis of the
process. Expressions for the decay of the normal mode energies, the work done by particular modes,
and the vibration—rotation interaction are presented. The second approach is based on a simulation
of a solute—solvent system under equilibrium conditions. In the framework of linear nonequilibrium
statistical thermodynamics and normal mode representation of the solute several expressions for the
rate constant are derived. In initial form, they are represented by integrals of the time correlation
functions of the capacities of the solute—solvent interaction atomic or normal mode forces and
include the solute heat capacity. After some approximations, which are adequate for specific cases,
these expressions are transformed to combinations of those for individual oscillators with force—
force time correlation functions. As an attempt to consider a strongly nonequilibrium situation we
consider a two-temperature model and discuss the reason why the rate constant can be independent
on the solute energy or temperature. Expressions for investigation of the energy redistribution in the
solvent are derived in two forms. One of them is given in the usual form of a heat transfer equation
with the source term describing the energy flux from the excited solute. The other form describes the
energy redistribution in the solvent in terms of capacity time correlation functions and can be more
convenient if memory effects and spatial dispersion play an important role in energy redistribution
in the solvent. ©1999 American Institute of Physid$S0021-960609)51211-7

I. INTRODUCTION is confrmed by numerous classical trajectory -calcu-
lations®!! as well as molecular dynamics(MD)
Vibrational energy relaxatiofVER) of highly excited  simulations'® which show that the efficiency of energy
molecules is a fundamental process involved in many Chemitransfer is enhanced by the presence of |Ow-frequency vibra-
cal reactions in the gas and liquid phase. Therefore, greafonal modes in the solute. So far, however, these trajectory
experimental and theoretical effort has been expended oveg|culations were only analyzed in terms of step size distri-
the last decades to get a quantitative understanding about thgtion functionsP(E’,E) that define the probability that a
energy flux from a vibrationally excited solute to a bath gasgg|yte with initial energ)E after a collision has the energy
or solvent:"*® If the solute is a diatomic molecule excited £/ The contribution of individual modes to the energy
below the dissociation threshold VER is the main mechayansfer was not analyzed. One motivation behind this work
nism for transferring energy from an individual mode to theg {4 develop a formalism that on the basis of normal mode

bath. In larger molecules intramolecular vibrational energyanalysis extracts mode specific information of VER from
redistribution(IVR) to other solute modes can compete with MD simulations. First results on the system azulene

entirlgy transfer._ For vibrationally r_nghly excitéd~10 000 (C1oHg)—CO, have been reported elsewhéte.
cm ) polyatomic molecules containing several tens of at- “ago Zwanzigf? introduced force time correlation func-

: - - 21
o, V. el o b snty 50" ) 1t _ s o s, 02 ey
9 gy q approaches have been develdpe (see also the introduc-

among the vibrational modes of the solute. tion in Ref. 25 for a short review of recent papeasd used

Nevertheless, one may expect that the contribution to th . . - 30
overall energy transfer of the solute varies from mode to_?0 calculate VER rates of diatomic molecules in liquitis;

mode as suggested by simple theoretical considerations. ™ satisfactory agreement with experimental data. It has been
showr?! that for a harmonic oscillator bilinearly coupled to a

harmonic bath classical and quantum mechanical approaches
dpermanent address: Belarussian State Technological University, 13a SVP}Weld equivalent results for VER rates. Also, for more real-

dlova Str, 220630 Minsk, Belarus. o 2 33 . o .
YAuthor to whom correspondence should be addressed; electronic mailStiC models the ClaS_S|0aI description of VER pr_owdes a
wikhrenko@usa.net reasonable representation of a quantum mechanical system,

0021-9606/99/110(11)/5273/13/$15.00 5273 © 1999 American Institute of Physics



5274 J. Chem. Phys., Vol. 110, No. 11, 15 March 1999 Vikhrenko et al.

suggesting that VER rates for a quantum mechanical systemived in the next section. These expressions are also used as
can be obtained from classical MD simulations. Examples o& starting point in the third section devoted to a statistical—
guantitative agreement between classical and quantum meiechanical description of the solute—solvent system. We
chanical computations of IVR in polyatomics are present a formalism to calculate relaxation times and extract
available3*3° too. However, similar classical considerations mode specific information from equilibrium time correlation

do not have to be necessarily true for VER of bigger mol-functions(TCF) of appropriate capacities and forces. Expres-
ecules like azulene. Here, e.g., dependent on whether it &ions for analyzing energy redistribution in the solvent are
treated classically or quantum mechanically, the presence gfresented as well. The paper is finished by some concluding
low- and high-frequency modes leads to different energy disremarks.

tributions among the modes of the molecule that might alter

the energy transfer mechanism. Also, zero-point energy i. NONEQUILIBRIUM COMPUTER SIMULATION OF

not known to be exactly handled by classical simulationsVIBRATIONAL ENERGY RELAXATION

Nevertheless, reasonable agreement between experifiental
and calculatet¥?! VER rates from classical MD simulations
of azulene in low- and high-density GQuggest that these

Usually experimental studies on collisional deactivation
of polyatomic molecules are carried out at a very small con-
e : : centration of excited molecules in a solvent. Hence, for MD
deficiencies are of minor importance. , _ simulations of these processes, a model system can be con-
In principle, there are two different ways to investigate gjjered as containing a single solute molecule surrounded by

VER by means of MD simulations. One can model the non+qent molecules. The system should be treated as a statis-

equilibrium energy transfer process from an energetically €Xjica| mechanical ensemble, i.e., results appear as mean values
cited solute to the solvent, or the simulation is performedy cerain quantities over numerous realizations of the pro-
with solute and solvent being in equilibrium. The latter cess, in accordance with the conditions of the ensemble cho-

method yields certain time correlation functions which con-gen For many characteristics under investigation, the type of
tain information about the corresponding nonequilibriumengemple is not important and usually an equilibrium or non-
VER process. Both techniques have been applied to a singlgyilibrium microcanonical ensemble is used in MD simula-

oscillator in a bath and were shown to give nearly equivaleniong \hereas canonical or grand canonical ensembles are
results if the oscillator frequency is relatively IGWin this more suitable for theoretical considerations.

paper we present methods to extract mode specific informa-  The interpretation of MD simulations requires specifica-
tion on VER from both types of MD simulations of bigger tjon of a set of dynamical quantities that can shed light on
molecules. the process under investigation. Vibrational energy and its

Furthermore, we want to address the question of energjme derivative are the most important original characteris-
transfer from solute to solvent by vibration—rotation interac-tics of VER. Their calculation in the framework of the dy-

tion. For small mc;lgé:géeflthls deactivation channel can be ohamical model described below is considered in the present
great importancé’?**¢-*1 Rotational energy transfer was section.

studied in trajectory simulatiofi&!! for moderate size mol-
ecules, and it is of interest to investigate the role o
vibration—rotation interaction in energy transfer of such mol- et us consider the standard representation of the energy

ecules in dense fluid solvents. of the system under investigation as a sum of two compo-
Finally, we investigate the behavior of the solvent in thenents:

vicinity of the solute during the energy transfer process. In-
stantaneous normal mode anal$3ig® provides important E=E;+E,, 2.1
information about equilibrium and dynamical properties of awhereE; and E, are the energy of the solute and solvent
solute—solvent system. However, for moderate size solutesolecules, respectively, given by

this method encounters many technical difficulties up to

fA. Description of the dynamical model

10 _ N
novy. There are a feyv exampfé&% where the phenomgno- E1=52 mi9i2+ Uina(91, ’gns)' E,= E =
logical heat conduction equation was used to describe the i=1 m=1
energy redistribution in the solvent. However, from experi- (2.2
mental dat¥#!* and MD simulation¥ it was shown that n, N N o,

i i i - _ 52

there is no sub_stantlal heqtlng of the solvent around the ex- E_= Z Emmqmpjuz D (mpit+ Z Z D (mp)na)
cited solute. This observation suggests that the heat conduc- p=1 =1 n=1gq=1

tivity of the solvent is quite efficient, making the solvent— U it Gt -+ G )+ 2.3
solute energy exchange the rate limiting step in VER. v
Nevertheless, a strongly nonequilibrium liquid state is main-  All vectors are defined in the inertial laboratory frame.
tained in the nearest vicinity of the solute during VER, whichng and n,, are the number of atoms per solute and solvent
can be used to check and improve modern statistical+nolecule, respectively. The second and third terms on the
mechanical theories of strongly nonequilibrium processesight-hand side(rhs) of Eq. (2.3) take into account the
with memory and spatial dispersi6fi.* solvent-soluted ,, ;; and solvent—solvenb i, g interac-
The paper is organized as follows. Expressions for anation by using atom—atom potentials. The last contribution
lyzing nonequilibrium MD simulations on VER in terms of represents the solvent intramolecular potential energy. Indi-
mode specificity and vibration—rotation interaction are de-cesm,nare attributed to the solvent moleculgsandq de-
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note atoms of solvent molecules, aindesignates the solute the center of mass coordinate systemdefines the equilib-
atoms.qmp, is the position vector of atorp of the mth sol-  rjum position of theith nucleus. The orientation of the Eck-
vent molecule;g; indicates the position of théth solute  art frame necessary for calculating the equilibrium positions
atom. a, of the nuclei and their displacemensy¢ is defined4®
The intramolecular energy can be represented in terms 6fia instantaneous nuclei configuratigp: according to Eq.
stretches, bends, dihedrals, improper torsions,@tand is  (2.9) by introducing Eckart vector.
not equal to a sum of pairwise interaction potentials. The  The second Eckart—Sayvertz conditidy. (2.9)] is lin-
energy of the solute—solvent interaction is completely asear in displacements of the solute nuagi from their equi-
signed to the solvent part of the system energy because thigrium positions and so is most appropriate for a normal

main point of interest is the evolution of the solute energy. mode analysis. The time derivative of Eg.9) in the Eckart
Forces between different molecules are defined by spgrame leads to the expression

tial derivatives of the atom—atom potentials,

Ns
Fi(mp):_':(mp)i:_m, ;1 m;g xu; =0, (2.11
JG;
ID (ngy(mp) (2.4 which shows that the motion in the Eckart frame' possesses
Fmpng =~ Fingmp=— e n#m. nonzero a_n_gular momentum be_CaLaﬁed_e_fme_ equilibrium
mp nuclei positions andy; are nuclei velocities in the Eckart

The force that acts on thgh solute atom from themth frame.
solvent molecule and intermolecular solvent—solvent interac- Decomposition of theth nucleus velocity into transla-
tion forces are equal to the sum of the corresponding atomtional, rotational, and vibrational contributions results in

atom forces,

N | N Vi:gi:VC+ wxgic—i-ui s VC:gCl (212
F; :E F'( ) » F :E 2 F( )(nq) * (25) Ns
mops P @i T =11 maXxvic, Vie=8c=Vi—Vc, (213
i=1
Due to many-body interactions intramolecular forces cannot '
be represented by sums of two-body interactions. In the fol- ns
lowing they are marked by superscripkt: =1+ AL, 1o=2, m,(a’E—ag;),
=1
Fi(i):_%’ g)p:_%‘_ (2.6) ns
9 Amp A=, m[a-AgeE—(D(adge+Agea)], (219
The total external forc®R® and the external torqus! =1

about the solute center of ma€sare defined by external whereve, u;, andw are the center of mass and the vibra-

forcesF{® on the solute atoms, tional nucleus velocities, and the angular velocity of the Eck-

Ns Ng N art frame, respectivelyk is the unit matrix;l, is the mo-
RO=> F® ME=> gcxF®, FO9=> Fq. ments of inertia matrix for the equilibrium solute
=1 =1 m=1 configuration. Definitions of matricdgandAl, in Eq.(2.14
(2.7 follow from the sum entering Eq2.13), in combination with
Egs.(2.12 and(2.11)).
A different definition of a solute frame corresponds to
Since the behavior of the vibrational degrees of freedonthe principle axes of an instantaneous configur&tiéh*°of
of the solute can be rather different from the dynamics of itshe molecule. The angular momentum due to vibrational ve-
translational and rotational motiGh?® it is necessary to locities u; in this frame[they are defined by an equation
separate their contribution frois, . identical to Eq.(2.12 with @' andu’ instead ofw andu] is
According to the Eckart—Sayvéfz*® conditions, one equal to zero,
should introduce a solute coordinate system defined by the

B. Description of vibration—rotation interaction

. Ns
equations 2 migie XU’ =0, (2.15
nS i=1
;1 Migic =0, (2.8 and the angular velocity of the principle axes frame can be
calculated easily as
ns
>, maxAgc=0, Agc=0c—a, (2.9 s
=1 I 'c 'c 'c w,zl_l'izl migicxvic. (21@
1 Ds Ns
Uc=0—0c, gczmz mg, M=> m. (210 Here the matrix of instantaneous moments of inertia,
i=1 i=
. .. Ns
Here gc defines the position of the solute center of m&ss |=2 M (e -GcE—gicgic), 2.17)

m; andgc are the mass and the position of the nucleurs i=1
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differs in second order in displacements from moments ofndi designates the part of the time derivative of the matrix

inertial, in the Eckart frame.

of moments of inertia that is not connected with the principle

The angular momentum of the solute about its center ofxes rotational motion of the solute,

mass,
Le=l-o, (2.18
obeys the simple equation of motich,
Le=ME@. (2.19

Such a simple expression does not existlfap.
With account of the velocity decompositidd.12 and

ns

=> mi[ 2gic - E—(gicUi +U{ gic) ],

=1

(2.3)

The first channel is connected to variations in the instan-
taneous moments of inertia, the second comes from the dif-
ference between the angular velocities of the Eckart and the
principle axes frames, the third channel is caused straightfor-
wardly by the vibrational velocities, and the last one is at-

Egs. (2.9—(2.11), the solute energy?2.2) is presented as a tributed to the external forces. It is hardly to be expected that
sum of translational, rotational, and vibrational contributions the interaction terms could be estimated analytically, even

E1=E1tt E1rott Evviors (2.20
1 13

Eltrzz MV(Z:r Elvibrziiz1 miui2+ Uintra(91,- .- 'gns)y

(2.21)

E1r0t=§w’~l-w’+ 5 - Aw+ @ Ly,
Aw=0w—w', (2.22
Ns Ns

|—vibr:2:l gicxmiui:g:l Agic Xmiu; . (2.23

Hear the angular momentuin,,, of the vibrational motion

for moderate size molecules. But the derived equations
(2.27—(2.30 can be used directly in MD simulations.

For the alternative definition of the solute frame, using
principle axesy has to be replaced by in Eq. (2.21), and
only the first term in Eq(2.22 remains. Therefore, in the
time derivative of the rotational energy only a single
rotation—vibration interaction term defined by E8.27) sur-
vives. Of course, this does not mean that the translation—
rotation coupling is weaker in the latter treatment. Straight-
forward trajectory calculatiof$ for isolated three-atomic
molecules have shown that usually the coupling is weaker
for the Eckart frame.

C. The normal mode analysis of solute vibrations

in the Eckart frame is introduced. For the same reason as Now we proceed to analyze E2.21) for the solute

discussed after Eq2.3), the last term of Eq(2.23), which

includes the vibrational velocities, is related to the rotational
part of the solute energy. To facilitate further differentiation

of the solute energy with respect to time, Eg.22) is writ-

vibrational energy. After introduction of mass-weighted co-
brdinates and velocitie®,

g= \/EiAgi VES \ﬁui ) (2.32

ten in such a way that its first term is expressed in terms of,4 considering the harmonic part of the solute intramolecu-

o' rather thanw.

After the time derivative of Eq(2.20 with account of
Egs. (2.2)—(2.23 and (2.19 is evaluated, the result can

easily be specified into several contributions:

Eiv=R® Ve, EpomME-w+N,_,

(2.29

E 1vibr= ;l F®u— Ny, (2.29

where the whole capacity of vibration—rotation coupling is

given as a sum over four terms:

Ny_r=N1y_r+ Noy_r+Ngy_+Nay_y, (2.26

which represent four different channels of the vibration—

rotation interaction:

Ny =—(e' o, (2.27)
d o+

Nov-=gi| =5 1A, (2.28
d

N3v—r:a(w'Lvibr): (2-29

Nav_r=—ME Aw, (2.30

lar energy one can define the respective part of the solute
energy as follows:

n 1 ng
h _ _
(2.33
C.= 1 (’?Zuintra
. Vv mJ agl agj 0.

Subscript 0 indicates that matr;; is calculated at the sol-
ute equilibrium configuration.

Let P;z be the orthogonal normalized eigenvector matrix
that diagonalizes the mass-weighted force constant matrix

ijo

Ns
'21 Pai*CijPig= 030,p, (234
L=
wherew, is the frequency of the soluigh vibrational mode
and 6, is the Kroneckerd symbol. Then the connection
between Cartesian displacements and vibrational velocities
of solute nuclei and solute normal coordinatgsand veloci-
ties g, takes the form

Ng ng
qe= I=El Ptxi : \/HIAQI ’ qa: I=El PExi : \/Hiui ; (235)
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1 %ns76 1 %ns76 scribed in the linear approximation. The results of such a
Ag=— E Pi.l,, U=—"7 E P.0.. (2.39 linear statistical-mechanical description in terms of equilib-
\/ﬁ a=1 \/ﬁ a=l rium time correlation functions of the corresponding quanti-
Summation in the last two expressions is carried out over aliies could be used to study different aspects of the relaxation
the solute vibrational degrees of freedom. Superscript Process by MD simulations of equilibrium systems.

marks the transposed matrix. By introducing the normal  Subsequently, one can try to answer the question to why
forces, this linear treatment is applicable to the description of highly

ne L ne L nonquilibrium systems and under what conditions a nonex-
Qa=z Fi(e)'—PicFZ Ptxi'_Fi(e)- (2.37) ponential decay behavior can be expected.

i=1 Vmy =1 Vm; A. Relevant variables and their time evolution

the capacity of interaction of the solute vibrational sub-  The main quantities of interest in the study of VER are
system with the solvent brakes up intm3-6 (in accor-  the energies of the solute vibrational degrees of freedom, its
dance with the number of vibrational degrees of freedom transiation and rotation, and of the solvent. We make a start-

terms, ing assumption that the nonequilibrium mean values of these
ns 3ng—6 quantities describe the nonequilibrium macroscopic state of
Nyipr= iEl F®.u= 21 Q.4,- (2.38  the system under consideration sufficiently well, at least with

< =

respect to VER, and they will be considered as relevant vari-

Each of the terms in Eq2.38 describes the main part of the ables. This assumption is supported by faiT}éZQOOd agreement
energy exchange between the corresponding solute normBetween our results of nonequilibridh* and equi-

mode and the solvent. librium® MD simulations of the azulene—G@®ystem at low

In general, the force on thith solute nucleus can be and high pressure. For a statistical-mechanical calculation of
divided into externaFi(e) and internaIFi(i) parts, kinetic coefficients like rate constant time derivatives of the

e©) L i) (i) relevant variables are necessary. _ _

Fi=F"+F", F'==0Uialdg . (239 In accordance with the preceding section we introduce

The capacity of the internal forces, the microscopic energy densify(r) as a sum of three com-
ns 3ng—6 ponents:
Nima= 2, F"-ti= 2, QU 240 A1) =Ay0) + Fann) +F(0), @D

determines the intramolecular energy redistribution. Eacivhere the energy density of the solute molecule is attributed
term of the sum describes the part of energy flux to a parl© its center of mass locatiog
ticular vibrational modex from the other modes caused by By vior= E v S — Q) (3.2
the nonlinearity of the intramolecular potential. This is con- Lvibr™ =1vibr ’ '
sidered in some detail in the Appendlx. N _ |:|1rt= E;0(r—0), Ein=EqsortErys (3.3

We note that the representation of capacities via normal ) _ _
velocities and normal forces Bxact irrespective of the ac- and the energy density of solvent molecules is ascribed to
curacy of the harmonic approximation for the intramoleculartheir center of mass positiorg, ,
motion. The orthogonal transformation of the bilinear forms N
of forces and _vglopitie; in Eq$2._33 and (2:37) by an or- H,= E End(r —dp). (3.4
thogonal matrix is identical. The interpretation of the results, m=1
however, strongly depends on the validity of the underlyingsr —q ) is the Dirac’ss function.

harmonic approximation. As suggested in Refs. 37 and 40 the solute rotational and

translational degrees of freedom are not included in the sol-
. STATISTICAL—MECHANICAL DESCRIPTION OE vent subsystem because one of the aims of our consideration
VIBRATIONAL ENERGY RELAXATION is the investigation of the role these degrees of freedom play

i i ) ._.__in the energy transfer from solute to solvent during vibra-
Highly excited molecules possessing many V'brat'onaltional energy relaxation

degrees of freedom have a rather high kinetic temperature When the equations of motion of the solvent and solute
(determined as the average kinetic energy per vibrational deaitoms
gree of freedorn as compared with the ambient solvent. '

Hence, the state of the system is highly nonequilibrium and, . N

in general, linear nonequilibrium statistical theory may not migi:':i(')J“mE:1 Fim 3.9
be used to describe the relaxation process. However, the ex-

perimental results unambiguously indic&t& that in many N

cases the process is characterized by a single relaxation time Mmplmp= Fg‘rl1)p+ E Fmpnt
and the rate of solute—solvent energy exchange remains pro- e
portional to the excess energy during the whole process.
Thus, it seems reasonable to determine the relaxation time by
considering a slightly nonequilibrium system that can be de-

Ns

z F(mp)i !

i=1

(3.6

Ny

':<mp>n:q§=:l Fmp)(ng) -
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are taken into account, one obtains the time derivatives of thas to trace the energy redistribution between different vol-

energy densities as ume elements of the solvent during the solute relaxation pro-
R R _ cess.
Hi(r) =1 (r) + V- J(r)=By(r), k=1vibr, 1rt, 2, To construct macroscopic equations of motion the non-

(3.7 equilibrium ensembles methdt® is used. In accordance
with its main conditior?**°the nonequilibrium and the qua-
siequilibrium mean values of the microscopic densities
I:|k(r) are equal. We mark such mean values by brackets
I 1vibr(T) = (Nyipr = Ny_) 8(r — g), (3-8 (..} ., whereas(:-+) is used for equilibrium mean values,
In(r)=(R<e)-vC+M(§)~w+ Ny_)8(r—g), 3.9 ;ne?r |2;r;ﬂgﬁﬁr;h\ealiee\genons of the energy densities from

N ng ng ~ ~ ~ ~
1,(r)= 2 (VC~E Fim+ o >, gicXFim he(r.)=(AH)ge,  AH=H=(Hy). (3.1
= i=1 i=1
I I The inverse nonequilibrium temperaturésr quasi-

whereB,(r) are microscopic fluxes of the relevant variables.
The rhs of Eqs(3.7) consists of source/sink terms,

n

2]

temperature¥) in energy unitsB,= (kgT,) * (kg is Boltz-
+Zl Ui-Fim | 8(r—Qm) + 5 n;_ 2 (Gngt qmp) mann’s constantare considered as the thermodynamic pa-
Pa rameters conjugated to the corresponding energy densities.
“Fng)mp 0(r = dm), (3.10  We suppose that temperatutesl, are equal to their kinetic
values that are defined as the double mean kinetic energy per
degree of freedom for the corresponding subsystem, and will
not discuss different definitio”$>° of temperature here. For

which are defined by capacities of the corresponding forces
and the flow contributions,

J(r)=—0gE8(r—g), k=1vibr, 1rt; (3.1) the moment we takg, to denote the deviation of the inverse
N temperature from its equilibrium value until we will redefine
_ . _ it later.
Jo(r) = mE:l AImEmS(r = Cm). (312 The nonequilibrium mean values of relevant variables

. _ . obey”® the evolution equations with spatial dispersion and
The decomposition2.12 of a solute nucleus velocity is

; ) memory,
taken into account in Eq3.10.
The representation of the rhs of E¢8.7) by two terms ~ dh (r t)
is not unique. For example, one usually represenfsthe E Qua(r,r)By(r', Hdr’
second term of 5(r) as a flow term,
t !
1 N Y . . :E fdr,f dt’ ee(t _t)EH(r,t,r,,t/)ﬁ|(r,,t,),
En “ 1 p%l (qnq+qmp)'F(nq)(mp)ﬁ(r_qm) _w
’ | k,|=1vibr, 1rt, 2, (3.16
Vv
=V.. } 2 2 (Gm— ) where the frequency matrix,
' 4n,m:l p,g=1 m " A ~
Qu(r,r’)=(AH(AH(r")), (3.17
X (Angt Amp) 'F(nq>(mp>5(f—Qm)) : and the memory matrix,
and adjoins it tal,(r), Eu(rtr’ 1) =(QB(r,HexdiQLQ(t’ —t)]QB(r’,t")),
N ns ns (3.18
T(n=—2> (VC'E Fimt o> GicXFim are defined as equilibrium mean values of the corresponding
= i= i= microscopic fluxe$3.7). The small parametergoes to zero

ng in the thermodynamic limiN— oo, V—oo at N/V=const,V
+2 ui‘Fim) S(r—am), (3.13 is t'he velume of the sys.te)mThe'Llo'uwIIe operatorlL is
i=1 defined in terms of potential and kinetic energy of the system
N under consideration, and its action is equivalent to differen-
J,(r)= E ( QuEmt — 2 E (Qm— ) f[|at|0n \_/,\nth reepe_ct to t|me|L,§\=A_. Q=(1-P), Where_P
m=1 is Mori's projection operatof® which acts on dynamical

quantitiesA and projects them onto the space of the relevant
X (Ang* Amp) -F<nq)(mp)) S(r— ) (3.14  variables,

Such a definition of the solvent energy flow leads to a con- PA:(M*‘% (AH AH) (A AH )AH,. (3.19
ventional definition of a macroscopic energy flow via heat '

conductivity. However, for the purposes of this work it is Cofactors of the frequency matrix have opposite time
more convenient to represent the energy density time derivgearity and hence equilibrium mean values of their products
tives in the form adopted in Eg$3.7)—(3.12. This enables vanish. Thus, the frequency matrix is a zero matrix.
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Similar time parity consideration shows thaB,=0 and The system under investigation contains only one solute
QB.=B, and the memory matrix consists of nonmodified Particle. Hence, it is necessary to prevent information loss
fluxes. However, the memory matrix includes the reducedbout the statistical characteristics o_f this particle among the
Liouville operatorQLQ that modifies the time evolution of numerous solvent molecules. To this end, we consider the
the fluxes entering the memory matrix. Under the assumptioCIVent particles in the frame of the solute partftial the
of sufficiently different time scales of evolution of the mean Méan values have to be calculated in such a way that the
values of relevant variables(r,t) and the time correlation SOlute is singled out and not smeared over the system vol-

functions of fluxesd, , this modification may be neglect&d. ume. Such a formulation of the problem, however, results in

It means that the time correlation functions can be direCtIya violation of translational and rotational symmetry of the

calculated by averaging products of the fluxes at two equi-syStem' Hence, the correlation functio®20), (3.2 can-

distant moments of time during equilibrium MD simulation not be considered as funcuons. of the distante but W'!l

Uns. depend on .both. vectons, r.defm(.ad in the solute particle
Each of the nine elements of the memory matrix consistérame' To S|_mpl|fy the C(_)nS|derat|or_1 we neglegt such sym-

of four components. Among them there are time correlationmetry.bre.akmg in the first approximation. Th|s tephmcal

functions of source/sink terms, flow terms, and a combina-Com‘.)“C"’ltIon can be handlled when computer simulations of a

tion of source/sink and flow terms as well. required level will be available.
In the equilibrium state the system is considered as a

uniform isotropic medium. In this case the correlation func-B. Evolution of solute vibrational energy

tions dep_end onl,)// orj the distanc&=r’ —r between points In the preceding section the general equaiidri6 of
and the time lag”=t"—t, evolution of different energy densities for the description of
E(rtr ) =Er" t"). (3.20 VER and its corresponding frequency and memory matrices

) ) were derived, the former being the zero matrix in our case.
To glos;e the system of evolution equatiof®16, the Ny we proceed to analyze the equation describing the evo-
connectiofi between the mean values of the microscopic),tion of the solute vibrational energy that contains the main
and thermodynamic parameters has to be written: characteristics of VER. We will specify properties of the
memory matrix relating to this equation and under physically
hk(f,t):—Z j Cra(r,r") Bi(r’,1), (32D reasonable assumptions derive and analyze expressions for
the relaxation time, enabling us to extract mode and atom
where the static correlation matrix, which is composed ofspecific information on VER.

nonlocal heat capacities, o )
1. Vibrational energy relaxation rate

Cra(r,r")=(AHKN)AH(r"))=Ca(r"), (3.22 The first of the evolution equatior(8.16 for the solute
is introduced. vibrational energy has the form
ahlvibr(rvt) _

p EI Jdr’Jiwdt’ eé(t"t)(lmbr(r,t)l,(r’,t’))ﬁ|(r’,t’)—2| v-j dr’ﬁmdt' get'~v
t ’
X<I1Vibr(r!t)‘]|(rl!t,)>ﬂl(r,vt,)+El VJ’ dr,f_wdt, ee(t _t)<‘]lvibr(r!t)|I(r,!t,)>ﬁ|(r,!t,)

—2| V-f dr’ﬁwdt’ et 003 i1 DI (r 1))V By (1 ,t"). (3.23

The last term of the rhs of this equation was integrated byexists only at#t’ due to dynamical correlations, and there-
parts. This led to the appearance of the inverse temperatufere the contribution of these terms is perhaps not essential.
gradient. The dependence of the time correlation functiond his conclusion becomes even more founded if in the time

on distance” only was taken into account when differentia- orrelation functions the velocities involved belong to
tion variabler’ was changed to in the second term. weakly coupled degrees of freedom, as in the case of the

The time correlation functions in the second and thirdsolute normal mode velocities on one hand and solvent ve-

: locities on the other hand.
terms of Eq.(3.23 are defined as products of scalar and The energy density for the solute vibrational energy can

vector quantities and in direction are parallelrfo Due to be represented as

the specific role of the solute, these correlation functions are

not equal to zero. However, they include products of veloci-

ties of different degrees of freedom. Hence, this peculiarity — hqip(r,t)=hqip () Fq(r,t), (3.29
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whereF 4(r,t) is the normalized distribution function of the 2. Analysis of the vibrational energy relaxation rate
solute andh,,(t) is the mean value of the solute vibra- expressions
tional energy at timd. The distribution function evolution

q ib tial diffusi f th lute that h Two different representatiorisormal mode and atomic
rescribes spatial difiusion ot the Solute that has No CoNNEGs¢ e yiprational capacity are available according to Eq.
tion with energy transfer from solute to solvent. To exclude

. . (2.38 and they lead to different but equivalent final expres-
energy flux due to solute translation one has to integrate E

%.
(3.23 over r such that the last three terms of E®.23 1ons,

vanish and the evolution equation takes the form s e . . 5
ki= ;:l Kiag: Kiap=1Qal.lQp05}/ C1ksT?, (3.29

. t
—dhl(;':’r(t) => Jer dr’J dt’ e<t’ -V ng
' o ki= > ki, Ky ={F¥-u[F®-u}lciks T2 (3.30
X FON( )BT ). (329 h
The normal mode description permits us to interpret the
So far only the most common approximations of non-splute in terms of weakly interacting quasiparticlesrmal
equilibrium statistical thermodynamics were used. Equatiofmodes in case of not too strong nonlinear interactions. How-
(3.29 can be significantly simplified by adopting more par- ever, the description of the energy flux between such a sys-
ticular suggestions. The rhs of this equation includes intetem and its environment, as a rule, cannot be realized in
grals over time correlation functions that are multiplied byterms of energy exchange through individual modes. The
thermodynamic parameters. As the characteristic time scalgxternal forces in accordance with E@.37 contribute to
of evolution for the thermodynamics parameterg)(and for  many normal forces simultaneously connecting the normal
the time correlation functions of dynamical variablegf) ~ modes to each other, even in the case of harmonic solute. It
are different(it is supposed thaty> 74y One can take the results in a solvent assisted solute intermode energy redistri-
former out of the time integral. The first spatial integral overpution and multimode character of solute—solvent energy ex-
r can be handled due to uniformity of the solvent. In view of change that displays it through nondiagonal elements of ma-
the fact that there is only one solute particle, it yields unity.trix kiag i EQ. (329 and is clearly manifested in
The second integral over’ implies that the initial value nonequilibrium simulation!->2
problem should be solved because the solvent temperature |n the case of strong intermode coupling, none of the
field has to be defined by the solution of the full system ofcoefficientsk,, 5 can be given an exact physical interpreta-
equations (3.16. Fortunately, there are many tion. However, by analogy with energy transfer in a many-
indications®**°that heating of the solvent in the vicinity of component system, it may be interpreted as energy transfer
the solute is small in comparison to the vibrational kinetichy the « mode due to the temperature difference between

temperature of the solvent. Hence, the rhs of 85 con-  mode 8 and the solvent. Then, a possible interpretation of
tains only inverse temperatures that are independent of spghe sum,

tial variables, becauselyib, and B, are assigned to the 3n,-6
solute and have no spatial dependence. K, — E K (3.31)
Further simplifications follow from the weak contribu- ta™ & Mabe '

tion of the vibration—rotation interaction to vibrational en-

ergy transfe?-2 Hence, on the rhs of Eq3.25 only the as the rate coefficient of the solute—solvent energy transfer

term with vibrational capacity and inverse vibrational tem-t?r?]l:gh r::obdecivntsierrn? glausilr?ljei\-/i;—hef ?n pjlrtl;altrate fcor?ﬁr"
perature survives. To eliminate the inverse temperature from > ¢an be INterpreted as ual moge rates of energy

. : : L exchange only approximately, and this interpretation is
th tion, the lest tion of Eg§.21), ' .
'S equation simplest approximation of £§21 strongly dependent on values of nondiagonal elements of the

hyvior= — (C1KaT2) Brvior (3.26 matrix klaﬁ._ _\Nhe_zn the coupling be_tween different normal
force capacities is weak, the nondiagonal elements can be
can be used. Here, is a heat capacity of the solute mol- Neglected, and in this approximation the rate coefficient,
ecule. 3ns—6
As a result, the rate equation for the solute vibrational — ky= >, Ky, Kia=Kipe, (3.32
energy follows: a=1
is represented by individual channels of energy exchange

dhyyindt) _ _ 2 through each vibrational degree of freedom. This expression
gt~ KaMaio . Ka={Nui Ny /Coke T, includes time correlation functions of two different sorts of
(3.27  variables, namely velocities and forces. Hence, it is possible
i to approximately uncouple the correlation functions and rep-
where the notation resent them by a product of correlation functions,
> (Qa(1) (1) Qa(0)04(0)) =(0a(1)4(0)){Q4(1) Qu(0)).
(alb}= [ “Gatopoyat 328 a3

The time dependence of the normal velocities on char-
for the time integral of a time correlation function is used. acteristic normal force time scales is well described by har-
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monic functions with frequencies of the corresponding nor-  This means that the part of the solute intramolecular en-
mal vibrations. Taking into account the equipartitioning of ergy, which is initially stored in high-frequency vibrational
energy, it follows that modes, can pass to the solvent only after intramolecular en-
, . .0 B ergy redistribution to low-frequency modes, which are
(82(1)82(0)) =(Ga(0))cosw,t=kgT COSwL,  (3.34 coupled more strongly to the surrounding solvent. However,
R R H H ; ; ,53
Q08 Qudl) = (ksT)2L (@), (3.39  direct molecular dynamics simulations have gh%\/@ﬁ
o _that this is not the case, and almost all vibrational modes
where the frequency-dependent normal force friction coeffiparticipate in the energy transfer from the excited solute to
cient is introduced, the solvent.
. The heat capacity of the solute vibrational subsystem in
Ia(w)=(kBT)_lfo (Qu(1)Q,(0))coswtdt. (3.3  the harmonic approximation is

. . . . CllszgnS_G, (339)
The normal forces acting on nuclei at their actual positions
enter into this expression. and this denominator in E¢3.38 indicates that the energy
When the representatiof8.30 is used with a similar transfer rate is reduced if not all channels of the individual
decoupling approximation, the atomic friction coefficients, Vibrational degrees of freedom are equally effecfie.
The vibrational energy relaxation time is the reciprocal
gi(w):(3kBT)_lf (Fi(t)-F;(0))coswt dt, (3.37  value of the rate coefficient
° =1k, (3.40

%nd can be calculated from simulated trajectories using ex-
Ipressions(3.29) or (3.30.

due to strong interatomic interaction have to be calculate
for the whole vibrational spectrum of the solute and summe
with corresponding weight coefficients for each vibrationa
mode. Naturally, some of these weight coefficients could be
very small.

Another approximation to uncouple velocities and coor-3. A two-temperature model

dinates in Eq(3.29 can be achieved by expanding the nor-

2762 Strong deviations of the system from equilibrium can be

mal forces in solute normal coordinate power sefies: considered in the framework of a two-temperature
In the zeroth-order approximation one ge€®&39, (3.3  1n4e|5#55 when the temperatures of the soltfig and the
with normal forcesQ((t) defined at the equilibrium posi- solventT,~T (T is the temperature in the bulk of the sol-
tions of nuclei in Eckart’s frame. In this case the expression%emj are supposed to be significantly different from each
for the partial rate coefficients are just the same as usuallyiper. Equatior(3.25 still remains valid. However, the ap-
derived from the Landau—Teller formut&**It is necessary  proximations described after this equation in the case under
to note, however, that in our case, to preserve the originalynsigeration lead to a difference of the reciprocal tempera-
dynamics of the flexible solute, the normal forces for a flex-y;es which is, of course, nonlinear with respect to the tem-
ible solvent and solute as well as forces at equilibrium pOSi‘perature difference,
tions of solute nuclei have to be calculated. After additional
approximations one arrives at expressions that include the dhyyipdt) .
normal forces under different restrictions on solute and/or dt
solvent motion.

Of course, such approximations are questionable, espe- X(To() =TTy (OT. (3.41

cially for polyatomic solutes, and should be tested by direct  However, for calculating the time correlation function in
molecular dynamics calculations comparing rhs's and Ihs’shis expression, one has to average over the quasiequilibrium
of expressions of the type given in Eq8.35—(3.37). If all distribution, i.e., the expression

terms except zeroth order in the power series will be foundto N ,

be small, both expressions for the friction coefficients at ac- (Aa(t+1)04(t))ge=KpT1(t)COSw,t (3.42

tual and equilibrium nuclei positions will result in compa- is valid instead of Eg(3.34) while the solvent temperatuie
rable values. should be preserved in E(B.36) because the force correla-

It is known from investigations of small size molecules tion functions are mainly defined by solvent characteristics.
that for some systerfs?®*°the normal force friction coeffi- The variations of the vibrational energy and temperature
cients decrease exponentiallgr even more rapidlywith  of the solute are connected by the heat capacity,
frequency. In other cas¥she frequency dependence of fric- .
tion coefficients is more complicated but still their decay is dRyyipr=C1(T1)dTy. (343
fast as a function of frequency. Hence, if such a behavior ofhe heat capacity depends on the intramolecular potential
friction coefficients also prevailed for moderate size mol-energy and thus on the solute temperature because at higher
ecules, the rate coefficient for the vibrational energy transfetemperatures a wider area of the configurational space of the

- fow<Nvibr(t+t,)Nvibr(t»dt,

could be represented by a few first terms of the sum solute is covered. This dependence can be calculated during
3n-6 nonequilibrium simulations of VER. For not too anharmonic
ky= 2 ¢ (0,)1(cq/Kg). (3.39 mtra_lmolecular potentials, a weak dependence of thg heat ca-
a=1 pacity on temperature can be assumed and(E9 gives
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its accurate estimation. Thus, the denominator of the rhs in  Treating the external force and torque that act on the
Eqg. (3.41) cancels and the equation can be rewritten in thesolute as fluctuating-correlated random quantities we ob-
form tain for corresponding terms of E(B.45),

dT,(t)
dt

which differs from Eq.(3.27) in that the rate coefficient in _ ()1 na (@)

the latter includes the heat capacity at current solute temperé—NR| Nrt=(@(0)@(0))- -{Mc’|Mc"}

ture T, instead of the solvent temperatufein the former. 3

The difference between the capacities will define the differ- = E (&1 y)(kBT)Z, (3.48
ence between the rate constants or the relaxation times ob- y=1

tained by equilibrium and nonequilibrium simulations. The h ) d and d points b
variation of the characteristic heat capacity with a soluteV"ere tensqr notaﬂon;s are used an gentere points between
nsors designate their inner produdisis the total mass of

temperature will result in a nonexponential dependence of

energy on time during the process of the vibrational relaX_the solute£; and&,, are the friction constants for the solute

ation. translational and rotational motion, respectively,

Another reason for a nonexponential solute vibrational -
energy decay is related to the case when solute thermal qua- gt:(ngT)*lf R®)(t)-R®(0)dt,
siequilibrium state cannot be maintained during VER due to 0
the structure of the intramolecular potential energy surface. (3.49
More than one subsystem and quasitemperature have to be _ 1 [ F e (e)
introduced in this case, resulting in more complex behavior €y =(ksT) f Mey(DMcy(0)dt,
of VER.

Although more exact calculations could reveal other readl , are the principle inertia. moments of the solujes 1,2,3
sons for nonexponential energy decays this crude estimatidabel the coordinate axes. The coincidence of the principal
shows that the time integral of the time correlation functionaxes frames for mass and friction force distributions is sup-
of the solute—solvent interaction force capacity is roughlyposed.
proportional to the product of solvent and excited solute tem-  Since the heat capacities of solute translational and rota-
peratures. This results in the cancellation of nonlinearity aristional motions are each equal t§) kg, Egs.(3.45 by anal-
ing from the inverse temperature difference, in agreemenggy with Sec. Ill B 1 define the characteristic times of trans-
with the experimental result$:*° lational and rotational energy relaxation,

= —ky[Ty()-T], 344  {N1INT=(vc(0)vc(0))- - {R¥IR®}=3(£&/M)(ksT)?,
(3.47

C. Translational and rotational motion of the solute

3
: : . =2M/¢&,, =(2/3 n,. 3.5
The equations for evolution of the translational and the mt o =l );1 §iylly (3.50

rotational energies of the solute follow from E&.16). After
approximations similar to those discussed in the preceding Their values are two times higher than for momentum or

subsections we obtain the equation angular momentum relaxation. The same value for the ki-
dhoc(t) netic energy relaxation time follows when the solution of the
1K . . . i X .
T={NK|NK}(51K_/3’2), K=T,R, (3.45 ordlnr:}lr%/5 Langevin equation for a spherical particle is
used®
N:=R®.ve, Ng=M¥.w. (3.4

SubscriptsT andR are related to translational and rotational
motion, respectively. Weak coupling between rotation ancP '
translation is supposed leading to two independent equations Equations(3.10, (3.12 or (3.13, (3.14 allow us to
for each type of motion. Also, we take into account results oftrace the redistribution of the solute energy transferred to the
nonequilibrium simulationd?> which indicate negligibly solvent by computer simulations of nonequilibrium vibra-
small energy transfer due to the vibration—rotation interactional energy relaxation processes. An analogous investiga-
tion. Hence, only the diagonal terms are retained on the rhgon, which is even more informative due to time correlation
of Eq.(3.45. Of course, all these suggestions can be checkeflinctions involved, is possible on the basis of equilibrium
by simulating appropriate time correlation functions. computer simulations. To this end, E&.16 has to be con-
The inverse temperature difference on the rhs of Egsidered folkk=2. The transformations described just after Eq.
(3.49 is determined by the structure of source/sink terms in(3.23 should be used in this case, too.
Egs. (3.9 and (3.10, which contain similar contributions During the solute vibrational energy relaxation its vibra-
with opposite signs. Here this difference is indicated explic-tional, translational, and rotational temperature should be
itly because the solute rotational and translational energy desonsidered as independent of the solute position due to spa-
cays on a subpicosecond time sé¢&kend the corresponding tial uniformity of the solvent. Hence, all the gradients of
temperatures become nearly equal to the solvent temperatus i, and 8,,; become equal to zero and the evolution equa-
in the vicinity of the solute. tion takes the form

Energy redistribution in the solvent
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dhy(

—atr’t):El Jdr’J_twdt’ ef("“)(l2(r,t)||(r’,t’)),8|(r’,t’)—2J dr’J_twdt’ e 0(1,5(r,03,(r" 1) VB(r' )

—V-J dr’Ji dt’ e ~9(3,(r,1)o(r' ")) -V Byo(r',t'). (3.51)

The second term of the rhs of this equation contains ancludes time correlation functions of velocities of different
factor 2 as a result of a combination of two terms due tospecies. However, the last term now gives rise to a nonlocal
spatial symmetry properties of the respective time correlatioteat conduction term in the evolution equation. Neglecting
function and it is nonzero only in the vicinity of the solute. for simplicity this nonlocality we present the final result in
After decomposition of velocities and spatial variables in thethe form of a heat conduction equation with the source term
time correlation function of, andJ,, it can be represented

as a product of the diffusion coefficient and mean force on 02M:V'(K2 VT,)+ P

the solute, and the term can obviously be considered as ot KeT2T1 vibr

small. The last term of Eq(3.5) in accordance with Eq. X[Ty vind£) = To(r,8)] (3.56
vior ) l .

(3.12 represents the redistribution of energy due to diffu-
sional motion of solvent particles. Thus, to a first approxi-wherec, and «, are heat capacity and thermal conductivity
mation, contributions of these two terms can be neglected. Of solvent, respectively. Apart from experimental values the
The sum in the first term of Ed3.51) runs over values former can be calculated by E8.22 and for the latter the
1 vibr, 1rt, and 2 of. It was noted already that rotational and integral of time correlation function of energy flo(@.14)
translational motion of solute is of minor importance for vi- might be used*>®
brational energy relaxation. Hence, corresponding terms can Experimental values of the transmission coefficipp
be dropped! ; andl, consist of capacities of solute—solvent are not available, so it has to be calculated by E053.
and solvent—solvent interactions, which include velocities ofThis expression permits us to determine the distance at
different species. Again, time correlation functions involving Which the main part of the transferred solute energy is ab-
these velocities can be neglected. Then Bdp)) attains the sorbed by the solvent due to direct solute—solvent interac-
form tion. This distance is defined by a competition between the
interaction force and the distribution functions that increase
Iha(r,1) = — pyl1) Bruid(D) or decrease with separation between solute and solvent. It is
dt 2 Lvibr evident that this distance ranges within the first coordination
sphere.
+f P, [ Ba(r)—Bo(r’)]dr’, (3.52 Using simplifying assumptions, the temperature gradient
v in the vicinity of the solute may be estimated. For a typical
where transfer coefficients, excitation energy of 1 eV and a relaxation time of 10 ps, the
N N energy f|0V(\§ throuzg a 1 nmradius spherical surface is on the
* , ' , order of 10 W/m“. Using a thermal conductivity of-0.1
P1Ar)= Jo vdr m,;ﬂ i,jzzl (Nin(r.ONjm(r",t"))dt’, W/mK, the temperature%radient attains very hiéh values of
(3.53 the order of 1K/m=1K/A. Under these conditions the
N N nonlocality can play an important role and the description of
ne [© the solvent energy redistribution in terms of Eg.52 will
P2Ar.r)= 2 2 (Namp(r.0) probably be more reliable in comparison with E§.56). In
o ) the former, the nonlocality in the term that describes the
XNnrgrympn(r',t))dt’, (3.54 intrasolvent energy redistribution is taken into account in a
characterize solute—solvent and solvent—solvent energy exaore direct fashion by interatomic forces, and its derivation
change rates, respectively, and are defined by correspondiiges not include the series expansion in the inverse tempera-
microscopic capacities, ture gradients used in E¢3.56.

Njm(r,t) =u;(t) -Fjm(t) 8(r—rp),

m,n,m’.n" q,p,q".p’

(3.595
N(nq)(mp)(rat) = %[an(t) + Qmp(t)] 'F(nq)(mp)(t)5(r - rm)- IV. CONCLUDING REMARKS

For an alternative definition of the solvent sink and flow The foundations and possibilities of the nonequilibrium
terms(3.13), (3.14), contributions of different parts of the rhs and equilibrium approaches for the investigation of VER by
of Eq. (3.51) should be reconsidered. With respect to solutemeans of computer simulations have been discussed in de-
nuclei velocities, the first term permits the same rearrangetail. Normal mode analysis of the solute molecule vibrations
ment as in the previous case. It will result in the same exwas used as a basis of the procedures developed in the
pression for the solute—solvent energy exchange as in Edramework of both approaches for the interpretation of simu-
(3.52. The term withV 8, can be neglected again, because itlation results.
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For nonequilibrium simulations the main characteristicsAPPENDIX: COUPLING BETWEEN NORMAL
of the cooling process, besides the time behavior of totalCOORDINATES
kinetic, and potential solute energy, are the capacities of nor- h lute int lecul b itten |
mal forces and the solute—solvent energy exchange throuqh ef solute Im ran;p e::u ‘_”Ir energy can be rewntten in
normal modes and individual atoms. The separation of vibratems of normai coordinates.
tional and rotational motion is carried out by the use of Eck- o

. S Ellntra K1+U1’

art’s as well as the solute instantaneous principle axes frame. (A1)
The expression for study of vibration—rotation interaction, 3ng-6 1316
and its influence on VER is also formulated in terms of ca-  Ky=> > @ Ui=> > 0305+ Uit Usey
pacities, and in the case of Eckart’s frame it consists of four a=1 a=1

terms that describe different aspects of the interaction Wh'IGHearUlm includes nonlinear and vibration—rotation coupling

in the other case the o.n_ly _term 1S pre;ented. . . terms;U . is the energy of the solute in the solvent poten-
The use of the equilibrium simulations for the investiga- ;1 field

tion of VER is not so straightforward and involves

- . - The normal coordinates obey the Lagrange equations:
statistical-mechanical description of the process. On the ba- y grange eq

sis of Iir_1ear nonequilibrium statistical the_rmo_dyngmics the qa+wiqa=Qa+ Qgr)1l+ Qury (A2)
expression for the rate constant or relaxation time in terms of
normal force or atomic force capacities time correlation Q) =Q\)—w2q,, «=1,2,..,5-6; (A3)

functions and the solute heat capacity is deduced. The same
expression is derived in the framework of the two- Q. takes into account vibration—rotation coupling.
temperature model. After additional approximations the ex-  For the harmonic part of energy of each mode one ob-
pression is reduced to the frequency-dependent normal fordains the equation
friction coefficients and can be considered as a generalization .
of the single oscillator expression obtained from the  Eaharm™ Navibrt Nanit Naroy,
Landau—Teller formula. Two points should be made here. At P .
first, our result is fully classical in origin. And second, the  Eaham= (A1 ©505)/2, Nayior= Qolla (A4)
solute heat capacity enters into the expression. _ .
Several conditions have to be met to ensure an exponen- Nen=Qanlar  Narv=Qar-la-
tial decay of excitation. First of all, fast IVRn comparison

i : o S - We do not develop the expression fQr,_, because the
W'th VER) is needed to maintain a q_uaS|eqU|I|br|um distri- rotation-vibration interaction has a rather complicated struc-
bution of energy over internal vibrational degrees of free-

o ; ~~ ture and, moreover, it is expected to be of minor importance
dom. The characteristic time scale of evolution of the tim

. . e Ctor energy redistribution in molecules of moderate size like
correlation functions of the normal force capacities or the,; 106 “The total contribution of this interaction can be es-
normal forces is also required to be considerably smallef, ... q by Eqs(2.26—(2.30

than the VER time that defines the evolution time scale for The two most important components of the rhs of Eq
thermodynamic variabledemperatures or energy densilies (Ad) are the capacities of external fordds,, and the non-

. If the solute internal structure results in splitting of the linear intramolecular interactiond,,. The latter includes
internal degrees of freedom on two or more weakly con-

. . energy flux from the harmonic part of modeto its anhar-
nected subsystems,.each of which has its own channels ﬂfonic part and to other vibrational modes. The two terms
energy exchange with the solvent, the sftate of the solut ermit us to trace the energy flux within the vibrationally
pannot be described by one thermodynamw parameter. The xcited solute molecule during its relaxation to the equilib-
instead of one evolution equatide.g., Eq.(3.29], one

hould id ¢ f i hich. i rium state.
should consider a system ot equations, which, in genera, Energy exchange between different modes is realized via
leads to more complicated behavior of the solute.

h Its of the two-t ¢ gel t th nonlinear parts of the normal forces. An additional mecha-
€ resufts ot Ine two-temperature model suggest t Aism of intermode energy exchange is based on the rotation—

the values of the rate constants defined by noneqU|I|br|un\1/ibration coupling. It can easily be seen that, for example

and equilibrium MD simulations will not be significantly dif- ;' o) angular momenturiEq. (2.23] in tk;e normal- ’

ferentl. In th|ts ca_s?, equll_|br|urtr)1 S|tmulat|on§i_gwlll alsiijc';)n_tra;:n mode representation consists of products of two different
complementary information about nonequiiibrium - 1N® 1 ormal mode coordinates and velocities. After time differen-

time and spectral behavior of different time correlation func'tiation, however, it will comprise components that depend on

tions are of primary importance. more than two normal coordinates and velocities. Also, the
nonlinear normal force®,, cannot be represented by nor-
mal mode pair interactions. Hence, the intramolecular energy
ACKNOWLEDGMENTS redistribution from a particular normal mode will not be
separable into contributions involving only pairwise energy
The authors wish to thank Professoirgen Troe for exchange between modes. The intramolecular energy flux
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time correlation function of the fluctuating force by the expression
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mental results, the solute excitation energy can be described by a
relaxation-type equationd E/dt=— (1/7g) E+N(t), where N(t) is the
fluctuation capacity and the energy relaxation time, in analogy to the
Langevin equation, is determined by the time correlation function of the
fluctuation capacityrg '=(3ns—6)"1(kgT) "2[5(N(0)N(t))dt. This is

just Eq.(3.27) with approximation(3.39 for the vibrational heat capacity

of the solute taken into account. Of course, at first sight this analogy
should not be very close because particle momentum is a vector whereas
energy is a scalar quantity. However, the vibrational energy is a sum of
energies of vibrational modes, and the external force capacity can be split
into a sum of normal mode contributions, too. If all the modes relax
independently of each other, the expression for the relaxation time of a
particular mode will comprise only the respective normal mode capacity
as in the case of relaxation of a particular momentum projection. This
peculiarity makes the analogy between the Langevin equations for particle
momentum and for vibrational energy very close and explains at an intui-
tive level of understanding the appearance of the number of vibrational
degrees of freedom in the denominator of E@27), (3.29, and(3.38).
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