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Abstract:

Nonlinear dynamical characterizations of the edge
plasma fluctuations measured by both H-light diagnostic

and Langmuir probes in ASDEX are presented. The edge
plasma fluctuations are stochastic rather than chaotic,
they have a higher-dimensional structure in phase space.
In time, the edge turbulence is found to have memory
properties, the time required to lose the memory is
different in the different cases.




1. Introduction

Edge plasma fluctuations are experimentally investigated by
both Hy-light diagnostic and Langmuir probes in ASDEX. Much work
has been done on the parameter scaling and the statistical
characterizations of these fluctuations, such as correlation, power
spectra, coherence and so onlll. The edge plasma fluctuations are
proven to be turbulent, having broad spectra, and the fluctuation-
induced transport estimated agrees with the anomalous transport
observed. In this paper, we would like to present some nonlinear
dynamical characterizations of edge plasma fluctuations, which,
combined with the previous workl(ll, would be helpful to our
understanding of the nature of the edge turbulence.

The trajectory of a dynamical system in phase space can be
described by the correlation dimension which gives the minimum
number of degrees of freedom, or yields the lower bound to the
number of dominant modes in turbulence. In some sense, the
correlation dimension can be used as a geometrical measure (in
phase space) for the fluctuation systems.

Loss of memory, on the other hand, can serve as a temporal
measure for the fluctuation systems. Here, loss of memory means
that if the evolution of a system depends on the initial conditions
(i.,e. has the memory of initial conditions), the system would
gradually lose the memory of the initial conditions with time. The
time required to lose the memory completely depends on the
Liapunov exponentsl@] that the system has.

For the edge plasma fluctuations observed in ASDEX, it is found
that their correlation dimensions are very high. This means that the
edge plasma fluctuations appear to be stochastic (many degrees of
freedom) rather than chaotic (few degrees of freedom). In other
words, the edge turbulence has a complicated structure, there exist
many dominant modes in the edge turbulence and between these
modes are strong nonlinear interactions.

It is also found that the edge turbulence has memory properties
in time. The time required to lose completely the memory of the




initial conditions is different for different fluctuation systems. This
may mean that there are some different processes of instabilities
occurring in systems.

2. Methods

Deducing the dynamics of a system from only a single observable
is based on the fact that a system’s dynamics can be reproduced
from a single degree of freedom[3.4]. Consider an observable x(t) as
a time series {x;},i=1,2,3,..., with the time interval between
consecutive points x; and x;,; equals the sampling time. A set of
n-dimensional vectors r; can be constructed from this time series
{x;} by the time-delay method:

i = {Xi, Xisz s Xis2r » oo Xign-)z b 121,23, xi(1)

where 7 is called the delay time, n is the embedding dimension. The
miraculous thing is that the trajectory of r; in its n-dimensional
space is simply related to the trajectory of the initial system in its
full phase space, if n is large enough and the appropriate value of 7
is chosen. Almost any value chosen for 7 will be acceptable, in
practice one should find a better choice of 7. n may have to be up to
2d +1 if the original system has d degrees of freedom.

One simple procedure to chose the delay time 7 is to find the
autocorrelation time t; at which the autocorrelation function first
passes through zero. Another procedure to chose the delay time 7 is
to evaluate the mutual information by means of information
theoryl[3l. The mutual information measures the amount of
information that a measurement of x(t) predicts about a measure-
ment of x(t+7). It will typically decay as 7 is increased, and will
finally reach a base value due to external noise. The value of 7 at
which the mutual information first reaches its asymptotic value is
the best choice for the delay time. Generally speaking, the mutual
information measures the general dependence of two variables,
while the autocorrelation function measures only the linear
dependence. We will use the second procedure to chose the delay




time in the following.

To calculate the mutual information, we divide the value range
of the variable x into N intervals of equal length /. Let P; be the
probability that the variable x(t) lies in the ith interval, and Pjis
the probability that the variable x(t+7) lies in the jth interval. The
mutual information I, is given by:

jeomiae g i (: ) @
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where P;; is the joint probability that the variable x(t) lies in the
ith interval and the variable x(t+7) lies in the jth interval.

There are several different types of dimension, however the
correlation dimension is the only one that can be obtained efficiently
and easily from the experimental signals. The algorithm of
calculating the correlation dimension from the experimental signals
is as followsl®l: with the set of n-dimensional vectors r;, one can
evaluate the correlation sum C(r) defined by:

N
C(r) = lim %Z -lri-r ) (3)
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where O(x) is the Heaviside function, and N is the number of vectors
ri. For an intermediate range of parameter r, this correlation sum
C (r) will scale like:

C(r) o< rv (4)

and the exponent v is the correlation dimension. The value of
correlation dimension calculated in this procedure will increase as
the embedding dimension n is increased for small n values, then
approach a saturation value as n is increased to be large enough,
this saturation value is the real dimension of the system. For a
linear physical system, the correlation dimension is always an
integer. But for some complicated nonlinear systems (e.g., the
chaotic and the turbulent systems), the correlation dimensions are
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non-integer values, and moreover a chaotic system possesses a
lower dimension while the dimension of a turbulent system is very
high.

Restricted by the computation time, the total number of data N
used in EQ.(3) could not be too large (N=16k-32k, 1k=1024, usually
used in this paper). For the longer time series of signal, one can also
use the algorithm of "average" pointwise dimensionl?), which usually
yields almost the same value as the correlation dimension and
provides a great saving over the computation time. In this
approximate algorithm, the correlation sum C(r) is calculated
approximately by:

N

M
C(r)-vﬁlzigze(r-m -ri |) (5)

J=1

where M is the number of reference points chosen randomly. Usually
M=100 is enough for obtaining a good estimate of the correlation
dimension, and N can be increased up to 106 points.

The method to characterize the loss of memory for dynamical
systems from a time series of signal was proposed recently by Gade
et al.lBl. They introduced the time-dependent generalized dimension
Dg, (1) defined by:

oI g ()
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The prime in the summation means that the sum is only over those i
and j subscripts for which the value of Pij(t) is not zero. q is a
parameter varying from - co to 0. When g is taken equal to 0, 1 and
2, the dimension given by Eq.(6), under the limit / -0, is the fractal
dimension, information dimension and correlation dimension,
respectivelyl7].

There are two limiting cases for the time-dependent generalized
dimension Dg (1) versus t. In the first case t =0, we have P;j(0)=Pi5;
and Dg,(0)=Dg, where D,is the time-independent generalized




dimensionl7l. In the other case for long times, the system has
completely lost the memory of the initial conditions, for two
isolated events we have P;;(t) =P;P;, and we get Dg,(t) =2D, . Here
we see that the function of Dg (1) is equal to D, at t=0, then
increases gradually as t is increased, and finally reaches the
asymptotic value equal to 2Dq. The value of t at which Dq,,(t)
reaches its asymptotic value is the value of time required to lose
the memory completely. Note that this method is specially effective
for the lower-dimensional systems (one- or two-dimensional
systems), since the joint probability Pij(t) is easy to calculate. For
the higher-dimensional systems, the difficulty is to calculate the
joint probability P;j(r,t), for the vectors r; replace the scalars ¢

Another useful relationship between the time-dependent fractal
dimension D, (1) and the Liapunov exponent A for the given interval
length I is as followsl8l:

Do(t) =Dgy- At /Ini (7)

This relation will hold over the straight-line region at the beginning
of the curve Dy (t) versus t, and canbe used directly to estimate
the Liapunov exponent for the experimental system, if the system is
a low-dimensional system.

3. Data and Results

In this paper both fluctuation signals measured by Hy-light
diagnostic and Langmuir probes are analyzed. H, emission
observations measure electron density fluctuations, while Langmuir
probes can measure density fluctuations and potential fluctuations
as well. Each kind of diagnostic has totally 16 channels covering a
distance of 10-20cm in poloidal direction near the midplane of
ASDEX, and the signals are all digitized at the sampling rate of at
least 1MHz. A total number of 108 points for H, signals and of 2x104
points for probe signals are recorded per channel and shot.

Typical fluctuation signals analyzed are shown in Fig.1a-Fig.1f,




which are three sets: (1) Hy signals measured in ordinary discharges
(indicated by Hy in Fig.1a, the number in brackets is the shot-number
of ASDEX discharge); (2) Langmuir probe signals for both density
fluctuations fig and potential fluctuations § in ordinary discharges
(shown in Fig.1b and Fig.1c); (3) Hg signals in the transient phases
of Ohmic, L- and H-mode (indicated by OH, L and H in Fig.1d-1f).
Their corresponding power spectra are shown in Fig.2a-Fig.2f,
respectively, and more other detailed work on statistical analysis of
these fluctuations can be found in Ref.1.

In order to calculate the dimension for plasma fluctuations, we
should first choose the delay time 7 to construct the vectors r; by
using Eq.(1). Fig.3 shows an example of the mutual information Im
versus T for Hy fluctuation signals. The number of data used in
calculating Ip, is usually 104 points, and each interval has 100 points
on the average. It is seen that the base value of this mutual
information is about 0.4 (a.u.), and at 7= 20ps the mutual information
Im has reached the asymptotic value. Thus 7=20ps should be chosen
as the delay time used in constructing the vectors r; for this Hea
fluctuation signals. For other sets of fluctuation signals we use the
same procedure to choose the delay time.

Both algorithms defined by Eq.(3) and Eq.(5) are used in
calculating the dimension for the density fluctuations presented by
Hq signals. In the case of calculating the correlation dimension, the
total number of 16k-32k data points are used. The value of
correlation dimension obtained with 32k points is larger only by 2%
than that obtained with 16k points; while in the case of calculating
the "average" pointwise dimension, the number of data is increased
up to as many as 5x1035 points, and the dimension value obtained with
N=5x105 and M=100 is larger by 10% than that obtained with N=32k
and M=100. One example of the correlation sum C(r) obtained with
N=5x10%and M=100 in Eq.(5) is shown in Fig.4 as a log-log plot
versus r for the embedding dimension n =3, 4, ..., 10. It is seen that
each curve has a well-defined linear region over which the scaling
law C(r)e< r© holds. For simplicity, we will only show the values of
correlation dimension obtained with N=16k in the following.

All the dimension results calculated from the fluctuation




signals are summarized in Fig.5 as functions of the embedding
dimension n, where the diagonal line corresponds to the dimension
of a noise system. It is seen that the dimension obtained from the
signal H(28089) keeps a lower value under the given embedding
dimension, but is still very high (at least 6), the result obtained
from the probe signal Ng(31146) agrees very well with this
dimension. All the channels of signals (16 channels of Hy and 8
channels of Langmuir probes measuring the ion saturation current)
give the same value of dimension. It is also seen that a little higher
dimension is obtained from the potential fluctuation $(31146), and
all the 8 channels of potential signals give the same dimension as
well. These results suggest that the edge plasma fluctuations in
ASDEX display a high-dimensional structure, and the structure is
homogeneous over the investigated region.

For the density fluctuations in the transient phases of Ohmic, L-
and H-mode, the dimension values obtained are much higher (at least
8). Owing to such high dimension, it is difficult to distinguish
differences between them. The available results show that the
structure of edge turbulence could become more complicated (i.e.,
increase in dimension) under the certain conditions, and the number
of plasma quantities involved in edge turbulence is always large,
regardless of during Ohmic, L and H phase.

Note that all the correlation dimensions shown in Fig.5 have not
yet displayed the saturated behavior with increasing n up to n=10.
This means that the real dimensions for the edge plasma
fluctuations are still higher, higher than that we have obtained here.
However, we are not interested to find finally the real dimensions by
increasing the number of data and the embedding dimension, because
the dimension of 10, 20 or 30 here does not mean any new things
except the same fact that the edge plasma fluctuations appear to be
stochastic (many degrees of freedom) rather than chaotic (few
degrees of freedom).

In order to find the memory properties of the edge turbulence,
we have calculated the time-dependent fractal dimension D, (x,t) (9]
from the fluctuation signals. The number of data used in this
calculation is 104 points at least, and the interval length !/ is taken
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to be 1% of the value-range of signals (i.e., /=0.01 if the data are
mapped into the interval of [0,1]). The results obtained from
different fluctuation signals and from a normally distributed noise
are shown in Fig.6 (the function D, (t) for the signal fig(31146) or
for both signals L(32838) and H(32838) is quite similar to that for
H(28089) or for OH(32838), respectively). Since the noise is
independent of the initial conditions, its function D, (t) should
immediately go to the asymptotic value after t>0. This behavior is
shown clearly in Fig.6 (the jump from t=0 to t=1 is an artifact, due
to using equal length scales rather than the natural length scales of
the system), but the asymptotic value of Dy, (t) is observed to be
~1.8D, rather than 2D,, this is because with a finite number of
data, we cannot get the relation P;j(t)=P;P; when the system has
completely lost the memory of the initial conditions.

In Fig.6, it is seen that all the functions of Do,,(t) for the edge
plasma fluctuations increase gradually to their asymptotic values
with time t is increasing. This kind of behavior of Dy (t) means
that the edge plasma fluctuations lose their memory of initial
conditions in time. The time required to lose the memory completely
is observed to be different for the different fluctuation signals:
~20us for both density fluctuation signals Hy and fi; ~15us for the
potential fluctuation signal §; ~10us for the density fluctuation
signals OH(32838), L(32838) and H(32838), respectively. It seems
that the higher the dimension of fluctuations is, the shorter this
time scale tends to be.

Although the values of memory time shown here are obtained
from the functions of D, (x,t), not from the functions of Do, (rt),
we believe that the different values of this time scale represent the
different processes of instabilities occurring in the system.

It is difficult to get the ordinary Liapunov exponents27] for
these fluctuations, because their dimension is too high to evaluate
Do,,(r,t). As a rough estimation, here we evaluate the exponents
from the functions of D, ,(x,t). Because there are no straight-line
regions on the curves (the jump from t=0 to t=1 is the useless data),
we can only take a few points on the curve to get an averaged
exponent. The first three points of the curve are taken to estimate




the averaged exponent by using Eq.(7), and the exponent obtained will
be indicated by A" which is approximately equal to the mean value of
Liapunov exponents that the system has.

The results of exponent A" obtained are shown in the following
table. It is seen that the density fluctuations of Hy and fg (first two

Table (Unit: ps™1)

H_(28089) T (31146) p(31146) OH(32838) L(32838) H(32838)

A 0.31 0.29 . 0.15 0.09 0.14 0.11

columns in the table) have the same value of A"=0.3 (us-1). This is
consistent with their dimension results. In addition, it is very
interesting to find that the density fluctuations during H-mode have
the same value of A" as during Ohmic phase, while the value of A"
during L-mode increases. Since Liapunov exponents are equivalent to
the exponential growth rates of instabilities, the larger the exponent
A", the stronger on an average the activity of instabilities in plasma.

4. Conclusions

In summary, some nonlinear dynamical characterizations of the
edge plasma fluctuations observed in ASDEX were performed. The
edge turbulence displays the higher-dimensional structures in phase
space. It is impossible to describe this edge turbulence by the
theoretical models with a few degrees of freedom. In particular, two
kinds of diagnostic (Hy, and Langmuir probe) give the consistent
result for the density fluctuations; potential fluctuations have a
different dimension from density fluctuations; and it is difficult to
distinguish between the density fluctuations during Ohmic phase,
L-mode and H-mode in terms of dimension.

On the other hand, the edge turbulence possesses the memory
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property in time. The time for loss of memory is 10-20us in the
different cases. The time scale of memory is determined by all the
Liapunov exponents that the system has. For the edge plasma
fluctuations, we obtained the averaged exponent A° which is
approximately equal to the mean value of Liapunov exponents of
system. It is found that the value of A" increases during L-mode, as
compared with that during Ohmic phase and H-mode, this indicate

that the activity of instabilities during L-mode becomes strong on an
average.

11




References:

[1]

(2]

[3]
[4]

[5]
(6]
[7]

(8]
[9]

A. Rudyj, et al., in 16th European Conference on Controlled Fusion
and Plasma Physics, Venice, 1989, p.I-27; and in 17th European
Conference on Controlled Fusion and Plasma Heating, Amsterdam,
1990, p.III-1464.

G. Benetin, L. Galgani and J.M. Strelcyn, Phys. Rev. A14 (1976)
2338.

N.H. Packard, et al., Phys. Rev. Lett., 45 (1980) 712.

F. Takens, in Dynamical Systems and Turbulence, Warwick, 1980,
Vol.898 of Lecture Notes in Mathematics, eds. D.A. Rand and L.S.
Young (Springer, Berlin, 1981) p.366.

A.M. Fraser and H.L. Swinney, Phys. Rev. A33 (1986) 1134.

P. Grassberger and |. Procaccia, Phys. Rev. Lett., 50 (1983) 346.
N., Gershenfeld, in: Directions in Chaos, Vol.2, ed. by B.L. Hao
(World Scientific, Singapore, 1988) p.310.

P.M. Gade and R.E. Amritkar, Phys. Rev. Lett., 65 (1990) 389.

for the edge fluctuations, it is impossible to calculate D .(rt)

if they have a very high dimension.

12




H,(28089)

h,(311486)

Density
|
N

0.5 | ||| #(31146)

Potential

-1.5 ! | I | j
0 200 400 600 800 1000

Time (wus)

Fig.1a-1c. Typical plasma fluctuation signals measured by Hg
diagnostic (shot: 28089) and Langmuir probes (shot:
31146) in ASDEX.
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Fig.1d-1f. Typical density fluctuation signals measured by Hg
diagnostic in Ohmic, L- and H-phase (shot: 32838).
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Mutual information
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Fig.3.  Mutual information as a function of the time 7
for Hy signal (shot: 28089) with 104 points.
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Fig.4. Log-log plots of C(r) versus r for n=3, 4, ..., 10
with N=5x105and M=100 for Hg signal (shot: 28089).
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