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Abstract:

On the basis of the surface current model, the scaling of an m=1 wall-stabilized
high-B stellarator is discussed in terms of the compression ratio », aspect ratio A,
helical distortions 50, 5], 52, and B. The m=1, k= 0 mode can be wall-stabilized
fory =2, 5] ~ 1, A==200, 3=<0.83, 609_/ 0.21, 522'0.07. The number of periods
around the torus is then n, 0.6 A/nz.




I. INTRODUCTION

In the ISAR T 1 experiment, the toroidal finite-8 MHD equilibrium characterized
by zero toroidal net current is produced by superimposing stellarator fields of dif-
ferent 2-numbers on the main (toroidal) magnetic field / 2,4/ . The combination of
an ¢-fold helical field with lower amplitude ¢ + 1 helical fields of proper period and
phase compensates the outward toroidal drift force acting on the plasma column. Equi-
libria of this type can be regarded as a generalized class of M & S-type equilibria with

non-planar magnetic axis.

The stability calculations of the m=1 mode /1,4,5/ show that , in leading order,
the 2=1 helical field is the most favorable one for creating a high-8 equilibrium which
is stable to the m=1, k=0 mode. Therefore, magnetic field configurations with =1 cor-
rugation fields in leading order and lower-amplitude ¢=0 and/or 2=2 have been in-
vestigated in more detail with respect to the stability behaviour/3,5/. The available
theories based on the surface-current model show that the m=1 mode (rigid gross dis-
placement) can be stabilized if the stabilizing effect of the conducting wall is taken
into account. In the following note, we will discuss the scaling of experiments in
the high-B stellarator geometry which are wall-stabilized to m=1, k=0 modes /b /
and we will estimate the optimum regimes using those formulas for the growth rate of

the m=1, k=0 mode in an ¢=0,1,2 system which have been derived from the surface

current model /1,2,3,5/.

The small parameter, used in the theories just cited as an expansion parameter, is
¢ : = ha (a mean plasma radius, h = 2r/L  periodicity number of the ¢ = 1 helical field).
In addition to e, we use the following parameters: the compression ratio » = b/a

(b mean wall radius) and the aspect ratio A = Rc/a related to the plasma radius (Ro
major torus radius). The toroidal equilibrium configuration has n periods around the major
circumference. The parameter ¢ is then related to the aspect ratio by ¢ = n/A. The
only parameter relating the quantities inside the plasma to those outside is 8 = 2p/Bo2
(kinetic plasma pressure over magnetic pressure of the outside main magnetic field Bo) :
The superposition of the helical =1 and of lower-amplitude ¢=0, 2 fields produces a
deformation of the plasma surface of the form

r=a {1+) &, cos (e - hz)}, e =0,1,2 (1)

where 5, are the deformations in units of the mean plasma radius.




The marginal limit of the m=1 mode can be expressed in six dimensionless parameters

as a condition (see below) :

F(&]I AI n; QITI,B)=O'

The search for an optimal working range under this condition has to include technical
and other arguments which will bebriefly listed for the parameters 5],A and yx in

the following.

Firstly, 8¢ has to be small. The need for a small helical distortion 51 is imposed mainly
for technical reasons. But the limit of the validity of the formulas for equilibrium and

stability is also reached when . becomes too large. The aspect ratio A has to be not to

1

large; this is a condition from the view of reactor considerations. For the compression

ratio » one has to look for a large value to reduce the problems of shock heating.

It turned out that optimization of these three quantities (§,>min!, A3 min !,

1
n —> max!) with respect to the remaining quantities o, n and 8 leads in every case
to the identical set of values agr N and B__o. So the requirements imposed on & ],A ,
and x can be met at the same time and we can restrict ourselves in the following to

the minimization of § 1

The optimum values of the distortions d;, will be determined for systems with
¢=0,1 and with e =0,1,2 corrugation fields. The amplitudes of the distortions of

the plasma surface are given by the equilibrium conditions

2A XK

e (2)
bpy = (1-a) 22— . ©
n?(2-R)

The parameter ¢ varies between 0 and 1 (0<q, < 1) and parameterizes the relative
contr ibution of the ¢ = 0 and the ¢ = 2 corrugation fields. An optimum value of o

will be derived lateron which depends only on 8.




II. SCALING OF THE ¢ =o,1,2 CORRUGATION FIELDS

For the case of superimposed ¢ = 0,1,2 corrugation fields, the growth ratey of the

m=1, k =0 mode (k wave number in longitudinal direction) is given by /3/

vin 0 b £ %G d b g 2
ve- Az;l'-;. “—:—M[GOJ;’“Az 61&1*6252“‘6351 n: d, ] (4)
p 2
where V= Bi /((‘o P)/Z is the Alfven velocity and Bol/(‘*o? = (_1\1_—@') ’
The functions 6{ , €=01,2 have been introduced in /1/ (without a factor of 2):
_ (3-128) (1-A)
Q, 2-6) (5q)
4-38) (2-6)
G 21-B) i
1
6," 3 (2-8) (5¢)
ﬂll-
G 3 ® TRy (5d)

The last term in Eq.(4) is the stabilizing wall term proportional to ')('.-4. Therefore,
n should be small (e.g. 2) in order to achieve effective wall stabilization. The stabilizing
effect arises from the induced helical dipole current. The unstable term (33 is neglected
because it is small compared to G] and it can be fully compensated when an elliptical de-

formation is introduced /5/.

The two essential points in using the ¢=1 field in leading order (in contrast

to the classical M & S configuration /7/ ) are
5 (2
a) there is no unstable term of order 0 (‘nz 51 /Az ) p

202 /2
b) there exists a strong stabilizing term of order O( L &1 /A %4)




. 4.
of the same order as the unstable terms if 3 is small enough.

The growth rate of the m =1, k # 0 mode is smaller than that for k = 0;

therefore, the case k # 0 will not be investigated.

With the help of (2) and (3) we eliminate 8, and 52 in Eq.(4) and carry out the
optimization for marginal stability (Y2 = 0). In this case £q.(4) can be explicitly solved

for 51

C o yat(1-0)/13-20) +2(1-%)" (©)
T (2B)[Ant/ it Aty -6 /A

We shall now minimize 6] with respect to n,a, and B in that order.

The function § ]q. has local minima with respect to n,a, and 8. After minimizing
with respect to n, one sees that the A-and »-dependences are simply given by the

factor ;{]2/A2 in front of 6]4.

Furthermore, the three parameters A,n and » occur in [q.(6) as the two combinations
n/(% Aj/z) and n/A2/3. Now the quantity § 14 has a minimum with respect to n for

n=n,, where n, is given by

1/2
n(B) - N A/ U N, - (2/3/361) . 7)

There is precisely one solution N for the number of periods and this solution

is always positive.

Il1.1. ¢=0,1-system (a=1)

With Eqs.(6) and (7) 5, was calculated for o = 1:

Jq n Dn 7"5//3\]/2 /%
S Do e /o 50

1}

[}

(the index n indicates minimization with respect to n).
q




The function Dn(B) varies weakly in the region 0.5 & 8 £ 0.9, assumes the
minimum value of 1.71 for B = 82 = 0.86 (see Fig.1), and is infinite for 8 =0 and 1.

The corresponding ¢ = 0 deformation of the plasma surface is calculated from Eq.(2):
4
(8081)11 = Do% /A

with D - 3(4-368)(2-p) (9)
°  #p(4-8)(3-2B)

In the special case where 8 = 82 minimizes Dn above one obtains DO(B

2) =3.94,
which does not coincide with the minimum value of Do' The B-dependence of the

¢=0 distortion after minimizing & i4 with respect to n is given by DO(B).
The function Do is shown in Fig.2 (dashed curve).

Finally, after minimization of J.J with respect to n and B one gets:

)

Fig.3 shows the curves =X (A,' 6“1,71 B) in a logarithmic A, » - diagram (dashed

=171 %3 /A" (10)

,np

curves); the parameter of these curves is 6'1 np and assumes the values
/

0.25, 0.50, 1, 2,3. The region above the curves is the unstable region.

11.2.8 =0,1,2 - system (g #1)

4
Next we minimize Jl , Eq.(6), with respect to o and with respect to n.
Consequently, with Eq.(7) we obtain from Eq.(6) the minimizing q-value, ay

as a function of B:

(3-2R4)
A1 = 5-4p) i

which increases monotonically: 3/§ < X,4 1; &, depends only on B and

does not depend on the geometric parameters of the configuration. It follows from

Eq.(11) that the minimum value of o is at B =0 and is given by 0.6.




Consequently, a non-vanishing ¢ = 0 distortion of the plasma surface is needed in the
case of minimizing é: , Eq.(6) , with respect to n and o at arbitrary 8.
Using the minimizing functions &, and T4 , the ratio of the ¢ = 2 distortion to
the ¢ = 0 distortion is then

§, /8, =200-8)/(2-8) -
We see from this formula that the ¢ = 0,2 distortions are approximately of the
same magnitude for small B (e.g. for 8=0.1: 62 /go = 0.94), and that the

ratio O J~ decreases monotonically to small values with increasing 8 (e.g. for
2/90 Y 9 g

8=0.9: 4, /d=0.18).

Inserting in Eq.(6) the minimizing functions n, and aqr one gets for &

5 s 1= Dy g gl a2
1, L% no

1/4
Dpa = Dy %4 (13)

(the index M indicates minimization with respect to n and «).

The function Dy s infinite for 8= 0,1 and has a minimum value of 1.62 for

B =0.83 =: 3, -

(_‘Sz/cgo for this minimizing Bo- value is 0.31. The minimum values of the
functions Dn(a =1) and Dnd. (@ =a]) differ little from each other (Fig.1). The fact
that Dna varies slowly below BO = 0.83 is important; therefore, the final scaling
law (shown in Fig.3) hardly changes if a B-value different from the optimum value 8,

i a5 L R 2
is used :0(] (Bo)—0.8— :0(0; n](Bo)—-O.éé A= =m,

The final scaling of 54 after minimization with respect to n,q,B is

S _ 162 %3/A (14
1,k

Let us now express # = u(A; (S,,, no B ) . Fig.3 then represents » = (A) for different
/
choises of CY1 n«B The stable A,){-region for the m=1, k=0 mode lies below these
{

curves.,




The ¢ = 0,2 distortions have to be calculated from (2), (3), and are given by

(.85 ) =4, %“/A ; dolp) =Dyx. , d(083) =2.79,

no

4 s
(52_ él)no( = D2 %/A ; DZM) = ;?W%?%] ])2(0.83)-'0,81 :

The functions do and D2 are shown in Fig.2 . For the optimum case of B,=0.83, the

¢ = 0 distortion is roughly three times as large as the ¢ = 2 distortion. If the B-value is

increased above the optimum value 8,,the ¢ = 0 distortion increases, while the ¢ = 2

distortion decreases . If the B-value is decreased below the optimum B , 0,548 £8 , the
o )

¢ = 0 distortion decreases and the ¢ = 2 distortion increases, both slowly. The ¢ = 2

distortion is always smaller than the ¢ = 0 distortion.

I1.3. Limiting curves for non-shaped vessel

Up to now we have minimized the ¢ = 1 distortion of the plasma surface and have
found the ( cj; ,A, % ) triplets for the marginal stability of the m=1, k=0 mode. We now
describe the conditions under which a smooth toroidal vacuum vessel or a helically
shaped vessel is needed in order to produce a toroidal high-8 equilibrium with super-

imposed ¢ = 0,1,2 fields which is wall-stabilized with respect to the m=1, k=0 mode.

The limiting curve in the A, x ~diagram is to be calculated from the assumption
that the distorted plasma column should lie within a non-shaped vessel, this fact being
stated by
a+Aa & r, (15)

where r, is the mean radius of the vessel and Aa is the total plasma distortion (for the
estimate it is enough to take into account the ¢=1 distortion). Inserting the non-dimensional
parameters we get the relation

5, £ny-1 (16)

1

where v =1, /b is a measure of the wall thickness of the vessel; Eq.(16) gives the
admissible 6] values as functions of % for the case of a non-shaped vessel. Using Eq.(14)i.e.

a = o,o) we get the limiting curve in the A,x - diagram:




-8 -

A - % D?
) (vy -1)°

with D=1.b2 .

The limiting curve is shown in Fig.3: the curve (i) represents V =1 o= 0(0/- the curve

(ii) represents V= 0.8 & = &, which is more realistic.

The region to the right-hand side of the limiting curve is admissible if a non-

shaped vessel is used. A. depends strongly on v.

1

[11. CONCLUSIONS

The scaling of an m = 1 wall-stabilized high-8 stellarator is discussed on the basis
of the surface-current model. Scaling laws and curves in terms of the aspect ratio A,
compression ratio %, helical distortions Je (¢ =0,1,2),and B are given. The minimization
of the ¢ = 1 distortion of the plasma surface in the case of marginal stability was performed
with respect to the number of periods (n) around the torus, the amplitudes of the helical
¢ =0 and & = 2 corrugation fields ( (So/ (SZ)I and B. After minimization a possible choice
of these parameters is H = 2, 8y = 1, A=200, 8=0.83: 8, = 0:21; 5,= 0.07,

where wall stabilization of the m=1, k=0 mode is effective.

In the case of no & = 2 distortion (o = 1), the optimum B-value is 8 = 0.86 and the
resulting scaling law is § 1,nB =1.71 n3/A]/2, the number of periods is n, = 0.63 A/uz.
In the case of «= o
(¢ =0,1,2 corrugation fields), the optimum B-value is B;= 0.83 and the resulting scaling
law isé],nrs = 1.62;(3/A]/2 (o =0.8). The corresponding number of periods n is
n,=0.66 A/n? .

In all cases of practical interest (A not to large) it is necessary to use a vacuum

vessel which has a helical-toroidal shape.
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Figure Captions

- e 2 3 1/4
Fig. 1: a) Function Dn =[27(4-38) (2.—8)/648 (1-8) (3-221’3)]
describing the e=1 (%= 1) distortion 5, = (x"/ VA) D, -

b) Function Dn\x = Dn [(3-28)/(5-—4[3 )] Ve
describing the ¢ = 1 (& = 0(1) distortion 8 et = (;{3/ VA) D

Fig.2: o) Function D_ = 3(4-38) (2-8)/88(1-8) (3-26) donarlbng the ¢, 7.0
distortion in the case of & = 1: (§ 6] (n /A

(dashed curve optimized with respect to n).

b) Function d = D (3-28) /(5 48) describing the £= 0 distortion in case of
o= O(] (6 51) o /A) d (slight curve; optimized with respect to
n,o).

c) Function D2 = 3(4-38)/48(5-43) describing the € = 2 distortion in case of
K= 0(]: (625 ]) o (n4/A) D2 (bold curve; optimized with respect to

n,%). In all three cases § , is parameter.

1

Fig.3: Scaling law for marginal stability of the m=1, k=0 mode (rigid displacement;

A aspect ratio with respect to plasma radius; § , optimum ¢=1 distortion).

1
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