A preliminary model for estimating the first wall lifetime of a fusion reactor

W. Dänner

IPP 4/130

Februar 1975

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK

GARCHING BEI MÜNCHEN

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK GARCHING BEI MÜNCHEN

A preliminary model for estimating the first wall lifetime of a fusion reactor

W. Dänner

IPP 4/130

Februar 1975

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem Max-Planck-Institut für Plasmaphysik und der Europäischen Atomgemeinschaft über die Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgeführt. IPP 4/130

A preliminary model for estimating the first wall lifetime of a fusion reactor

W. Dänner

Februar 1975

Abstract

The estimation of the first wall lifetime is a necessary basis for predicting the availability of a fusion power plant. In order to do this, an analytical model was prepared and programmed for the computer which calculates the temperature and stress load of the first wall from the principal design parameters and quotes them against the relevant material properties. Neither the analytical model nor the information about the material performance is yet complete so that the answers obtained from the program are very preliminary. This situation is underlined by the results of sample calculations performed for the CTRD blanket module cell. The results obtained for vanadium and vanadium alloys show a strong dependence of the lifetime on the irradiation creep and the ductility of these materials. Completion of this model is envisaged as soon as the missing information becomes available.

Contents:

			Page
1.	Intro	oduction	1
2.	Princ	cipal design features of the module cell	1
3.	Input	quantities to the analytical model	2
	_	i i i i i i i i i i i i i i i i i i i	-
4.		ysis of the temperature and stress load of the wall	4
	4.1	Determination of basic quantities	4
	4.2	Heat transfer from the wall to the coolant	6
	4.3	Temperatures inside the first wall	8
	4.4	Stresses inside the first wall	8
5.	Mater	rial properties and wall lifetime	10
	5.1	Time rupture strength	10
	5.2	Thermal creep	11
	5.3	Irradiation creep	12
	5.4	Open problems	12
6.	Compu	iter program	13
	6 1	Department of the second of th	1.0
	6.1	Description of the single programs	13
	6.2	Description of the input	17
7.	Sampl	e calculations	19
	7.1	Input specifications	19
	7.2	Results for pure vanadium	20
	7.3	Influence of titanium as alloying element	23
8.	Concl	usions	24
9.	Aalena	wlodgements	25
٠.	ACKIIO	wledgements	23
0	Refer	ences	25

1. Introduction

The information about the first wall lifetime was recognized as important for predicting the frequency of shut-down periods for routine replacement. Together with the length of these periods which results from considerations of the feasibility and sequence of the replacement operations envisaged, this information should subsequently permit conclusions concerning the availability of a fusion power plant.

The purpose of this study was to provide the means for estimating the useful life to be expected for the first wall by means of an analytical model. This model should allow

- evaluation of the temperature, stress and radiation loads from the principal design parameters of a reactor
- quotation of these loads against the material performance and hence derivation of an estimated lifetime.

This model was developed in the course of the European Collaborative Tokamak Reactor Design study (CTRD). Its first part is therefore strongly related to this special design. Parametric studies by means of this model should already aid the design at an early stage of its development and provide a background against which the final decisions could be weighed. To meet these requirements, the analytical model as hitherto elaborated was programmed for the IBM 360/91 computer at IPP using basic FORTRAN-IV language.

2. Principal design features of the module cellogomes to asset

The present study is concerned with a modular cell (see Fig. 1) as proposed by J.T.D. Mitchell and J.A. Booth [1] and J.R. Stanbridge et.al.[2]. As a first guess it is assumed that the cross-section of this cell will be circular and that the material composition inside this cell is in close agreement with the blanket proposed by J. Darvas [3]. This implies the use of helium as a coolant.

To describe the geometrical environment of a single cell, the analytical model allows of two options: the arrangement in a square (see fig. 2a) or haxagonal (see fig. 2b) matrix.

In addition, the specification of a pitch ratio p is possible, this being the ratio of the distance d between the axes of two adjacent cells and their outer diameter $D_{\mathbb{C}}$:

$$p = \frac{d}{D_C}$$
 (1)

These options permit the definition of a package density p, which is the ratio of the cell cross-section A_C and that of a matrix element A_M . A simple calculation leads to the expression

$$\int p = \frac{\pi}{4} \cdot \frac{1}{\alpha p^2} \tag{2}$$

with α = 1.0 for the square matrix and $\alpha = \frac{\sqrt{3}}{2} = 0.866$ for the hexagonal matrix.

3. Input quantities to the analytical model

Before beginning with the analytical treatment of this problem it first had to be decided which quantities shall be treated as independent variables. To gain the greatest possible flexibility it seemed realistic to choose those quantities about which information is most probably provided by other areas of reactor design:

- neutron wall loading P_{Wn} [W/cm²]

bremsstrahlung power. Although there is a difference in the temperature dependence of the neutron and the bremsstrahlung wall loading it is assumed in this model that they are proportional to each other. Therefore, a constant factor f_{Wbr}

$$f_{Wbr} = \frac{P_{Wbr}}{P_{Wn}} [-1]_{Max = 0.00} (3)$$

has been introduced. This factor describes the dependence exactly only if changes in the neutron wall loading are obtained by changing the ion density. In the case the ion temperature is changed it is only an approximation.

- The power multiplication factor M of the blanket, defined as the ratio of the total nuclear power of the blanket and the power carried by the 14 MeV neutrons from the plasma to the blanket.
- the structure material volume fraction ϵ_W permitted for the outer cell wall. This figure does not include further structure material inside the beryllium, lithium or graphite regions.
- a factor f_{HW} which relates the average power density \bar{q} in the first wall to the neutron wall loading. This factor can be derived from the results of a neutronics analysis. Knowing the power density profile q(x) across the first wall with the thickness s_W for a given neutron wall loading P_{Wn} , f_{HW} becomes

$$f_{HW} = \frac{\bar{q}}{P_{Wn}} = \frac{\frac{1}{\bar{s}_W} \int_{0}^{\bar{s}_W} q(x) dx}{P_{Wn}}$$

a factor f_{dpa} which relates the annual displacement rate in the first wall to the neutron wall loading.

-	the outer cell diameter	D _C	[cm]
5011	the radial length of a cell	LC	[cm]
_	the helium pressure level	Pc	[bar]
) <u>Le</u> d	the helium inlet temperature		
	to the blanket	tcin	[c]
	the helium outlet temperature		
	from the blanket	tcout	[C]
-	the width of the helium duct	5	[cm]
	the actual helium temperature		
	at the first wall		
	The choice of t has to be		
	made within the limits of tcin		
	and tcout.		

allowing for input of an enhanced heat transfer coefficient at the first wall. In the course of the calculation a heat transfer coefficient h is calculated for the annular duct in the straight section of the cell. Inside the spherical cup, however, the heat transfer may deviate from that. It depends on the amount of coolant which is diverted into the beryllium region along the path from the straight section to the bottom of the spherical cup as indicated in Fig. 1. The factor fhack has been introduced to take account of this fact. Actually it has to be determined by the thermal design of the cell.

4. Analysis of the temperature and stress load of the first wall

4.1 Determination of basic quantities

From the quantities defined in sections 2 and 3 the following general quantities can be derived:

The ratio of the cell wall thickness \mathbf{s}_{W} and the outer cell diameter $\mathbf{D}_{\mathbf{C}}$ can be calculated from the structure material volume fraction $\boldsymbol{\xi}_{W}$ and the package density $\boldsymbol{f}_{\mathbf{p}}$ by

$$\frac{s_W}{D_C} = \frac{1}{2} (1 - \sqrt{1 - \frac{\xi_W}{\xi_p}})$$
 [-]

The actual wall thickness $s_{\overline{W}}$ is

$$s_{W} = D_{C} \cdot \frac{s_{W}}{D_{C}}$$
 [cm]

The cell cross-section area $\mathbf{A}_{\mathbf{C}}$ follows directly from

$$A_{C} = \frac{\pi}{4} D_{C}^{2} \qquad [cm^{2}]$$

and the cross-sectional area of a matrix element from

$$A_{M} = \frac{A_{C}}{\varrho_{p}}$$
 [cm²] (7)

For the investigation of heat transfer it is necessary to know the coolant duct cross-section area ${\rm A}_{\rm CD}$

$$A_{CD} = \pi \cdot \delta \cdot (d_C - \delta) \quad [cm^2]$$
 (8)

with the inner diameter of the cell $d_{\rm C}$

$$d_{C} = D_{C} - 2 s_{W}$$
 [cm] (9)

The hydraulic diameter of the duct is

$$d_{h} = 2 \cdot \delta \qquad [cm] \qquad (10)$$

To calculate the helium flow rate necessary for cooling the cell within the indicated temperature limits, first the total power produced inside a single cell, $P_{\rm C}$, has to be evaluated. It is assumed that the entire energy incident on the area of one matrix element is converted to heat inside the corresponding cell. This means that

$$P_{C} = [P_{Wn} \quad (M + f_{Wbr})] \cdot A_{M} \quad [W]$$
 (11)

From this the coolant mass flow rate $\mathring{m}_{_{\rm C}}$, volume flow rate $\mathring{v}_{_{\rm C}}$ and velocity $w_{_{\rm C}}$ can be calculated by using the following equations:

$$\dot{m}_{c} = \frac{P_{C}}{c_{p} (t_{cout} - t_{cin})} \qquad [g/s] \qquad (12)$$

$$\dot{v}_{c} = \frac{\dot{m}_{c}}{f_{c}} \qquad [cm^{3}/s] \qquad (13)$$

$$w_{c} = \frac{\dot{v}_{c}}{A_{CD}}$$
 [cm/s]

The specific heat at constant pressure, c_p , and the density f_c of the coolant are thereby taken at the mean coolant temperature t_c

$$t_{c} = \frac{t_{cin} + t_{cout}}{2}$$
 [C] (15)

4.2 Heat transfer from the wall to the coolant

The inner cell wall temperature t_{Wi} is determined by the actual helium temperature t_{CX} and the temperature difference Δt_{CW} between the wall and coolant. The latter depends on the real heat flux density q_W at the wall and the heat transfer coefficient h of the coolant flow:

$$\Delta t_{CW} = \frac{q_W}{h}$$
 [C]

The heat flux density $\mathbf{q}_{\overline{W}}$ is calculated from the brems-strahlung wall loading and the power density inside the wall by the following equation:

$$q_W = P_{Wh} \cdot (f_{Wbr} + s_W \cdot f_{HW}) [W/cm^2]$$
 (17)

The calculation of the heat transfer coefficient h is based on the Kraussold-Nusselt equation for a circular pipe flow presented by U. Grigull et al. [4]:

Nu =
$$0.032 \cdot \text{Re}^{0.8} \cdot \text{Pr}^{0.37} \cdot (\frac{L_c}{d_h})$$
 (18)

with Nu, Re, and Pr being the Nusselt, Reynolds and Prandtl numbers. Introducing the coolant properties and the layout parameters into equ. (18) we arrive at the following expression for h:

$$h = \frac{k}{d_h} \cdot Nu =$$

$$h = 0.032 \cdot f_c \ (\%, p_c) \cdot w_c^{0.8} \cdot L_c^{-0.054} \cdot d_h^{-0.146} \ [W/cm^2 grd] \ (19)$$

 $\mathbf{f}_{_{\mathbf{C}}}$ ($\boldsymbol{\mathcal{I}}$, $\mathbf{p}_{_{\mathbf{C}}}$) summarizes the coolant properties which, in general, are dependent on the coolant pressure $\mathbf{p}_{_{\mathbf{C}}}$ and the average film temperature $\boldsymbol{\mathcal{I}}$:

$$f_{c}(\mathcal{S}, p_{c}) = \beta c^{0.8} \cdot c_{0}^{0.37} \cdot k^{0.63} \cdot \eta^{-0.43}$$
 (20)

Equation (20) yields the results in appropriate units for direct use in equ. (19), if the coolant properties are expressed in the following units:

density	8	[g/cm ³]
specific heat	cp	[J/g grd]
thermal conductivity	k	[W/cm grd]
dynamic viscosity	η	[g/cm s]

To yield h in W/cm^2 grd , the coolant velocity w_c , coolant duct length L_c , and hydraulic diameter d_h have to enter in the following units:

$$w_{c}$$
 [cm/s] and L_{c} [cm] and h according to h

In the analytical model the heat transfer coefficient and the quantities depending on it are evaluated in a iterative way, so that the temperature difference between the wall and coolant is obtained with an accuracy of $\frac{+}{2}$ 1 C.

4.3 Temperatures inside the first wall

Having evaluated the inner wall temperature t_{W_4} by

$$t_{Wi} = t_{CX} + \Delta t_{CW} \qquad [C] \qquad (21)$$

the next step is to determine the outer and the mean wall temperatures t_{W_O} and t_{W_m} . To solve this problem, the differential equation describing the process of heat conduction was applied to the case of plane geometry, which should be a sufficiently good approximation. As boundary conditions the temperature gradient resulting from the heat transfer to the coolant was used at the inner side, while the bremsstrahlung wall loading treated as an external heat source was used at the outer side. This procedure yields the temperature difference across the wall:

$$\Delta t_{\overline{W}} = \frac{P_{\overline{W}_{\underline{n}}} \cdot s_{\underline{w}}}{k_{\overline{W}}} \quad (f_{\overline{W}_{\underline{b}\underline{r}}} + \frac{1}{2} \quad s_{\underline{w}} \cdot f_{\underline{H}\underline{W}}) \quad [C]$$
 (22)

The outer and mean wall temperatures $\mathbf{t}_{W_{\bigodot}}$ and $\mathbf{t}_{W_{\mathclap{m}}}$ then become

$$t_{W_O} = t_{W_i} + \Delta t_{W} \qquad [c] \qquad (23)$$

$$t_{W_{\rm m}} = t_{W_{\rm i}} + \frac{1}{2} \Delta t_{W} \qquad [C] \qquad (24)$$

The thermal conductivity k_W of the wall material is thereby taken at the mean wall temperature. Therefore, in this case as well the analytical model provides an iterative procedure, yielding Δt_W with an accuracy of $^{\pm}$ 0.5 C.

4.4 Stresses inside the first wall

Whereas the temperature load of the first wall has already been determined by the procedure described above, the problem of stress loading remains to be solved. At present, three sources of stress can be identified:

- tensile stresses due to the static coolant pressure
- thermal stresses due to the temperature gradients across the wall
- additional stresses due to differential swelling in the wall.

From these sources the contribution of stresses due to differential swelling has not yet been included in the analysis.

For calculating the tensile stresses the equation

$$\tilde{G}_{1} = \frac{p_{C}}{\frac{s_{W}}{\tilde{D}_{C}}} \qquad [kp/cm^{2}] \qquad (25)$$

is used, yielding the maximum tangential stress at any point along the straight section of the cell wall. This should also be the maximum stress in that part of the wall which is directly exposed to the neutron and bremsstrahlung radiation, at least at the point where the straight section is joined to the spherical cup.

The thermal stresses are calculated using the formula given by J.R. Stanbridge et al. [2]:

$$\mathcal{E}_2 = \frac{1}{2} \cdot \frac{\Delta t_W \cdot \alpha \cdot E}{1 - \gamma} \quad [kp/cm^2] \quad (26)$$

Here α is the thermal expansion coefficient, E the Young's modulus and γ the Poisson ratio of the wall material considered.

Since the thermal stress has a tensile characteristic at the colder side of the wall, the maximum total stress

$$\mathcal{C} = \mathcal{C}_1 + \mathcal{C}_2 \qquad [kp/cm^2] \qquad (27)$$

appears at the inner side of the cell wall.

5. Material properties and wall lifetime

Before any statement about the lifetime of the first wall can be made, the temperature and stress loads have to be quoted against the relevant material properties. As far as we are aware these are:

- the time rupture strength
- the creep strength
- the fatigue strength
- the ductility sesseris eliene

In comparing the temperature and stress loads evaluated according to the procedure described in section 4 with those four properties, their variation with the radiation dose also has to be taken into account. As far as the fatigue strength is concerned, information about the thermal cycling should also be available. At the present stage only the time rupture behaviour, excluding the influence of irradiation, thermal creep and irradiation creep have been included in the analysis.

5.1 Time rupture strength

In the current literature (see, for example, H. Böhm, M. Schirra [5]) data for the time rupture strength \mathcal{C}_{tr} are presented as a function of the Larson-Miller parameter P. This parameter is defined as

$$P = T \cdot (C + \log t_1)$$

C being a material constant, T [K]the operating temperature and t_1 [h] the useful life.

The analytical model presented here makes use of information of this kind in the following way. If \mathscr{C}_{tr} is known as a function of P, the reverse procedure must yield a certain value for P when \mathscr{C}_{tr} is replaced by the total stress load \mathscr{C} evaluated in equ. (27). Introducing the working temperature T

(in the present case the inner wall temperature $t_{\rm W\,i}$ as the point of maximum stress), equ. (28) can be solved for t_1 yielding

$$t_1 = 10 \left(\frac{P}{T_{W:i}} - C \right)$$
 [h] (29)

An interative procedure could be provided in the event of knowledge about the changes of \mathcal{E}_{tr} with the neutron dose becoming available.

5.2 Thermal creep

Literature on thermal creep, e.g. M. Schirra [6] or G. Schmidt [7], presents the dependenc of the creep rate to due to Norton's relationship:

$$\dot{\xi}_{t} = k \cdot 6^{n} \qquad [h^{-1}] \qquad (30)$$

Using G in [kp/mm²] yields E in [h⁻¹]. M. Schirra [6] also presents an equation with which it is possible to calculate the lifetime E due to thermal creep:

$$\log t_2 + m \log \dot{\xi}_t = \ell \tag{31}$$

Therefore, if the materials characteristics k, n, m, and ℓ are known it is possible to arrive at a second figure t_2 for the expected lifetime due to

$$t_2 = 10^{(\ell - m \cdot \log \dot{\ell}_t)}$$
 [h] (32)

The analytical model makes use of this procedure and evaluates t_2 besides t_1 .

5.3 Irradiation creep

The importance of irradiation creep is outlined by J.R. Stanbridge et al. [2]. The equation given in this report can be transformed in such a way that a creep rate $\dot{\xi}_i$ can be obtained.

$$\dot{\xi}_{i} = c_{i} \cdot f_{dpa} \cdot P_{Wn} \cdot G \qquad [h^{-1}]$$
 (33)

Information has, however, to be provided about the materials constant C_i , which is presented in this report only for stainless steel.

5.4 Open problems

As mentioned above, the analytical model for an estimation of the first wall lifetime as described so far is not yet complete. There is especially a lack of information about the irradiation effects. This becomes immediately obvious if the creep rates for both thermal and irradiation creep are quoted against any permissible limit. Equation (32) defines an expected lifetime only for the case of absence of irradiation and is therefore not necessarily true if $\dot{\xi}_{t}$ is replaced by the total creep rate $\dot{\xi}$:

$$\dot{\xi} = \dot{\xi}_{t} + \dot{\xi}_{i} \qquad [h^{-1}] \qquad (34)$$

The analytical model nevertheless makes use of this assumption to calculate a third lifetime t_3 .

$$t_3 = 10^{(\ell - m \cdot \log (\dot{\ell}_t + \dot{\ell}_i))} [h]$$
 (35)

To obtain a precise picture, obviously the total creep rate and the static elongations due to thermal and stress effects have to be quoted against the ductility of the special material, which, in general, is strongly affected by irradiation embrittlement. This step in the analysis has not yet been done. Instead of this a fourth time t_4 describing the time in which a total of 1 % creep is reached is calculated:

$$t_4 = \frac{0.01}{\xi_t + \xi_i}$$
 [h]

Summarizing the status of the development of the analytical model, it must be emphasized that further refinements and additions are necessary. This is especially true as far as the material properties are concerned. It is in this area that a lot of work will have to be done if this model is to be further developed to become a useful tool in reactor design.

6. Computer program

In order to have a convenient means of performing parameter studies, it was decided to program this model for the IPP computer. Figure 3 shows a flow diagram of this program, which shall be briefly explained in this section.

The program consists of a main program and 12 sub-programs, 8 of which exclusively provide material properties. These latter routines are written in such a way that they can easily be corrected and extended to any number of materials.

6.1 Description of the single programs

MAIN is a multi-purpose input/output program which can be applied to any calculation routine. It offers great flexibility for the following reasons:

- the number of input quantities is, in principle, unlimited.
 - each input quantity can be varied in equal steps between two limits. In the present version, however, only the first two quantities with varying input are accepted to be changed.
 - it provides either total output or selected output of special quantities.
- it provides additional plot output of selected quantities. In the present version, however, the plot routines have been removed to save storage location during the test period.

Communication with the first level subroutines (in this case WLOAD and LIFE) is ensured by COMMON statements. To adjust this program to any subroutine, only the COMMON and part of the DIMENSION statements have to be changed. In addition, the names of the input and output quantities have to be put to two DATA statements to provide a self-explanatory print output.

- WLOAD performs all calculations described in section 4 of this paper. It makes use of two further subroutines for calculation: HTCOF and WALLTM.
- HTCOF evaluates the heat transfer coefficient, the temperature difference between the wall and coolant and the inner wall temperature itself. The coolant properties needed for this calculation are supplied by the subroutine COOLNT.
- WALLTM calculates the temperature difference within the wall using the thermal conductivity provided by COND.
- LIFE finally takes over the figures for the temperature and stress load evaluated by WLOAD and quotes them against the material properties as described in sections 5 and 6.

COOLNT calculates the coolant properties for helium which are needed in WLOAD and HTCOF. Dependent on temperature and pressure, it yields the density, specific heat at constant pressure, thermal conductivity, and dynamic viscosity. The equations contained in this subroutine are taken from W. Zimmerer [8].

The remainder of the routines are concerned with properties of the wall materials. Each property needed is supplied by a special subprogram which may contain the data of various metals and alloys. Which of these data are used is decided by a material identification number.

supplies the thermal conductivity dependent on the temperature. At present this FUNCTION subprogram contains only data for vanadium and vanadium-titanium alloys. Data for pure vanadium and for the alloys V-3 Ti and V-20 Ti have been calculated according to H. Böhm et al. [9]. For any other titanium content these data are linearly interpolated. The actual titanium content which will be taken into account is supplied to this and any further routine by the material identification number.

EXPN calculates the thermal expansion coefficient dependent on the temperature. This FUNCTION subprogram at present contains only the data for pure vanadium which are also used for vanadium alloys. They are taken from F. Sperner [10].

EMOD supplies Young's modulus. Provision is made for taking into account a temperature dependence. At present, however, only the value for vanadium is supplied as a constant figure which is due to F. Sperner [10].

POIS supplies the Poisson ratio. For this the same is valid as for Young's modulus, the figure for vanadium being taken from Kieffer [11].

LARSON supplies the material constant C (see equ. (28)) and calculates the Larson-Miller parameter P for a given stress. As yet only data for two vanadium alloys, V-5 Ti and V-20 Ti, which were taken from H. Böhm, M. Schirra [5], have been evaluated. The curves given there were approximated by polynomials and interpolation is provided to obtain results for any reasonable titanium content.

creep (see equ. (33)). At present only the figure for stainless steel is known from the publication of J.R. Stanbridge et al. [2]. This figure is therefore also used for vanadium.

CREEP supplies the parameters for secondary creep, i.e. the creep constant k and the stress exponent n for Norton's equation (equ. (30)) and the material constants m and ℓ which are needed to solve equ. (32) and (35) respectively. This subroutine contains at present k and n for stainless steel according to G. Schmidt [7] dependent on temperature. Since m and ℓ are unknown, the same data as for vanadium are used here.

Data of k and n for vanadium and vanadium alloys were derived from the publication of H. Böhm and M. Schirra [5]. Because of the somewhat different definition of Norton's equation close agreement can only be expected for pure vanadium and the alloys V-2.8 Ti, V-5 Ti, and V-20 Ti. The constants m and ℓ were also taken from this publication.

Complete lists of all programs are included in the Appendix.

6.2 Description of the input

lst card (format: 8X, 4I4)

NA	number of input quantities $= 17$ (fixed)
NR	number of results (total) = 34 (fixed)
NPR	number of results to be printed NPR \leq NR
	NPR = 0 : total output
NPL	number of results to be plotted = 0 (fixed)

2nd card ff. (format: 8X, 3F12.5)

Al lower limit of variable range
A2 upper limit of variable range
DA increment of variable variation

There have to be NA cards defining the input variables in the following sequence:

PWNU	neutron wall loading Pwn	[W/cm ²]
FWBR ⁺	bremsstrahlung factor f _{Wbr}	[-]
PMUL	power multiplication factor M	[-]
STRU	structure material volume fraction	ξ _w [-]
PRES	coolant pressure P _C	[bar]
TCI	coolant inlet temperature t	[c]
TCO	coolant outlet temperature t	[C]
TCX	coolant temperature at first wall t	cx[C]
ARR	option for cell arrangement	777/4
	= 1.0 cylindrical cells in square	matrix
	> 1.0 cylindrical cells in hexagon	al matrix
DCO	outer cell diameter D _C	[cm]
CHAN	coolant duct width & III bas dAOA	[cm]
XLEN	cell or coolant duct length $I_{\mathbb{C}}$	[cm]
PITC	cell pitch ratio p	[-]

FHW⁺ power density factor f_{HW} [cm⁻¹] FHTC factor for enhanced heat transfer f_{HTC} [-] XMAT⁺⁺ material identification number [-] FDPA⁺ displacement rate factor f_{dpa} [-]

- The factors f_{Wbr} , f_{HW} , and f_{dpa} have to be normalized to $P_{Wn} = 100 \text{ W/cm}^2 = 1 \text{ MW/m}^2$.
- The material identification number is of the following type:

XMAT = xx.yyzz

xx = charge number of the basic element

yy = percentage of the first alloying element

zz = percentage of the second alloying element

Examples:

Pure vanadium: XMAT = 23.0000 V-5 Ti : XMAT = 23.0500 V-10 Ti-10 Cr: XMAT = 23.1010

3rd card ff. (format: 8X, 914)

KPR identification numbers of the results to be printed.

There have to be NPR identification numbers. The numbers correspond to the order in the DATA NAMER statement of MAIN. Their meaning can be looked up in the comment cards in WLOAD and LIFE.

This card can be omitted if NPR = 0

4th card ff. (format: 8X, 9I4)

KPL identification numbers of the results to be plotted.
This card <u>has to be omitted</u> since plot-output is not possible in the present version.

7. Sample calculations

7.1 <u>Input specifications</u>

To demonstrate the runnability of the program some sample calculations were performed. The following input parameters were chosen:

neutron wall loading	P _{Wn} =	83 W/cm ²
bremsstrahlung factor	f _{Wbr} =	$2.7 10^{-4}$
power multiplication factor	M =	1.2
structure material volume fraction	ε _w =	0.02
coolant pressure	P _C =	10 to 50 bar
coolant inlet temperature	tcin =	350 C
coolant outlet temperature	t _{cout} =	750 C
coolant temp. at first wall	t _{cx} =	350 to 750 C
arrangement option (see section 2)		1.0
cell outer diameter	$D_C =$	30 cm
cell length	L _C =	100 cm
pitch ratio	p =	1.0
heat source density factor	f _{HW} =	0.04
heat transfer factor		1.0
material identific. number	see belo	ow edxe ed
displacement rate factor	f _{dpa} =	0.319

Four runs were performed for four different vanadium alloys:

pure vanadium	TAMX	=	23.0000
V-2.8 Ti	TAMX	=	23.0300
V-5 Ti	TAMX	=	23.0500
V-20 Ti	TAMX	=	23.2000

The neutron wall loading, the bremsstrahlung factor and the power multiplication factor are in agreement with the CTRD outline specifications stated at the 1st General Meeting of the CTRD team in May 1974 at Garching. The characteristic data of the cell, i.e. $D_{\rm C}$, $L_{\rm C}$ and $E_{\rm W}$ correspond to the Culham design [1], while the arrangement of the cells and their pitch ratio were chosen arbitrarily. The heat source density factor and the displacement rate factor were derived from Steiner's publication [12]. For the thermodynamic cycle the temperature boundaries were taken from an equivalent fission reactor helium cycle [13].

The aim of the sample calculation was to see the influence of the coolant pressure level $P_{\rm C}$ and the actual helium temperature at the first wall $t_{\rm CX}$. Therefore, $P_{\rm C}$ was varied between 10 and 50 bar, and $t_{\rm CX}$ within the limits of the blanket inlet and outlet temperatures, i.e. between 350 and 750 C.

7.2 Results for pure vanadium

From the four runs made for different materials here only the results for pure vanadium shall be reported in some detail. The influences of titanium additions to the basic material are summarized below.

Figure 4 shows the results obtained for t_1 , which is the useful life due to the time rupture strength. As was to be expected the life decreases as temperature and pressure increase.

The same is true of t_2 , which is the useful life due to thermal creep, as can be seen from the solid lines in fig. 5. Two differences, however, can be observed:

- the temperature dependence shows a steeper slope in the case of thermal creep as compared to the time rupture behaviour.

the pressure dependence shows an increasing slope in the time rupture behaviour but a decreasing slope in the creep behaviour.

As far as the absolute figures are concerned, it can be clearly stated that the limits set by the time rupture strength are more stringent than those set by thermal creep. This is more obvious from table I, in which the temperature limits are summarized as dependent on the pressure level for three different lifetimes, namely 1, 5, and 20 years. From this table it can be concluded that the first wall could last the whole life of the reactor, if the helium pressure does not exceed about 40 bar and the wall temperature remains in the range of 400 C, as was anticipated in the first guess of the blanket thermal design.

Figure 5 also shows the influence of irradiation creep, which is represented by the dotted lines. At this point it should be repeated, however, that two assumptions are involved in this consideration:

- the irradiation creep constant C_i is the same for vanadium as for stainless steel.
- the lifetime due to the sum of thermal and irradiation creep obeys the same law as the lifetime due to thermal creep alone.

This figure shows that irradiation creep limits the lifetime at lower temperatures whereas at higher temperatures thermal creep is the limiting effect. As is already expressed by equ. (33), there is only a dependence on pressure, not on temperature. The absolute values of the lifetime where irradiation creep becomes important, however, are far from being realistic. Therefore strong doubts should be cast on this line of reasoning.

A more realistic picture of the material performance can most probably be achieved if the actual creep rates, i.e. the sum of thermal and irradiation creep, are considered. In Fig. 6 the total creep rates are plotted versus the temperature t_{CX} with the pressure level as the parameter. The zero slope at low temperatures is again due to the irradiation creep, whereas the strong increase at higher temperatures is due to thermal creep. The straight lines in this diagram designate those creep rates which can be allowed to reach a certain amount of total creep in a certain time. This picture clearly shows that irradiation creep may become very important from this point of view.

At this stage again the question arises what amount of total creep or, to be more precise, of total elongation including static elongation and creep can be permitted from the ductility point of view. No relevant information is available at present. Therefore, the amount of total creep has to be treated as a variable in the following considerations.

Figures 7 to 9 now show the limits for the first wall lifetime of 1, 5, and 20 years respectively, within the parameter fields of both pressure and temperature. Common to all the three figures is that the limit of thermal creep is irrelevant in all cases. Whether or not the time rupture strength will be a limiting property ultimately depends on the change of this limit due to irradiation and on the total permissible creep.

If a useful life of 1 year (see Fig. 7) is envisaged, then the time rupture strength should become a limit only if helium pressures above 40 bar are chosen. At lower pressure levels the ductility should always present the significant limitation. This is the more true the longer the lifetimes expected are (see Figs. 8 and 9). The reason for this is

the shift of the curves for equal total creep to lower levels of temperature and pressure with increasing time, and the most probable shift of the total permissible creep to lower values with increasing time and neutron fluence.

The most interesting information from these three pictures, however, is the cut-off of the smooth curves characterizing the constant amounts of total creep at certain pressures. This is a consequence of the effect of irradiation creep. As can be seen from Figs. 7 to 9, these pressure limits are dependent on the lifetime chosen. Assuming a helium temperature at the first wall close to the inlet coolant temperature (to be precise, $t_{\rm cx} \le 420~{\rm C}$ for $t_{\rm cin} = 350~{\rm C}$), the choice of the helium pressure level is exclusively determined by the lifetime desired and the total permissible creep. This relationship is shown in Fig. 10. This picture can be interpreted in the following way:

If the ductility loss during 5 years of operation should allow for 5 % creep during this period, then the helium pressure should not exceed 34 bar. If, however, the helium pressure chosen were to be only 20 bar, then a lifetime of about 10 years could be expected.

7.3 Influence of titanium as alloying element

In this section it is not intended to repeat the entire procedure once more for the three vanadium-titanium alloys. The results of the equivalent calculations shall only be summarized with regard to their tendency.

As compared to pure vanadium the V-2.8 Ti alloy offers a higher lifetime due to its time rupture strength. This, however, can only be considered as an advantage, as was stated in section 7.2, if the total creep rates are smaller and/or if the irradiation effects on the ductility are of less importance than in the case of pure vanadium. Indeed, the total creep rate has to be expected to be higher at

low temperatures but very much smaller at higher temperatures. The reason for this is that the thermal creep behaviour is somewhat more balanced, yielding higher lifetimes at high temperatures and lower, but still sufficiently high lifetimes at low temperatures. This, in turn, means that the irradiation creep becomes more important at low temperatures than in the case of pure vanadium. Since the model does assume identical irradiation creep constants for all the alloys considered there should be no significant consequence for the choice of the helium pressure if a low first wall temperature is envisaged. Under these circumstances the choice of this alloy would only be profitable if higher temperatures should occur.

Similar conclusions can be drawn about the two remaining alloys V-5 Ti and V-20 Ti. These, however, again show very disadvantageous behaviour of the thermal creep rate at higher temperatures. At present no necessity can therefore be seen for using alloys with a high titanium content unless significant differences in the ductility and irradiation creep behaviour should be detected.

8. Conclusions

The work done up to now shows that the analytical model and the computer program based on it is able to derive statements concerning the material performance and especially the first wall lifetime. The reliability of these statements mainly depends, however, on the accuracy and reliability of the material data. In this respect the model is far from being complete.

At present only some data on vanadium and a few vanadium alloys are included. Already the sample calculations show that the information about these materials is insufficient to arrive at reasonably credible estimates of the lifetime. As far as these alloys are concerned, neither the time rupture nor the

thermal creep behaviour seem to be properties governing the first wall life. It is far more probable that especially at the low temperatures envisaged the irradiation creep and the ductility under neutron irradiation will be the properties that will impair operation of the wall. It is in these very fields, however, that information is lacking.

It is hoped by the author that the work performed hitherto can be completed to some extent by incorporating the information arising in the field of material investigation. It will then surely be possible to arrive at somewhat more credible statements about the first wall lifetime to be expected for this special design.

It should also be mentioned that neither the method applied nor the computer program is restricted to the blanket design of the CTRD. In the same way as was done here, it could be applied to any other design now existing or arising in the future. In this case modifications of the program will be necessary especially in the subroutine WLOAD. The amount of work entailed, however, should not be prohibitive.

Besides this, the program could be sustained in an operable mode if the stress, temperature and irradiation loads were used as the only input quantities. With this modification performed the program could be made a module of a more comprehensive systems analysis program system.

9. Acknowledgements

The author gratefully acknowledges his nomination to the CTRD study group by K.H. Schmitter in that it enabled him to deal with this interesting problem. He is also indebted to Dr. A. Knobloch, member of der Coordinating Committee, for providing him with useful information. He also thanks Dr. S. Förster (KFA Jülich), Dr. G. McCracken and Mr. J.T.D. Mitchell (Culham Laboratory) for many helpful discussions and some valuable hints during the progress of this work. He finally thanks A. Nicol for reading the manuscript.

10. References

- [1] J.T.D. Mitchell, J.A. Booth:

 Wall loading limitations in a helium cooled fusion reactor blanket.

 CLM-R 126 (1973)
- [2] J.R. Stanbridge, H.M. Carruthers, B.A. Keen, H.A. Shotter: Design of stainless steel blanket cells for a fusion reactor. CLM-R 127 (1974)
- [3] J. Darvas:

 A blanket design with low lithium and tritium inventories.

 Proc. of the IAEA Workshop on Fus. React. Des. Probl.,
 Culham 1974
- [4] H. Gröber, S. Erk, U. Grigull:

 Die Grundgesetze der Wärmeübertragung.

 Springer-Verlag, Berlin/Göttingen/Heidelberg 1961
- [5] H. Böhm, M. Schirra: Untersuchungen über das Zeitstand- und Kriechverhalten binärer und ternärer Vanadin-Legierungen. J. of the Less-Comm. Metals 12(1967) 280-293
- [6] M. Schirra:

 Das Zeitstand- und Kriechverhalten der Legierung
 Inconel 625 in drei verschiedenen Vorbehandlungszuständen.

 KFK 1925 (1974)
- [7] G. Schmidt:

 Ein Rechenverfahren zur festigkeitsmäßigen Auslegung der Brennstabhüllrohre bei flüssigmetallgekühlten schnellen Reaktoren.

 KFK 808, EUR 3968d (1968)
- [8] W. Zimmerer: MAPLIB-Funktionen zur Berechnung der Zustandsgrößen von Helium, Luft, Kohlendioxid und Wasser. KFK 1403 (1971)

- [9] H. Böhm, H.-U. Borgstedt, M. Rühle, P. Wincierz: Entwicklung hochwarmfester und korrosionsbeständiger Legierungen auf Vanadinbasis für die Kerntechnik. 6. Plansee-Seminar
- [10] F. Sperner:

 Vanadium, ein Metall der Zukunft.

 Metall 15, 10 (1961), 988-994

 - [12] D. Steiner:

 The nuclear performance of vanadium as a structural material in fusion reactor blankets.

 Nucl. Fus. 14 (1974), 33-44
 - [13] E. Röhler, J. Schlösser, W. Tegen, K. Thurnher:

 1160-MWe-Kernkraftwerkprojekt mit Hochtemperaturreaktor.

 Brown-Boverie-Mitt. 9-73 (1973) 377-388

Temperature limits of for the first wall coolant to reach a lifetime t for a certain coolant pressure p_c for pure vanadium. TABLE I:

limit due to thermal (+ irradiation) creep limit due to time rupture strength A [C]; P_c [bar]

^crr: limit due t

196	은 ~ 음 등	AAAA	(196E)	0100	1619	J 974
t = 20a	2°CR	750	655	610	280	260
الباد الباد esig	FR	285	275 M	540	460	360
t = 5a	AcR	092	049	625	290	240 220
6ke (197	AT.	615	009	260	495	380
1a	%c _R	780	069	640	610	585
t = 1a	$S_{ m rR}$	650	640	290	520	410
974	D C	10	20	30	40	50

Fig. 1.: Scheme of a blanket module cell

Fig. 2a: Cylindrical cells in square matrix

Fig. 2b: Cylindrical cells in hexagonal matrix

Fig. 3.: Flow Diagram of "WALLIFE"

000

Fig. 10:
Allowable pressure pc dependent on the allowable total creep for different life times

APPENDIX

C ******	***** M	A I N **********	10
C		THE PARTY OF THE P	20
		I-PURPOSE INPUT/OUTPUT PROGRAM WHICH CAN BE	30 40
		NUMBER OF SUBROUTINES BY CHANGING ONLY A FEW	SAU ATAN 1150
C STAI	TEMENTS.		60
C +++++TAL T	UITC VEDCIO	N IT IS ADDITED TO THE BRODIEN OF EVALUATING	70
		X IT IS APPLIED TO THE PROBLEM OF EVALUATING XPECTED FOR THE FIRST WALL OF A CTRD BLANKET	CRILL DATA MAD
	JLE CELL.	WALL OF A CIKD BLANKET	90
C MODU	TE CELL.		100
Carrer AllT	UOD. OD U	M. DAENNER, IPP GARCHING	113
C AAAAA AUI	HUK. UK.W.	Madaenner, 1PP GARCHING	120
Canasa TND	PUT DESCRIP	T ION.	130
STORE A ST	RD 1 NA	NUMBER OF ARGUMENTS TO BE READ AND TRANSFERRE	
CAR	U I NA	TO THE CALCULATION SUBROUTINE(S)	Y0438 150
C	NR	NUMBER OF RESULTS TO BE TRANSFERRED FROM THE	160
Č		SUBROUTINE(S) AND SHIFTED TO OUTPUT	TAG JJAO 170
Č	NPR	NUMBER OF RESULTS TO BE PRINTED (NPR.LE.NR)	0 / 3T / 8 / 18 U
Č		NPR = 0 TOTAL OUTPUT	190
C		NPR > 0 SELECTIVE OUTPUT J9M, 89M, 8M, AM 100	COSCI READINA
C	NPL	NUMBER OF RESULTS TO BE PLOTTED (MAXIMUM = 10	210
C		IN THIS VERSION NO PLOT-DUTPUT IS POSSIBLE,	146 JOABR 13220
C		THEREFORE NPR = 0 HAS TO BE USED.	230
C CAR	RD 2 A1	LOWER LIMIT OF ARGUMENT RANGE	240
C	A 2	UPPER LIMIT OF ARGUMENT RANGE	250
C	DA	INCREMENT TO BE USED FOR THE VARIATION OF THE	
C		ARGUMENT BETWEEN THE LIMITS AT AND A2	11C)UA37 #14270
C		THIS CARD HAS TO BE REPEATED FOR EACH OF THE	280
C		NA ARGUMENTS.	290
C CAR	RD 3 KPR	IDENTIFICATION NUMBER(S) OF THE RESULTS TO BE	
C		PRINTED (MAXIMUM NPR)	310
C		THIS CARD CAN BE OMITTED IF NPR = 0.	320
C CAR	RD 4 KPL	IDENTIFICATION NUMBER(S) OF THE RESULTS TO BE	
C		PLOTTED (MAXIMUM 10, BUT EQUAL NPL)	340
C		THIS CARD CAN BE OMITTED IF NPL = 0.	350 360
DIM	THE TON ADD 1	(10), APR2(10), KPL(10), RPL(10,10,10), ZZ(6)	=И 01 00 1370
C	ENSION APRI	(10), APR2(10), RPL(10), RPL(10,10,10), 22(0)	A= (M) DAA OL380
Cassas Tue	EDITOUTNO	CARDS HAVE TO BE ADJUSTED TO THE SPECIAL PROB	
C	POLLOWING	CARDS HAVE TO BE ADSOSTED TO THE STECTAE TROB	#I=\$900J 15400
	I ENGTH OF	THE ARRAYS IN THIS DIMENSION STATEMENT HAS TO	
	JAL TO 'NA'		420
COLL	2.31	=AR G(11)	(111)189A 5430
	ENSION A1(1	7),A2(17),DA(17),NAMEA(17)	21 21 00 15440
CSOT	17.73X, FAR	ALCIZI+FLOAF(LR-LI#DAFIET) (S S S A .XY, TYSMUD	450
C**** THE	E LENGTH OF	THE ONEDIMENSIONAL ARRAYS AND THAT OF THE LAS	T 460
C DIM	MENSION IN	THE THREEDIMENSIONAL ARRAY HAS TO BE EQUAL TO	"NR". 470
C	· 中央市场景地 至郑明		480
DIME	ENSION NAME	R(34), KPR(34), RPR(10,10,34)	490
C			CALL LIF
		THE PULLUWING COMMON ARKATS HAS TO BE	210
	A AND "NR"	RESPECTIVELY.	520
C			0.000
	MON ARG(17)		770
	MON RES(34)		220
C	EDITOUTED		200
CTTTTT H	- FULLUWING	G DATA STATEMENTS SHOULD CONTAIN THE "NA" VARIA	510

```
NAMES OF THE INPUT QUANTITIES AND THE "NR" VARIABLE NAMES OF THE
                                                                             580
C
       OUTPUT QUANTITIES. THEY ARE ONLY USED TO IDENTIFY THE DIFFERENT
                                                                             590
       COLUMNS IN THE PRINT OUTPUT LIST.
C
                                                                             600
C
                                                                             610
      DATA NAMEA/ PWNU , FWBR , PMUL , STRU , PRES , TCI , TCD ,
                                                                             620
                 "TCX ", "ARR ", "DCO ", "CHAN", "XLEN", "PITC", "FHW ",
                                                                             630
     2
                 "FHTC", "XMAT", "FDPA"/
     DATA NAMER/*PCK *, *SOD *, *SW *, *DCI *, *DHY *, *TCM *, *ACH *,

AC *, *AM *, *PWBR*, *PC *, *DTC *, *XMC *, *XVC *,
                                                                            650
                     ", "QW ", "HEW ", "HTC ", "DTCW", "TWI ", "TWO ",
                                                                            660
                                                                            570
                 'TWM ', 'DTW ', 'STTH', 'STTN', 'STTO', PLM ', ULTR',
     3
                 'CRIC', 'CRSC', 'ULSC', 'CRTO', 'ULC ', 'ULIC'/
                                                                            690
                                                                            700
C***** IF THIS ADJUSTMENT IS DONE IN THE RIGHT WAY THE PROGRAM IS NOW
                                                                            710
       READY FOR USE. THE OUTPUT IS SELFEXPLAINING.
C
                                                                            720
C
                                                                            730
      CALL DATE (ZZ)
                                                                            740
     WRITE(6, 206) ZZ
                                                                            750
      WRITE(6,200)
                                                                            760
     READ(5,100) NA,NR,NPR,NPL
                                                                            770
      DO 1 N=1,NA
     DO 1 N=1,NA
READ(5,101) A1(N),A2(N),DA(N)
                                                                            780
                                                                            790
    1 WRITE(6,201) NAMEA(N),A1(N),A2(N),DA(N)
                                                                            608
      IF(NPR) 2,3,2
                                                                            810
    2 READ(5,100) (KPR(K),K=1,NPR)
                                                                            820
    3 IF(NPL) 4,5,4
                                                                            930
    4 READ(5,100) (KPL(K),K=1,NPL)
                                                                            840
    5 I = 0
                                                                            850
     DO 6 N=1,NA
                                                                            860
      IF(DA(N)) 7,6,7
                                                                            870
    7 I = I + 1
                                                                            880
      IF(I-2) 8,9,6
                                                                            890
    8 I1=N
                                                                            900
     GD TO 6
                                                                            910
    9 I2=N
                                                                            920
    6 CONTINUE
                                                                            930
     DO 10 N=1,NA
                                                                           940
   10 \text{ ARG(N)} = A1(N)
                                                                           950
     LOOP1=1+IFIX((A2(I1)-A1(I1))/DA(I1))
                                                                         960
      LOOP2=1+IFIX((A2(I2)-A1(I2))/DA(I2))
                                                                            970
                                                                         980
     DO 11 L1=1,LOOP1
      ARG(II)=AI(II)+FLOAT(LI-I)*DA(II)
                                                                            990
      APRI(L1) = ARG(I1)
                                                                           1000
     DO 12 L2=1.L00P2
      ARG(I2)=A1(I2)+FLOAT(L2-1)*DA(I2)
                                                                           1020
      APR2(L2)=ARG(I2)
                                                                          1030
                                                                           1040
C**** AT THIS PLACE INSERT YOUR CALCULATION SUBROUTINE(S). *********
                                                                           1050
                                                                           1060
     CALL WLOAD
                                                                           1070
     CALL LIFE
                                                                         1080
C
                                                                           1090
     IF(NPR) 13,14,13
                                                                           1100
   13 DO 15 L3=1,NPR
                                                                           1110
     LPR=KPR(L3)
                                                                           1120
   15 RPR(L1, L2, L3) = RES(LPR)
                                                                           1130
      GO TO 17
                                                                           1140
```

14	DO 16 L3=1,NR				115
16	RPR(L1,L2,L3)=RES(L3)				
	IF(NPL) 18,12,18				
	DO 20 L4=1, NPL				118
	LPL=KPL(L4)				
20	RPL(L1,L2,L3)=RES(LPL)				120
	CONTINUE				
11	CONTINUE				122
	IF(NPR) 19,21,19				123
19	NTAB=1+(NPR-1)/8				124
	GO TO 22				125
	NTAB=1+(NR-1)/8				126
22	DO 23 L1=1, LOOP1				127
	WRITE(6,202) NAMEA(II), APR1(L1)				128
	DO 24 NT=1, NTAB				129
	WRITE(6, 203)				130
	IF(NPR) 26,25,26				131
25	NT2=8*NT				132
	NT1=NT2-7				133
	IF(NT-NTAB) 28,27,27				134
27	NT2=NR				135
28	WRITE(6, 204) NAMEA(I2), (NAMER(NN), NN=NT1, NT2)				136
	WRITE(6, 207)				137
	DO 29 L2=1, LOOP 2				1380
29	WRITE(6,205) APR2(L2), (RPR(L1,L2,L3),L3=NT1,NT2)				139
	GO TO 24				140
26	NT2=8*NT				141
	NT1=NT2-7				1420
	IF(NT-NTAB) 30,32,32				1430
	NT2=NPR				144
30	WRITE(6, 204) NAMEA(12), (NAMER(KPR(NN)), NN=NT1, NT2	2) (*)			145
	WRITE(6, 207) DO 31 L2=1, LOOP2 3MA				146
	DO 31 L2=1, L00P2 3MA 1				1470
31	WRITE(6,205) APR2(L2), (RPR(L1,L2,L3),L3=NT1,NT2)				1480
	CONTINUE ABRA MOITOBE - SECTION THATOGO				1490
23	CONTINUE THE SW - ABOVE TO LITER BE ABOVE TO BE ABOVE				1500
3.6	STOP IN SME METER MERTAM INC. ACIDA SMORTE SECURIOR STORES				1510
100	FORMAT(8X, 914)				1520
	FORMAT (8X,3F12.5)				1530
	FORMAT(/ INPUT PARAMETERS ! //)				1540
	FORMAT(VARIATION OF ',A4, FROM ',F12.5, TO ',	F12.5,	BY S	TEPS	1550
	10F ',F12.5) BTAR WOLF CHILDY TARROST OF	SVEMDI			1560
	FORMAT(//'IR E S U L T S F D R 1,A4, = 1,F12.5				1570
	FORMAT (//5X, 'ARGUMENT', 7X, 'R E S U L T S F O R'/				1580
204					1590
205	FORMAT(' ',F12.5,5X,8(1PE12.4)) ASSENDED TO BE T	(O \a)			1600
	FORMAT(1DATE = 1,2A4/ TIME = 1,2A4/ JOB = 1,2	A4///)			1610
201	FORMAT(')				1620
	UTER WALL TEMPERATURE . ONE				1630

C******	*** 1	LOAD	** *****	10
C C C C C C C C C C C C C C C C C C C	DAM EO	EVALUATTA	NG THE TEMPERATURE AND STRESS LOAD OF THE	30
			MODULE CELL	40
C	ALL UI	THE CIRD!	TOPOCE GLEE	50
	: DR.W.	M.DAENNER	, IPP GARCHING	50
C			1911 23 8 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	70
C**** INPUT	PWNU	(W/CM2)	NEUTRON WALL LOADING	80
C	FWBR	(-)	BREMSSTRAHLUNG FACTOR	90
C	PMUL	(-)	POWER MULTIPLICATION FACTOR OF THE BLANKET	100
C	STRU	(-)	STRUCTURE MATERIAL VOLUME FRACTION FOR	110
C	2256	(040)	THE CELL WALL	120
C	PRES	(BAR)	COOLANT PRESSURE COOLANT INLET TEMPERATURE	140
C	TCI	(C)	COOLANT OUTLET TEMPERATURE	150
C	TCX	(C)	COOLANT TEMPERATURE AT THE FIRST WALL	160
C	ARR	(-)	ARRANGEMENT OPTION	170
Č	CINIX	Ť.	= 1.0 : CYL. CELLS IN SQUARE MATRIX	180
Č			> 1.0 : CYL. CELLS IN HEXAGONAL MATRIX	190
CEEL	DCD	(CM)	OUTER CELL DIAMETER	200
C	CHAN	(CM)	COOLANT DUCT WIDTH	210
C	XLEN	(CM)	CELL OR COOLANT DUCT LENGTH	220
COEL	PITC	(-)	CELL PITCH RATIO	230
C	FHW	(1/CM)	HEAT SOURCE DENSITY FACTOR	240
C	FHTC	(-)	FACTOR FOR ENHANCED HEAT TRANSFER	250
C	TAMX	(-)	WALL MATERIAL IDENTIFICATION NUMBER	260
C	FDP A	(DPA*CM2/	W*A) DISPLACEMENT RATE FACTOR	270
C	0.61/		DACKAGE DENGITY	290
C**** OUTPUT	PCK	(-) (-)	PACKAGE DENSITY RATIO OF WALL THICKNESS AND OUTER CELL	300
C	SOD	(-)	DIAMETER	310
C	SW	(CM) (STM-	FIRST WALL THICKNESS	320
Č	DCI	(CM)	INNER CELL DIAMETER	330
C	DHY	(CM)	COOLANT DUCT HYDRAULIC DIAMETER	340
C 84 T	TCM	(C) (S)	MEAN COOLANT TEMPERATURE	350
C	ACH	(CM2)	COOLANT DUCT CROSS-SECTION AREA	360
C 031	AC	(CM2)	CELL CROSS-SECTION AREA	370
C) 1 G 1	AM	(CM2)	CROSS-SECTION AREA OF MATRIX ELEMENT	380
C 281	PWBR	(W/CM2)	BREMS STRAHLUNG WALL LOADING	390 400
0)881	PC	(W)	TOTAL POWER PER CELL COOLANT TEMPERATURE RISE	410
C	DTC	(C)	COOLANT MASS FLOW RATE	420
C 351	XVC		COOLANT VOLUME FLOW RATE	430
C 12 1	MC		COOLANT VELOCITY	440
C 86 7 7 7 1 2 1	QW	(W/CM3)	HEAT SOURCE DENSITY INSIDE THE FIRST WALL	450
Coest session	HFW	(W/CM2)	HEAT FLOW FROM WALL TO COOLANT	460
COOL	HTC		HEAT TRANSFER COEFFICIENT X2 2 SIRVE	470
C	DTCW	(C)	TEMPERATURE DIFFERENCE WALL -> COOLANT	480
C0291	TWI	(C)	INNER WALL TEMPERATURE	490
C) 881 1 630	TWO	(C)	OUTER WALL TEMPERATURE	500
C	TWM	(C)	MEAN WALL TEMPERATURE	510
C	DTW	(C)	TEMPERATURE DIFFERENCE INSIDE THE WALL	520
C	STTH	(KP/CM2)	MAXIMUM THERMAL STRESS INSIDE THE WALL	530
C 13 DO 15 L	STTN	(KP/CM2)	TENSILE STRESS INSIDE THE WALL MAXIMUM TOTAL STRESS INSIDE THE WALL	550
C	STTO	(KP/CM2)	HAVINGE TOTAL STRESS THREE HILL MALL	560
C**** SUBPRO	GRAMS	NEEDED: CO	OLNT	570
J JODE NO.	JUNE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	oran est, e	

*WOD:	IORK.WLOAD	LAST MO	DIFIED 20.	2.75		,	PAGE	2
į.		4 America						
C	HTCO							580
C	WALL	TM						590
C	EXPN							600
C	EMOD							610
C	POIS							620
C								630
	SUBROUTINE WLOAD							640
	COMMON PWNU, FWBR, PMUL, STR	J, PRES, TCI,	TCO, TCX, ARR	DCO, CH	AN, XLE	Ν,		650
0. 1	PITC, FHW, FHTC, XMAT,							660
	COMMON PCK, SOD, SW, DCI, DHY				C, XVC,	WC,		670
	QW, HFW, HTC, DTCW, TWI	, TWO, TWM, D	TW, STTH, STTM	I,STTO				680
C	CHARACTERISTIC MATRIX AREA	FIGURE 'A	LPHA!					690
	IF(ARR-1.0) 1,1,2							700
C	"ALPHA" FOR CYLINDER IN SO	QUARE MATRI	X					710
1	ALPHA=1.0							720
	GO TO 3							730
C	'ALPHA' FOR CYLINDER IN HE	XAGONAL MA	TRIX					740
	ALPHA = 0. 866							750
3	PCK=0.7854/(ALPHA*PITC*PIT	rc)						760
	SDD=0.5*(1.0-SQRT(1.0-STRU	I/PCK))						770
	SW=SOD*DCO							780
	DCI=DCO-2.0*SW							790
	DHY=2.0*CHAN							800
	TCM=0.5*(TCI+TCO)							810
	ACH=3.14159*CHAN*(DCI-CHAN	1)						820
	AC=0.7854*DCO*DCO							830
	AM=AC/PCK							840
	PWBR=PWNU*FWBR							850
	PC = (PWNU*PMUL+PWBR) *AM							860
	DTC=TCO-TCI							870
	CALL COOLNT (TCM, PRES, DEN	, CAPM, CONM	VISM)					880
	XMC=PC/(CAPM*DTC)							890
	XVC=XMC/DENM							900
	WC=XVC/ACH							910
	QW=FHW*PWNU						,	920
	HFW=PWBR+QW*SW 4 5							930
	CALL HTCOF (HFW, WC, XLEN, DF						未为未见	940
	CALL WALLTM (TWI, QW, PWBR, D	CO, DCI, XMA	T, TWO, TWM, DT	W)				950

STTH=0.5*DTW*EXPN(XMAT,TWM) *EMDD(XMAT,TWM)/(1.0-POIS(XMAT,TWM))

STTN=0.50986*PRES/SCD

RETURN

STTO=STTH+STTN

END

960

970

980

990

1000

```
LIFE
                                                                                                                                                                                                                                                                                                                        10
                                                                                                                                                                                                                                                                                                                        20
C
                                                                                                                                                                                                                                                                                                                        30
                        SUBPROGRAM FOR EVALUATING THE USEFUL LIFE OF THE FIRST WALL
C
                                                                                                                                                                                                                                                                                                                        40
C
                        OF THE CTRD MODULE CELL
                                                                                                                                                                                                                                                                                                                        50
C
                                AUTHOR: DR.W.M.DAENNER, IPP GARCHING
                                                                                                                                                                                                                                                                                                                        50
                                                                                                                                                                                                                                                                                                                        70
C
                                                                                                                                                                                                                                                                                                                       80
                                                                                                                       NEUTRON WALL LOADING
                                                                                (W/CM2)
C
     **** INPUT
                                                        PWNU
                                                                                                                        BREMS STRAHLUNG FACTOR A MANAGEMENT OF MANAG
                                                                                                                                                                                                                                                                                                                       90
C
                                                        FWBR
                                                                                (-)
                                                                                                                        POWER MULTIPLICATION FACTOR OF THE BLANKET
                                                                                                                                                                                                                                                                                                                    100
C
                                                         PMUL
                                                                                (-)
                                                                                                                        STRUCTURE MATERIAL VOLUME FRACTION FOR OMNO
                                                                                                                                                                                                                                                                                                                    110
C
                                                         STRU
C
                                                                                                                        THE CELL WALL
                                                                                                                                                                                                                                                                                                                    12)
                                                                                                                        COOLANT PRESSURE
C
                                                        PRES
                                                                                                                                                                                                                                                                                                                    130
                                                                                (RAR)
                                                                                                                        COOLANT INLET TEMPERATURE Salal Coal-
                                                                                                                                                                                                                                                                                                                    140
C
                                                                                (C)
                                                         TCI
                                                                                                                       COOLANT DUTLET TEMPERATURE
                                                                                                                                                                                                                                                                                                                    150
C
                                                         TCO
                                                                                (C)
                                                                                                                        COOLANT TEMPERATURE AT THE FIRST WALL
                                                                                                                                                                                                                                                                                                                    160
C
                                                         TCX
                                                                                 (C)
                                                                                                                                                                                                                                                                                                                    170
                                                                                                                        ARRANGEMENT OPTION
C
                                                         ARR
                                                                                 (-)
                                                                                                                        = 1.0 : CYL. CELLS IN SQUARE MATRIX
                                                                                                                                                                                                                                                                                                                    180
 C
                                                                                                                        > 1.0 : CYL. CELLS IN HEXAGONAL MATRIX
                                                                                                                                                                                                                                                                                                                    190
 C
                                                                                                                        OUTER CELL DIAMETER
                                                                                                                                                                                                                                                                                                                    200
C
                                                         DCO
                                                                                 (CM)
                                                                                                                        COOLANT DUCT WIDTH
                                                                                                                                                                                                                                                                                                                    210
C
                                                         CHAN
                                                                                 (CM)
                                                                                                                        CELL OR COOLANT DUCT LENGTH
                                                                                                                                                                                                                                                                                                                    220
C
                                                                                 (CM)
                                                         XLEN
                                                                                                                        CELL PITCH RATIO
                                                                                                                                                                                                                                                                                                                    230
 C
                                                         PITC
                                                                                 (-)
                                                                                                                                                                                                                                                                                                                    240
                                                                                                                        HEAT SOURCE DENSITY FACTOR
 C
                                                         FHW
                                                                                 (1/CM)
                                                                                                                        FACTOR FOR ENHANCED HEAT TRANSFER
                                                                                                                                                                                                                                                                                                                    250
 C
                                                         FHTC
                                                                                 (-)
                                                                                                                        WALL MATERIAL IDENTIFICATION NUMBER
                                                                                                                                                                                                                                                                                                                    260
 C
                                                         XMA T
                                                                                 \langle - \rangle
                                                                                 (DPA*CM2/W*A) DISPLACEMENT RATE FACTOR
                                                                                                                                                                                                                                                                                                                    270
                                                         FDP A
 C
                                                                                                                                                                                                                                                                                                                    280
 C
                                                                                                                                                                                                                                                                                                                    290
                                                                                                                         LARSON-MILLER-PARAMETER
 C**** DUTPUT PLM
                                                                                 (-)
                                                                                                                         USEFUL LIFE DUE TO TIME-RUPTURE-STRENGTH
                                                                                                                                                                                                                                                                                                                    300
 C
                                                         ULTR
                                                                                 (H)
                                                                                                                         IRRADIATION CREEP RATE
                                                                                                                                                                                                                                                                                                                    310
                                                                                 (H-1)
 C
                                                         CRIC
                                                                                                                         THERMAL CREEP RATE
                                                                                                                                                                                                                                                                                                                    320
 C
                                                         CRSC
                                                                                 (H-1)
                                                                                                                         USEFUL LIFE DUE TO THERMAL CREEP
                                                                                                                                                                                                                                                                                                                    330
 C
                                                         ULSC
                                                                                 (H)
                                                                                                                                                                                                                                                                                                                     340
 C
                                                         CRTO
                                                                                 (H-1)
                                                                                                                         TOTAL CREEP RATE
                                                                                                                         USEFUL LIFE DUE TO TOTAL CREEP
                                                                                                                                                                                                                                                                                                                    350
 C
                                                         ULC
                                                                                 (H)
                                                                                                                                                                                                                                                                                                                     360
                                                         UL1C
                                                                                                                         TIME TO REACH 1% TOTAL CREEP
 C
                                                                                 (H)
                                                                                                                                                                                                                                                                                                                    370
 C
                                                                                                                LARSON TREE REPORT THE RESERVE HER TO BE A STATE OF THE RESERVE HE
                                                                                                                                                                                                                                                                                                                    380
 C**** SUBPROGRAMS NEEDED: LARSON
                                                                                                                                                                                                                                                                                                                     390
 C
                                                                                                                                                                                                                                                                                                                    400
                                                                                                                CREEP
  C
                                                                                                                                                                                                                                                                                                                    410
 C
                                                                                                                                                                                                                                                                                                                    420
                         SUBROUTINE LIFE
                         COMMON PWNU, FWBR, PMUL, STRU, PRES, TCI, TCO, TCX, ARR, DCO, CHAN, XLEN, DCO, CHAN, ARR, DCO, CH
                                                                                                                                                                                                                                                                                                                    430
                                                                                                                                                                                                                                                                                                                    440
                                                     PITC, FHW, FHTC, XMAT, FDPA
                         COMMON PCK, SOD, SW, DCI, DHY, TCM, ACH, AC, AM, PWBR, PC, DTC, XMC, XVC, WC,
                                                                                                                                                                                                                                                                                                                    450
                                                      QW, HFW, HTC, DTCW, TWI, TWO, TWM, DTW, STTH, STTN, STTO, PLM, ULTR,
                                                                                                                                                                                                                                                                                                                     460
                      1
                                                                                                                                                                                                                                                                                                                     470
                                                     CRIC, CRSC, ULSC, CRTO, ULC, UL1C
                      2
                                                                                                                                                                                                                                                                                                                     480
                         CALL LARSON (XMAT, STTO, PLM, C)
                                                                                                                                                                                                                                                                                                                     490
                         ULTR=10.0**(PLM/(TWI+273.15)-C)
                         CRIC=CIC(XMAT)*FDPA*PWNU *STTO
                                                                                                                                                                                                                                                                                                                    500
                                                                                                                                                                                                                                                                                                                     510
                         CALL CREEP (XMAT, TWM, CCO, CEX, CL1, CL2)
                                                                                                                                                                                                                                                                                                                     520
                         CRSC=CCO*(0.01*STTO)**CEX
                         ULSC=10.0**(CL1 -CL2*ALOG(CRSC))
                                                                                                                                                                                                                                                                                                                     530
                                                                                                                                                                                                                                                                                                                     540
                         CRTO=CRIC+CRSC
                                                                                                                                                                                                                                                                                                                     550
                         ULC=10.0**(CL1
                                                                                        -CL2*ALOG(CRTO))
                                                                                                                                                                                                                                                                                                                     560
                         ULIC=0.01/CRTD
                                                                                                                                                                                                                                                                                                                     570
                         RETURN
                                                                                                                                                                                                                                                                                                                     580
                         END
```

380

390

400

410

420

430

440

5 DT1=DT2

IT=IT+1

GO TO 3

TW=TX+DTCW

4 DTCW=DT2

RETURN

END

TF=TX+0.5*DT1

C****	*****	** W	ALLTM	*******	10
C					20
C****	SUBPROGRA	AM FOR	EVALUATING	G THE TEMPERATURE DIFFERENCE WITHIN THE	30
				DDULE CELL FOR THE SHIP AUGAVE 909 MARKED 298	40
C					50
C****	AUTHOR:	DR .W.	M.DAENNER,	IPP GARCHING	60
C					70
C****	INPUT	TW1	(C)	INNER WALL TEMPERATURE	80
C		QW	(W/CM3)	HEAT SOURCE DENSITY INSIDE THE WALL	90
C		PWBR	(W/CM2)	HEAT FLUX DENSITY FROM OUTSIDE THE WALL	100
C		DCD	(CM)	OUTER WALL DIAMETER	110
C		DCI	(CM)	INNER WALL DIAMETER	120
C		XMAT	(-)	WALL MATERIAL IDENTIFICATION NUMBER	130
C****	OUTPUT	TW2	(C)	OUTER WALL TEMPERATURE	140
C		TWM	(C)	MEAN WALL TEMPERATURE	150
C		DTW	(C)	TEMPERATURE DIFFERENCE ACROSS THE WALL	160
C					170
C****	SUBPROG	RAM NE	EDED: CON	D 1.0 - 0.1 TMA_000 1 - 1.	180
C				= BAGIARBINETELLIAN E	190
	SUBROUTI	NE WAL	LTM (TW1,Q	W, PWBR, DCO, DCI, XMAT, TW2, TWM, DTW)	200
	SW=0.5*(210
		0.5*SW	*QW+PWBR)		220
	I T=1				230
	TW=TW1	11/4			240
	CON=COND				250
	IF(IT-1)	-			250
_	DT1=FTW/				270
	TW=TW1+0	.5*DT1			290
	IT=IT+1			. Desire the second of the sec	
	GO TO 3				300
	DT2=FTW/				320
	DDT=ABS(later i	330
	IF(DDT-0	.51 4,	4,5		340
088 5	DT1=DT2	E+0.71			350
	TW=TW1+0	• 2*U ! I			360
	IT=IT+1 GO TO 3				370
	-	DT2			380
	TW2=TW1+ TWM=0.5*		W 2 1		390
	DTW=TW2-		n 4 I		400
	RETURN	141			410
	END				420
	FIAD				

*WOD:WORK	HELIUM		LAST MODIFIED 20. 2.75	PAGE
C******			*****	
C	******	IELIUM '		20
	IDDOUTTME	DECEMM FOR	EVALUATING THE THERMAL PROPERTIES OF	
	IUM AS A C		EVALUATING THE THERMAL PROPERTIES OF	40
C	ION AS A C	DOLAN		-
	ITHOR: DR.	W.M.DAENNER.	IPP GARCHING	5 5
C		BIANCIA (C	LOTANIE THAN LETS SOME SOLITANIE TOTAL	56
C**** INP	JT T	(C)	TEMPERATURE	60
C	P	(BAR)	PRESSURE	71
C**** DUT	PUT DEN	(G/CM3)	DENSITY NEW DENSITY	80
C	CAP	(W*S/G*K)	SPECIFIC HEAT AT CONSTANT PRESSURE	90
С	CON	(W/CM*K)	THERMAL CONDUCTIVITY METADO MARKET	100
C	VIS	(G/CM*S)	DYNAMIC VISCOSITY	110
C				120
			S ARE CALCULATED USING FORMULAS	121
			: MAPLIB-FUNKTIONEN ZUR BERECHNUNG DER	122
			LIUM, LUFT, KOHLENDIOXID UND WASSER.	123
	FK 1403 (1	.971)		124
С				125
		DOLNT (T,P,DE	N, CAP, CON, VIS)	
	T+273.15			140 - 311 150
	1.0E5*P			160
	SITY DEN		A**0.3333-2.37E-2/(TA*TA))	170
	=1.0E-3/D	PA+1.13E-3/1/	A**U.5555-2.57E-27(TA*TATT	180
		TAT CONSTANT	PRESSURE CAP	190
			1.3333-28300.0/TA**3.0)*1.0E-5*PA	200
	=1.0E-3*C	7.0 ·(1.0) IA · ·	163333 20300007 14 3007 1200 2014 1600	210
		CTIVITY 'CON	• 255 41 cm	220
			0.7*(1.0+2.0E-9*PA)	230
		SITY 'VIS'	()=(3MO3 1 240
		TA/273.16)**0	.68	UTBR 250
	=10.0*V			GMOD 8 260
RET	URN			UTBR 270
CO: END				1191 6 280

10		
C****	*******	10
C		20
C	FUNCTION SUBPROGRAM FOR PROVIDING THE THERMAL CONDUCTIVITY OF	30
Č	STRUCTURAL METALS AND ALLOYS	40
č	THOUTONAL HETAES AND ALEGIS	50
C****	AUTHORA DR. U. M. DAFNINED. TRR. CARCUTAGE	
	AUTHOR: DR.W.M.DAENNER, IPP GARCHING	60
C	SWEDU DAG TOOL YELFAMBAD AM AND A FEBRUAR AN	70
C****		80
C	T (C) TEMPERATURE 39 9 3 (3)	90
C		100
C****	OUTPUT COND (W/CM*C) THERMAL CONDUCTIVITY (EM. 300) HERMAL CONDUCTIVITY	110
C		120
C****	CURRENT CONTENTS: IVITALO NO NIJAMARHA I INCIDENTALA (ARABARI) MOS	130
C		140
C	XMAT = 23.XX00 V-XXTI ALLOYS	150
C		150
C	V-20TI POLYNOMIAL APPROXIMATION OF THE DATA	170
Č	FROM H.BOEHM E.A., 6. PLANSEE-SEMINAR.	180
Č	LINEAR INTERPOLATION FOR OTHER TI-CONTENTS.	190
C	LINEAR INTERPOLATION FOR OTHER TIPCONTENTS.	200
C	FUNCTION COND / VMAT TA	
L.C.	FUNCTION COND (XMAT,T)	210
T. 11.	IF(IFIX(XMAT)-23) 1,1,1	220
1	TIC=XMAT-FLOAT(IFIX(XMAT))	230
0.61	IF(TIC) 2,2,3 (M30) YTIZW3	240
	IF(TIC-0.03) 2,4,5 ** ** ** ** ** ** ** ** ** ** ** ** **	250
2	C1=0.2899+1.0312E-4*T-2.1875E-8*T*T	260
OP1	IF(TIC) 6,6,4	270
00% 6	COND=C1 . CAMP8-30.1*10.8**ATV0.00060-0160.1**A C0.11* .8401-0.8618-3	280
0.15	RETURN 148+30.149AD	290
668 4	C2=0.255+1.8E-4*T-1.0E-7*T*T	300
(85)	IF(TIC+0.03) 8,7,9	310
7	COND=C2 TYPE IN THE TOTAL OF TH	320
6.55	RETURN	330
8	COND=C1-TIC*(C1-C2)/0.03	340
4,3	RETURN	350
685.5	IF(TIC-0.2) 4,9,9	360
	C3=0.14375+2.175E-4*T-5.625E-8*T*T	370
	IF(TIC-0.2) 11,10,10	380
10	COND=C3	390
10	RETURN	400
1 1	COND=C2-(TIC-0.03)*(C2-C3)/0.17	410
11		
	RETURN	420
	END	430

C****	****	* E X	P N ***	*******	10
C				FUNCTION SUBPRIDGE A FOR PARTICIPATION THE YEARS	20
C F	UNCTION	SUBPRO	GRAM FOR E	EVALUATING THE THERMAL EXPANSION COEFFI-	30
C C	IENT OF	STRUCTU	JRAL MATER	RIALS	40
C					50
C****	AUTHOR:	DR.W.	1. DAENNER	IPP GARCHING	60
C					70
C****	INPUT	XMAT	(-)	MATERIAL IDENTIFICATION NUMBER	68
C		TC	(C)	TEMPERATURE SECONDARY SECONDARY COMB. TURTUS *	90
C****	OUTPUT	EXPN	(CM-1)	THERMAL EXPANSION COEFFICIENT	100
C					110
C****	CURRENT	CONTEN	ITS:		120
C	======		1222		130
C	XMAT =	23.0000	PURE VA		140
C				EMPERATURE RANGES LINEAR INTERPOLATION OF	150
C			DATA FR	ROM F.SPERNER, METALL 15,10(1961),988-994	160
C			1971		170
	UNCTION		•		180
	F(IFIX(X				190
	FITC-500				200
		5E-6+3.	25E-9*TC		210
	ETURN		-		220
	F(TC-900			22.21	230
		-6+2.0E	-9* (TC-50	10.0]	240
	ETURN	5 () 5 5		200 01	250
		t-0+2.5	E-9*(TC-9	700.01	260
	ETURN				270
	ND				280

C****	*****	* E M O	D ****	****			10
C							20
	FUNCTION	SUBPROGR	AM FOR P	ROVIDING THE YOUN	G'S MODULUS	OF	30
	STRUCTURA						
C					URAL MATER!		50
C****	AUTHOR:	DR.W.M.	DAENNER,	IPP GARCHING			60
C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•		# . CA SHINEP :		70
C****	INPUT	XMAT	(-)	MATERIAL IDENTIF	ICATION NUM	IBER	68
C			(C)		(-)		90
C****	OUTPUT						100
C							110
C****	CURRENT	CONTENTS	:				120
C	=======	=======	=				233
C	XMAT = 2	3.0000	PURE VA	NADI UM			140
C			CONSTAN	T VALUE DUE TO F.	SPERNER, ME	TALL 15,10	150
C			(1961),	988-994			160
C							170
£1.5 t	FUNCTION	EMOD(XMA	T,TC)				180
681	IF(IFIX(X	MAT1-231	1,1,1				
4011	EMOD=1.58	6					
	RETURN						
0.15	END						220

*WOD:W	ORK.POIS			LAST	MODIFIED 21. 2.	75	PAGE 1
C****	*****	* P ()	I S ***	*****	***		10
C							
C	FUNCTION	SUBPROG	RAM FOR P	ROVIDING	THE POISSON RAT	TO OF THE PARTY OF	
	STRUCTURA						40
C							50
C****	AUTHOR:	DR.W.M	. DAENNER,	IPP GAR	CHING		60
C							70
C****	INPUT	XMAT	(-)	MATERIA	L IDENTIFICATION	NUMBER	68
C		TC	(C)	TEMPERA	TURE		90
C****	OUTPUT	POIS	(-)	POISSON	RATIO		100
C							110
C****	CURRENT	CONTENT	S:				120
C	=======	=======	==				130
C	XMAT = 2	3.0000	PURE V	ANADIUM			140
C						JANG, ETTMAYER:	150
C				METALLE,	SPRINGER-VERLAG	WIEN/NEW YORK	160
C			1971				170
C		* A B M I U = \$	£637035.				180
	FUNCTION						190
	IF(IFIX()		1,1,1				200
	POIS=0.35						210
	RETURN						220
	END						230

	4			
0	*******	* LARSON	*****	100
C	CUDDOCOA	A FOR BROWERING	THE ALLOW CONCTANT C AND THE	
C			THE ALLOY CONSTANT C AND THE	200
C	LAKSUN-MII	LLER PARAMETER P	LM NECESSARY FOR A GIVEN SRESS	
C A			9 AL MATERIALS	
C****	AUTHOR:	DR.W.M.DAENNER,	IPP GARCHING	401
C				SHTUA 402
C****	INPUT		MATERIAL IDENTIFICATION NUMBER	403
C		STR (KP/CM2)	ISTRESS LOAD RETER (-) TAMA	404
C****	OUTPUT	PLM (-)	LARSON-MILLER-PARAMETER REQUIRED	405
C		C (-)	MATERIAL CONSTANT (-) ZIOS T	406
C				407
C****	CURRENT (CONTENTS:		499407 408
C	========			409
C	XMAT = 23	3.XX00 V - XX	TI ALLOYS MIT GAMAY 1999 0000 1554	er TAMX 410
C		CONSTAI	NT VALUE FOR ALLOY CONSTANT C.	411
C		POLYNO	MIAL APPROXIMATION FOR V-5TI AND V-20	OTI 412
C		CORRES	PONDING TO DATA OF H.BOEHM, M.SCHIRR	
C			-COMM.MET.,12(1967),280-293. LINEAR	414
C			DLATION FOR OTHER TITANIUM CONTENTS.	OTTOMUR 415
Coc		2	[XMAT1-23] [[] [
210	SUBBOUTINE	E LARSON(XMAT, ST		0=2109 1 500
		MAT)-23) 1,1,1	.,,,	OCO RETURN
1000	C=15	1017 237 19191		700
063 1		FLOAT(IFIX(XMAT)	1	800
	_	0+5.206E-2*STR-2		900
			36E-4*STR*STR-2.658E-8*STR*STR*STR	
		0-2.402*51K+4.4 20-P5)*(TIC-0.05		1000
	_	20-25/4(110-0.05	170.17	1100
	RETURN			1200
	END			1300

180

190

200

210

FUNCTION CIC(XMAT)

RETURN

END

IF(IFIX(XMAT)-26) 1,1,1

1 CIC=1.679E-11 38 44 44

380

390

400

410 420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

IF(IFIX(XMAT)-26) 2,1,2

1 C1=-1.55
 C2=1.1
 C=1.0E-12**(923.15/TK) * 10.0**(15.0*(1.0-923.15/TK))
 EX=5538.0/TK
 RETURN

2 C1=-1.55
 C2=1.1

IF(TIC) 3,3,4 3 EX=4.4 C=9.3E6*EXP(-6.5E4/(1.987*TK))

TIC=XMAT-FLOAT(IFIX(XMAT))

RETURN 4 IF(TIC-0.03) 5,5,6

5 EX=9.3 C=3.65E-10*EXP(-3.1E4/(1.987*TK)) RETURN

6 IF(TIC-0.05) 7,7,8

7 EX=8.4 C=4.5E-4*EXP(-5.1E4/(1.987*TK)) RETURN

8 EX=4.2 C=7.0E22*EXP(-13.6E4/(1.987*TK)) RETURN END