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Abstract

The ratio Q of the inductive reactance of a periodic induction
coil to the corresponding resistive plasma loading was evaluated
by approximating the current in the coil by a stepped sheet
current distribution.

The coil is assumed to be around a homogeneous cylindrical cold
plasma with a constant magnetic field along the axis. The turns
(or sets of turns) in the coil are spaced periodically along

the axis and the current passing through two adjacent turns is
equal but opposite in phase. For the case of coupling resonance,
that is when the wavelength of the induction coil is equal to
the wavelength of one of the modes of free oscillation for ion
cyclotron waves in a cylindrical plasma, the ratio Q was plotted
for turns connected both in series and in parallel as a function
of the distance between two successive turns, the number of
turns and the coil diameter being varied and the plasma diameter
being assumed to be unity.
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T.H. Stix (1) proposed generating ion cyclotron waves in a
cylindrical plasma by a periodic induction coil.

The coil is wrapped around the plasma in a region where the
magnetic field Bo is constant and w<w. , w being the
frequency of the generating system andw. the ion cyclotron
freguency, so that ion cyclotron waves can propagate in the
plasma along Bo out through the ends of the induction coil.

In a cylindrical plasma surrounded by vacuum there exists a
set of natural modes of free oscillation for ion cyclotron
waves.,
To each of these modes correspondsa radial wave number v, and
an axial wave number ®w . If the current in the coil varies
periodically along the axis, one can expect a maximum of
coupling provided the axial wavelength of the induction coil
Ao is equal to the axial wavelength Aw of a2 natural mode of
free oscillation in the plasma.
The turns (or sets of turns) in the coil will, therefore, be
spaced periodically along the axis, and the current passing
in two adjacént turns will be equal but opposite in phase so
that the distance 28 between two successive turns will be
equal to half the wavelength Aw of one of the natural modes.

A very important question at this point is the change in the
resistive impedance of the induction coil due to the generation
of ion cyclotron waves in the plasma.

An expression for the ratio. Q of the inductive reactance of
the coil to the corresponding resistive impedance due to the
plasma load has already been given by Stix. He assumes, however,
that the current in the coil varies as exp il Ror-wt]

and obtains an expression for Q which is not very practical

for use and gives little or no information about the dependence
of Q on some of the parameters involved in a real coil, such

as the number and width of the turns.

In the following we shall find a more accurate expression

for Q by approximating the current in the coil by a stepped
sheet-current distribution which will better approximate the
real current in the coil and allow us to find the Q of each
turn separately. We thus obtain as well the Q of the entire

(1) T.H, Stix The Theory of Plasma Waves McGraw-Hill




coil with the turns connected both in series and in parallel,
and a detailed dependence of Q on the width and number of the
turns in the coil and also on the distance between two
successive turns.

For an even number N = 2 M of turns we assume at a radius

r=s , a sheet-current:
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and for an odd number, N=2M + 1, of turns a sheet-current:
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23 being the width of each turn and 2¢ +the
distance between two successive turns.

A solution of the Maxwell equations for a cylinder of cold
plasma surrounded by vacuum with an uniform magnetic field
parallel to the axis and an external sheet current of
density Jg-= S#exp i (%t-wl) on a radius r=s is:
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With Bessel functions in the notation of G.N. Watson and the

prime (') indicating differentiation with respect to the
argument.

p 1is the plasma radius
v 1is the radial wave number of the wave in the plasma
and is given by the plasma dispersion relation
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Zero plasma temperature and infinite conductivity were assumed
to find the boundary conditions:
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The solution for the natural modes of free oscillation in a
plasma cylinder surrounded by vacuum corresponds to solutions
with finite B¢ for 37=0

They are given by the condition:

op TV pp KI(RY)
J.ve) K\(MP)

The Fourier transform of the sheet-current distribution (1)
is:
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and, as we know the electric field for each component of the
Fourier spectrum, we can obtain by combining (3) and (6) the
electric field on a radius r=s produced by the sheet-current
distribution (1):
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The integrals on the right side of (7) are of the type:
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where A is real and may be positive or negative.

We shall evaluate this integral by a contour integral in the
complex k plane.

(Ee)r¢ has poles when the denominator in (4) is zero and a
branch-cut at |%®| =%, and along the imaginary axis for [klz¥g ,
The contribution to the electric field due to the poles R«
on the real axis will appear in our solution as unattenuated
out—~going waves propagating as exp i (Rt -wty 14 is, therefore,
reasonable in the presence of a small amounéyhamping to displace
these poles off the real k axis by a small amount. For positive
.. the poles will be just above the axis and for negative .
just below.

In the limit “/. »C, which is equivalent to neglecting terms

of the order WS¢ 4<1, the branch-cut of Eel«s reduces to the
imaginary axis and an infinitely small circle around the origin.
We choose our contour integral as sketched in Pig.(a) for A>0
and Fig. (b) for A< 0
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{Emﬁis now, in each quadrant, analytic except at its poles

and we have closed the coutour by an arc at infinity so that
the exponential term in the integrand, ikﬁ, has a negative

real part. In the limiting case W2 —=0 it may be shown that,
for a cold plasma, the contribution to the integral (8)
made by the branch-cut along the imaginary axis and the circle
around the origin.gives a contribution to the electric field
which is in phase with 37 .

The resistive impedance of a turn is proportional to the real
part of - B \T¥) [ (3% is the complex conjugate of J7
and varies as exp (vwt)] averaged over the turn, while the
inductive reactance is proportional to the imaginary part of

Ee -(3%). As we are interested in the resistive part of the
impedance we need not evaluate the integral along the branch-
cut, which contributes only to the imaginary part of the
reactance and we are, therefore, left with the contribution due
to the poles only.
According to Stix we shall neglect the residues for poles other
than those just off the real k axis. These would give solutions
which decay rapidly compared to the propagating wave solutions
and correspond to end effects of the coil, which are of no
interest to us.
The portion I of the integral (8) which we need is, therefore,
given by:
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We adopt the convention that positive m values correspond to
positive M« and negative m to negative %u. .
As Ru=Reww and *w=-%.w 4t follows that
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As we are interested in the product Ee'(jw)r, we must evaluate

Es only in the regions where 1¥= O that is:
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Because all Rm are exactly 90° out of phase with J* we obtain:
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The resistive impedance of the ﬁth turn for a single mode m is
therefore proportional to:
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In the case of a coil with an odd number, N=2M+1, of turns we
can repeat the same kind of calculations as for an even number.
Starting from the sheet-current distribution (2), we obtain for
the resistive impedance of the ﬁth turn for a single mode m:
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To put this resistive plasma loading into a dimensionless and
more usable form, we compare it to the inductive reactance of
the induction coil.

The inductive reactance of the '} turn is proportional tolfﬁ,
which is given in the Appendix by A(8).

For S<¢s and €25 y however, A(8) may be simplified to
give:
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regardless of the number of turns in the coil, see A(13).

We, therefore, obtain for the 7" turn and for the mode m:
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If the turns are connected in series, the Q of the entire
coil is:
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Fig(1) gives the plot of S(km@) for N = 2,3 and 4

The residue of (&)ws at k=km may be found from (3), and with
the help of (5) we obtain:
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wheref.and Vo must satisfy (5) and the dispersion relation
for a cold plasma.

For ion cyclotron waves ( wz we. ,ﬁ%: R ) the cold
plasma dispersion relation reduces to:
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where  Wee is the ion cyclotron frequency
and e is the ion plasma frequency

We have, therefore, for ion cyclotron waves:
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and the resistive plasma loading of the at™ turn for a single
mode m will be proportional to:
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At the coupling resonance, Sz (bee) = 4 and the resistive
plasma loading is the same for each turn.

Using the more correct expression A(11) for the inductive
reactance of the nth turn we obtain for the Q of the entire

coil at the coupling resonance
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if the turns are connected in series and:
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if the turns are connected in parallel

4 and ¥%. are given in the Appendix by A(9) and A(10)
respectively and we have set, for simplicity, R = M § V= Py
and = S/Q_

¢ L8
Fig.(2) to Fig.(7) give some plots of Qui) and Quwsn against

1
2 = I W for some values of N, °/p, m.
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Appendix

We shall evaluate, in the following, the inductive reactance
of each turn of the coil.

The inductive reactance of the ﬁth turn is proportional to
the imaginary part of Ee: (37) averaged over the turn.

As in the preceding section, we must evaluate integrals of
the type:

where (Felr.s is now the vacuum field and is given by:

A(1) (Eody.y = 4T 375 T,(Re) w. (&)

(%¢)r.e has now no poles and again a branch-cut for \R|= W
and along the imaginary axis for \#|12 %L which in the limit
W/ - © reduces to the imaginary axis and an infinitely small
circle around the origin.
We shall evaluate the integral as in the preceding section
and we choose the same paths of integration as in Fig.(a) and
Fig.(b) for A>0 and A <0 respectively. As the integrand has
now no poles, we are left with the contribution due to the
branch-cut only.
We have, therefore,for &L > O:
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The electric field produced on a radius r=s by the sheet
current distribution (1) is given, as in the preceding section,
by:
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that is for:
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The same final result would be obtained for (2&r-1)e-3 < @< 2R-1)exd

From "Tables of Integral Transformsﬁ Vol.I, page 47, we have:
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Where K and E are complete elliptic normal integrals,

(see also Grobner - Hofreiter - Integraltafel I - page 66)

The inductive reactance of the n > turn will, therefore, be

proportional to:
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AL represents the self-inductance of the n'> turn, while

th

the JCL represent the mutual inductance between the n turn

and the other turnsof the coil.

In practical cases the mutual inductance between two
non-adjacent turns is negligible, and so only the mutual
inductance between two adjacent turns, m=1, need be considered.

The inductive reactance of the ﬁth turn will, therefore, be

proportional to
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