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This extended abstract reports a spectral relation between residual and total energy, ER
k = |EM

k −
EK
k | and Ek = EK

k + EM
k respectively, as well as the influence of an imposed mean magnetic field on

the spectra. The proposed physical picture, which is confirmed by accompanying direct numerical
simulations, embraces two-dimensional MHD turbulence, globally isotropic three-dimensional systems
as well as turbulence permeated by a strong mean magnetic field. The results have direct implications
on the current understanding of the energy cascade in MHD turbulence.

In the following reference is made to two high-resolution pseudospectral direct numerical simula-
tions of incompressible MHD turbulence which we regard as paradigms for isotropic (I) and anisotropic
(II) MHD turbulence. The dimensionless MHD equations

∂tω = ∇× [v × ω − b× (∇× b)] + µ∆ω (1)

∂tb = ∇× (v × b) + η∆b (2)

∇ · v = ∇ · b = 0 . (3)

are solved in a 2π-periodic cube with spherical mode truncation to reduce numerical aliasing errors
[1]. The equations include the flow vorticity, ω = ∇×v, the magnetic field expressed in Alfvén speed
units, b, as well as dimensionless viscosity, µ, and resistivity, η.

Figure 1: Total (solid), kinetic (dashed), and magnetic (dotted) energy in a 10243 simulation of
decaying isotropic MHD turbulence (left) and in a 10242 × 256 simulation of anisotropic turbulence
permeated by a strong mean magnetic field, b0 = 5 (right, spectra are based on field perpendicular
fluctuations). The dash-dotted line in the graph on the left illustrates a k−3/2 power-law while the
dashed horizontals indicate k−5/3-behavior (left) and k−3/2-scaling (right). The dash-dotted curve
on the right shows the high-k part of the field-parallel total energy spectrum. The inset displays
the difference in the perpendicular total energy spectrum when switching resolution from 5122 (dash-
dotted) to 10242 (solid).

Simulation I evolves globally isotropic freely decaying turbulence represented by 10243 Fourier
modes. Total kinetic and magnetic energy are initially equal with EK = EM = 0.5. The dissipation
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Figure 2: Compensated and space-angle-integrated residual energy spectrum, ER
k =

∣∣EM
k −EK

k

∣∣, for
the same systems as in Fig. 1 (isotropic:left, mean magnetic field: right). The dash-dotted line depicts
scaling expected for a total energy spectrum following Iroshnikov-Kraichnan scaling.

parameters are set to µ = η = 1 × 10−4. Case II is a 10242 × 256 forced turbulence simulation with
an imposed constant mean magnetic field of strength b0 = 5 in units of the large-scale rms magnetic
field ' 1 with µ = η = 9 × 10−5.

Fourier-space-angle integrated spectra of total, magnetic, and kinetic energy for case I are shown
in Fig. 1 (left). To neutralize secular changes as a consequence of turbulence decay, amplitude
normalization assuming a Kolmogorov total energy spectrum, Ek → Ek/(εµ

5), ε = −∂tE, with
wavenumbers given in inverse multiples of the associated dissipation length, `D ∼ (µ3/ε)1/4. Clearly,

Kolmogorov scaling applies for the total energy in the well-developed inertial range, 0.01
<' k

<' 0.1.

In case II, pictured in Fig. 1 (right), strong anisotropy is generated due to turbulence depletion
along the mean magnetic field, b0. This is visible when comparing the normalized and time-averaged
field-perpendicular one-dimensional spectrum, Ek⊥ =

∫ ∫
dk1 dk2E(k⊥, k1, k2) (solid line) with the

field-parallel spectrum, defined correspondingly and adumbrated by the dash-dotted line in Fig. 1
(right).

While there is no discernible inertial range in the parallel spectrum, its perpendicular counterpart

exhibits an interval with Iroshnikov-Kraichnan scaling, Ek⊥ ∼ k
−3/2
⊥ [2, 3]. This is in contradiction

with the anisotropic cascade phenomenology of Goldreich and Sridhar for strong turbulence predicting

Ek⊥ ∼ k
−5/3
⊥ [4].

The observation that field-parallel fluctuations are restricted to large scales while the perpendicular
spectrum extends more than half a decade further suggests that the strong b0 constrains turbulence
to quasi-two-dimensional field-perpendicular planes as is well known and has been shown for this
particular system [5].

Another intriguing feature of system II is that EK
k ' EM

k with only slight dominance of EM (cf.
Fig. 1, right) in contrast to the growing excess of spectral magnetic energy with increasing spatial scale
for case I. Both states presumably represent equilibria between two competing nonlinear processes:

field-line deformation by turbulent motions on the spectrally local time scale τNL ∼ `/v` ∼
(
k3EK

k

)−1/2

leading to magnetic field amplification (turbulent small-scale dynamo) and energy equipartition by
shear Alfvén waves with the characteristic time τA ∼ `/b0 ∼ (kb0)

−1 (Alfvén effect).

By using the spectral EDQNM equation for the residual energy in spectrally local and non-local
approximations [6] and by assuming that the residual energy is a result of a dynamic equilibrium
between turbulent dynamo and Alfvén effect, one obtains for stationary conditions and in the inertial
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range,

ER
k ∼ kE2

k ∼
(
τA
τNL

)2

Ek . (4)

with τA ∼ (kb0)
−1, where b0 is the mean magnetic field carried by the largest eddies, b0 ∼ (EM)1/2,

and by re-defining τNL ∼ `/(v2
` + b2`)

1/2 ∼ (k3Ek)
−1/2. The modification of τNL is motivated by the

fact that turbulent magnetic fields are generally not force-free so that magnetic pressure and tension
contribute to eddy deformation as well.

Apart from giving a prediction which allows to verify the proposed model of nonlinear interplay
between kinetic and magnetic energy, relation (4) also has some practical utility. It is a straightforward
consequence of (4) that the difference between possible spectral scaling exponents, which is typically
small and hard to measure reliably, is enlarged by a factor of two in ER

k . Even with the limited
Reynolds numbers in today’s simulations such a magnified difference is clearly observable (e.g. dash-
dotted lines in Figs. 1 and 2).

In summary, based on the structure of the EDQNM closure equations for incompressible MHD
a model of the nonlinear spectral interplay between kinetic and magnetic energy is formulated. The
quasi-equilibrium of turbulent small-scale dynamo and Alfvén effect leads to a relation linking total
and residual energy spectra, in particular ER

k ∼ k−7/3 for Ek ∼ k−5/3 and ER
k ∼ k−2 for Ek ∼

k−3/2. Both predictions are confirmed by high-resolution direct numerical simulations of isotropic
turbulence exhibiting Kolmogorov scaling and forced anisotropic turbulence displaying Iroshnikov-
Kraichnan scaling perpendicular to the mean field direction. The findings limit the possible validity
of the Goldreich-Sridhar phenomenology to MHD turbulence with weak mean magnetic fields and
emphasize the important role of the Iroshnikov-Kraichnan picture for a large class of turbulent MHD
systems.
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