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Abstract

The APG (ASDEX pressure gauge) is an ionisation pressure gauge specifically
designed to work in the presence of magnetic fields and is used in many tokamak
experiments to measure the neutral particle density. However, important features
such as a ca. 10-fold sensitivity enhancement in strong magnetic field and satu-
ration of the measurement signal above 10 Pa were not completely understood.

To gain more insight into the underlying physical processes and support opti-
mization efforts, we have developed a Monte-Carlo code, whose main character-
istics and results are presented in this work. It incorporates a realistic geometry
and electric field model and stochastically simulates collisions between electrons
and the neutral gas. Processes neglected are interactions of charged particles with
each other and the surfaces of the gauge.

The simulation qualitatively reproduces the experimental performance of the
APG, especially sensitivity enhancement and early saturation in strong magnetic
field. The reasons for these properties are now much clearer and optimizations of
the APG geometry can be tested with the code.
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Zusammenfassung

Das APG (ASDEX pressure gauge) ist ein Heißkathoden-Ionisationsmanometer,
das speziell für den Gebrauch in starken Magnetfeldern entwickelt wurde. Es
wird inzwischen bei vielen Tokamak-Experimenten zur Messung der Neutral-
gasdichte eingesetzt. Wichtige Eigenschaften, wie eine ca. 10-fache Empfind-
lichkeitssteigerung im starken Magnetfeld und eine Sättigung des Messsignals
bei Drücken über 10 Pa, waren jedoch nicht vollständig verstanden.

Um einen tieferen Einblick in die zugrundeliegenden physikalischen Prozesse
zu erlangen und die Optimierung des APG zu unterstützen, haben wir eine
Monte-Carlo Simulation entwickelt, die in dieser Arbeit vorgestellt wird und
deren Ergebnisse mit experimentellen Daten verglichen werden. Das Programm
simuliert die Stöße von Elektronen mit Neutralgasteilchen in einer realistischen
Geometrie und elektromagnetischen Feldkonfiguration. Vernachlässigt werden
Wechselwirkungen der geladenen Teilchen (v.a. e− − e−) untereinander und mit
den Oberflächen des Messgeräts.

Das Ergebniss der Simulation stimmt mit dem experimentellen Verhalten des
APG überein, wobei speziell die Hauptcharakteristika Sensitivitätsgewinn und
Sättigung im magnetischen Feld bestätigt werden. Die Gründe für diese Eigen-
schaften wurden durch die Simulation klarer und neue Geometriekonfiguratio-
nen, die die Sättigung hinausschieben sollen, können getestet werden.
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Chapter 1

Introduction

The basis of our modern society is an increase of both population and the
standard of living ever larger parts of this population aspire. An inevitable side-
effect of this is a growing energy consumption which is in general proportional
to economic growth. At the beginning of the 21st century limits to this growth
are emerging. Up until today about 85% of annual world energy consumption
have been covered by fossil fuels (coal, oil and gas). On the one hand these
resources are nearing their half depletion point, in other words their production
peak. Some scenarios predict the human energy need in the 21st century to be
around 7.5 · 1022 J which is opposed by known fossil fuel reserves of 4 · 1022 J [1].
On the other hand environmental problems such as climate change through CO2

emissions are appearing.

1.1 Fusion experiments and neutral gas
measurement

Nuclear fusion, the source of solar energy, has been proposed to overcome the
energy problems we are facing. Its main benefits are

• abundance of fuel, the limiting factor being the supply of lithium (present
in common minerals) which is used to breed tritium

• no greenhouse gas emissions

• the radioactive waste produced in a fusion reactor has a very small half-
life compared to the transuranic elements and fission products found in a
fission reactor

• a power excursion accident like in a nuclear meltdown is in principle
impossible in a fusion reactor

1



Chapter 1 Introduction

The most realistic process for technical exploitation on earth is the deuterium-
tritium fusion:

2
1D + 3

1T → 4
2He (3.5 MeV) + n (14.1 MeV) (1.1)

This reaction has the highest fusion cross section of the helium-4 processes
possible and the kinetic energy needed for the particles to overcome the coulomb
barrier of the nuclei is in the order of 0.01 MeV. In the far future the D-D reaction,
which has a lower cross-section, may also be realized, eliminating the need for
lithium as a resource.

To achieve an economic reaction rate the number of collisions of sufficiently
energetic particles must be high which is only possible in dense hot plasmas,
leading to the problem of plasma confinement. For future fusion power plants
two approaches are possible: inertial confinement and magnetic confinement.
The first tries to produce these conditions by imploding small hollow balls made
of a deuterium-tritium mixture with lasers. This inherently leads to a pulsed
operation and no sustained plasma burn is possible. In addition the high energy
lasers employed at the moment have a low conversion rate posing the question
of efficiency for such a power plant.

Magnetic confinement seems at the moment the most promising way of building
a large scale reactor with energy output in the range of a conventional fission
power plant. In general charged particles follow magnetic field lines which opens
up the possibility of trapping and compressing the plasma. The most efficient
configuration for this is a doughnut shaped ring or torus, in which the magnetic
field lines revolve around the ring in a helix leading to a so called screw-pinch.
Two competing concepts to achieve this are investigated at the moment.

(a) tokamak (Source: EFDA-JET) (b) stellarator (Source: IPP)

Fig. 1.1: the two main toroidal confinement concepts
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1.1 Fusion experiments and neutral gas measurement

In the tokamak (figure 1.1 a) the helical field results from combining a toroidal
field generated by coils (blue) with a poloidal field due to an electric current
circulating in the plasma. The plasma current is induced by the transformer
coil (green). Additionally outer poloidal field coils are required to shape the
plasma and avoid a drift of the plasma towards the outer wall. This axially
symmetric design is in principle simple but has some drawbacks. If the plasma
current is driven by the transformer only a pulsed operation is possible. This
can be avoided be heating and driving the plasma with electromagnetic waves, a
complex process of low electrical efficiency. On the other hand the plasma current
itself can lead to unwanted instabilities.

Therefore in the stellarator design (figure 1.1 b) one tries to achieve the necessary
screw-shaped field lines only through coils. This leads to very complex and
variable coil shapes but theoretically allows continuous operation.

Fig. 1.2: fusion experiment history (source: T. Hamacher, IPP)

Most fusion experiments have concentrated on the tokamak design, with the
notable exeption of the Wendelstein (W 7-AS) and LHD devices. In figure 1.2
the progress of fusion experiments over the last decades is shown in terms of
“triple product” versus temperature. The triple product (density × temperature
× energy confinement time) is a measure for the efficiency of a confinement
scheme. The Lawson criterion, defining the ignition threshold (necessary but not
sufficient), can be expressed in terms of the triple product as follows:

neTτE ≥ 2.8 · 1021 keV s m−3 (1.2)

3



Chapter 1 Introduction

In the 50 year history of fusion research many theoretical and technical problems
have appeared. To understand and solve these an extensive array of diagnostic
and regulative methods had to be developed.

One of them is the measurement of the neutral gas pressure in the space between
the wall of the plasma vessel and the separatrix, the outermost closed magnetic
flux surface (surfaces of constant pressure in which the magnetic field lines must
lie according to jjj ×BBB = ∇p). Neutral particles are continously created from ions
which hit the wall and are neutralized in the process. On the other hand they
are themselves annihilated through ionization processes and become ions again.
Thus there is a certain equilibrium of neutral particle density in the plasma vessel.
In the boundary region of the plasma (scrape-off-layer or SOL) the flux of neutral
particles hitting its surface is especially important for a number of reasons. It can

• cool the plasma, thus decreasing the energy confinement

• transport momentum perpendicular to the magnetic field lines

• change the velocity distribution of the plasma through collisions

While these effects are negative in the main plasma chamber, in the divertor,
where impurities and the helium “ash” are filtered out, they should be high.
Thus the aim is to create a neutral gas pressure differential between the main
chamber and the divertor (cf. figure 1.6) by means of geometric and magnetic
configuration adjustments. To monitor and control these experiments a reliable
method for neutral gas measurement at several positions inside the plasma vessel
is necessary. An additional feature is the strong dependence of the neutral
particle density on the plasma density (neutral density ∼ plasma density 2). This
is exploited as a control mechanism during plasma fuelling.

The ASDEX pressure gauge (APG), a device developed for this purpose at
ASDEX in the 1980s, is the subject of this work and will be introduced in the
next section.

1.2 Ionization pressure gauges and the APG

Ionization pressure gauges (IG) are used to measure low pressures in High
Vaccum (10−2 to 10−12 mbar), where the mean free path (MFP) is larger than the
dimension of the measuring device.

Generally all IGs are based on the acceleration of electrons from the cathode
which then interact with the gas present in the gauge head. The collisions lead to
ionization of neutral particles. The resulting ions are collected at the anode and
give a measure of the neutral particle density.

4



1.2 Ionization pressure gauges and the APG

(a) IG principle (b) Bayard-Alpert type gauge

Fig. 1.3: Ionization pressure gauges

The electrons can be created in different ways. Hot cathode IGs use the
thermionic emission of a filament, which is heated by a direct current. The
gauge has three electrodes similar to a triode, with the filament as cathode. A
schematic is shown in figure 1.3(a). The electrons are accelerated by a positive
elecrostatic potential (≈ 200V) on the grid electrode relative to the cathode. The
grid is made of a thin wire, so most electrons can pass through it and enter the
ionization volume. The collector anode is set to negative potential relative to the
cathode. At the point where the potential is the same as that of the cathode the
electrons turn back and start to oscillate around the grid until eventually they hit
the wire and are captured (electron current Ie). The oscillating electrons collide
with gas molecules and ionize a certain fraction, depending on velocity and gas
type. Those ions which are produced in the inner part of the gauge head then get
accelerated towards the anode and produce the ion current I+. The pressure from
the neutral gas in the gauge head is then proportional to the ratio of the currents
[2]:

p = S
I+

Ie

The proportional constant S defines the sensitivity of the gauge. For very low as
well as very high pressures (with respect to the high vacuum range) variations
to this linear proportionality appear, leading to the operational limits of IGs. The
lower limit is due to a pressure-independant photoelectric current on the anode
caused by Bremsstrahlung of electrons hitting the grid. In the Bayard-Alpert
gauge (1.3(b)), the most common IG, this effect is minimized by reducing the
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Chapter 1 Introduction

anode to a small wire inside the grid. The upper operational limit is given by the
pressure at which the mean free path of the electrons becomes small compared
to the distance between cathode and anode. Then the electrons undergo many
collisions on their first round and hit the grid fast. The number of ions produced
on the wrong side of the grid thus becomes disproportionate [3].

ASDEX pressure gauge (APG)

Conventional Bayard-Alpert gauges can not be used in a fusion experiment
chamber because of the strong magnetic field present. Basically the charged
particles (electrons as well as ions) will be guided by the magnetic field lines
(cf. Chapter 2.2) and move along them accelerated by the parallel electric field
component. This would lead to a strong decrease of the ion current as most
ions would miss the collector wire. Additionaly the Lorentz-force on the heated
cathode wire would break it.

Fig. 1.4: schematic APG drawing

Therefore at the IPP Garching a hot cathode ionization gauge able to work in
strong magnetic fields was developed. A schematic of the APG is shown in
figure 1.4. All electrodes are arranged along an axis parallel to the envisaged
direction of the magnetic field. To achieve the best electron yield the filament has
to be perpendicular to the axis. This on the other hand causes a strong Lorentz-
force (jjj ×BBB) on the current-carrying wire. In order to withstand this force its
diameter has to be larger than in ordinary tube gauges. Only the straight part
of the filament is considered as an electron source. The electrons, as well as the
ions produced by them, follow the magnetic field, resulting in a flat stream of
charged particles extending from the filament. To accomodate this stream and its

6



1.2 Ionization pressure gauges and the APG

variation due to drift and small changes in magnetic field direction the electrodes
and its windows are enlarged accordingly.

Because of the strong background radiation present in the plasma chamber an
additional control electrode has been positioned between the filament and the
acceleration grid. It is switched with a frequency of several kHz from negative
potential w.r.t. the filament to a positive potential natural to its position between
the other electrodes. It therefore blocks the electrons in one setting and lets
them through unaltered in the other. For the actual pressure measurement
the difference between both signals is used, which eliminates the photoelectric
currents caused by the background radiation.

The potentials on the electrodes are shown in figure 1.5. In the standard
configuration the potential difference between filament and acceleration grid is
176 V, giving the electrons enough energy to ionize in a large part of the gauge
volume. The ion collector potential is set well below the filament to repel the
electrons and attract and absorb the ions. xmax, at which the potential is equal to
the filament, marks the point where an unscattered electron is turning around.

x (mm)
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)

xmax

UIC

UAG

UFil

0 5 10 15

50

100

150

200

250

Fig. 1.5: APG potential settings for filament (FIL), acceleration grid (AG) and ion
collector (IC).

With this configuration the APG is able to measure the neutral gas pressure
without a magnetic field but also in strong magnetic fields. In the range between
0 and 1 tesla the sensitivity increases strongly because of magnetic guidance of
the charged particles. At higher field strength it stays roughly constant.
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Chapter 1 Introduction

1.3 APG application in tokamaks

At present the APG is used to measure the flux density of the neutral gas at
different poloidal and toroidal positions inside the vacuum vessel of ASDEX
Upgrade. From this quantity and its temperature the density of the neutral gas
can be derived. Figure 1.6 shows the poloidal distribution of the gauge heads (in
reality they are not all together in one poloidal plane but distributed to different
sectors). Alltogether there are currently 20 APGs fitted in the vessel.

Fig. 1.6: Poloidal cross-section of the ASDEX Upgrade plasma chamber, APG
positions are indicated by the red pentagons. The divertor configuration
is shown in the lower half (black surfaces).

The gauge heads are installed in metal boxes set to ground potential to shield the
inside from external electric fields. Those boxes have a small hole on one side
through which the neutral gas flux can enter. In figure 1.6 the orientation of the
inlet is marked by the tip of the red pentagons.

With this setup the APG system is able to give a real-time analysis of the neutral
gas distribution in the vacuum chamber during a plasma discharge.
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1.4 Aim of this work

Over the course of the last decades the APG has also been adopted by several
other plasma confinement experiments world-wide, such as JET (Joint European
Torus) and Wendelstein 7-AS.

In the near future an international consortium, with participation of the European
Union among others, is planning a new fusion power experiment called ITER,
to be built in Cadarache, France. It is expected to be the first confinement
experiment to ignite a burning, self-sustaining plasma and will demonstrate and
verify technologies and processes needed for a future fusion power plant.

In ITERs design specifications [4] the in-vessel neutral pressure measurement is
considered as one of the diagnostics required for machine protection and basic
control. For this task 50 to 100 pressure gauges are planned to be installed. They
have to be supplied by the EU and currently the reference design is the APG, as
it has the best performance of all proposed gauges in the ITER environment.

1.4 Aim of this work

The APG has proven itself to be a reliable diagnostic tool in the past. As just
mentioned it is also planned as the pressure gauge system for ITER. However at
certain positions inside the divertor the design specifications of ITER require a
capability to measure a pressure of up to 20 Pascal1 at magnetic fields of up to 8
Tesla.

Figure 1.7 gives the output of the standard gauge for different magnetic field
strengths against H2 pressure. Without magnetic field the behaviour is linear up
to the maximum pressure achievable in the experimental setup (∼ 30 Pa). For
high magnetic field a substantial increase in output can be seen, about 1 order of
magnitude. At about 10 Pa a saturation effect occurs, depending on the magnetic
field strength, with the behaviour worsening the higher the magnetic field.

Thus the standard APG is not fulfilling the ITER requirements and it is necessary
to improve the design. In this respect a more detailed understanding of the
processes leading to the sensitivity increase and the saturation at higher pressures
would be beneficial.

This diploma thesis has the aim of developing and implementing a computer
simulation of the gauge physics and comparing its results with experimental
data. With the statistical results thus obtained it is possible to evaluate parameters
such as the mean residence time or the mean number of collisions of electrons
which are not accessible to experimental means. As a result a model for the

1 In the rest of this document we will use mbar, the standard unit in vacuum technology.
However the conversion to the SI-unit Pascal is trivial: 1 mbar = 100 Pa

9



Chapter 1 Introduction
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Fig. 1.7: APG output against pressure of H2 for different magnetic field settings,
demonstrating the sensitivity increase and saturation for high field
strength.

saturation process is derived and possible directions for improvement of the APG
design are identified.

To this aim the present document is laid out as follows: The fundamental physical
processes of the APG are discussed in Chapter 2. Chapter 3 will introduce the
general concept of the simulation and present the individual algorithms used.
Chapter 4 then presents the results of the simulation in different conditions,
compares it with the available experimental data and discusses the agreement.
In Chapter 5 we present a model to explain the saturation which is consistent
with the simulation as well as experiment. With this we can draw conlcusions in
the last chapter as to what parameters of the gauge need to be changed to extend
its useful measuring range.
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Chapter 2

Physics of the APG

This chapter gives an overview of the relevant physical processes involved in
the APG operation and relevant for its simulation. These are the creation of
free electrons at the filament, the motion of charged particles in the gauge head
under the influence of electromagnetic fields and the interaction processes of the
charged particles which determine the amount of ionization and thus ultimately
the gauge performance.

2.1 Hot filament electron generation

The electrons in a hot filament ionization pressure gauge are produced by
thermionic emission from the cathode wire (the hot filament). Heating is
accomplished by a direct current applied to the filament (Joule heating), usually
made of tungsten.

The conducting electrons in a heated metal at temperature T can be regarded as
a gas whose energy distribution is governed by Fermi-Dirac statistics:

f(E) =
1

e
E−µ
kT + 1

(2.1)

where µ is the chemical potential. For relevant temperatures it is approximately
equal to the Fermi-level, the energy of the highest occupied state at absolute zero.

An electron evaporating from the filament has to overcome the potential barrier
at the boundary of the wire. Therefore its kinetic energy component normal to
the surface must be larger than the potential difference, Φa, between the bottom
of the well and a free electron at infinity. The difference Φa − µ is called work
function W , a characteristic value of the wire material. In figure 2.1 the shape of
the Fermi distribution is shown for different temperatures.

11



Chapter 2 Physics of the APG
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Fig. 2.1: Fermi tail of an electron gas at three different temperatures, Φa gives the
threshold energy necessary to escape the metal

Thus to get the electron current density leaving the wire one has to integrate over
the fermi distribution with limits in the perpendicular direction vx corresponding
to Φa and infinity [5]:

J =
2m3

h3

∞∫
√

2(Φa−Φ(x))/m

vxdvx

+∞∫∫
−∞

dvydvz

[
exp

(
1/2mv2 + Φ(x)− µ

kT

)
+ 1

]−1

This yields the well known Richardson equation

J =
4πm(kT )2

h3
exp

(
−Φa − µ

kT

)
= A · T 2 · e−WkT (2.2)

A is a constant not depending on material, approx. 120 A
cm2K2 . For pure tungsten

W is 4.51 eV. In the case of the APG thoriated tungsten is used, which lowers this
value significantly to 2.63 eV [6, p. 75]. The emission current is sharply dominated
by the exponential factor, leading to experimentally adequate emission currents
only in the range from 1200 K to the melting point.

When an external field E is applied, as in pressure gauges, the value of Φa is
lowered, which leads to a decrease of the work function. This difference is related
to the external electric field as follows:

∆W =

√
e3E
4πε0

(2.3)

12



2.2 Motion of charged particles in electromagnetic fields

The energy distribution of the emitted electrons is given also by Fermi-Dirac
statistics:

f(Ee) =
1

exp
(
W+Ee
kT

)
+ 1

(2.4)

Because work functions are typically in the range of several electron-volts, W/kb
is about 104 K. Therefore for temperatures below a few thousand Kelvin (which
is the case because of the melting point of tungsten at 3695 K) we can neglect the
1 in the denominator [7, p. 460]. Thus for the APG we can assume a Maxwellian
distribution:

f(Ee) = exp

(
−W + Ee

kT

)
(2.5)

It follows that for a given temperature and work function we can calculate the
total number and the energy distribution of the emitted electrons per surface area.
The temperature depends on the heating power, the energy loss due to photon
radiation and electron emission and the heat conduction through the joints in the
base plates. According to calculations [8] it can be assumed to be constant along
the straight part of the filament wire. Other electrons, emitted from the “ears” and
the vertical rods are all drawn off by the control grid and as such are negligible.

2.2 Motion of charged particles in electromagnetic
fields

The electrons but also the ions produced in the APG, are subjected to electric
and magnetic fields. The electric field is due to the potential configuration of the
electrodes and shielded from the outside by a grounded box (which is not present
in the laboratory setup, cf. Chapter 4). The magnetic field is determined by the
external field and a small deviation in the proximity of the filament due to the
heating current. Though in reality the fields change with time, especially because
of the chopping mode of the control grid to suppress background radiation, in
this work we consider the fields to be time-independant and the currents to be
the steady-state result of the charge flow.

13



Chapter 2 Physics of the APG

2.2.1 Lorentz-force

The force acting on a point charge q in electric and magnetic fields is given by the
fundamental Lorentz-force:

FFF = q · (EEE + vvv ×BBB)

giving rise to the following equation of motion:

v̇vv(t) =
q

m
· (EEE(xxx, t) + vvv(t)×BBB(xxx, t)) (2.6)

For conservative fields (i.e. fields derived from a scalar potential) the total energy
of the particle is conserved,

Epot(t) + Ekin(t) = const.

The magnetic part of the force (v × B) is only acting perpendiclur to the current
motion, so it cannot alter the absolute velocity and therefore the kinetic energy.
This property also leads to the typical circular motion or gyration of charged
particles in magnetic fields.

The general solution to this ordinary second-order differential equation (ÿ =
g(t, y, ẏ)) in three dimensions can only be obtained numerically and will be
discussed in Chapter 3. However to gain a qualitative understanding of the
motion it is instructive to consider the case of constant fields which is solvable
analytically and will be discussed in the following section.

2.2.2 Trajectory of a charged particle in constant fields

For constant fieldsEEE(xxx) =EEE andBBB(xxx) =BBB equation 2.6 reduces to a first-order
differential equation in vvv (v̇ = g(t, v)).

To find an analytic solution we start by separating the initial velocity vvv0 into three
components:

vvv0 = vvv0,par + vvvdrift +ααα (2.7)

vvv0,par is the component of vvv0 parallel toBBB, given by:

vvv0,par = (vvv0 · bbb) · bbb

with bbb = BBB
|BBB| .

14



2.2 Motion of charged particles in electromagnetic fields

vvvdrift is due to the EEE ×BBB-drift occuring if there is an electric field component
perpendicular toBBB:

vvvdrift =
EEE ×BBB
BBB2

ααα is then just defined by 2.7 as the remainder of vvv0 not covered by the previous
two velocities. It is the initial velocity of the gyration motion and is only governed
by the magnetic-force (v ×B).

To construct the circular motion one has to introduceβββ, which is given by turning
ααα by 90 degrees about theBBB-axis:

βββ =
BBB ×ααα
|BBB|

Additionaly the acceleration parallel toBBB due to the electric field is as follows:

aaapar =
q

m
(EEE · bbb) · bbb (2.8)

We can now construct a time evolution of vvv solving equation (2.6) and satisfying
the initial condition (2.7), which can be easily checked by taking the first
derivative:

vvv(t) = ααα · cos (Ωt) +βββ · sin (Ωt) + vvvdrift +aaapar · t+ vvv0,par (2.9)

Here we have also introduced the gyration frequency Ω = q·|BBB|
m

.

Integrating xxx(t) = xxx0 +
∫ t

0
vvv(t′)dt′ gives

xxx(t) =
1

Ω
[ααα · sin(Ω · t)−βββ · (cos(Ω · t)− 1)] + vvvdrift · t+

1

2
aaapar · t2 + vvv0,par · t+xxx0

(2.10)
the general trajectory of a charged particle in constant electric and magnetic
fields if all other forces can be neglected. Figure 2.2 shows the solution for
an exemplary field configuration similar to the APG (B ≈ 1 T, E ≈ 40 V

mm
). The

Z-axis is aligned to the magnetic field and the particle starts at the origin with
thermal velocity perpendicular to the magnetic field (α1).

In the first case (blue line) the electric field is parallel to the magnetic field and
therefore vdrift is zero. The trajectory can then be divided into two parts:

• the accelerated motion of the guiding center (black line) parallel to the Z-
axis, due to the electric field
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Fig. 2.2: electron trajectory, with (x2) and w/o (x1) drift, X/Y 100-times magnified.
Also shown is the guiding center motion (x1gd and x2gd).

• a constant gyration about the Z-axis with frequency Ω and gyroradius ρ =
α1

Ω

In the second case (red line) an additional electric field component in the Y
direction is added. It has 10% of the size of the Z-component which leads to
an angle of about 6 degrees between electric field vector and magnetic field. This
causes a constant drift velocity along the X-axis (EEE ×BBB) with two effects:

• the motion of the guiding center (green line) now consists of the accelerated
motion of the first case and the constant drift velocity yielding a parabolic
path

• the gyration-velocity α2 is reduced by vdrift thereby decreasing the gyrora-
dius ρ (figure 2.2(b))

Choosing 10 eV as an upper limit for thermal energy in the XY-plane we get the
following value for the maximum gyration velocity of an electron:

α =

√
2Ekin
me

= 1.9 · 106 m

s
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2.2 Motion of charged particles in electromagnetic fields
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With Ω = qe·B
me

= 1.8 · 1011 Hz at 1 Tesla the gyroradius becomes:

ρ =
α

Ω
= 1.1µm (2.11)

2.2.3 Qualitative path of electrons in the APG-potential

As briefly remarked in Chapter 1 the potential in the APG is shaped triangular
with the lowest point of potential energy for an electron at the acceleration grid.
With the conclusions of the previous section we can now discuss the long-term
trajectory of an electron emitted from the cathode.

Starting at the filament the electron will be accelerated all along the way to the
acceleration grid, while gyrating according to the initial value of ααα. There it has
gained a velocity corresponding to the potential difference of about 180 V. The
initial velocity in Z-direction can usually be neglected (v0,Z 5 kT ≈ 1 eV). Moving
into the ionization volume the electron is decelerated until reaching the turning
point, given by:

dz =
Ekin
qe · E ≈

180 V

34 V
mm

= 5.3 mm

It will then fly back mirroring the behaviour until reaching the cathode again
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Chapter 2 Physics of the APG

Fig. 2.3: APG potential with electron paths, showing an unscattered electron
which returns to the filament after one round and a scattered electron
which oscillates around the acceleration grid in a lower energy orbit
(Larmor radii are exaggerated for clarity).

where it is usually absorbed. In figure (2.3) a typical path in the APG-trap is
shown (black line). If by means of a collision the electron energy in Z-direction is
reduced it cannot return to the filament and will oscillate around the acceleration
grid for a long time until it will eventually be absorbed there (green line). In
this initial treatment the grid-bars are neglected. Of course some electrons will
be absorbed immediately by just hitting one of them. This leads to a constant
reduction in transparency to about 80% (corresponding to the area ratio of slits to
bars in the present design).

In the absence of the magnetic field the electrons are not guided along the axis
of the APG. Their motion in the XY-plane is not constrained by any force (except
small deviations of the electric field) and determined only by the initial velocity.
The acceleration and thus the oscillation along the Z-axis is the same as before.
Most electrons will hit the control grid or acceleration grid within the first round-
trip.

In figure 1.4 we have given a schematic drawing of the four electrodes of the
APG. In the rest of this document we will denote the currents which flow to the
electrodes by the following labels:

• Ibkfil: current of electrons returning to the filament

• Icg: current of electrons hitting the control grid

• Ie: current of electrons hitting the acceleration grid, the proper electron
current

• Iic: ion current drawn off at the ion collector

Figure 2.4 shows the currents measured on the APG electrodes without neutral
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2.3 Particle interaction processes

gas present over the whole B-range possible to create in the laboratory. The
results confirm the qualitative observations just made for both the 0 Tesla limit
as well as the high Tesla limit.

• for strong magnetic field we have a ratio of about 0.8
0.2

between Ibkfil and Ie;
Icg tends to zero

• for 0 Tesla most electrons hit the control grid, as a random velocity
distribution around the filament would suggest; the current of returning
electrons Ibkfil is strongly reduced

Fig. 2.4: vacuum currents against B-field, showing electron current Ie, filament
current Ibkfil and control grid current Icg.

2.3 Particle interaction processes

When two or more particles in a gas approach each other to a sufficiently small
distance an interaction occurs in which energy and momentum can be exchanged
between the particles. In a very weakly ionized gas, as is the case in the APG, a
host of different kinds of collisions are possible:

• collisions between neutral particles (of the same or different kind, depend-
ing on gas composition)

• collisions between charged (electrons or ions) and neutral particles

• interactions between charged particles

• photon - particle interaction (i.e. plasma glow)
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Chapter 2 Physics of the APG

The first of these is the basis of the kinetic theory of gases which leads to the
fundamental properties of the ideal neutral gas such as velocity distribution,
temperature and pressure. Its results can be obtained by regarding the gas atoms
(molecules) as impenetrable hard spheres, a crude approximation of the very
short range interaction potential between neutral particles (for charged particles
this is no longer valid, as the long ranging coulomb potential (∼ 1

r
) leads to energy

exchange over a significant part of the particle path).

In every collision the principle of conservation of energy and momentum holds:∑
i

pppi =
∑
i

ppp′i,p (2.12)∑
i

Ei =
∑
i

E ′i (2.13)

Here the index i refers to all particles involved in the process and unprimed
and primed mean before and after the collision respectively. The energy of a
particle can be divided into kinetic energy and inner energy and in general the
conservation only holds for the total sum. According to the change in inner
energy of the particles involved one can distinguish two cases:

elastic collisions the particles only exchange kinetic energy and momentum,
the inner energy of all particles is conserved individually and relation (2.12)
also holds for kinetic energy alone

inelastic collisions a particle with inner structure (atoms, molecules, ions) is
either ionized or excitated, so that kinetic energy is transformed to potential
energy. The total kinetic energy of the collision partners is reduced. The case
of so called superelastic collisions in which the reverse of this happens and
total kinetic energy increases also belongs in this category.

2.3.1 Cross-section, mean free path

The basic quantity for the experimental and theoretical treatment of collision
interactions is the so called cross-section σ, giving a measure for its probability.
It depends on the kind of the interaction, the relative electron energy and the
scattering angle. The total collision cross-section which covers all interactions and
angles is given fy following formula:

σ =
Number of reactions per unit time

Number of incident particles per unit time × Number of targets per unit area
(2.14)

with the unit of m2.
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2.3 Particle interaction processes

The cross-section for the different reaction channels can be defined seperatly in
the same way and the total cross-section is then the sum over all channels:

σtot = σel +
∑
j

σinel,j (2.15)

For a given target particle density nB and total cross-section σAB an incident
particle A with velocity vA will on average experience νA collision events per unit
time (mean collision frequency):

νA = nB < σAB · vA > (2.16)

Here the averaging < · > is over the velocity distribution of the target
particles, because the cross-section depends on the relative velocity of the
collision partners.

The inverse of this gives the mean free time τA between two successive collisions.
During this time the particle covers the mean free path given by multiplication
with vA:

lA = τA · vA =
vA

nB < σAB · vA > ≈
1

nBσAB
(2.17)

Here the approximation in the last step is valid if the target particles are slow
compared to the incident particle.

2.3.2 Interactions of electrons with the neutral gas

A single electron released into the gauge head volume from the filament will
react with the neutral gas present depending on the density of the gas (i.e. its
pressure) and the energy of the electron. In principle also the velocity of the gas
molecule is of significance and can change the cross-section, because the relative
velocity of electron to molecule is determining the cross-section. The neutral
gas is considered to be in thermal equilibrium and therefore has a Maxwellian
velocity distribution:

f(v) = 4π
( m

2πkT

)3/2

exp

(
−mv

2

2kT

)
(2.18)

with the mean speed given by:

v =

∞∫
0

v · f(v) =

√
8kT

πm
(2.19)
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Chapter 2 Physics of the APG

Then however the velocity of the electrons is on average much larger than
the molecule velocity and for the statistical treatment of the collisions the gas
particles can be considered as stationary [6]. Equation (2.16) in this case reduces
to

νe = nAσtotve (2.20)

for the electron collision frequency without the need to average over the velocity
distribution of the gas.
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Fig. 2.5: cross-section data for Hydrogen (H2), giving the elastic and different
inelastic cross-sections (rotational, vibrational, excitation, ionization
and attachment). The data has been obtained from CERN Magboltz
compilation – (http://rjd.web.cern.ch/rjd/cgi-bin/cross)

Elastic scattering

An electron is said to scatter elastically from an atom or molecule if the inner
energy of the latter is conserved. This is the dominating process for electron
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2.3 Particle interaction processes

energies up to about 10 eV, decreasing sharply above that value (figure 2.5
Elastic).

The electron energy after collision depends only on its energy before the collision
and the scattering angle θ, the angle between pppe and ppp′e. It can be derived from
the conservation laws (2.10) and (2.11) [6, p. 41]:

E ′e = Ee

(
1− 4memA

(me +mA)2
cos2 θ

)
(2.21)

The fractional kinetic energy loss is thus:

∆E

E
=

4memA

(me +mA)2
cos2 θ (2.22)

For H2 the average fractional energy loss of an electron is approxiamtely 5 · 10−4

[6].

The angular distribution of the scattered electrons in the classical treatment is
expected to be isotropic, however experiments have shown to deviate from this
[6, p. 171]. Forward scattering is especially for higher energies favored. As
experimental data for the differential cross section is only available for certain
energies [9], in this work we consider the scattering to be isotropic, i.e. having
equal propability for all scattering angles (this is also the case for the other
scattering processes). This is a valid assumption for electron energies below 200
eV [10].

Excitation of a hull electron

In an electron-atom collision one of the outer hull electrons can get excited to a
higher quantum number:

e− +X → e− +X ′ (2.23)

The excitation energy Eex is consumed in this inelastic process, yielding the
following energy relation:

Ee− + EX = E ′e− + E ′X + Eex (2.24)

For any allowed transition in the atomic hull there is a seperate excitation cross-
section function which has a sharp onset at the value of Eex. Below and at Eex the
interaction probability is as expected zero. They rise with higher energies and
pass through a maximum typically between 10 and 100 eV (figure 2.5 EXC1 and
EXC2).
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Chapter 2 Physics of the APG

Rotational and Vibrational excitation of molecules

In the case of diatomic molecules such as H2 (but also for more complex ones)
other kinds of inelastic excitation collisions are possible. As the molecules are not
spherically symmetric they have additional degrees of freedom for rotation about
an axis. The energy stored in this rotation is quantized. The same holds true for
the periodic vibrations of the two atoms constituting the molecule with respect
to its center-of-mass. If an electron with a kinetic energy that is larger then the
step from the current rotational or vibrational mode to the next accessible mode
hits the molecule an excitation can happen. Then the electron energy is reduced
as before by Eex.

The values for Eex are much lower than in the hull electron excitation case,
however due to the fact that their cross-section maximum is around 4 eV where
the elastic scattering is still dominant thay only play a minor role (figure 2.5 ROTX
and VIBX).

Attachment

It is also possible for an electron to attach to an atom or molecule in some cases.
If a neutral atom (molecule) and an electron can form a stable negative ion, the
binding energy released in the process is called the electron affinity Ea (typically
between 0.5 and 4 eV [6, p. 278]). The resulting ion is usually in the ground state,
because only there the shielded nuclear Coulomb force is strong enough. The free
electron disappears in the process, giving following reaction balance:

e− +X → X− + hν (2.25)

Here hν denotes the radiation quantum (photons) emitted to conserve total
energy (= EX +Ekin,e+Ea). After the collision the negative ion will drift towards
the acceleration grid and in the end gets neutralized. Thus its charge adds to the
electron current measured there, but its contribution is very small.

Ionization

The most important process for the APG is the ionization of neutral gas par-
ticles by accelerated electrons. In this process the outermost electron of the
atom/molecule is lifted from the bound state to an unbound one, requiring the
ionization energy Ei. Thus after the collision two free electrons leave:

e−1 +X → e−1 +X+ + e−2 (2.26)
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2.3 Particle interaction processes

Here the electrons are numbered though in reality they are indistinguishable. The
energy of the two emitted electrons must in total be given by:

E ′1 + E ′2 = E1 − Ei (2.27)

According to experiments done by [11] the relation between the energies is given
by:

P (E ′2, E1) =
σi(E1)

(E ′ 22 + β2) tan−1
(
E1−Ei

2β

) (2.28)

were β is an empirical constant given by 8.7 eV.

The interaction cross-section for ionization appears after the threshold of Ei
(15.8 eV for H2). It rises sharply to reach the maximum in the range from 30 to
150 eV. In this energy range it is also the dominating process together with the
second excitation process (figure 2.5 ION).

2.3.3 Interaction of electrons with charged particles

The electrons can also interact with other charged particles in the gauge volume,
i.e. the generated ions and the other electrons which are released during the
residence time of the considered electron.

For the ions the possible reactions fall into the same categories as described above,
certainly with different cross-section values (elastic scattering, the different
excitation processes, double ionization). The ion current on the collector is at
maximum around 300µA, leading to an ion density of around 10−5 1

cm3 . This
makes the mean-free-path for an electron with regard to an ion interaction very
long and the collision very rare compared to neutral collisions. For a statistical
treatment these interactions can therefore be safely neglected.

The electron-electron interactions on the other hand might play a relevant role,
especially for the case of high emission currents in the prescence of magnetic
fields. Then it is possible for a large number of electrons to become trapped
around the acceleration grid and have a longe residence time in the gauge
volume. This could lead to a space charge around the grid which would alter
the overall electric field significantly. Also collective electron beam effects are
possible. However it is out of the scope of this work to treat the electron-
electron interactions. In the last chapter nevertheless, its significance especially
in connection to the different emission current settings used in the experiments
will be discussed.
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Chapter 2 Physics of the APG

2.3.4 Ion interactions

After the ions are produced somewhere in the ionization volume, they are
accelerated and drift towards the ion collector. On their way interaction with the
neutral gas is possible and could lead to a diffusion out of the collector “shadow”
so that the ion would be lost. This would lead to significant decrease of the
output if it happened frequently, given the low ion production ratio. Therefore it
is necessary to consider at least the elastic scattering of ions and neutrals.

The elastic cross-section data for H+ + H has been obtained from [9]. The
behaviour is monotonical, starting at around 10−13 cm2 for a center-of-mass
energy of 10−3 eV then dropping constantly to about 10−14 cm2 at 100 eV.

The inelastic processes which are imaginable for ions, such as electron exchange
(H+ + H → H + H+) are all well below 10−15 cm2 [9, p. 331]. Additionaly they
could just lead to a momentum loss perpendicular to the gauge axis, which would
not affect the ion yield adversly. Hence they can be neglected in the ion transport
treatment.

26



Chapter 3

Simulation

The main aim of this work is to develop and evaluate a simulation of the APG,
which covers all important processes and is able to reproduce the current output
of the gauge for different gases and magnetic field strengths. In this chapter a
description of the simulation concept, the algorithms and the implementation is
given.

3.1 General overview

The basic idea of the simulation is to track a single electron at a time on its path
in the gauge geometry under the influence of the EM-fields until it reaches one
of the electrodes. During that time it collides with gas particles and sometimes
ionizes one of them. The currents resulting from the simulated electron and
the secondary electrons (which can in turn produce ion-electron pairs) and ions
produced by it are recorded. Neglecting charged particle self-interaction, we
expect that if we simulate many electrons the currents thus obtained converge
to the experimentally measured output of the APG. As the emission current is
not known in the experiment we normalize on Ie, the current on the acceleration
grid, to compare.

Figure 3.1 gives a flowchart depiction of the program. At the beginning the
input parameters are loaded from a file, such as the geometric configuration
of the gauge, the electric field data, the magnetic field strength and the neutral
gas pressure. Also the number of primary electrons (electrons released from the
filament) and ions to be simulated is set. The program terminates when both
targets are met. This is necessary because we simulate over a wide range of
pressures. At the lower end a thousand electrons produce only a handfull of
ions, which would result in a large statistical error for ion tracking. Therefore we
increase the number of primary electrons until the target value for the ion count
is reached.

After the program startup the first electron is initialized on the filament, i.e. its
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Chapter 3 Simulation

starting position and momentum are determined. To start tracking the electron
path we need to know when its next collision will happen. Therefore the electrons
“free time” is determined. Now the path of the electron for the given initial
conditions can be integrated numerically for that timespan, reaching the position
where the collision event takes place.

Fig. 3.1: program flow

The calculated electron trajectory is now checked for “impact” events, meaning a
collision with one of the electrodes or the outer boundary of the gauge head. If
this is the case the electron is counted as a current on the electrode it first hit, and
the simulation continues with the next electron.

If no impact on one of the solid boundaries occured the collision is simulated by
determining the type of collision, the energy loss and the new momentum of the
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electron. In the case of an ionization also the location is stored as a starting point
for an ion and a secondary electron.

At this point we have to check if the remaining total energy of the electron is
still above a certain threshold. If not the electron is out and counted as a current
on the acceleration grid (AG). This is necessary to make sure that the program
terminates, otherwise the electron could oscillate around the acceleration grid
with low energy for a very long time. Eventually such an electron will end
at the AG due to collisions, as the geometry and potential configuration of the
gauge make sure that an electron with such a low energy cannot escape to
another electrode. We have chosen the ionization energy of the gas simulated
as a threshold. This is reasonable because electrons with a total energy below
that value cannot ionize and thus are of no further interest to our calculation.

If the electron still has enough energy the cycle freetime-trajectory-collision
(indicated by the red arrow in 3.1) starts anew, with the new initial conditions
being the endpoint of the last path segment and the new momentum after the
collision. This cylce is repeated until the electron has either hit an electrode or
lost so much energy in the collisions that it is under the threshold.

Every primary electron is simulated in that way, followed by the secondary
electrons from the ionizations. The only difference for them is that they do not
start on the filament, but at the location and with the momentum determined in
the ionization process.

At the end of the simulation the ions can be tracked on their path towards the
ion collector. This is optional, because tests have shown that all ions produced in
the ionization volume, i.e. between acceleration grid and ion collector, end up on
the ion collector and thus constitute the ion current. The ions produced on the
other side of the acceleration grid are repelled and cannot reach the ion collector.
Hence it is sufficient to know where the ions are produced.

Then the data that was collected is stored in a file and the simulation stops.

Monte-Carlo-Method

The word “determined” has been used a few times in the preceding paragraphs.
There are some steps in the simulation just described which are really determin-
istic and can be calculated only bound by numerical accuracy. Those are:

• the path of the charged particles in the given field configuration and for the
given initial conditions

• the impact of the charged particles on the electrodes or the boundary
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Chapter 3 Simulation

On the other hand the following processes are not deterministic but governed by
probability distributions:

• starting position on the filament

• initial energy and momentum

• “free time”

• type of collision

• scattering angle in the collision

• energy transfer to the secondary electron

Their results are obtained by stochastic sampling, described in detail in the
respective sections. Such a combination of deterministic modelling of the particle
motion and statistical treatment of the collision is called Direct Simulation Monte
Carlo (DSMC) and has been applied to various fields [12].

3.2 Geometric and EM-field model
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Fig. 3.2: APG geometry model (FIL: filament, CG: control grid, AG: acceleration
grid, IC: ion collector)

The geometric model we have used in the simulation is shown in figure (3.2). It
is consistent with the real gauge, except:
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• the thickness of the planar electrodes is neglected (∼ 0.2 mm)

• the filament is approximated by a straight wire, neglecting the “ears” and
the vertical connection to the base plate

A cartesian coordinate system is used, with the origin at one corner of the base
plate, next to the filament. The Z-axis is given by the direction perpendicular to
the electrode planes. The X-axis is chosen to be parallel to the filament. The whole
system is contained in a grounded box of the dimensions 22 mm×19 mm×20 mm
(X × Y × Z).

Table (3.1) lists the specific dimensions for every electrode and the filament, as
well as the coordinates of the windows which are present in the control grid and
the acceleration grid. As the filament is a cylinder Ystart refers to its center and
Yend to its radius.

FIL CG CG window AG AG window IC
Z position 5.0 7.1 10.1 17.5
Xstart 6.0 3.0 6.0 2.0 4.05 2.0
Xend 16.0 19.0 16.0 20.0 17.95 20.0
Ystart center: 8.5 0.5 7.5 0.5 6.5 0.5
Yend radius: 0.3 13.5 9.5 15.5 11.3 15.5

Table 3.1: APG electrode dimensions [mm]

Additionaly there are 27 grid bars uniformly positioned inside the acceleration
grid window. Figure (3.3) shows the acceleration grid complete with its bars.
They are aligned parallel to the Y-axis and have the same height as the window,
4.8 mm. Their width is 0.1 mm and they are 0.4 mm separated from each other.
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Fig. 3.3: acceleration grid as seen from the Z-direction
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Magnetic field

The magnetic field inside the gauge is composed of two parts. One is the
external homogeneous magnetic field the gauge is subjected to. In principle the
orientation is free, but we mainly considered the important case of a magnetic
field perfectly aligned with the gauge axis, thus:

BBBext = B0eeez (3.1)

B0 is one of the input parameters and can be set freely for every simulation run.

Additionaly we also take into account the magnetic field due to the heating
current in the filament. This component is only of significance if the electron
is very close to the wire. Therefore it can be modelled as if it was due to a
current running along the filament center from −∞ to +∞. The magnetic field of
a current I in the distance r to the filament center is then [13]:

B(r) =
µ0I

2πr

Transformation to our cartesian coordinates yields:

BBBfil(x, y, z) =
µ0I

2π
√

(z − zfil)2 + (y − yfil)2

 0
cosα
sinα

 (3.2)

Here α is the angle from the current position to the filament given by:

α = tan−1

(
y − yfil
z − zfil

)
The constants yfil and zfil are the filament coordinates given in table (3.1).

Analytic electric field

We have used two different approaches for modelling the electric field inside the
gauge. The first is a simplistic analytic model, based on parallel planar electrodes
extending infinitly in the plane perpendicular to the gauge axis. The four planes
are located at the Z-coordinates from table (3.1) and are set to the potentials 74,
105, 250 and 0 V respectively. The electric field resulting from this is picewise
constant and only has a component in Z-direction:

EEEanalytic(z) = −eeez ·


Ucg
Zcg

z ≤ zcg
Uag−Ucg
zag−zcg zcg < z ≤ zag
Uic−Uag
zic−zag zag < z ≤ zic

0 else

= eeez ·


−14.8

−48.3

33.8

0

V

mm

 (3.3)
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FEM field

To have another, more realistic approach to the electric field in the APG we have
used a finite-element-method (FEM) solution for the gauge geometry. For this
task the FEM suite ANSYS ([14] available on the IPP computer system) was used.
It solves the poisson equation with Dirichlet boundary conditions numerically
on a given mesh (the boundary conditions are in this case the potentials on the
electrode surfaces).

The electrodes were modeled with the same dimensions as in table (3.1) but with
a volume expansion in Z-direction of 0.2 mm. Additionaly to the potentials of the
analytic model (which are now applied only to the finite electrode volumes) the
grounded box surrounding the APG was also implemented.

The most complex part for obtaining an FEM-solution is the meshing process.
One has to define a grid of points (the endpoints of the finite elements) spanning
the whole volume at which the electric field is supposed to be calculated. Most
of this mesh can be generated automatically, but in certain regions the mesh has
be optimized, i.e. made finer, to get a converging solution.

In the case of the APG this was expecially necessary around the acceleration grid
bars, where rapid field fluctuations occur. This has to be done only once for a
given geometry, and the mesh can be reused for different potential settings.

The recalculation of the FEM solution for new potential settings takes about 1
hour with ANSYS on the IPP workstations.

The output of ANSYS is transformed to a homogeneous grid and saved in a file
that is loaded at the beginning of the simulation. During the simulation the
electric field at a given electron position is calculated by trilinear interpolation
[15] from the surrounding 8 nearest neighbour points of the FEM grid.

Figure (3.4) gives a visualisation of the FEM result for the standard gauge
potentials that was used for most of the simulations. The effect of the bars can
be seen from the equipotential circles around them. Thus an electron passing
through a slit is actually attracted to the bar closest to it, as expected (the
electrostatic force on a charged particle is always perpendicular to equipotential
lines).

Another point well covered by this solution is the finite expansion of the
electrodes in the XY-plane and the grounded box surrounding the gauge. This
causes the electric field vectors to point outwards in the boundary regions.
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Fig. 3.4: FEM solution: plane in the center of the APG with equipotential lines
and some selected electric field vectors (blue arrows)

3.3 Electron initialization on the filament

When the simulation cycle of a primary electron is started its position and
velocity vector have to be determined according to the distribution functions of
thermal emission. We denote the 6-tupel (x0, y0, z0, vx0, vy0, vz0) by s0.

Position

The electron is emitted from the filament surface, a cylinder, thus we have two
degrees of freedom. In the cylindrical coordinates of the filament we call them
h and Θ, while r is fixed on the surface. Θ gives the angle between the point of
emission and the Z-axis. The transformation to our cartesian coordinates is then

34



3.3 Electron initialization on the filament

given by:

x0 = xFIL 1 + h

y0 = yFIL + rFIL sin Θ

z0 = zFIL + rFIL cos Θ

The variables h and Θ have to be chosen randomly according to their distribution.
So we generate two random numbers R1 and R2 uniformly distributed between
0 and 1 (0 ≤ R < 1, this will always be the range of random numbers in the rest
of this document).

As there is no preferred angle Θ is distributed uniformly, thus:

Θ = 2πR1 (3.4)

For h we have two possibilities. The simple approach is to assume constant
temperature along the filament, yielding again a uniform distribution:

h = (xFIL 2 − xFIL 1)R2 (3.5)

As an alternative we can also assume a slightly peaked temperature distribution.
Given an exponentially distributed random number Re we get for h:

h =
xFIL 2 − xFIL 1

2
·
{

(1 +Re) R2 ≤ 0.5

(1−Re) R2 > 0.5
(3.6)

This concentration of electrons in the center of the filament has also been tested
with the simulation, and there has been no significant difference in the results.

Velocity

For the velocity we have three degrees of freedom, which we call in sperical
coordinates v, φ and θ, defined on the tangential plane to the surface of the
filament. Here the zenith angle θ is between the emission direction and the
surface normal. Transforming this to cartesian coordinates (still in the tangential
plane) gives:

v′x = v sin θ sinφ

v′y = v sin θ cosφ

v′z = v cos θ
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To get the velocity in our aligned coordinates we have to rotate around theX-axis
by the angle Θ with the rotation matrix:

Q =

1 0 0
0 cos Θ − sin Θ
0 sin Θ cos Θ

 (3.7)

This yields in the end the following transformation from our four parameters to
the velocity in cartesian coordinates:

vx0 = v sin θ sinφ

vy0 = v (sin θ cosφ cos Θ− cos θ sin Θ)

vz0 = v (sin θ cosφ sin Θ + cos θ cos Θ)

Again we use random numbers, R3, R4 and R5 to fix the degress of freedom. The
azimuth angle φ for the velocity of an emitted electron again has no bias in any
direction:

φ = 2πR3 (3.8)

For the zenith angle however, we cannot assume a uniform distribution from 0 to
π, as the electron has to overcome the potential barrier of the wire. To model this
decrease in perpendicular energy we have chosen an arc sine distribution, giving
a slight negative bias to forward emission:

θ = sin−1R4 (3.9)

The energy of the emitted electron is distributed according to (2.5). To generate
a random number with this distribution we use Inverse transform sampling [16, p.
28]. The cummulative distribution function for the energy follows from integrating
(2.5):

F (E) = 1− exp

(−E
kT

)
(3.10)

We use the inverse to transform the uniform random numberR5 to get the correct
probability density function for the electron energy:

E = F−1(R5) = −kT ln (1−R5) (3.11)

v, as the length of the velocity vector, follows from this by:

v =

√
2Ekin
me

=

√
−2kT ln (1−R5)

me

(3.12)
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With this distribution we get F (1 eV) = 0.9970 (at 2000 K and W = 3 eV) which
means that 99.7 % of all electrons have 1 eV of energy or less. This is negligible
compared to the potential energy of 180 eV which the electrons gain in the APG.
For this reason we have used a fixed initial value of 1 eV for all electrons in most
simulations. The difference between these two approaches is indiscernible.

3.4 Numeric integration for spatially varying fields

After the electron has been generated on the filament surface with the initial
conditions given in the previous section we have to start tracking its path under
the influence of our EM-field model in the gauge geometry. Our aim is to calculate
the solution to the equation of motion at time t as accurately and fast as possible.
t is the point in time where the next collision event happens, and has to be
determined beforehand. This will be described in section 3.5 as it is closely
connected to the collision algorithm in general.

As accuracy and speed are two antithetic properties in numeric calculations, we
have evaluated three algorithms in this respect and have chosen the one that in
our opinion gives the best compromise. As a reference to test the other integrators
a standard fourth order Runge-Kutta method (RK4) was used, which is well
described in the literature [17] and will not be described in detail here. RK4 itself
would be too slow to use in the simulation because it needs to evaluate the fields
E and B four times per integration step.

Our starting point is the Lorentz-equation (2.6):

v̇vv =
q

m
(EEE + vvv ×BBB) (3.13)

The fields EEE and BBB are now given by our model (analytic or FEM) and are not
constant in space. In this case an analytic solution is not possible and we have to
resort to a numeric approximation.

The basic idea of any numeric integration method is to divide the path into small
timesteps dt. The new position and velocity components after one timestep dt,
denoted by x1 and v1, are calculated based on the old values x0 and v0 and the
fields at x0. To get the position at the new time t we have to repeat this n = t/dt
times.

It is important that on a typical magnitude of |x1 − x0| the variation of the fields
is small, which implies a very small dt. We also need to resolve the gyro-motion
of the charged particle. One of the reasons for this are electrons starting on the
upper and lower edge of the filament (with respect to Y ). In the presence of a
magnetic field the gyration results in an immediate reabsorption at the filament.
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If we would use a guiding-center approximation this behaviour would not be
modelled in the simulation. In general we aim to have at least 2 integration steps
per gyration and thus dt has to vary with B. At 1 Tesla we use a timestep of
10−12 s, which corresponds to 5 steps per gyration (Ω ≈ 2 · 1011 Hz).

3.4.1 Analytic solution plus parallel leapfrog

Our first approach is a direct application of the analytic solution of section 2.2.2
combined with a leapfrog method.

If one assumes the fields E and B to be constant over a small timestep, x1 and v1

can be computed with equations (2.9) and (2.10). This yields acceptable results for
a small overall integration time and has been applied to electron drift simulations
in constant fields [18]. However in the case of the APG we can have integration
times of up to 10−6 seconds and this method is not satisfactory for such a long
integration time, especially in terms of energy conservation.

We have therefore combined the analytic solution for the electron motion per-
pendicular to the magnetic field with a leapfrog scheme for the parallel motion,
which has good energy conservation properties.

The general leapfrog algorithm (velocity verlet [19]) is given by following update
rule:

x1 = x0 + v0dt+
1

2
a0dt2

v1 = v0 +
a0 + a1

2
dt

(3.14)

Here a denotes the acceleration which is a function of the fields and velocity in
the case of the Lorentz-equation. Hence a1 is dependant on the new velocity
when we apply the verlet scheme to the whole problem, yielding an implicit
formula. We have therfore used this averaging over old and new acceleration
only for the parallel part of the velocity, which is only dependant on the fields
and thus position.

Our algorithm consists of three steps:

1. calculate x1 according to equation (2.10):

x1 =
1

Ω0

[
α0 sin Ω0dt− β0(cos Ω0dt− 1)

]
+ (v0

drift + v0
‖)dt+

1

2
a0
‖dt

2 + x0

2. evaluate the new fields E1 and B1 at the new position x1

(which will be used as E0 and B0 in the next step)
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3. v1 is then calculated by adding the following two components:

• the gyration part of the velocity given by (2.9) with the parameters
dependant on E0 and B0:

v1
⊥ = α0 cos Ω0dt+ β0 sin Ω0dt+ v0

drift

• the parallel acceleration (eq. (2.8)) with verlet averaging:

v1
‖ = v0

‖ +
q

m

(E0 · b0)b0 + (E1 · b1)b1

2
dt

Here all velocities, positions and fields are of course 3D-vectors as described in
section 2.2.

3.4.2 Boris algorithm

The Boris algorithm (Boris 1970, [20]) uses a similar approach and has been used
mainly for electromagnetic plasma simulation algorithms.

The basis is a time-centered finite-difference approximation for the Lorentz-force
in the presence of an electric field [21, p. 113]:

x1 − x0 = v+1/2dt

v+1/2 − v−1/2 =
q

m
dt

(
E0 +

[
v+1/2 + v−1/2

2
×B0

]) (3.15)

This scheme has the advantage of being absolutely stable in respect to the
cyclotron rotation [22].

The electric and magnetic accelerations are seperated again by introducing the
intermediate variables v+ and v−:

v−1/2 = v− − q

m

E0dt

2

v+1/2 = v+ +
q

m

E0dt

2

(3.16)

Substitution of this into equation (3.15) leads to the disappearence of the electric
field, thus only leaving the simple gyro-rotation for v+ and v−.

The three steps required to calculate the new velocity v+1/2 from the old v−1/2 are
then:

1. calculate v− from eq. (3.16)
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2. v+ is determined via rotation by:

v+ − v− = α
q

m
dt
[(
v+ + v−

)×B] (3.17)

This is an implicit vector equation in v+ and a matrix solution is used in
every timestep.

3. at last v+1/2 is calculated from v+ again via eq. (3.16)

Here a frequency correction factor α is introduced, given by:

α =

(
tan

Ωdt

2

)/Ωdt

2
(3.18)

Frequency correction is necessary when a fixed time-step is used, otherwise the
calculated gyro-frequency would be incorrect [22]. This correction also makes the
Boris algorithm in principle equivalent to the analytic integrator [21, p. 114].

3.4.3 Symplectic Euler method

In addition to the previous two “standard” integration methods we have also
derived a symplectic integrator for the APG model.

The name symplectic integrator is given to a numerical scheme for the approximate
solution of a hamiltonian system of differential equations. Its main advantage
over general purpose codes is “structure-preservation”, in other words conserva-
tion of the hamiltonian and angular momentum [23].

Symplectic integrators are therefore often applied to physical problems where
long-term stability of the “structure” is more important than the actual accuracy
of the individual phase space coordinates, for example in celestial mechanics and
accelerator physics.

In the APG we can have many periodic motions from the filament to the
ionization volume and back, resulting in residence times of up to 10−6 seconds
as mentioned before. In this timeframe all possible numeric techniques have an
unavoidable error that is quite significant compared to the dimensions of the APG
geometry. However as we simulate many electrons these positional errors for an
individual electron do not matter, as they cancel out for the whole ensemble.
What is important is the conservation of energy for every single electron, as this
determines in the end the ionization output. Therefore a symplectic integrator is
desirable for the APG problem.
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We consider the differential equations for a Hamiltonian Sytem

ṗpp = −∇qH(ppp,qqq), q̇qq = ∇pH(ppp,qqq) (3.19)

where q are the position coordinates and p the canonic conjugate momenta.

This can be written in a more compact form:

ẏ = J−1∇H(y), y =

(
p
q

)
, J =

(
0 1
−1 0

)
(3.20)

The matrix J is the structure matrix of Hamiltonian systems in canonical form.
We denote by ϕt(y) the solution at time t of the problem, the exact flow or time
evolution.

The symplecticity condition, that all Hamiltonian systems satisfy, is now that the
flow ϕt is also a symplectic transformation [24], i.e.

ϕ′t(y)TJϕ′t(y) = J, for t ≥ 0 (3.21)

where the prime means derivation with respect to y.

A numeric integrator Φh(y) is a transformation in the phase space (i.e. a map
from one point (p0, q0) in the phase space to another (p1, q1)) that approximates
the exact flow ϕh(y) for a small stepsize h (i.e. a small evolution time t).

If the mapping

Φh :

(
p0

q0

)
7→
(
p1

q1

)
(3.22)

also satisfies equation (3.21) it is called a symplectic integrator.

One of the simplest symplectic integrators is the symplectic Euler method, a first
order integrator, given by the mapping [23]:

p1 = p0 − h · ∇qH(p1, q0)

q1 = q0 + h · ∇pH(p1, q0)
(3.23)

This treats the momentum by the implicit Euler method and the position by the
explicit Euler method. It would be desirable to have a higher order integrator,
but as the Hamiltonian is not separable in the case of the Lorentz-force (the
kinetic energy term depends both on momentum and position) this is not
straightforward.

To construct the integrator (3.23) we need the Hamiltonian for an electron in EM-
fields. The conjugate momentum is given by

pj = m · ẋj + e · Aj (3.24)
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and thus the Hamiltonian

H(ppp,qqq) =
1

2m
(ppp− e ·AAA)2 + e · Φ(qqq) (3.25)

HereAAA denotes the magnetic vector potential (related to the magnetic field by its
curlBBB = ∇×AAA) and e the charge of an electron.

This results in the following equations of motion:

ṗj = e · Ej − e2

2m

∂AAA2

∂qj
+

e

m

3∑
i=1

pi
∂Ai
∂qj

q̇j =
1

m
(pj − e · Aj)

(3.26)

where j stands for the cartesian components from 1 to 3. Thus for this
Hamiltonian equation (3.23) results in the following mapping, which we have
used in the simulation:

p1
j = p0

j − h ·
(
−e · Ej +

e2

2m

∂AAA2

∂qj


q0
− e

m

3∑
i=1

p1
i

∂Ai
∂qj


q0

)
(3.27)

q1
j = q0

j + h ·
(
p1
j

m
− e

m
Aj

)
(3.28)

The electric fieldEj and the magnetic vector potentialAj are functions of position
and are therefore always evaluated for q0 as the right hand side of (3.23) implies.

To use this integrator we still have to derive a form for the magnetic potentialAAA
which is equivalent to the magnetic field model (3.1) and (3.2). This is fulfilled by
the combination of

AAAext(qqq) =
1

2

B2q3 −B3q2

B3q1 −B1q3

B1q2 −B2q1

 (3.29)

for the constant external magnetic field (B1, B2, B3) and

AAAfil(qqq) =
µ0I

4π

ln d2(qqq)
0
0

 (3.30)

for the magnetic field due to the wire current I . d denotes the distance from the
wire axis to the current position qqq.

42



3.4 Numeric integration for spatially varying fields

The algorithm then consists of the steps:

1. evaluate Ej and Aj at the position q0
j

2. solve the system of three coupled linear equations (3.27) for p1
j

3. calculate the new position q1
j by equation (3.28)

3.4.4 Speed and accuracy comparison

To evaluate the different algorithms we compared their output with a 4th
order Runge-Kutta (RK) integrator. All algorithms had to integrate the path of
an electron under the influence of the FEM-field model with the same initial
conditions choosen at random. We did this for several different starting points
and the result was consistent. The integration time for the test was choosen to be
10−7 seconds which is rarely exceeded in the real simulation for a whole electron
life. Figure (3.5) gives a plot of the time evolution of the distance between the
tested integrators and the RK reference integrator. The stepsize is 10−12 seconds
plus an additional run with the symplectic integrator with one fourth of the
stepsize, which demonstrates a slight improvement. The reference RK integrator
has a stepsize of 10−13 seconds to increase its accuracy.

All integrators diverge away from the reference over time as expected, however
at the beginning the analytic integrator shows the best agreement. Remarkably
the Boris integrator starts with a large difference but can keep it constant at about
10−6 m over a significant time. The symplectic integrator has the worst result, but
this is expected as it is only a first order integrator.

Runge-Kutta Boris Symplectic Analytic
total time [s] 31.1 10.4 10.8 10.8
integration [s] 15.1 6.2 7.2 6.8
field calculation [s] 16.0 4.2 3.6 4.0

Table 3.2: computation time of the 4 algorithms in seconds, total integration time
10−5 s, timestep 10−12 s

To assess the computing time performance of the algorithms we chose a very
large integration time of 10−5 seconds. In this case the Runge-Kutta integrator
also uses a timestep of 10−12 seconds to make it comparable to the others. Table
(3.2) gives a listing of the results. The performance is roughly equal for the three
tested integrators, within statistical fluctuation. The RK integrator is about 3
times slower, which in large part is due to the fact that it calculates the fields
4 times per integration step.
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Fig. 3.5: comparison of position after integration time t based on a 4th order
Runge-Kutta integrator, dx is the distance of the respective integrator to
Runge-Kutta (|x− xRK |)

Energy conservation is a very important criterium for the APG simulation.
In magnetic fields this becomes critical, as particles can be trapped and may
undergo thousands of oscillations around the acceleration grid. Therefore we
also examined the evolution of the total energy for the random test electron. It is
in theory constant for all times as the APG-field is derived from an electrostatic
potential and therefore conservative. The integrator we choose for the simulation
should be as energy conserving as possible.

In figure (3.6) the energy of the test electron is plotted against integration time,
this time up to 10−5 seconds. All integrators behave acceptable until 10−6 seconds,
which is close to the maximum residence time observed in the simulation. The
symplectic integrator performs very well in this discipline as it is designed for
energy conservation. It even beats the Runge-Kutta integrator at times close to
10−5 seconds. The analytic integrator however shows very extreme bahaviour
after 10−6 seconds, with the total energy of the electron exceeding all bounds.

For these reasons we have chosen the Boris algorithm for the simulation, as it
gives in our opinion the best compromise between accuracy, energy conservation
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Fig. 3.6: time evolution of the total energy of the test electron for the four different
integrators, the analytic integrator is “exploding” at the end

and speed.

3.5 Electron collisions

In this section we describe the simulation of electron collisions. In the first part
the calculation of the free time between two collisions is described, followed be
the proper collision simulation, in which type of collision, scattering angle and
energy loss are determined.

3.5.1 Free time

The mean free “flight” time between two collisions of one electron with neutral
gas particles is given by the inverse of the collision frequency (eq. (2.20)):

1

τ
= ν(t) = nG · v(t) · σtot(v(t)) (3.31)
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nG is the neutral gas particle density, v the electron velocity and σtot the total
collision cross-section, i.e. the probability of any collision happening between the
electron and a gas particle at the given electron velocity.

As a collision is a Poisson process, i.e. happening with constant average rate and
independant of other collisions, the probability distribution function for the free
time has an exponential form, given by [25]:

P (τ) = exp

(
−
∫ τ

t=0

ν(t)dt

)
(3.32)

Here P (τ) means the probability for a free time greater or equal than τ (cumula-
tive distribution function). The integral in the exponent gives the mean number
of collisions during the time τ .

From this we could in principle determine a free time with the correct probability
distribution, again by equating P (τ) with a uniformly distributed random
number (Inverse transform sampling). However this would take too much
computation time, as ν is indeed dependant on velocity (and thus time) and we
would have to calculate the integral for every collsion.

For this reason Skullerud [25] has introduced the null collision technique, which
greatly reduces the computational complexity and is a standard in simulations
dealing with collisions between charged particles and a neutral gas (for example
[26] and [18]).

Its basic idea is to determine an upper bound νmax for the collision frequency
which exceeds the real collision frequency for all relevant electron energies. Then
equation (3.32) reduces to:

P (τ) = exp (−νmaxτ) (3.33)

With a generated uniform random number R6 we get for the free time until the
next collision:

τ = −ν−1
max lnR6 (3.34)

νmax is determined by combining the maximum velocity the electron can have
with the maximum total cross-section. In the case of our simulation we calculate
the total energy Etot (as the sum of initial kinetic energy and the electric potential
energy) of the electron at the beginning of its life. Because the electron only loses
kinetic energy in the collisions it is valid to assume that its velocity will never
exceed the maximum velocity corresponding to that energy:

vmax =

√
2Etot
me

(3.35)
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νmax is then given by:
νmax = nGvmaxσtotmax (3.36)

It is clear that we overestimate the number of collisions in this way. Therefore in
every collision process we have to introduce the null collision event, which leaves
the electron unchanged, with the probability [27]:

Pnull =
νmax − ν(v)

νmax
(3.37)

Here ν(v) is the actual collision frequency, given by equation (3.31).

3.5.2 Collision process

When the particle path has been integrated until the collision time τ without
hitting any electrode a collision with a neutral gas particle is simulated.

The first step in this process is the calculation of the individual cross-sections for
all processes we consider (figure 2.5). This is done by linear interpolation of the
cross-section data for the current (i.e. at the end of integration) electron velocity
v, as we only have discrete data points.

The probability of one collision event is then given by its relation to the total cross-
section. However we also have to take into account the null-collision probability
which “competes” with all other processes, giving rise to a normalization
constant Pcoll:

1 = Pnull + Pcoll
∑
i

σi
σtot

(3.38)

which is obviously given by 1−Pnull. Thus we have the following probability for
a particular collision type i:

P (i) = Pcoll
σi
σtot

= (1− Pnull) σi
σtot

=
ν(v)

νmax

σi
σtot

(3.39)

We now generate a uniform random number R7 and choose the collision process
j for which the following holds:

j−1∑
i=0

P (i) < R7 ≤
j∑
i=0

P (i) (3.40)

Of course here we also have to include the null collision (P (0) = Pnull). If R7 is
smaller or equal than Pnull nothing happens and the next cycle begins.

Otherwise the energy loss for the electron is calculated. This consists of three
parts, not all realized for every process.
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Momentum transfer to the heavy neutral atom / molecule
The amount of energy lost due to momentum transfer is given by equation
(2.22). We neglect it in the simulation as it is very small compared to all other
energy scales involved [26].

Excitation energy for the inelastic processes
The excitation energy Ee for a selected inelastic process is derived from the
associated cross-section data. It is taken to be the smallest energy for which
the cross-section is non-zero.

Momentum transfer to the secondary electron
In the case the ionization process is selected, a part of the remaining primary
electron energy (Eprim) is transferred to the secondary electron (Esec). We have
implemented three different algorithms:

1. The remaining energy is shared equally between the two electrons.
2. The energy is shared with uniform probability Esec = R8 · Eprim
3. The energy is shared according to the probability distribution (2.28) and

determined via:

Esec = β tan

(
R8 tan−1

(
Eprim

2β

))
(3.41)

Here R8 is again a uniform random number. The simulation result has shown
no sensitivity to the kind of energy transfer used.

The energy of the electron after the collision can then be calculated from the
energy directly before the collision E1:

E ′1 = E1 − Ee ( − Esec ) (3.42)

In the case of an elastic collision the electron energy is unchanged, otherwise
decreased by the excitation energy (plus Esec for an ionization).

To conclude the collision we have to calculate the scattering angle. For this we
require two further random numbers R9 and R10. We now consider θ (0 ≤ θ ≤ π)
and φ (0 ≤ φ ≤ 2π) to be the polar and azimuthal angles in the center-of-mass
frame. They can be generated by solving the following relations [27]:

R9 =

∫ θ

0

σi(E1, α) sinα dα

/∫ π

0

σi(E1, α) sinα dα

R10 = φ/2π

(3.43)

φ is distributed uniformly and θ is related to the differential cross-section
σi(E1, α) (i.e. the probability of a collision event scattering into angle α) at the
given electron energy E1. As the differential cross-section data is not available
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and anyways approxiamtely constant for the electron energies considered here
(≤ 200 eV), we assume a constant σi(E1, α) (isotropic scattering).

By canceling σ and integrating we get for θ:

R9 =
1

2
(1− cos θ) (3.44)

We now have to transform the angles into the laboratory frame. φ is unchanged
(φLS = φ), while θ is transformed according to [27]:

θLS = tan−1

(
sin θ

cos θ + me
mG

)
(3.45)

Here me denotes the electron mass and mG the mass of the atom / molecule.

The new velocity vector in cartesian coordinates is then:

v′LS =

√
2E ′1
me

sin θLS cosφLS
sin θLS sinφLS

cos θLS

 (3.46)

We have to keep in mind here that this coordinate system is aligned to the initial
electron velocity vector (vvv = |v|eeez) because θLS and φLS give the angles between
the old and new velocity orientation. Therefore the final step is to rotate back to
the APG-aligned coordinate system in which we track the electron path.

Let Θ and Φ be the spherical angles of the original electron velocity v in the APG
coordinate system:

Θ = cos−1 vz
|v|

Φ = tan−1 vy
vx

(3.47)

The new electron velocity in the APG coordinate system is obtained by successive
rotation about the Z and Y axis:

v′APG =

 cos Φ sin Φ 0
− sin Φ cos Φ 0

0 0 1

 ·
cos Θ 0 − sin Θ

0 1 0
sin Θ 0 cos Θ

 · v′LS (3.48)

With this the collision process is finished and the electron tracking is continued
at the position right before the collision and with the new velocity v′APG.
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Chapter 3 Simulation

3.6 Secondary electrons and ion-tracking

When an ionization is selected in a collision process, a secondary electron and an
ion are created. At that point we save their initial conditions.

After the simulation of the primary electrons from the filament is finished we start
tracking the secondaries. This is done in exactly the same way, in particular can
they also ionize and create secondary electrons themselves. The only difference
are the initial conditions which are determined by the ionization process which
created them. The starting position is naturally given by the position of the
primary electron at the time of ionization. The modulus of the velocity is
determined by the energy transfer to the secondary electron Esec which was
calculated in the collision process. Its direction is in principle governed by
momentum conservation for the three involved bodies. But as this has no effect
on the simulation output we take it to be antiparallel to the primary electron for
the sake of simplicity.

In the end the ions are tracked. As before their initial position is given by the
location of the ionization. The velocity is chosen at random, the angles uniformly
and the modulus according to thermal Maxwell distribution (2.18). The path
integration is done with the same algorithm used for the electrons, yet taking
into account the correct charge and mass:

q = +e, m = mION (3.49)

The main aim of ion tracking is to determine which electrode they hit in the end,
thus producing the ion current. However to take into account a diffusion of the
ions due to the neutral gas which could in theory alter their path, we also simulate
elastic collisions with the neutral gas. The free-time is choosen as before and in
the event of an elastic collision the ion velocity is rotated randomly (like in the
electron process).

3.7 Impact detection

The impact detection algorithm is identical for every tracked particle wether
electron or ion. After every integration step from position (x0, y0, z0) to the next
(x1, y1, z1) we check if a contact with one of the electrodes or the outer walls has
occurred. As every electrode has a fixed Z-coordinate ze (except the filament) we
perform this in three steps:

• first it is determined if the particle has crossed ze of the electrode in question:(
z1 − ze

) (
z0 − ze

) ≤ 0 ? (3.50)

50
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• if this is the case we determine the coordinates of the crossing xc and yc in
the Z-plane by linear interpolation:

xc = x0 +
(
x1 − x0

) · ze − z0

z1 − z0

yc = y0 +
(
y1 − y0

) · ze − z0

z1 − z0

(3.51)

• finally these crossing coordinates are compared with the x and y dimensions
of the respective electrode

If the last test confirms that the particle has flown through a solid part of an
electrode the particle tracking is stopped and it is counted as a current on that
electrode.

As the filament is a cylinder, in this case the test is different:

(z1 − zfil)2 + (y1 − yfil)2 ≤ r2
fil AND xfil,1 ≤ x1 ≤ xfil,2 ? (3.52)

The first part checks wether the distance in the X-plane is smaller than the
radius of the filament and second test confirms that the particle is within the
X dimension of the filament.

3.8 Implementation and performance

The simulation was first designed in the MATLAB programming language
because of its debugging abilities and the ease with which graphical results can
be visualized. However it turned out that the performance in this programming
language is mediocre, especially for the bottleneck, the path integration. There-
fore the feature complete simulation was ported to FORTRAN, which is known
for its speed in numerical calculations. The compiled simulation program was
run on a single core of the IPP Linux Cluster. An overview of some parameters
of different simulation runs is shown in table (3.3).

In MATLAB we have a simulation goal of 1000 primary electrons and 200
secondary electrons. The secondary electron limit comes into play only for low
pressures. In this case we need up to several hundred thousand primary electrons
to generate enough ionization events.

In the last column the results for the FORTRAN code are shown. It is in the order
of 10 times faster, therefore we were able to raise the primary electron goal to
10000.

Figure 3.7 shows the simulation output for increasing numbers of primary
electrons, beginning with 100. The convergence of the output for higher numbers
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Chapter 3 Simulation

MATLAB FORTRAN
B [Tesla] 0 0 1 1 1
p [mbar] 2 · 10−4 0.15 5 · 10−4 0.15 0.15
nprim 727615 1309 31860 1000 10000
runtime [min] 664 5.8 560 61 46
memory usage [Mb] 610 104 357 124 ≈ 1

Table 3.3: Simulation performance for different pressures and magnetic field,
nprim is the number of simulated primary electrons, the neutral gas is
Hydrogen H2, executed on a single core of the IPP Linux Cluster

is obvious and 10000 primary electrons seems to be a very good compromise
between statistical significance and computation time. The curves presented here
are for the FEM model at 2 Tesla, but this behaviour is the same for all other
configurations.
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Fig. 3.7: Comparison of three simulation runs with different numbers of primary
electrons (H2, 2 Tesla, FEM).
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Chapter 4

Results of the Simulation and
Comparison with Experiment

In this chapter we present the results of the simulation for different input
parameters and discuss the agreement with experimental measurements.

4.1 Experimental setup

The experimental results with which we compare the output of the simulation
were obtained in the “Neutral Gas Laboratory” at the IPP, where the APG’s have
been developed. In the following paragraphs we will give a short overview of
the setup.

The main feature of the test rig is a vacuum tube (figure 4.1 B) in which the APG is
positioned, surrounded by a water-cooled solenoid magnet (figure 4.1 A, covered
by the cooling hoses). The cylindrical coil is able to produce an approximately
homogeneous magnetic field of up to 6 Tesla inside the tube, depending on the
applied direct current. The magnetic field strength is directly proportional to the
electric current I flowing trough the coils according to

B = µ
NI

h
(4.1)

where N is the number of windings, h the length of the cylinder and µ = µrµ0

is the permeability of the core. Independent measurements inside the tube have
shown a field of 6 Tesla at the maximum current of 3 kA, giving a proportionality
constant of 2 ·10−3 T/A. During experiments it is not possible to measure the field
strength directly, so the coil current is used as the magnetic field parameter.

The ends of the vacuum tube are fitted with T-pieces on both sides (figure 4.1
C), which lead to two turbo pump systems (TPS) under the table. One pump
combination consists of a rotary vane pump on the atmosphere side for the fore-
vacuum and a turbomolecular pump on the vacuum side. With this setup it is
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Chapter 4 Results of the Simulation and Comparison with Experiment

Fig. 4.1: Photograph of the APG experiment table; A: solenoid magnet with
cooling system, B: vacuum tube, C: T-piece with control pressure gauges
and APG wiring feedthrough.

possible to reach a residual pressure in the 10−8 mbar range after pumping-out
for some time.

The pressure inside the vacuum tube can be measured by several independant
gauges in addition to the APG. The main experimental reference is a spinning
rotor gauge (SVG), installed on the side of T-piece C. It is based on a small
metal ball, the rotor, which is spun and leviated in the housing by an oscillating
magnetic field. The housing is connected to the vaccum tube with a small
duct. The neutral gas particles which propagate into the housing decelerate the
spinning rotor. This force is used to derive the particle density. The other gauges
installed are conventional Bayard-Alpert gauges (Ionivac) described in Chapter
1 and a Pirani-Gauge, which measures the pressure by heat loss in a heated wire
due to the gas particles surrounding it. During measurements with magnetic
field the SVG cannot be operated and has to be switched off. Thus in this case
we take a pressure measurement before and after the field pulse and control the
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4.1 Experimental setup

stability of the pressure with the Pirani gauge.

To record the APG output for different neutral gas densities inside the tube we
actually let the gas flow slowly through it from one end to the other, instead of
trying to achieve a constant stationary density inside the whole tube. The reason
for this are inevitable impurities (mainly water and hydrocarbons) present in the
tube from various possible sources:

• desorption from the inner walls

• the turbo pump systems (e.g. lubrication)

• leakage from the lab atmosphere

• the heated APG filament

If the tested neutral gas is filled in once and the tube sealed off, the impurities
would enrich over time. As these impurities have a higher ionization yield then
the test gas, the measured ion current would be altered and the measurement less
reproducible.

Therefore the neutral gas reservoir, which is attached to T-piece C, has an
electrothermal valve installed at the junction. This valve is feedback controlled
by the Pirani-gauge and is able to dose the gas throughput very exactly. To set
up a slow, steady neutral gas flux we first pump down the vacuum tube to the
minimal achievable pressure with both TPS systems. Then the TPS on the side of
the reservoir (C) is sealed off. On the other side the main connection to the pump
is also closed, instead the gas is drawn through a bypass valve with very low
adjustable throughput. The reservoir valve is opened until the desired gas flux
is achieved and stable, controlled by the SVG. This setup reflects a compromise
between two conflicting conditions:

• We need a gas flow to avoid the enrichment of impurities inside the tube.

• The pressure differential along the vacuum tube, which is necessary to
achieve this flow, must be negligible in comparison to the overall neutral
particle density to get a reliable measurement.

After the gas flow is set and steady the actual APG current measurement can
take place. The APG is positioned in the middle of the tube by a mount plugged
into and sealed at T-piece C. The grounded box surrounding the APG electrodes
in tokamak operation is removed for technical reasons due to the mount and to
avoid impurity concentration. At the bottom of the mount the electrode wiring
is attached and led through to the outside. The base plate of the APG is heated
by a thermal element to 573 K to achieve a steady state temperature distribution
for the whole device. Otherwise the hot filament would slowly heat up the base
plate and the temperature during measurement would be unknown. However
this is necessary to compare experiment and simulation.
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Chapter 4 Results of the Simulation and Comparison with Experiment

The APG is controlled by a single electronic system to which the wiring is
connected. Its functions can be divided into three categories [28]:

• Setting the potentials on the electrodes. These are constant for filament,
acceleration grid and ion collector. The control grid is alternated with
a frequency of several kHz, chopping the emission current to suppress
background noise.

• Measuring the currents to the acceleration grid (electron current Ie) and
the ion collector (ion current Iic). This is done by a special electronic
circuit, the SYNDA (SYNchronous Differential Amplifier), which extracts
the modulation amplitude of the currents synchronous and in phase to the
chopping frequency.

• Controlling the filament heating current over a feedback loop to stabilize
the electron current on a preset value. Due to the thermal capacity of the
filament wire the feedback control is slow compared to the time resolution
of the APG and we also have to record the electron current separately.

The whole electronic system is connected to a personal computer through an
analog-digital converter. On this device the experimental data is recorded in
digital form, consisting of the heating current, electron current and ion current.
The coil current, and thus magnetic field strength, is also controlled from this
computer and recorded as well.

To examine the APG output for an adjusted and recorded pressure value, we
shut off the SVG and then initiate the magnetic field pulse. The pulse is shaped
trapezoidal, rising linearly from zero, staying constant at the preset value for a
few seconds and then dropping off linearly again.

The output signal of the APG at a given pressure is defined as:

out =
Iic(p)

Ie − Iic(p) (4.2)

The overall aim is to have an injective function relating the pressure to the
measured output, preferably linear:

p = f

(
Iic

Ie − Iic

)
(4.3)
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4.2 Method of comparison and discussion of the
limitations

In the experiment the absolute emission current, i.e. the number of electrons
leaving the filament per second, is not measureable. There are electrons which
leave the filament, in principle can influence the gauge behaviour, but then return
to the filament and get absorbed. We can only measure the net electron flow out
of the filament averaged over time.

In the simulation however the basic parameter, to which all other currents are
related, is the number of primary electrons we simulate, i.e. the absolute emission
charge. We assume these primary electrons leave the filament at the same time
and form the steady-state electric currents that are collected at the electrodes.

Thus in order to compare experiment and simulation, we have to normalize
all currents to a basic current which is measurable in both cases, naturally the
denominator of equation (4.2).

Even so there are limitations to the comparability due to experimental error and
inadequacies of the simulation model.

The experimental result for a given set of parameters is only reproducible within
a certain error due to the following reasons:

• the electronics system used to control and measure potentials and currents
has an intrinsic bias

• different APG heads have small deviations in geometry which alter the
overall output

These two points constitute the systematic error of the measurement and thus
every APG has to be calibrated before operation, a usual procedure for any
ionization pressure gauge. From APG tokamak operation we know that the
possible variation of the calibration factors is in the range of 20% to 30%.
Additionaly we must expect a random error of up to 10% due to unknown
impurity concentration in the vacuum system and electronics accuracy. Figure
?? shows the experimental variation for 0 and 2 Tesla.

On the other hand the simulation model has differences to the experiment:

• the geometric model is an approximation to the experimental configuration

• thus the electric field is not reproduced exactly in the FEM case, the analytic
model is a very rough simplification

• we neglect electron-electron (e− - e−) interaction

There is indeed evidence that the e− - e− interaction plays a role in the presence
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Fig. 4.2: APG output dependance on emission current Ie at a single pressure point
of 3 · 10−3 mbar (0.3 Pa). For 2 Tesla we observe a strong decrease with
rising emission current.

of strong magnetic fields and it reflects in the dependence of the output on
the filament emission current Ie. This connection is indicated by the following
experimental results:

• the vacuum current characteristics change for different emission currents
(cf. section 4.3 figure 4.5)

• the sensitivity changes significantly with Ie (figure 4.2)

• the saturation point is slightly delayed for higher Ie

Overall we have to expect a difference between simulation and experiment with-
out calibration. As we neglect the electron-electron interaction, the simulation
should also tend towards the zero electron current limit.

4.3 Vacuum currents

As a first evaluation of the simulation we compared the electrode currents
depending on magntic fields in vacuum (i.e. no interaction with neutral gas) with
experimental results. This tests the geometric and field model and the integrator,
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Fig. 4.3: Simulation of vacuum currents for 1000 electrons (1 eV initial energy); Ie:
acceleration grid, Icg: control grid, Ibkfil: returning to filament.

isolated from the interaction part.

Figure 4.3 shows the distribution of 1000 simulated electrons on the following
electrodes:

• acceleration grid (Ie)

• control grid (Icg)

• electrons returning to the filament (Ibkfil) after one oscillation

The ion collector current is omitted because it is zero, as theory suggests. In the
simulation quite a few electrons leave the model volume for low magnetic field,
as they are not guided yet, however we have not included them because this
current cannot be measured in the experiment.

Icg is the dominant current for low magnetic field and drops to zero for high B.
Without magnetic field the path of an electron and thus its point of absorption is
determined by its random initial condition on the filament. Thus as the control
grid (CG) slit covers only a small solid angle most electrons contribute to Icg.

With increasing magnetic field the electrons follow a guiding field line along the
center of the CG slit. The gyration radius is influenced by the initial velocity
and inversely proportional to the magnetic field. So at first most electrons still
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Chapter 4 Results of the Simulation and Comparison with Experiment

Fig. 4.4: Experimental vacuum currents for an initial emission current of 100µA,
Ie: acceleration grid, Icg: control grid, Ibkfil: returning to filament.

collide with the CG as their gyration motion is bigger than the slit. If we assume
an initial energy of 1 eV perpendicular to the magnetic field, the gyration radius
equals half the CG slit size (1 mm) at a magnetic field of 3.4 · 10−3 T (cf. equation
(2.11)). When the magnetic field goes beyond this value more and more electrons
can pass through the CG slit, explaining the sharp reduction.

If we use half the size of an acceleration grid (AG) slit (0.2 mm) as the gyration
radius of the 1 eV electron, we get a corresponding magnetic field of 1.7 · 10−2 T.
Between these two characteristic values Ie rises as the electrons can pass the CG
slit but not the AG slits. Above the latter value the gyration radius becomes small
enough, so that most electrons will pass through the acceleration grid twice and
return to the filament, contributing to Ibkfil. The highB ratio between Ibkfil and Ie
(∼ 3 : 1) corresponds approximately to its geometric transparency of about 80%.

The strong increase of Ibkfil is an important feature of the APG physics in strong
magnetic fields, a consequence of constraining the electron to a path parallel to
the magnetic axis with a small gyration radius.

The experimental result is shown in figure 4.4. To measure Ibkfil, which is usually
not accessible, we switch the ion collector between normal low potential and a
high potential setting to draw off all electrons passing the acceleration grid. By
taking the difference of the two modes we get Ibkfil.

The comparison shows a qualitative agreement. In the simulation however, the
B-field dependence is stronger, resulting in sharper decay of Icg and Ie together
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Fig. 4.5: Evolution of the electron current Ie with rising B for different initial
(B = 0 T) values. The decay is slower for higher initial values, i.e. for
stronger e− - e− interaction.

with a faster rise of Ibkfil. The difference with regard to the experiment is still
not well unterstood but it appears to be connected to electron density (emission
current) and thus e− - e− interaction (figure 4.5). A modification of the initial
energy distribution in the simulation also has a significant influence on the
electric current distribution at 0 Tesla, and this parameter is not well known in
the experiment.

4.4 Simulation without B-field

For zero magnetic field we have taken measurements in the lab for four different
gases: Hydrogen (H2), Argon (Ar), Neon (Ne) and Helium (He). For the
simulation the cross-section data (cf. figure 2.5 for Hydrogen) was taken from
MAGBOLTZ [29]. Figure 4.6 shows the results of both simulation and experiment
for those gases.
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Fig. 4.6: Comparison of simulation (dotted) with experiment (solid) for Argon,
Hydrogen, Neon and Helium at 0 Tesla.

In general the simulation reproduces the linear behaviour of the experiment very
well. The sensitivity is overall a bit larger in the simulation, consistently for all
gas types. This suggests a systematic difference in the calibration constant of the
specific APG used in the experiment, which was the same for all gases.

As all Ionization gauges have to be calibrated, the performance for different gases
is usually expressed in terms of relative sensitivity, i.e. the ratio of the gradients
for two gases. To study this relative behaviour we have fitted linear slopes to the
experimental and simulation data and extracted the gradient a:

a =

(
Iic

Ie − Iic

)/
p (4.4)

This is shown in figure 4.7 exemplary for Hydrogen. The linear fit is a
bit unsatisfactory, as both experiment and simulation show a deviation from
linearity for pressures above about 10−1 mbar. Nevertheless it should suffice to
extract the gradient of the slopes.

Table 4.1 lists the relative sensitivities aG
aH2

for Argon, Neon and Helium to H2.
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Fig. 4.7: Best linear fit of experimental and simulation sensitivity a for Hydrogen
at 0 Tesla.

The control data was obtained from the manual for the “Ionivac” ionization
pressure gauges used in the lab. It should be noted that the relative senitivities
are independent from calibration factors for the specific ionization gauge used.
In light of this the ratios show very convincing agreement with the reference for
both experiment and simulation.

Ar / H2 Ne / H2 He / H2

Ionivac 2.98 0.55 0.35
Experiment 2.68 0.55 0.30
Simulation 2.83 0.58 0.35

Table 4.1: Relative sensitivity comparison of experiment, simulation and litera-
ture [30].
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Fig. 4.8: Simulation result for different secondary electron energy sharing
mechanisms (0 T, H2). YP: Yoshida-Phelps distribution eq. (3.41); 50/50:
energy is shared equally; uniform: energy is shared randomly with
uniform probability. No significant difference is observable.

Sensitivity of the simulation to model parameters

Besides magnetic field, pressure and gas type, which constitute the main parame-
ters of a simulation run, we have several other “tweaking” parameters described
in chapter 3.

Figure 4.8 shows the sensitivity of the simulation to the different energy transfer
models to the secondary electrons. The three possibilities differ significantly in
theory, ranging from the Yoshida-Phelps distribution (eq. (3.41)) which mostly
gives the secondary electron very low energy, to 50/50 distribution, where the
secondary electron always gets half of the remaining energy. However the
simulation shows no sensitivity outside of statistical fluctuation to the algorithm
choosen. Obviously it is only important that the energy of the whole electron
ensemble is conserved and not how the energy is distributed individually.

The emission profile of the electrons on the filament was described in section 3.3.
Normally we use the uniform distribution, however also a “peaked” shape was
implemented, i.e. more electrons are emitted from the center of the filament as if
it were indeed hotter. In this case a change is visible but small (figure 4.9).
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Fig. 4.9: Effect of the emission profile and the FEM field model on the simulation
output (0 T, H2). “peaked” means a centered filament distribution for the
primary electrons eq. (3.6).

The choice of electrostatic field model (analytic or FEM) has no significant effect
on the output at 0 Tesla (figure 4.9). This is due to the short mean residence time
of the electrons.
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4.5 Simulation with a strong guiding field

For 2 Tesla we have run the simulation four all 4 test gases with the same cross-
section data used in the 0 Tesla case. Figure 4.10 gives the result of those runs
for both electrostatic field models. A feature all gases share is a strong difference
between the two models, especially for low pressure. The FEM model output is
consistently lower than the analytic output.

An early saturation occurs for all gases in a pressure range between 8 · 10−3 and
5 · 10−2 mbar. Significantly the saturation occurs earlier for gases with higher
overall output, i.e. gases where the ionization cross-section is higher.

As in the 0 Tesla case the energy transfer model to the secondary electron and the
filament distribution only has a small effect on the output, which we can neglect
to present here.

In figure 4.11 a comparison of the different integrators for Hydrogen is given.
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Fig. 4.10: Simulation output for 2 Tesla in the 4 gases for analytic (dashed) and
FEM (solid) electrostatic model. For all gases there is a significant
difference between the two models for low pressure.
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Fig. 4.11: Comparison of the different integrators at 2 Tesla in H2, for
analytic (top) and FEM field (bottom), otherwise identical simulation
parameters.

They all agree within statistical error. Also note that the difference between
analytic and FEM model is consistant for all integrators.

4.5.1 Experiment versus simulation: Hydrogen

Figure 4.12 shows a comparison of the simulation result with experiment at 2
Tesla for Hydrogen.

The following characteristics of the experiment are reproduced by the simulation:

• a strong increase of the overall sensitivity compared to 0 Tesla

• at low pressure there is a quasi-linear regime

• early saturation at about 2·10−2 mbar in the simulation, at about 5 · 10−2 mbar
in the experiment

However the simulation output depends very strongly on the electrostatic field
model, due to the very long residence time electrons can have, which will be
investigated later. Especially for low pressures the analytic and FEM model
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Fig. 4.12: Simulation (red) and experiment (blue) output for 2 Tesla in Hydrogen
(H2). For comparison we have also included the zero Tesla case.

outputs diverge strongly. The experimental result lies between the extremes in
this range, however it is closer to the FEM simulation.

Quantitatively there is a significant difference between experiment and simu-
lation especially for very low and very high pressures. At the low end this is
obviously mostly due to the exact electrostatic field configuration, as evidenced
by the sensitivity of the simulation to it. For high pressures the simulation output
is lower than the experiment for both analytic and FEM model. This difference
can be explained by the following factors:

• calibration factor in the experiment

• an electron-electron interaction effect still present at 20µA, which we
neglect in the simulation
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Fig. 4.13: Simulation (red) and experiment (blue) output for 2 Tesla in Helium
(He). For comparison we have also included the zero Tesla case. (The
two 0 T experiment lines respresent measurements on 2 different days,
i.e. with different calibration factor.)

4.5.2 Experiment versus simulation: Helium

We have also done experiments with Helium at 2 Tesla, the results are presented
in figure 4.13.

The main characteristics are the same as for Hydrogen, i.e. the overall sensitivity
increase is predicted well and the simulation shows a roughly linear regime for
low pressures as the experiment. The early saturation occurs at a pressure of
about 5 · 10−2 mbar in the simulation and sets in in the experiment at about
9 · 10−2 mbar. When we compare these values with the Hydrogen case, it is
obvious that the lower overall sensitivity of the APG in Helium leads to a later
saturation for both simulation and experiment. The shift of the saturation point
in the simulation towards lower pressures compared to experiment is consistent
for both gases.

It also seems that there is an upper limit in the output which is not surpassed
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Chapter 4 Results of the Simulation and Comparison with Experiment

irrespective of the gas examined, i.e. the sensitivity for lower pressures. This
limit lies at about 1.05 in the experiment and 0.8 in the simulation for all gases.
Theoretically it should mainly depend on the ionization energy of the gas and
the total potential difference from cathode to anode. As mentioned before
the discrepancy is thus most probably due to differences in the electric field
configuration of model and experiment (i.e. calibration).

4.5.3 Interpretation of the sensitivity increase due to B-field

At the saturation point (around 2 · 10−2 mbar) the sensitivity in the simulation is
about 20 times larger with magnetic field than without. This is reproduced by the
experiment, thus we can assume that the reasons for this increase are modeled by
the simulation very well.

Figure 4.14 shows the dependence of the mean residence time of a primary
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Fig. 4.14: Mean residence time of a primary electron in the simulation, for 0 and 2
Tesla. At low pressures there is a strong divergence of FEM and analytic
model at 2 Tesla.
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Fig. 4.15: 0 Tesla: Ions produced per primary electron. The difference to 100%
represents the fraction of electrons that do not ionize at all. Almost all
electrons ionize less than twice.

electron on pressure. This is the time of its emission until we stop tracking it, i.e.
until it has lost most of its energy, or until it has collided with an electrode. The
time it takes for an average electron to fly from the filament to its turning point
and back again is about 5 · 10−9 s (1 oscillation). For zero Tesla the average total
residence time for such an electron is almost constant at about 4.5 · 10−9 s. Thus
without external magnetic field the electrons do not oscillate often around the
acceleration grid, most of them even not once. The reason for this is the absence of
a guiding effect from B. As the electric field does not constrain the electron in the
XY-plane, i.e. perpendicular to the APG axis, the electron will hit an electrode or
leave the APG volume relatively fast, depending on its initial random velocity. As
a result of this short time, the electrons experience very few ionization collisions
on their path, either 0 or 1. Figure 4.15 shows the relative occurence of electrons
which produce a certain number of ions. Electrons producing 2 ions are not
occuring for low pressures and at the highest pressure there are only 5% of them.

For 2 Tesla the picture is very different. The average residence time is around
10−7 s, resulting in about 20 oscillations for an electron on average. In extreme
cases electrons have been recorded which have a lifetime over 10−6 s, i.e. more
than 1000 oscillations (as the electrons lose energy over time the cycle time
decreases).
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Fig. 4.16: 2 Tesla, analytic field: Ions produced per primary electron. Many
electrons ionize multiple times (up to 6 times).

The reason for this is of course the magnetic field. An electron will follow the
magnetic field line it starts on, while gyrating about it (cf. section 2.2). As
the magnetic field is parallel to the APG axis the electrons will mainly move in
this direction, i.e. they are constrained in the XY-plane. Some electrons start on
field lines intersecting a grid bar, which they will hit in the first pass. All other
electrons will return to the filament if they do not lose energy in a collision on
their first oscillation. If they collide with a neutral gas particle and lose enough
energy, they will oscillate through their respective slits potentially for a very long
time, trapped by the combined electromagnetic field. The diffusion caused by
elastic and inelastic collisions only contributes small jumps in the gyration phase
and radius and does not change the XY-position significantly compared to the
dimension of a slit.

Energy statistics have shown that in the 0 Tesla case the final energy of an electron,
i.e. its energy when we stop tracking it, is random, mostly concentrated below
the maximum initial energy of about 180 eV. For 2 Tesla on the other hand many
primary electrons have very low total energy in the end. We call those electrons
trapped, as they oscillate around the acceleration grid until they have lost all their
energy in inelastic (including ionization) collisions.

This is reflected in figure 4.16, the ionization statistics for 2 T in the analytic
field. There are many electrons which, if they are trapped at the beginning,
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4.5 Simulation with a strong guiding field

will produce several ions. For them the mean number of ions is about 4. The
secondary electrons, which are produced in ionizations, show a similar increase
to about two ions per electron in magnetic fields because of their lower initial
energy. Overall this leads to a strong increse of the ion current Iic. The APG
output is given by Iic/(Ie − Iic), where Ie is the current of electrons reaching
the acceleration grid. Ie is reduced in strong magnetic fields (cf. figure 4.5) for
constant emission due to more electrons returning to the filament. In combination
a rising Iic and a dropping Ie explain the large sensitivity gain.

Difference between FEM and analytic model at 2 Tesla

At low pressures the output in the FEM field is much lower than in the analytic
case. This is caused by a decreased mean residence time (figure 4.14) and as a
result of that a much lower ionization yield per primary electron (figure 4.17) for
low pressure.

Figure 4.18 shows the trajectory of three electrons, starting at different locations,
over a large time period. To make this tracking possible we switched off the
impact detection and collisions (i.e. vacuum). The figure only shows the
projection in the XY-plane, in reality the electrons oscillate many times back and
forth around the acceleration grid. We see that the electrons very slowly follow
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Fig. 4.17: 2 Tesla, FEM field: Ions produced per primary electron. For low
pressures the ionization is much lower than in the analytic case.
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Chapter 4 Results of the Simulation and Comparison with Experiment

a circular path around a central APG axis. This motion is due to EEE ×BBB drift.
As we have seen in section 3.2 the FEM field has a small component pointing
outward of the center in the XY-plane. This is caused mainly by the boundary
conditions applied in the FEM calculation which reproduces the presence of a
grounded metal box around the APG. In the analytic case no boundary or edge
effects are included, and we have no drift motion because electric and magnetic
field are perfectly aligned. In figure 4.18 we would just see a dot for an electron
moving in the analytic field.

However in the FEM field this drift creates an upper limit for the residence time of
an electron, because it will hit a grid bar after some time, depending on its initial
position inside the slit. At low pressure the mean free time is in the same range
as this upper limit and therefore we have less than 2 ionizations per primary
electron. For high pressure this limit has no effect, as the trapped electron loses
all its energy before it can hit the bar. Therefore we get the same result as in the
analytic case.

This upper limit for the residence time due to drift is probably also present in the
experiment, as the FEM output is much closer than analytic for low pressures.
However as this effect is very strongly dependant on the exact electrostatic
configuration, the error which we see in figure 4.12 has to be expected.
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Fig. 4.18: Plot of a very long time (10−5 s) trajectory of an electron for three
different starting points in the FEM field at 2 Tesla. “Impact detection”
and collisions are switched off. We look from the filament toward the
ion collector, only the grid bars of the acceleration grid are shown. A
slow circular drift motion about a center can be seen.
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Chapter 5

Saturation Model

From the results presented in the previous chapter we can see that the saturation
of the gauge is closely connected to the strength of the magnetic field. Following
the results of the numerical simulation we have developed a simple model of the
signal output purely based on electron dynamics, which is useful to understand
the reasons of saturation.

We start by writing the currents to the acceleration grid (Ie) and ion collector (Iic)
in the following way:

Iic = f · Isec(p)

Ie = Iemit + Isec(p)− Ibkfil(p)

Isec =
∑
i

I isec ≈ I1
sec + I2

sec

(5.1)

where Isec(p) is the current from secondary electrons as function of the pressure p.
f is the fraction of secondary electrons (and thus ions) produced in the ionization
volume (i.e. between acceleration grid and ion collector) which depends mainly
on the gauge geometry. For the standard gauge f ≈ 0.55. Iemit is the current
emitted from the filament passing through the control grid. Iemit is constant for
constant heating current and emission condition. Ibkfil is the current of electrons
returning to the filament. We have then approximated the secondary current
considering only the electrons of first (from primary) and second generation. Up
to this point the formulation is quite general. Now we make the assumption that
an electron born on a field line passing through the grid becomes trapped after a
single collision, if it does not collide with any neutral gas particle it returns to the
filament.
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Chapter 5 Saturation Model

Trapped electron current, Itrap, and Ibkfil can then be written as:

Itrap(p) = Iemit − I1pass − Ibkfil = Iemit · t
[
1− exp

(
−α p

kT

)]
I1pass = (1− t) Iemit

Ibkfil(p) = Iemitt exp
(
−α p

kT

)
α =

∮
σtot(v)dx

(5.2)

where k is the Boltzmann constant and σtot is the total scattering cross-section.
The integral α is performed along the electron path from the filament to the
ionization volume and back. p/kT gives the neutral particle density at gas
temperature T . Thus the exponential factor represents the probability of having
no collision on the integration path.

The transparency of the acceleration grid is indicated with t and, in the standard
geometry, is equal to about 80%. I1pass are the electrons sitting on field lines
intersecting, and thus hitting, the grid at their first pass. For standard gauge
geometry and potential one finds from the integral in equations (5.2) α = 8.4 ·
10−22 m3.
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Fig. 5.1: Model vs. numerical simulation. Best-fits of Itrap and Ibkfil from the
numerical simulation to the model.
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Figure (5.1) shows a best-fit of Itrap and Ibkfil calculated from the simulation with
model in equations (5.2). The model equation fits well the simulation and the
values of the best-fit coefficients αfit and tfit are very close to expected ones. It is
to be noted that, for the standard APG at 0.2 mbar, the majority of the electrons
are already trapped and only about 10% may return to the filament.

The trapped electrons ionize the neutral gas once or several times depending on
their tapping time. Let us define the average number of ionization per primary
trapped electron n1

ion. Then we have:

I1
sec = n1

ionItrap (5.3)

In general n1
ion will depend on pressure. We can make the simplifying assumption

that the trapping time is long enough to allow the electron to spend all its energy
in inelastic collisions. With this assumption n1

ion is constant and depends only on
the accelerating field. Similarly we have for the tertiary electrons:

I2
sec = n2

ionItrap (5.4)

Combining equations (5.1-5.4) the normalized output can be written:

Iic
Ie − Iic = f · κ · t 1− exp

(−α p
kT

)
1 + (1− f)κt− [(1− f)κ+ 1] t exp

(−α p
kT

)
κ ≡ n1

ion(1 + n2
ion)

(5.5)

A comparison between the simulations and equation (5.5) is presented in figure
(5.2). The fitted values for κ and f are convincing. f theoretically equals 0.55. κ
is the mean reproduction rate of a primary electron, i.e. the sum over secondary,
tertiary (... and so on) electrons caused by it. As we have seen in section 4.5.3 the
mean number of secondary electrons is around 4, so a value of 6 for the whole
cascade is reasonable.

One can see that the linear regime of the ionization gauge in magnetic field
corresponds to the phase where only a small fraction of the electrons is actually
trapped. The turning point is around 2 · 10−2 mbar where Itrap surpasses 20%.

It is also interesting to note that the simulation with analytic electric field is well
described over the whole pressure range, whereas the simulation with FEM field
is only well described in the saturation phase. This is due to the upper limit for
the trapping time in the FEM case, which makes the assumption of a constant
mean ionization n1

ion in equation (5.3) incorrect. The limit could be incorporated
into the model, but it would not benefit the understanding of the saturation
mechanism.
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Fig. 5.2: Model vs. numerical simulation. Best-fit of the normalized output from
the simulation with the model

Interpretation of the saturation model

We can draw the follwing conclusions from the saturation model:

• Without a magnetic field the electron path and its residence time in the
gauge volume are random. The average path-length and flight time of
an electron are independant of pressure. Therefore an electrons ionization
yield is on average proportional to the neutral particle density (i.e. pres-
sure). Overall this results in a pressure-proportional output of the APG.

• In an external magnetic field the electrons are guided along the magnetic
axis (Z-axis in the simulation). In the XY-plane electrons are fixed, except
for gyration andEEE ×BBB drift, which are both very small.

• In this case we can separate the electrons into two classes:

1. electrons on a collision course with an acceleration grid bar (1pass).
These electrons have a roughly constant residence time which is very
low, comparable to the no B-field case.

2. the rest, about 80%, are on a free path and can in principle stay in the
APG volume for a very long time

• If one of the latter electrons has any collision on its first oscillation around
the acceleration grid, it cannot return the whole way to the filament. We call
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such an electron trapped.

• The ones that have no collision will return to the filament (bkfil). They have
a roughly constant residence time, independant of pressure.

• The trapped electrons on the other hand have an unlimited residence time,
only bound by the artificial energy threshold in the simulation, which does
not influence the ionization output. These electrons oscillate around the
acceleration grid and have collisions until all their energy is consumed. The
fraction of energy lost in ionization collisions is independant of pressure
and thus on average trapped particles always produce the same amount of
ions, regardless of pressure. If we only had trapped electrons in the APG,
the output would be constant over the whole pressure range.

• The relation between trapped and untrapped electrons is given by the
probability for no collision on the first oscillation (exp (−αp/kT )). When the
ratio of trapped electrons becomes dominant, the APG output saturates.

To delay the saturation we have to decrease either the transparency t or the path
integral α. Figure 5.3 shows the reaction of the model to a change of t from 0.8 to
0.5 (green line) and a reduction of α by 50% (red line). A combination of the two
measures (black line) gives the most promising result.

Reducing the transparency is in practice simple by replacing the acceleration grid
with a version with less and/or smaller slits but this would also adversely affect
to zero magnetic field output. α on the other hand can be decreased by reducing
the length of an initial oscillation, in other words the overall dimensions of the
gauge. Another option is to tweak the potential configuration of the APG, as
this changes the electron velocity progression along the oscillation. As the total
cross-section is dependant on velocity, the right choice could indeed decrease α.

Experiments with a different gauge configuration (higher potentials and smaller
ionization volume) have indeed shown a shift of the saturation point towards
higher pressure [31]. The saturation model presented here has helped to
understand this improvement [32], because for this configuration α turns out to
be about 50% smaller than in the standard case.
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Fig. 5.3: Effect of smaller α and t on the model output.
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Chapter 6

Conclusion and Outlook

In this work we have presented the development of a Monte-Carlo simulation
of the ASDEX pressure gauge (APG). The simulation results were compared to
the experimental behaviour of the APG with and without magnetic field in four
different gases.

The code is based on tracking one electron at a time in a realistic FEM field
model until it is absorbed on an electrode. Along the path the electron collisions
are simulated based on a stochastic Direct-Monte-Carlo approach. In ionization
collisions ions and secondary electrons are produced, which are also tracked and
have collisions themselves. Several integration algorithms were implemented
and tested during this work and we have chosen the Boris integrator in the end.

The main aims of the simulation were to understand the physical mechanisms
that cause the sensitivity increase of the APG in strong magnetic fields and the
saturation of the output signal for high pressures above 10−1mbar.

In chapter 4, where we have compared the simulations predictions with the
experiment, we come to the conclusion that the main qualitative features are well
described by the simulation.

By examining the simulation statistics we found that the reason for the sensitivity
gain are electrons guided by magnetic field lines that have a very long lifetime in
the gauge volume. They oscillate around the acceleration grid until they have lost
most of their energy in collisions. This leads to a massive increase in ionization by
primary and secondary electrons and in consequence to a rise in the ion current.
At the same time, the electron current drops as more electrons return to the
filament (Ibkfil) due to the magnetic guidance. Together, these two effects cause
the enhancement of the APG output.

However, above the saturation pressure the APG output becomes insensitive,
i.e. a further increase of pressure does not change the output signal. Thus
the purpose of a pressure gauge can not be met, that is to infer the neutral
particle density in the APG head from the electric signals. In chapter 5 we
have developed an analytical saturation model based on electron dynamics. This
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was possible due to the insight we gained from the statistical results of the
simulation. The model describes the saturation of the simulation very well, and
by comparing experiment and simulation we are convinced that it incorporates
the main physical mechanism of saturation in the APG.

In the model we mainly discern between two classes of electrons:

• electrons that oscillate once around the acceleration grid and are then
absorbed at the filament

• trapped electrons that do not return to the filament and ionize many times

The divisive attribute is whether an electron has any collision on its first
oscillation or not. Only if it does not have one it can return to the filament due to
energy conservation.

The ratio between trapped and untrapped electrons is determined by pressure
and the integral over the total cross-section along one oscillation path α. For a
given α, which depends on the gas type and the general geometric and potential
configuration of the APG, there occurs a transition phase at high pressures where
the trapped electrons become the dominant fraction. The ionization yield of a
trapped electron is independant of pressure and the overall ion current due to
them is so large that any further increase in pressure does not increase the output.

Possible improvements of the simulation

The simulation does not reproduce the experimental output exactly. In chapter 4
we have discussed the main reasons for this. There are several possibilities that
could be pursued in order to improve the agreement.

For example, the general geometric model and the electrostatic field model
which derives from it both have inaccuracies, but the simulation output for low
pressures is very sensitive to changes in the EM-field. Small changes in geometry
also play an important role in the calibration factors of individual gauges. The
most important details are probably the grounded box surrounding the APG
electrodes and the exact filament geometry.

The collision algorithm is another area where improvements could be made.
We have used the total cross-section for every possible collision type and
treated the probability distribution of scattering angles as uniform (i.e. isotropic
scattering). This is certainly an approximation and differential cross-sections
could be included in the code where they are available. However in our opinion
this would not influence the simulation output significantly.

A promising, yet elaborate path to follow, would be the implementation of
electron-electron interaction in the simulation. We have seen in chapter 4 that
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the strength of the electron current directly influences the experimental output.
For high electron currents also the saturation point is shifted slightly towards
higher pressures. As long as electron-electron interaction is not implemented in
the code we can only speculate about the reasons. There are three effects that are
likely to influence the electron dynamics:

• Development of an electron space charge around the acceleration grid due
to the long trapping time. This could change the electrostatic potential.

• e− − e− collisions could change the velocity distribution of the electrons.

• Collective behaviour of the electrons in the magnetic field could lead to two-
beam instabilities.

Although the physical principles governing e− - e− interaction are as fundamental
as the other collision processes, the introduction of electron-swarm interaction
poses a challenge to the simulation design and the computation time, as we
would have to simulate a large number of electrons simultaneously and update
the field due to them continuously.

Ways to increase the saturation pressure

This thesis is also part of a wider effort to adapt the APG performance to ITER
requirements ([31], [32]) as mentioned in chapter 1. ITER requires an updated
version of the APG which is able to work reliably up to pressures of 2 · 10−1 mbar
(20 Pa).

In the course of this work we have come to the conclusion that the following
modifications could possibly extend the pressure range in which the APG can be
used:

• Decreasing the ratio of trapped particles by modifing the collision probabil-
ity α. This is possible by reducing the APG size and increasing the potential
difference between the electrodes.

• Decreasing the transparency t of the acceleration grid. As seen in chapter 5
a change from 80% to 50% is effective.

• Increasing the electron current. The effect of this measure can not be
verified in the simulation, because we lack e− - e− interaction. However
the experimental results suggest a small saturation shift to higher pressures
due to it.

A modified version of the APG had already shown an improvement of the
saturation behaviour before this work was started [31], however the explanation
was incomplete. The simulation and the saturation model have brought a deeper
understanding of the reasons, as α turned out to be reduced by 50% for the
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modified gauge. In the future the simulation can be helpful to form an initial
assessment of changes to the APG geometry, before updated APG prototypes are
commissioned.
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