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Abstract  

Two different carbon nanotubes (CNTs) PR24-PS and Baytubes were functionalized by oxidation with nitric acid and further amination with 

gaseous NH3.  Thus Au and Au-Pd nanoparticles were prepared by PVA/NaBH4 system and anchored on the surface of pristine CNTs and N-

CNTs (Nitrogen functionalized carbon nanotubes). TEM analysis revealed that the introduction of nitrogen functionalities improves the disper-

sion of the metal nanoparticles on the surface of the support. This phenomena leads to an improved activity of N-CNTs based catalysts with the 

respect of pristine CNTs when tested in the liquid phase oxidation of alcohols. 
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1. Introduction  

 

The oxidation of alcohols to their corresponding car-

bonyl compounds catalyzed by supported noble metal has 

been recently the subject of growing interest [1-3]. Due to 

the high costs of the noble metal it is necessary to extend 

and enhance their catalytic performance by depositing them 

homogenously on the support in order to optimize the ac-

tive surface [4]. For this purpose the choice of the support 

is of fundamental importance influencing also the stability 

of the metal nanoparticles. Recently CNTs attracted a lot of 

attention as support for metal nanoparticles [5-9]. In par-

ticular their morphology suggests their use as support for 

liquid phase reactions as benzyl alcohol oxidation [10] and 

cinnamaldehyde hydrogenation [11,12]. On the contrary to 

activated carbons where there are many inaccessible active 

sites, CNTs are advantageous substrate since most of the 

metal nanoparticles are expected to be exposed and acces-

sible to reactant thus acting as effective catalysts [13]. 

However due to the inertness of the pristine CNTs a selec-

tive metal deposition requires activation [14]. Jiang et al., 

for example, observed that the introduction of nitrogen 

groups on the surface of CNTs drastically increase the dis-

persion and stability of the metal nanoparticles [15], due to 

the strong interaction metal-nitrogen. Metal/N-CNTs sys-

tem resulted more active than metal/pristine when tested in 

different reactions. For example, highly dispersed metal 

nanoparticles immobilized on nitrogen doped CNTs 

showed better activity than pristine CNTs for methanol 

oxidation [16] and hydrogenation of cinnamaldehyde 

[17,18] and Heck reaction of iodobenzene and styrene [19]. 

We recently reported the preparation of N-CNTs sample by 

a gas phase procedure [20]. The CNTs used (PR24-PS) are 

characterized by large diameter (~100 nm) and the presence 

of impurities, like amorphous carbon on the surface and 

inhomogeneity in size [21]. N-functionalized CNTs were 

obtained by previous acid oxidation and further amination 

with gaseous NH3. XPS and TG-MS revealed that these 

samples mainly contain pyridinic and pyrrolic groups. In 

the present work we extended the functionalization method 

to another type of CNTs, Baytubes, with the aim to study 

the effect of the diameter of the tubes and the presence of 

impurities on the surface on the metal nanoparticles disper-

sion and on the catalytic activity. Baytubes, in fact, are 

characterized by a smaller diameter than PR24-PS (5 nm 

instead 100nm) with a better homogeneity in size and mor-

phology, and they exhibited only little amorphous carbon 

on their surface [20]. Pristine CNTs and N-CNTs were used 

as support for Pd and Au-Pd nanoparticles prepared by 

colloidal method using PVA (polyvinyl alcohol) as protec-
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tive agent [22]. The catalysts were characterized by TEM in 

order to investigate the effect of the nitrogen functionalities 

on the dispersion of the metal nanoparticles. All the cata-

lysts were tested in the liquid phase oxidation of benzyl and 

cinnamyl alcohol. 

 

 

2. Experimental 

 

2.1. Materials 

 

Commercial CNTs PR24-PS-PS and Baytubes were 

supplied respectively from Applied Science and from 

Bayer. PR24-PS-PS consist of tubular fibers with an aver-

age diameter of 88± 30 nm and a specific surface area of 

43m2g-1 [21] whereas Baytubes have an average diameter 

of 5± 2 nm and a specific surface area of 288 m2g-1 [21]. 

NaBH4 (Fluka, > 96%), polyvinylalcohol (PVA) (mw = 

13,000–23,000 87–89% hydrolysed, Aldrich), NaAuCl4 

·2H2O and Na2PdCl4 ·2H2O (Aldrich, 99.99% purity) were 

used in these experiments. Gaseous oxygen from SIAD was 

99.99% pure. 

 

 

2.2 Catalyst preparation 

 

2.2.1. Monometallic catalysts 

Pd sol: solid Na2PdCl4 (0.043 mmol) and 220 ml 

PVA solution (2%, w/w) (Pd/PVA 1:1, w/w) were added to 

130 ml of H2O. After 3 min, 860 ml of 0.1 M NaBH4 solu-

tion was added to the yellow-brown solution under vigor-

ous magnetic stirring. The brown Pd(0) sol was 

immediately formed. An UV–visible spectrum of the palla-

dium sol was recorded for ensuring the complete reduction 

of Pd(II). Within few minutes from their generation, the 

colloids (acidified at pH 2, by sulphuric acid) were immo-

bilized by adding the support under vigorous stirring. The 

amount of support was calculated in order to obtain a final 

metal loading of 1 wt% (on the basis of quantitative loading 

of the metal on the support). The metal loading was also 

confirmed by burning off the CNTs and performing ICP 

(Jobin Yvon JV24) analyses of the solution. 

 

 

2.2.2. Bimetallic catalysts 

Bimetallic catalysts have been prepared following 

the procedure reported in [22]. Solid NaAuCl4* 2H2O 

(0.072 mmol) was dissolved in 140 ml of water (final 10-4 

M) and 0.706 ml of PVA (2%, w/w) was added (Au/PVA 

1:1, w/w). The yellow solution was stirred for 3 min and 

2.9 ml of 0.1 M NaBH4 (0.285 mol, Au/NaBH4 1:3 

mol/mol) was added under vigorous magnetic stirring. The 

ruby red Au(0) sol was immediately formed. An UV–

visible spectrum of the gold sol was recorded to check the 

complete AuCl4- reduction and the formation of the plas-

mon peak. Within a few minutes of sol generation, the gold 

sol was immobilized by adding carbon nanotubes (acidified 

until pH 2 by sulphuric acid) under vigorous stirring. The 

amount of support was calculated as having a gold loading 

of 0.73 wt%. After 2 h the slurry was filtered, the catalyst 

was thoroughly washed with distilled water (neutral mother 

liquors). ICP analyses were performed on the filtrate using 

a Jobin Yvon JV24 to verify the total metal loading on 

carbon. The 0.73 wt% Au/CNTs prepared was then dis-

persed in 140 ml of water; Na2PdCl4 (0.048 mol) and 0.225 

ml of PVA solution (0.2%, w/w) (Au/PVA 1:1, w/w) were 

added. H2 has been bubbled (50 ml/min) under atmospheric 

pressure and room temperature for 2 h. After additional 18 

h, the slurry was filtered; the catalyst was thoroughly 

washed with distilled water. ICP analyses were performed 

on the filtrate using a Jobin Yvon JV24 to verify the quanti-

tative metal loading on the support. The final total metal 

loading was 1 wt%. The total metal loading and Au/Pd 

ratios were also confirmed by burning off the CNTs and 

performing ICP (Jobin Yvon JV24) analyses of the solu-

tion.  

 

 

2.3 Catalytic test 

 

The reactions were carried out in a thermostatted 

glass reactor (30 ml) provided with an electronically con-

trolled magnetic stirrer connected to a large reservoir (5000 

ml) containing oxygen at 2 atm. The oxygen uptake was 

followed by a mass flow controller connected to a PC 

through an A/D board, plotting a flow/time diagram. The 

oxidation experiments were carried out in solventless 

(0.0125 mol substrate, Substrate/Metal= 35000 (mol/mol), 

120 °C, pO2=1,5 atm) or in the presence of water as solvent 

(alcohol 0,3M, Substrate/Metal= 5000 (mol/mol), 60 °C, 

pO2=1,5 atm). In the case of solventless reaction, periodic 

removal of samples from the reactor was performed, whe-

reas in the case of water solvent, after the end of the reac-

tion the catalyst was filtered off and the product mixture 

was extracted with CH2Cl2. Recoveries were always 

98%3 with this procedure. For the identification and anal-

ysis of the products a GC-MS and GC (a Dani 86.10 HT 

Gas Chromatograph equipped with a capillary column, 

BP21 30m x 0.53mm, 0.5 µm Film, made by SGE), were 

used by comparison of the authentic samples. For the quan-

tification of the reactant-products the external calibration 

method was used. 

 

 

2.4 Catalyst Characterization  

 

The metal content was checked by ICP analysis of 

the filtrate or, alternatively, directly on the catalyst after the 

carbon was burned off, using a Jobin Yvon JY24 instru-

ment. A Hitachi S-4800 SEM equipped with EDX detector 

for elemental analysis was used to investigate the surface 

morphologies of the CNTs. Morphology and microstruc-

tures of the catalysts were characterized in a Philips 

CM200 FEG electron microscope, operating at 200 kV and  
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a) 

 

b) 

 
 

Fig. 1: SEM overview of a) pristine PR24-PS-PS and b) N-

functionalized PR24-PS-PS 

 

 

equipped with a Gatan imaging filter, GIF Tridiem. Powder 

samples of the catalysts were ultrasonicated in ethanol and 

dispersed on copper grids covered with a holey carbon film. 

Metal distribution analysis with a resolution of a few na-

nometers was performed in STEM mode in combination 

with energy dispersive X-ray spectroscopy (EDX) using a 

DX4 analyzer system (EDAX) in the same microscope. 

 

 

3. Results and discussion 

 

Carbon nanotubes are a promising support and an ef-

fective alternative to activated carbons for liquid phase 

reaction. We previously observed that Pd nanoparticles 

supported on CNTs (Baytubes) showed a better stability 

and limited leaching in comparison to activated carbon 

when tested in the liquid phase oxidation of benzyl alcohol 

[11]. However Pd/CNTs showed a lower activity than 

Pd/AC, according to the lower metal dispersion observed 

on CNTs compared to AC. This phenomenon can be ad-

dressed to the inertness of the surface of pristine CNTs. 

Thus in order to improve the metal-support interaction it is 

necessary to introduce functionalities on the surface of 

carbon nanotubes.  

In this study, two different carbon nanotubes, Bay-

tubes and PR24-PS were considered. Baytubes are charac-

terized by small diameter (5nm), and homogenous 

morphology whereas PR24-PS by larger diameter (100nm), 

more inhomogeneous morphology and the presence of a 

large amount of impurities on the surface [21]. Further-

more, the CNTs were functionalized with nitrogen groups, 

following a procedure that we recently report [20]. In brief, 

the CNTs were first oxidized with nitric acid at 100°C and 

further aminated with gaseous NH3 at 600°C. The acid 

treatment introduces oxygen functionalities on the surface 

but at the same time removes some impurities present. 

SEM images of pristine and functionalized CNTs shows, in 

fact, that after the functionalization the impurities present 

on the surface of the tube (bright dots) (fig.1a) disappeared 

and the surface of the tube shows better homogeneity (fig. 

1b). XPS revealed that these samples after amination 

mainly contain pyridinic and pyrrolic groups [20].  

 

 

 

a)  

b)  

 

 

Fig. 2: The TEM overview image for (a) Pd/Baytubes and (b) 

Pd/N-Baytubes 
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a)  

b)  

c)  

 

Fig. 3: The TEM overview image for a) and b) Pd/PR24-PS and 

(c) Pd/N-PR24-PS 

 

 

We synthesized Pd/CNTs and Pd/N-CNTs via sol 

immobilization method (NaBH4/PVA); for Au-Pd a two 

step procedure that ensures the formation of uniform al-

loyed Pd/Au nanoparticles has been used [22]. The metal 

sols were generated in presence of a protective agent (poly 

 

Table 1: Statistical median and standard deviation of particle size 

analysis for Pd and Au/Pd catalysts. 

 
a Data from Ref. [10]. 

 

 

vinyl alcohol) which provides both steric as well as electro-

static stabilization of the metal nanoparticles.  

All the catalysts have been fully investigated by 

HRTEM.  For Baytubes based catalysts we can observe that 

Pd particles size is almost the same as for pristine and func-

tionalized carbon nanotubes being 3.35 nm and 3.34 nm for 

Pd/Baytubes and Pd/N-Baytubes. In the case of bimetallics, 

Au-Pd/N-Baytubes shows smaller particles than 

Au/Baytubes (respectively 3.41 and 3.53 nm). TEM images 

of Pd/Baytubes and Pd/N-Baytubes were reported as exam-

ple for Baytubes based catalysts (fig.2a and 2b). In both 

cases the dispersion of metal nanoparticles on the tubes is 

not completely homogeneous. In particular on Baytubes 

based catalysts several CNTs were found without metal 

nanoparticles, whereas in the case of N-Baytubes catalyst 

the empty tubes can be considered exception. The same 

trend was observed for Au-Pd/Baytubes and Au-Pd/N-

Baytubes catalysts. 

More differences were observed using pristine and 

functionalized PR24-PS. Pd and Au–Pd supported on pris-

tine PR24-PS showed bigger particles than the correspond-

ing on N-PR24-PS (4.28 nm and 4.5 nm for Pd/PR24-PS 

and Au–Pd/PR24-PS whereas 3.28 nm and 3.70 nm for 

Pd/N-PR24-PS and Au–Pd/N-PR24-PS respectively) (Ta-

ble 1). Fig. 3 shows TEM images of Pd/PR24-PS (Fig. 3a 

and b) and Pd/N-PR24-PS (Fig. 3c) respectively. For pris-

tine PR24-PS several tubes were found without Pd 

nanoparticles, whereas many Pd particles are observed as 

aggregates. Some metal nanoparticles are anchored to the 

amorphous carbon present on the surface of the CNTs 

(fig.3b). The metal-support interaction is probably pro-

moted on the amorphous carbon full of defects. Moreover 

TEM observation confirmed that well dispersed nanoparti-

cles decorate the walls of the nitrogen functionalized PR24-

PS quite uniformly and no empty tubes are present (fig.3c).  

The catalysts were tested in the liquid phase oxida-

tion of benzyl and cinnamyl alcohols. These reactions have 

been widely studies in the literature being two models of 

oxidation of aromatic and activated alcohols [1].  

Table 2 reports the results of Pd and Au-Pd sup-

ported on CNTs and N-CNTs for benzyl alcohol oxidation 

in solventless conditions. For comparison Pd and Au-Pd on 

AC have been also showed. For these experiments we used 

the following conditions: 0.0125 mol substrate, Sub-

strate/Metal= 35000 (mol/mol), 120 °C, pO2=1,5 atm.  
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Table 2: Oxidation of benzyl alcohol solventless. 

 
Reaction conditions: solventless; alcohol/metal: 1/35,000; T = 120 °C; pO2 = 1.5 atm. 
a TOF calculated after 15 min of reaction based on the total metal loading. 
b Selectivity calculated at 90% conversion. 
c Selectivity calculated at 50% conversion.  

 

 

Table 3: Oxidation of benzyl and cinnamyl alcohol in water. 

 
Reaction conditions: alcohol 0.3M in water; alcohol/metal: 1/500; 

T=60°C; pO2 = 1.5 atm. 
a TOF calculated after 15 min of reaction based on the total metal 

loading. 
b Selectivity calculated at 90% conversion. 

 

 

Surprisingly in these reaction conditions Pd based catalysts 

show better activity than Au-Pd. This result contradicts 

what reported in literature, that the addition of Au to Pd 

increases the catalytic performances in the oxidation of 

alcohols [23, 24], but it has to be considered that the effect 

of the addition of gold normally has been studied in the 

presence of solvent. In terms of selectivity the addition of 

Au increase the selectivity to aldehyde from 62-68% for Pd 

based catalysts to 74-76% for Au-Pd based catalysts as also 

previously observed [10,23].  

For PR24-PS based catalyst a dramatic increase of 

activity was observed using functionalized instead pristine 

CNTs. In fact the TOF increase from 7260 h-1 to 65876 h-1 

for Pd based catalysts and from 9076 h-1 to 52638 h-1. 

However the functionalization appears not to affect the 

selectivity to benzaldehyde. The increasing of activity from 

pristine to functionalized CNTs can be address to the 

smaller nanoparticles and better dispersion present of N-

PR24.  

On the contrary the effect of the N-functionalization 

for Baytubes-based catalysts is not so important. Baytubes 

catalysts showed a better activity than PR24-PS but when 

N-modified, the effect was small (TOF of 43281 h-1 and 

50387 h-1 for Pd/Baytubes and Pd/N-Baytubes and 33580 

h-1 and 43479 for Au-Pd/Baytubes and Au-Pd/N-

Baytubes).  

With respect to Activated carbon, nitrogen function-

alized CNTs based catalysts showed a better activity 

whereas pristine CNTs are less active. This increasing of 

activity can be addressed to the increasing of metal disper-

sion being correlated to the introduction of N-

functionalities.  

When water was used as the solvent (0.3M, 60°C, al-

cohol/metal 1/500 and 1.5 atmO2), the activities decreased 

as expected. Under such conditions we also tested cinnamyl 

alcohol as the reactant. As already observed [23] the addi-

tion of Au to Pd had a positive effect not only on the selec-

tivity but also on the activity of the catalysts (table 3). As in 

the previous case the Baytubes-catalysts appeared more 

active than PR24-PS-ones and the effect of N-

functionalisation result in an important increasing of activ-

ity only in the case of PR24-PS. The same trend was ob-

served in the case of cinnamyl alcohol, where the 

introduction of N-funtionalities increased the activity of the 

catalyst without affecting the selectivity to aldehyde. 

 

 

4. Conclusion 

 

The synthesis of nitrogen doped carbon nanotubes 

has been achieved by oxidation with nitric acid and further 

amination with gaseous NH3. SEM revealed that this pro-

cedure is able to purify the surface of the CNTs from impu-

rities like amorphous carbon, in particular on PR24-PS. The 

introduction of nitrogen functionalities on the surface of 

CNTs has a positive effect on the metal dispersion.  

The functionalized N-CNTs based catalysts were 

tested in the selective oxidation of alcohols and compared 

to pristine CNTs based ones. Nitrogen functionalities in-

corporation led to a significant improvement of the cata-

lytic performance. The activity improvement was attributed 

to a better dispersion of the metal nanoparticles on the sur-

face. Moreover the increasing of the local basic environ-

ment did not affect the selectivity to aldehyde. 

 



Nitrogen functionalized carbon nanostructures supported Pd and Au–Pd NPs as catalyst for alcohols oxidation, A. Villa et al..,  

Catalysis Today 157 (2010) 89–93 

 

 

Preprint of the Department of Inorganic Chemistry, Fritz-Haber-Institute of the MPG (for personal use only) (www.fhi-berlin.mpg.de/ac) 

6 

References  

 

 

[1] T.Mallat, A.Baiker,  Chem.Rev. 104 (2004) 3037 

[2] M. Besson, P. Gallezot, Catal .Taoday, 57 (2000) 127 

[3] A. Sheldon, I.W.C.E. Arends, G.J. ten Brink, A. Dijksman, 

Acc. Chem. Res. 35 (2002) 774 

[4] Sepulveda-Escribano, F. Colonna, F. Rodriguez-Reinoso, 

Appl. Catal. A.Gen., 173 (1998) 247 

[5] Z. Liu, X. Lin, J. Y. Lee, W. Zhang, M. Han, L.M. Gan, 

Langmuir 18 (2002) 4054.  

[6] Y. Xing, J. Phys Chem B. 108 (2004) 19255. 

[7] H.-S. Kim, H. Lee, K.-S. Han, J.-H. Kim, M.-S. Song, M.-S. 

Park,J.-Y. Lee, J.-K. Kang, J.Phys.Chem. B 109 (2005), 

8983.  

[8] J.-Y. Lee, H. Lee, H.-S. Kim, Mater. Sci. Forum 475-479 

(2005) 2463. 

[9] Kong, M. G. Chapline, H. Dai, Adv. Mater. 13 (2001) 1384. 

[10] A.Villa, D. Wang, N. Dimitratos, D. Su, V. Trevisan, L. 

Prati, Catal. Today (2009) doi:10.1016/j.cattod.2009.06.009. 

[11] J.P. Tessonier, L. Pesant, G. Ehret, M.J. Ledoux, C. Pham-

Huu,  Appl.Catal.A 288 (2005) 203. 

[12] H. Vu, F. Goncalves, R. Philippe, E. Lamouroux, M. Corrias, 

Y. Kihn, D. Plee, P. Kalck, P. Serp, J. Catal. 240 (2006) 18. 

[13] T. Matsumoto, T. Komatsu, H. Nakano, K. Arai, Y. Naga-

shima, T. Yoo, E.Yamazaki, M. Kijima, H. Shimizu, Y. Ta-

kasawa, J. Nakamura, Catal. Today, 90 (2004) 277. 

[14] K. Balasubramanian, M. Burghard, Small, 1, (2005), 180. 

[15] Jiang K.; Eitan A.; Schadler L. S.; Ajayan P. M.; Siegel R. 

W. Nano Lett. 3 (2003), 275. 

[16] B.Choi, H. Yoon. I. Park, J. Jang, Y.Sung, Carbon, 45, 

(2007) 2496. 

[17] Leprò X., Terries E., Vega-Cantù Y, Rodriguez-Macias F.J., 

Muramatsu H., Ahm Kim Y., Hayahsi T., Endo M., Torres R. 

M., Terrones M., Chem. Phys. Lett. 463 (2008), 124 

[18] Amadou J.; Chirazi K.; Houllé M.; Janowska I.; Ersen O.; 

Bégin D. Pham-Huu C. Catal. Today 138, (2008), 62 

[19] Yoon H.; Ko S.; Jang J. Chem. Commun. (2007), 1468 

[20] R. Arrigo,M. Hävecker, R. Schlögl, D.S. Su, Chem. Comm., 

2008, 4891 

[21] J.P. Tessonnier, D. Rosenthal, T. W. Hansen, C. Hess, M. E. 

Schuster, R. Blume, F. Girgsdies, N. Pfaender, O. Timpe, 

D.S. Su, R. Schloegl, Carbon, 47, (2009), 1779. 

[22] D. Wang, A. Villa, F. Porta, D. Su, L. Prati, Chemm. Com-

mun. (2006) 1956. 

[23] A. Villa, N. Janjic, P. Spontoni, D. Wang, D. S. Su, L. Prati, 

Appl. Catal., 364, (2009), 221. 

[24] D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, 

A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. 

Knight and G.J. Hutchings, Science 11 (2006) 362 

 

 


