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In eukaryotes transcriptional regulation often involves multiple
long-range elements and is influenced by the genomic environ-
ment1. A prime example of this concerns the mouse X-inactivation
centre (Xic), which orchestrates the initiation of X-chromosome
inactivation (XCI) by controlling the expression of the non-
protein-coding Xist transcript. The extent of Xic sequences
required for the proper regulation of Xist remains unknown.
Here we use chromosome conformation capture carbon-copy
(5C)2 and super-resolution microscopy to analyse the spatial
organization of a 4.5-megabases (Mb) region including Xist. We
discover a series of discrete 200-kilobase to 1 Mb topologically
associating domains (TADs), present both before and after cell
differentiation and on the active and inactive X. TADs align with,
but do not rely on, several domain-wide features of the epigenome,
such as H3K27me3 or H3K9me2 blocks and lamina-associated
domains. TADs also align with coordinately regulated gene clusters.
Disruption of a TAD boundary causes ectopic chromosomal con-
tacts and long-range transcriptional misregulation. The Xist/Tsix
sense/antisense unit illustrates how TADs enable the spatial
segregation of oppositely regulated chromosomal neighbourhoods,
with the respective promoters of Xist and Tsix lying in adjacent
TADs, each containing their known positive regulators. We identify
a novel distal regulatory region of Tsix within its TAD, which pro-
duces a long intervening RNA, Linx. In addition to uncovering a
new principle of cis-regulatory architecture of mammalian chromo-
somes, our study sets the stage for the full genetic dissection of the
X-inactivation centre.

The X-inactivation centre was originally defined by deletions and
translocations as a region spanning several megabases3,4, and contains
several elements known to affect Xist activity, including its repressive
antisense transcript Tsix and its regulators Xite, DXPas34 and Tsx5,6.
However, additional control elements must exist, as single-copy trans-
genes encompassing Xist and up to 460 kb of flanking sequences are
unable to recapitulate proper Xist regulation7. To characterize the cis-
regulatory landscape of the Xic in an unbiased approach, we performed
5C2 across a 4.5-Mb region containing Xist. We designed 5C-Forward
and 5C-Reverse oligonucleotides following an alternating scheme2,
thereby simultaneously interrogating nearly 250,000 possible chromo-
somal contacts in parallel, with a mean resolution of 10–20 kb (Fig. 1a;
see Supplementary Methods). Analysis of undifferentiated mouse
embryonic stem cells (ESCs) revealed that long-range (.50 kb) con-
tacts preferentially occur within a series of discrete genomic blocks,
each covering 0.2–1 Mb (Fig. 1b). These blocks differ from the higher-
order organization recently observed by Hi-C8, corresponding to
much larger domains of open or closed chromatin, that come together
in the nucleus to form A and B types of compartments8. Instead, our

5C analysis shows self-associating chromosomal domains occurring at
the sub-megabase scale. The size and location of these domains is
identical in male and female mouse ESCs (Supplementary Fig. 1)
and in different mouse ESC lines (Supplementary Fig. 2 and
Supplementary Data 1).

To examine this organization with an alternative approach, we per-
formed three-dimensional DNA fluorescent in situ hybridization
(FISH) in male mouse ESCs. Nuclear distances were found to be sig-
nificantly shorter between probes lying in the same 5C domain than in
different domains (Fig. 1c, d), and a strong correlation was found
between three-dimensional distances and 5C counts (Supplementary
Fig. 3a, b). Furthermore, using pools of tiled bacterial artificial chro-
mosome (BAC) probes spanning up to 1 Mb and structured illumina-
tion microscopy, we found that large DNA segments belonging to the
same 5C domain colocalize to a greater extent than DNA segments
located in adjacent domains (Fig. 1e), and this throughout the cell cycle
(Supplementary Fig. 3c, d). Based on 5C and FISH data, we conclude
that chromatin folding at the sub-megabase scale is not random, and
partitions this chromosomal region into a succession of topologically
associating domains (TADs).

We next investigated what might drive chromatin folding in TADs.
We first noticed a striking alignment between TADs and the large
blocks of H3K27me3 and H3K9me2 (ref. 9) that are known to exist
throughout the mammalian genomes10–13 (for example, TAD E, Fig. 2
and Supplementary Fig. 4). We therefore examined 5C profiles of
G9a2/2 (also known as Ehmt2) mouse ESCs, which lack H3K9me2,
notably at the Xic14, and Eed2/2 mouse ESCs, which lack H3K27me3
(ref. 15). No obvious change in overall chromatin conformation was
observed, and TADs were not affected either in size or position in these
mutants (Fig. 2 and Supplementary Fig. 4b). Thus TAD formation is
not due to domain-wide H3K27me3 or H3K9me2 enrichment.
Instead, such segmental chromatin blocks might actually be delimited
by the spatial partitioning of chromosomes into TADs.

We then addressed whether folding in TADs is driven by discrete
boundary elements at their borders. 5C was performed in a mouse ESC
line carrying a 58-kb deletion (DXTX16), encompassing the boundary
between the Xist and Tsix TADs (D and E; Fig. 2b). We observed
ectopic contacts between sequences in TADs D and E and an altered
organization of TAD E. Boundary elements can thus mediate the
spatial segregation of neighbouring chromosomal segments. Within
the TAD D–E boundary, a CTCF-binding site was recently implicated
in insulating Tsix from remote regulatory influences17. However, align-
ment of CTCF- and cohesin-binding sites in mouse ESCs18 with our 5C
data showed that, although these factors are present at most TAD
boundaries (Supplementary Fig. 4), they are also frequently present
within TADs, excluding them as the sole determinants of TAD
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positioning. Furthermore, the fact that the two neighbouring domains
do not merge completely in DXTX cells (Fig. 2b) implies that addi-
tional elements, within TADs, can act as relays when a main boundary
is removed. The factors underlying an element’s capacity to act as a
canonical or shadow boundary remain to be investigated.

Next we asked whether TAD organization changes during differ-
entiation or XCI. Both male neuronal progenitors cells (NPCs) and
male primary mouse embryonic fibroblasts (MEFs) show similar
organization to mouse ESCs, with no obvious change in TAD posi-
tioning. However, consistent differences in the internal contacts within
TADs were observed (Fig. 3a, Supplementary Figs 2 and 5). Noticeably,
some TADs were found to become lamina-associated domains19

(LADs) at certain developmental stages (Fig. 3b). Thus chromosome
segmentation into TADs reveals a modular framework where changes
in chromatin structure or nuclear positioning can occur in a domain-
wide fashion during development.

We then assessed TAD organization on the inactive X, by combin-
ing Xist RNA FISH, to identify the inactive X, and super-resolution
DNA FISH using BAC probe pools on female MEFs. We found that
colocalization indices on the inactive X were still higher for sequences
belonging to the same TAD than for neighbouring TADs (Supplemen-
tary Fig. 6a). However, the difference was significantly lower for the
inactive X than for the active X. Deconvolution of the respective con-
tributions of the active X and inactive X in 5C data from female MEFs
(see Supplementary Methods and Supplementary Fig. 6) similarly
revealed that global organization in TADs remains on the inactive
X, albeit in a much attenuated form, but that specific long-range

contacts within TADs are lost. This, together with a recent report
focused on longer-range interactions20, suggests that the inactive X
has a more random chromosomal organization than its active homo-
logue, even below the megabase scale.

We next investigated how TAD organization relates to gene
expression dynamics during early differentiation. A transcriptome
analysis, consisting of microarray measurements at 17 time points over
the first 84 h of female mouse ESC differentiation was performed
(Fig. 4a). During this time window, most genes in the 5C region were
either up- or downregulated. Statistical analysis demonstrated that
expression profiles of genes with promoters located within the same
TAD are correlated (Fig. 4b). This correlation (median correlation
coefficient cc of 0.40) is significantly higher than for genes in different
domains (cc of 0.03, P , 1029) or for genes across the X chromosome in
randomly selected, TAD-size regions (cc of 0.09, P , 1027). The
observed correlations within TADs seem not to depend on distance
between genes, and are thus distinct from previously described corre-
lations between neighbouring genes21 that decay on a length scale of
approximately 100 kb (Supplementary Fig. 7). Our findings indicate
that physical clustering within TADs may be used to coordinate gene
expression patterns during development. Furthermore, deletion of the
boundary between Xist and Tsix in DXTX cells was accompanied by
long-range transcriptional misregulation (Supplementary Fig. 8),
underlining the role that chromosome partitioning into TADs can play
in long-range transcriptional control.

A more detailed analysis of each domain (Supplementary Fig. 7)
revealed that co-expression is particularly pronounced in TADs D, E
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Figure 1 | Chromosome partitioning into topologically associating
domains (TADs). a, Distribution of 5C-Forward and 5C-Reverse HindIII
restriction fragments across the 4.5 Mb analysed showing positions of RefSeq
genes and known XCI regulatory loci. b, 5C data sets from XY undifferentiated
mouse ESCs (E14), displaying median counts in 30-kb windows every 6 kb.
Chromosomal contacts are organized into discrete genomic blocks (TADs
A–I). A region containing segmental duplications excluded from the 5C
analysis is masked (white). c, Positions of DNA FISH probes. d, Interphase

nuclear distances are smaller for probes in the same 5C domain. e, Structured
illumination microscopy reveals that colocalization of neighbouring sequences
is greater when they belong to the same 5C domain. Boxplots show the
distribution of Pearson’s correlation coefficient between red and green
channels, with whiskers and boxes encompassing all and 50% of values,
respectively; central bars denote the median correlation coefficient. Statistical
significance was assessed using Wilcoxon’s rank sum test.
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and F (Fig. 4b, c). Although correlations are strongest within TADs,
there is some correlation between TADs showing the same trend, such
as TADs D and F, which are both downregulated during differenti-
ation. Only TAD E, which contains Xist and all of its known positive

regulators Jpx, Ftx, Xpr/Xpct and Rnf125 (Jpx, Ftx, Xpct and Rnf12 are
also known as Enox, B230206F22Rik, Slc16a2 and Rlim, respectively) is
anti-correlated with most other genes in the 4.5 Mb region, being
upregulated during differentiation (Supplementary Fig. 7). The fact
that these coordinately upregulated loci are located in the same TAD
suggests that they are integrated into a similar cis-regulatory network,
potentially sharing common cis-regulatory elements. We therefore
predict that TAD E (,550 kb) represents the minimum 59 regulatory
region required for accurate Xist expression, explaining why even the
largest transgenes tested so far (covering 150 kb 59 to Xist, Fig. 5a)
cannot recapitulate normal Xist expression7.

The respective promoters of Xist and Tsix lie in two neighbouring
TADs with transcription crossing the intervening boundary (Fig. 2b),
consistent with previous 3C experiments22. Whereas the Xist promoter
and its positive regulators are located in TAD E, the promoter of its
antisense repressor, Tsix, lies in TAD D, which extends up to Ppnx
(also known as 4930519F16Rik)/Nap1l2, more than 200 kb away
(Fig. 2b). Thus, in addition to the Xite enhancer, more distant elements
within TAD D may participate in Tsix regulation. To test this we used
two different single-copy transgenic mouse lines, Tg53 and Tg80
(ref. 23). Both transgenes contain Xist, Tsix and Xite (Fig. 5a). Tg53
encompasses the whole of TAD D, whereas Tg80 is truncated just 59 to
Xite (Fig. 5a and Supplementary Fig. 9). In the inner cell mass of male
mouse embryos at embryonic day 4.0 (E4.0), Tsix transcripts could be
readily detected from Tg53, as well as from the endogenous X (Fig. 5b).
However, no Tsix expression could be detected from Tg80, which lacks
the distal portion of TAD D (Fig. 5b). Thus, sequences within TAD D
must contain essential elements for the correct developmental regu-
lation of Tsix.

Within TAD D, several significant looping events involving the Tsix
promoter or its enhancer Xite were detected (Figs 2b and 5a,
Supplementary Fig. 10). Alignment of 5C maps with chromatin sig-
natures of enhancers in mouse ESCs (Supplementary Fig. 11) sug-
gested the existence of multiple regulatory elements within this
region. We also identified a transcript initiating approximately 50 kb
upstream of the Ppnx promoter (Fig. 5a), from a region bound by
pluripotency factors and corresponding to a predicted promoter for
a large (80 kb) intervening non-coding RNA (lincRNA24, Supplemen-
tary Fig. 12) which we termed Linx (large intervening transcript in the
Xic). Linx RNA shares several features with non-coding RNAs, such as
accumulation around its transcription site25 (Fig. 5c), nuclear enrich-
ment and abundance of the unspliced form26 (Supplementary Fig. 12
and 13). Linx and Tsix are co-expressed in the inner cell mass of
blastocysts from E3.5–4.0 onwards, as well as in male and female
mouse ESCs (Fig. 5c). Linx RNA is not detected earlier in embryogenesis,
nor in extra-embryonic lineages, implying an epiblast-specific function
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(Supplementary Fig. 9). Triple RNA FISH for Linx, Tsix and Xist in
differentiating female mouse ESCs (Supplementary Fig. 14) revealed
that before Xist upregulation, the probability of Tsix expression from
alleles co-expressing Linx is significantly higher than from alleles that
do not express Linx (Fig. 5d). Furthermore, Linx expression is fre-
quently monoallelic, even before Xist upregulation (Supplementary
Fig. 14), revealing a transcriptional asymmetry of the two Xic alleles
before XCI. Taken together, our experiments based on 5C, transgenesis
and RNA FISH, point towards a role for Linx in the long-range tran-
scriptional regulation of Tsix — either through its chromosomal asso-
ciation with Xite and/or via the RNA it produces. This analysis of the
Xist/Tsix region illustrates how spatial compartmentalization of
chromosomal neighbourhoods in TADs partitions the Xic into two
large regulatory domains, with opposite transcriptional fates (Sup-
plementary Fig. 15).

In conclusion, our study reveals that sub-megabase folding of
mammalian chromosomes results in the self-association of large
chromosomal neighbourhoods in the three-dimensional space of the
nucleus. The stability of such partitioning throughout differentiation, X
inactivation and in cell lines with impaired histone-modifying
machineries, indicates that this level of chromosomal organization
may provide a basic framework onto which other domain-wide
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features, such as lamina association and blocks of histone modification,
can be dynamically overlaid. Our data also point to a role for TADs in
shaping regulatory landscapes, by defining the extent of sequences that
belong to the same regulatory neighbourhood. We anticipate that
TADs may underlie regulatory domains previously proposed on the
basis of functional and synteny conservation studies27,28. We believe
that the principles we have revealed here will not be restricted to the
Xic, as spatial partitioning of chromosomal neighbourhoods occurs
throughout the genome of mouse and human29, as well as
Drosophila30 and E. coli31. We have shown that TAD boundaries can
have a critical role in high-order chromatin folding and proper long-
range transcriptional control. Future work will clarify the mechanisms
driving this level of chromosomal organization, and to what extent it
generally contributes to transcriptional regulation. In summary, our
study provides new insights into the cis-regulatory architecture of
chromosomes that orchestrates transcriptional dynamics during
development, and paves the way to dissecting the constellation of
control elements of Xist and its regulators within the Xic.

METHODS SUMMARY
5C was performed on mouse ESCs, mouse NPCs and primary MEFs following a
previously described protocol2 with modifications, and sequenced on one lane of
an Illumina GAIIx. RNA and DNA FISH were performed on mouse ESCs and
inner cell masses extracted from pre-implantation embryos as previously
described7, with modifications. Full experimental and bioinformatic methods
are detailed in Supplementary Information.
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