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Abstract In this thesis, the ionization of atoms and small molecules in strong laser
fields is experimentally studied by utilization of a reaction microscope.

The fundamental process of tunnel ionization in strong laser fields is subject of
investigation in a pump-probe experiment with ultrashort laser pulses. A coherent
superposition of electronic states in singly charged argon ions is created within the
first, and subsequently tunnel-ionized with the second pulse. This gives access to
state-selective information about the tunneling process and allows to test common
models.

Moreover, the ionization of krypton and argon at different wavelengths is studied,
from the multiphoton to the tunneling regime. The population of autoionizing dou-
bly excited states in the laser fields is proven and a possible connection to the well-
known dielectronic recombination processes is discussed. The wavelength-dependent
investigations are furthermore extended to molecular hydrogen. In addition to ion-
ization, this system might undergo different dissociative processes. Channel-selective

electron momentum distributions are presented and compared to each other.

Zusammenfassung In dieser Arbeit wird die Ionisation von Atomen und kleinen
Molekiilen in starken Laserfeldern unter Verwendung eines Reaktionsmikroskops ex-
perimentell untersucht.

Der grundlegende Prozess der Tunnelionisation in starken Laserfeldern ist Gegen-
stand der Untersuchungen in einem Pump-Probe-Experiment mit ultrakurzen Laser-
pulsen. Mit dem ersten Puls wird eine kohérente Uberlagerung von elektronischen
Zustanden in einfach geladenen Argon-lonen erzeugt und spéter mit dem zweiten
Puls tunnelionisiert. Dies erlaubt Zugriff auf zustandsabhangige Informationen iiber
den Tunnelprozess und erlaubt die Uberpriifung verbreiteter Modelle.

Des Weiteren wird die Ionisation von Krypton und Argon bei unterschiedlichen
Wellenldngen untersucht, vom Multiphoton- bis hin zum Tunnelregime. Die Beset-
zung von autoionisierenden, doppelt angeregten Zustéinden in den Laserfeldern wird
nachgewiesen und ein moglicher Zusammenhang zu den weithin bekannten dielek-
tronischen Rekombinationsprozessen diskutiert. Die wellenlangenabhéngigen Unter-
suchungen werden auflerdem auf molekularen Wasserstoff ausgeweitet. Zusatzlich
zur lonisation kann dieses System unterschiedliche dissoziative Prozesse erfahren.
Kanal-selektierte Elektronen-Impulsverteilungen werden prasentiert und miteinan-

der verglichen.
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1. Introduction

The wave-character of light and the particle-character of matter seemed disparate
until the last century, when physics proved the opposite: Light and matter may
likewise be described as particles and waves, a fact commonly known as wave-particle
duality and also valid for larger, massive objects [Nairz et al. 2003]. Despite this
common ground, in everyday life as well as in most experiments, light and matter
act completely different and can be distinguished well by their diverse properties.
This was also emphasized in the 2012 Nobel Prize in Physics press release: “David
Wineland traps electrically charged atoms, or ions, controlling and measuring them
with light, or photons. Serge Haroche takes the opposite approach: he controls
and measures trapped photons, or particles of light, by sending atoms through a
trap. Both Laureates work in the field of quantum optics studying the fundamental
interaction between light and matter, a field which has seen considerable progress
since the mid-1980s.” [RSAS 2012].

Indeed, nowadays, the interaction of light and matter is the subject of investigation
in a large variety of experiments. Decisive for the development of the field was the
invention of the laser® [Maiman 1960]. The unique properties of laser light, for
example its spectral narrowness, are in fact mandatory for many experiments and
exploited in a manifold of different techniques from laser cooling of atoms [Phillips
1998] to high resolution spectroscopy [Parthey et al. 2011].

Despite the scientific potential comprised in the interaction processes, their math-
ematical treatment is—at first glance—fairly simple and often relies on quantum
mechanical perturbation theory. In fact, the interaction of monochromatic light
with an atom is one of the basic examples of such approach in undergraduate text-
books. The approach uses the fact that the electric field associated with the light is

small compared to the electric field that keeps the electrons bound.

(Mlight amplification by stimulated emission of radiation



1. Introduction

In laboratories, this condition is often, but not always fulfilled. Remarkably soon
after the invention of the laser itself, techniques were invented allowing the tempo-
ral confinement of the emitted laser radiation and thus the creation of “giant” light
pulses [McClung et al. 1962]. Additional spatial confinement by focussing these
pulses onto a target soon provided intensities with corresponding electric fields that
were equal to or even exceeded the atomic fields. It is no surprise that a perturba-
tive treatment of the interaction between the laser field and an atom breaks down
in this situation, and the seemingly simple task to describe the problem becomes
tremendously complicated.

Although quantum mechanics provides the appropriate equation to describe the
problem, the time-dependent Schrodinger equation, finding its full numerical solu-
tion is—even with today’s fastest computers—only possible for very specific, fairly
simple problems. In addition, if such a solution is found, the calculation usually only
returns a final result rather than an intuitive picture of the underlying processes.
However, those simple pictures are desirable since they often help to predict and
understand important aspects of the light-matter interactions.

In 1965, Keldysh investigated the ionization process in strong electromagnetic fields
using an alternative approach of treating the laser field classically [Keldysh 1965].
In this work, the area of strong-field physics was divided into two regimes, a sepa-
ration which still persists. One side, commonly known as the multiphoton regime, is
associated with rather low intensities and/or short wavelengths. Here, the binding
energy of the electron is large compared to the ponderomotive energy, the cycle-
averaged kinetic energy of a free electron in the laser field. The opposite is the case
for high intensities and/or long wavelengths in the tunneling regime. As suggested
by the names, the characteristics of the ionization process can be described most
appropriately either by the absorption of several photons or a tunneling process of
the electron, respectively.

Since then, much effort has been spent to refine and extend the classical treatment
of the interaction. In the tunneling regime, the interaction between the laser and the
electron after the tunneling process turned out to be extremely important for un-
derstanding the strongly enhanced rates for double and multiple ionization obtained
in moderately intense laser fields [L’Huillier et al. 1982]. Usually, the full treatment
still involves quantum mechanical tunneling as a first step and a subsequent classical

treatment of the freed electron which resembles a fairly good approximation. Due



to this combination of quantum mechanics and classical physics, the approaches are
commonly referred to as “semi-classical models”. Important milestones are the ADK
theory, e.g. [Nikishov et al. 1966; Perelomov et al. 1966; Ammosov et al. 1986], and
the extension to three steps in the three-step model [Corkum 1993] that also consid-
ers the possible recollision of the electron with its parent ion. It is this recollision
which gives rise to the enhanced rates for double and multiple ionization as well as
to other interesting phenomena, such as the generation of highly energetic radiation
and the formation of extremely short light pulses with durations of down to 100 as(®)
and below [Sansone et al. 2011].

Despite the progress, many questions remain. One of them is related to the region
“in between” the two regimes, in which neither the tunneling nor the multiphoton
picture seems to be valid and where, in fact, most of the experiments are carried
out. When coming from the tunneling regime and approaching shorter wavelengths
and thus faster and faster oscillation of the field, one may ask, up to which point
tunneling can be treated adiabatically, hence neglecting the temporal variation of the
field during the process. This question is still controversially discussed [Boge et al.
2013; Ivanov et al. 2014]. Another question is related to the momentum distribution
of the electrons right after the tunneling process, before being accelerated by the
laser field. Although different models predict certain momentum distributions, their
explicit experimental validation is pending.

However, promising new experimental techniques such as the attoclock technique
[Eckle et al. 2008b], provide an astonishing level of detail on information about the
process of tunnel ionization. For example, few tens of attoseconds were experimen-
tally found as an upper limit for the tunneling time—the time the electron needs
to tunnel out—in helium [Eckle et al. 2008a]. Similar to conventional streaking
techniques, the temporal information is mapped onto spatial coordinates. For each
time of ionization, associated coordinates can be calculated and the experimental
data are interpreted with the reversed relation. These calculations require detailed
knowledge about the initial momenta of the electrons which is—as described above —
currently only available in terms of theoretical predictions from models. One of the

aims of this work is to experimentally test these models.

(2)One attosecond (as) equals 10~ seconds.



1. Introduction

In this thesis, the ionization of atoms and small molecules in strong laser fields is
experimentally investigated by utilization of a highly advanced momentum spec-
trometer: the reaction microscope. Chapter 2 gives a brief overview about the
mathematical description of ultrashort, strong laser pulses and their technical cre-
ation. Furthermore, the specific laser system and the pulse manipulation techniques
utilized throughout this work are described. Following this, chapter 3 focusses on
the interaction of intense laser pulses with matter, in particular on the description
of ionization processes in atoms and molecules. The reaction microscope and its
working principle is treated in chapter 4.

Afterwards, the experimental results are presented, divided into three parts. In the
first, chapter 5, common theoretical models about the electron momentum distribu-
tion directly after the tunneling process are explicitly tested. This is done by using
ultrashort pulses in a pump-probe scheme and a coherent superposition of electronic
states in singly ionized argon as initial state for further tunnel ionization.

The subject of the second experimental part, presented in chapter 6, is the inter-
action of strong laser pulses of different wavelengths with noble gas atoms, namely
krypton and argon. Tuning the wavelength by utilizing an optical parametric am-
plifier and nonlinear crystals for frequency mixing enables the observation of charac-
teristic changes in the electron momentum distributions and the ionization process
while approaching the tunneling regime. Furthermore, the excitation of doubly-
excited states of the atoms is proven and investigated.

In the last part, presented in chapter 7, a similar investigation is performed for
the most simple molecule existing, H,. In addition to pure ionization, this system
features different dissociation channels. The reaction microscope enables their sepa-
ration and thus offers channel-selected electron momentum distributions at different
wavelengths. The results of all experiments presented in this thesis are summarized

in chapter 8, where future perspectives are also discussed.



2. Strong laser fields and ultrashort

laser pulses

The creation of strong laser fields is closely related to the formation of short laser
pulses giving access to very high intensities while keeping the average power of the
laser system on a moderate and thus experimentally feasible level. Usually, in ad-
dition to this strong temporal confinement of the energy, the laser beam is also
focussed spatially. This chapter gives an overview about ultrashort laser pulses
and the strong fields they are associated with. It is organized as follows: First, in
section 2.1 the mathematical framework as commonly used for the description of
short laser pulses is summarized. It also covers the properties and the description
of electromagnetic fields in laser resonators and in particular the concepts underly-
ing mode-locking as a key technique in modern ultrashort pulse generation. Here,
the focus lies on Kerr-lens mode-locked Ti:sapphire™™) laser systems since these rep-
resent the standard table-top system used in many laboratories as well as in the
experimental setup used in this work. Then, in section 2.2, the specific laser system
and subsequent pulse manipulation techniques as used in this work are discussed

involving also the treatment of important nonlinear effects in matter.

2.1. Mathematical description of laser pulses

This section gives a short summary about the mathematical description of short
laser pulses. It follows the descriptions which can be found in standard laser physics
textbooks, e.g. [Boyd 2003; Demtroder 2003; Eichler et al. 2010; Kneubiihl et al.

2008; Svelto 1998]. Particular information about ultrashort laser pulses and the

(Wtitanium-ion doped sapphire (Ti:Al,O3)
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associated phenomena are reviewed e.g. in [Brabec et al. 2000; Diels et al. 2006;
Keller 2010; Krausz et al. 2004].

If the polarization and transverse properties of a laser beam are neglected, monochro-
matic light emitted from a laser system can be characterized at any (fixed) point
in space by its oscillating electric field E(t) = Re{F expliwt]} [Demtroder 2004,
section 7.3] where F is the field amplitude and wy, the angular laser frequency. The
continuous wave oscillates with constant amplitude and the laser thus represents the
extreme antonym of a suitable system for the generation of ultrashort pulses. In
fact, lasers with an emission characteristic close to this hypothetical system, as e.g.
the Helium-neon laser (HeNe laser) are commonly referred to as continuous-wave
(cw) laser systems.

To extend the description to non-monochromatic laser sources, an arbitrary spectral
amplitude F(w) of finite width is introduced and the resulting field may be described
as, see e.g. [Svelto 1998, appendix G,

E(t) = Re{ \/12_7r /_O:O dwE(w) exp[iwt]} (2.1)

= Re{ \/12_7r /O:O dwA(w) expli(wt + gp(w))]}, (2.2)

where the factor 1/v2x preceding the integral is arbitrarily chosen. The complex field
amplitude F(w) = A(w) explig(w)] is not accessible in the experiment, however, the
spectral intensity /(w) = E*(w)E(w) may be measured with a spectrometer. In
contrast, fl(w) is real, representing the modulus of a complex number. In partic-
ular eq. (2.2) allows a fairly intuitive interpretation: The total electric field E(t)
is formed by a continuous superposition of harmonically oscillating fields with in-
dividual contributions to the total field characterized by an amplitude A(w). In
addition, each of the contributing fields may have an individual phase shift ¢(w).
Equation (2.1) can be directly identified with the Fourier transform [Bronstein et al.
2005, section 15.3.1.2], relating E(t) in the time domain with E(w) in the frequency

domain:

E(t) = F{E(w)}. (2.3)
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The inverse transformation is then given by
~ 1 00
_ -1 _ _;
B(w) = F B} = T /_  dtE(t) expl—iwt]. (2.4)

The special case of monochromatic radiation can easily be obtained from eq. (2.4)
with F(w) = 8w -~ wr) /\/2x. Further details about the mathematical treatment can be
found in literature, e.g. in [Diels et al. 2006; Svelto 1998], and will not be discussed
here in detail.

The Fourier transform, connecting the spectral and the temporal representation of
the laser field, causes an intrinsic and fundamental connection between the spectral
width® Aw and the minimum pulse duration Arp achievable. If Gaussian profiles
are presumed, E(t) o exp[— 42 /ar2] and E(w) o exp[—4mn@)w?/aw2], eq. (2.1)

yields
81n(2)
Aw'

However, due to the important role of the intensity / = E? in the interaction with

[
Aty =

(2.5)

atoms and molecules, see section 3.1, often the temporal and spectral distributions

I(t) and I(w) are of more interest than the electric fields. If the width of these

distributions is denoted with A7y and Aw, respectively, it follows directly from the

properties of the Gaussian distribution Ar, = V2A1 and Aw’ = v2Aw and thus

with eq. (2.5):

41n(2)
Aw

Although discussed here for the special case of Gaussian profiles, similar relations

ATF =

(2.6)

of the form A7y = const /Ay can be established for other distributions, see e.g. [Svelto
1998, section 8.6.1]. It can be concluded that the duration of the pulses is generally
limited by the spectral width of the laser system. It should be noted that E (w) was
chosen as a real value, thus ¢(w) = 0. As will be shown in the following section, any
other choice of the phase will either not influence or lengthen the pulse duration. In
the example above, however, the pulse duration is limited only by the bandwidth
of the laser and the mathematical property of the Fourier transform, therefore such

ideal laser pulses are commonly called Fourier-limited pulses. The discussion of

(2)The term “width” is used here and in the following as a synonym for “full width at half maximum”
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the monochromatic laser at the beginning of this section can now be put in simple

equations: From Aw = 0 follows with eq. (2.6) Amp = 0.

2.1.1. Laser pulses as superpositions of resonator modes

For the generation of short laser pulses, the additional constraints arise due to the
resonator introducing boundary conditions for the electric field. In a resonator of
optical length d with infinitely large planar end-mirrors the condition is simply
given by @/2r = 4¢/2d where ¢ > 0 is an integer number and ¢ the speed of light in
vacuum [Demtroder 2003, section 2.1]. The stationary field configurations in the
resonator, commonly known as resonator eigenmodes or simply resonator modes,
are given by standing plane waves fulfilling the condition for an arbitrary choice
of ¢. In addition, the resonator modes are fully characterized by this number.
However, for resonators with finite mirror diameters, the situation is substantially
different. Caused by continuous diffraction losses which depend on the distance to
the resonator axis, planar waves are no longer eigenmodes, see e.g. [Demtroder 2003,
section 5.2.2].

For symmetric confocal resonators with spherical mirrors, where d is twice the focal
length of the mirrors, new solutions have been found analytically, first for the a
special case of identical square resonator mirrors [Boyd et al. 1961], later for more
general configurations including circular shaped mirrors [Boyd et al. 1962]. These so-
lutions are commonly referred to as transverse electromagnetic modes (TEM modes),
characterized by three integer numbers ¢,m,n > 0 and denoted as TEM,, ,, 4, see
e.g. [Demtroder 2003, section 5.2.3]. The transverse field amplitude in the modes is
characterized by m and n and is of Gaussian shape for all TEMy, modes which
are usually called fundamental modes. The frequency depends on all three numbers
and is, in the case of identical circular resonator mirrors in confocal configuration,
given by [Boyd et al. 1961; Boyd et al. 1962]

w ¢ |a+3@m+n+1) circular mirrors 2.7)
2w 2d q+ %(m +mn+1) square mirrors. '

Obviously, in both cases, different TEM,,, ,, , modes comprise the same frequency and

thus are energetically degenerated. Compared to the hypothetical case of infinitely
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large mirrors mentioned before, new frequencies are accessible for appropriate com-
binations of m and n with 2m+n-+1 and m+n+ 1 being odd for circular and square
mirrors, respectively. These frequencies are centered right in the middle between
those of the fundamental modes. Thus, the frequency difference between two adja-
cent modes of the resonator, the free spectral range (FSR) is given by [Demtroder

2003, section 5.2.8]
dwrsr ¢

or  4d

Since non-fundamental modes exhibit intensity profiles less confined on the resonator

(2.8)

axis, an appropriate aperture or choice of the ratio between the mirror diameters
and d can be used to increase their relative diffraction losses and thus to force the
laser into the fundamental modes, see e.g. [Kneubiihl et al. 2008, section 8.1.]. For
convenience, the absence of non-fundamental modes is assumed in the following,
m = n = 0. The frequency difference between two adjacent fundamental modes
oscillating in the resonator is given by [Demtroder 2003, section 5.2.8]

dw  _OWrsR _ C

o or o (29)

Provided, the amplification by the active laser medium is sufficiently high, all res-
onator modes in a certain spectral range may contribute to the formation of the
overall electric field emitted by the system. If the emission spectrum of the active
medium is assumed to be of Gaussian shape centered around wy with a width Aw
fulfilling dw < Aw < wy and the phase relation between adjacent modes is further
assumed to be constant, d¢ = const, the total field eq. (2.2) can be written as [Svelto
1998, section 8.6.1.]

E(t) = { i A(wp + low) expli((wo + low)t + 16@)]}

= { ( i A(wg + ldw) explildy] exp[zl&ut]) exp[iwot]}

_ Re{ \/12_%14@) exp[iwot]}. (2.10)

In the last step, the expression in brackets was identified as a discrete version of the

Fourier transform and the existence of an appropriate function A(t) was deduced.
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As derived e.g. in [Svelto 1998, section 8.6.1.], the electric field is oscillating with a
carrier frequency wy and is modulated in amplitude by a time-dependent function
A(t) commonly referred to as pulse envelope. Further, for the separation of the

pulses in time 7 and their duration A7 it can be derived [Svelto 1998, section 8.6.1.]

T = 27, (2.11)
At = 41n(2) /. (2.12)

From eq. (2.11) and eq. (2.9) follows 7 = 2d/c meaning that the repetition rate of
the laser system is simply determined by the round-trip time of the laser pulses
in the resonator [Svelto 1998, section 8.6.2]. Equation (2.12) is identical to the
previously found general expression, eq. (2.6). From this it can be concluded that the
superposition of resonator modes with constant phase differences of adjacent modes
produces Fourier limited pulses. This situation is commonly referred to as mode-
locked operation of the laser. In suitable materials, as e.g. Ti:sapphire crystals, Aw
can be large enough to cause simultaneously significant amplification for a certain
wavelength A\; and even its second harmonic Ay = 2A; [Ell et al. 2001] which is
commonly called an octave-spanning spectrum. In this situation, A7+ can become
very short, even of the same order of the oscillation period of the electromagnetic
wave itself. Such pulses are commonly referred to as few-cycle pulses [Brabec et al.
2000]. It is noteworthy that the peak intensity in such laser pulses is proportional to
the square of the number of modes contributing, see e.g. [Svelto 1998, section 8.6.1.].
The most general form for the phase ¢(w) guaranteeing the generation of Fourier

limited pulses is given by

p(w) = p(wo) +a- (w— wo), (2.13)

where a is a constant and the function ¢(w) is only evaluated for the discrete res-
onator frequencies. This equation may be interpreted as a Taylor series [Bronstein
et al. 2005, section 6.1.4.5] of an arbitrary function ¢(w) around wy up to the first

order. It is self-evident and often also convenient to extend this to

Ip(w)
Oow

(w—u)o)—i‘*

w=wp

(w — wo)” + O(w3>, (2.14)

w=wo

p(w) = p(wo) +
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2.1. Mathematical description of laser pulses
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Figure 2.1.: Examples for electric fields created by superpositions of resonator
modes. Each figure contains of two plots: In the left, the spectral am-
plitude A(w) and the spectral phase ¢(w) are shown in blue and green,
respectively. The functions are evaluated at the discrete frequencies of
the resonator modes. In the right picture, the resulting electric field is
shown in blue, the envelope function in red, see text for details.

see e.g. [Siegmann 1986, section 9.1]. The influence of the different terms on the
shape of the generated pulses are displayed in fig. 2.1 calculated for a model resonator
and active medium. Although the number of modes contributing is much less than
in a typical laser setup for ultrashort laser pulses, general qualitative features can
be studied. The figure depicts eight spectral field distributions A(w) of Gaussian
shape evaluated at the positions of the resonator modes (blue line and dots in left
pictures). The spectral phase ¢(w) is shown in green. FE(t) is then calculated with
eq. (2.10), where the summation can be restricted to a finite number of modes with
significant amplitudes without noticeable change of the result. E(t) is shown on the

right as a blue line, while the red line shows the envelope function calculated by

replacing Re{} by Abs{} in eq. (2.10).
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2. Strong laser fields and ultrashort laser pulses

In fig. 2.1 (a), the width of the emission spectrum is fairly narrow such that only
three modes significantly contribute to the total electric field, resulting in a beat
frequency. The phase in this example is globally set to zero, ¢(w) = 0. If the
spectrum is chosen broader and broader along (b) and (c), well separated pulses
arise which become shorter and shorter. The electric field shown in (c) represents
a few-cycle Fourier limited pulse. If a constant global phase is added as done in
(d), where p(w) = —m, the envelope and thus the pulse duration is not affected.
However, the phase offset between the carrier wave and the envelope, commonly
referred to as carrier-envelope phase (CEP), see e.g. [Brabec et al. 2000; Paulus et
al. 2001; Rathje et al. 2012], is altered. Since CEP effects are not explicitly studied
in this work and their presence only used as an indicator for the pulse duration, see
section 2.2.2, the influence of the constant phase on the electric field is ignored in
the following.

As discussed earlier, even a linear trend in p(w) guarantees the generation of Fourier
limited pulses, see eq. (2.13). This situation is depicted in fig. 2.1 (e), where
the pulses from (c) are exactly reproduced despite being shifted on the absolute
timescale. Apart from this, the spacing between the modes was decreased, modeling
a lengthening of the resonator, see eq. (2.9). Consequently the round-trip time in-
creases such that the preceding and the following pulses are not visible in the picture
any further. For a quadratic trend in p(w), however, the situation changes substan-
tially. Even though the spectral amplitudes are identical to the previous case, this
phase relation leads to much longer pulses as depicted in fig. 2.1 (f) and (g). In
addition, the frequency of the carrier wave changes along the pulse which is com-
monly known as chirp, see e.g. [Siegmann 1986, section 9.1]. Finally the case of
a random phase relation is shown in (h). The electric field produced seems to be
chaotic, nevertheless it is still periodic and each of the occurring peak-like struc-
tures has a duration comparable to the well separated, Fourier limited pulses in (c),
see e.g. [Svelto 1998, section 8.6]. In order to make the effects more visible, the
frequency spacing of the modes is chosen larger again, as in (a)-(d) .

In conclusion, the generation of ultrashort laser pulses requires not only the con-
tribution of many modes with different frequencies but also a fixed phase relation
between the different modes as close as possible to eq. (2.13), the ideal mode-locking

condition. In reality, the situation becomes more difficult since optical elements in
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2.1. Mathematical description of laser pulses

the beam path and even the air traversed on the way to the actual experiment will

certainly change the phase relations due to dispersion, see section 2.1.2.

Kerr lens mode-locking

Different techniques have been developed to obtain mode-locked laser operation for
the generation of ultrashort pulses. For an historical review see e.g. [Keller 2010].
One example mentioned there is the Kerr lens mode-locking (KLM), an approach
based on the nonlinear optical Kerr-effect in suitable transparent materials. It is
widely exploited in Ti:sapphire laser systems and will be discussed in the following.
Although mode-locking is defined and described in the frequency domain, namely
with the condition from eq. (2.13) for adjacent resonator modes, it is feasible and
convenient to switch to the time-domain picture: As shown in the previous section,
perfect mode-locking occurs if, and only if, the associated laser pulses are Fourier
limited. Therefore, if a process inside the resonator is capable of shortening the
pulses such that their duration approaches the Fourier limit, the phase relation
between the modes will adapt and converge to the associated phase relation.

The basic idea for efficient mode-locking is therefore to artificially lower the qual-
ity of the resonator and thus increase the losses for any continuous components
of the wave, currently present in the resonator [Svelto 1998, section 8.6.3.2 & ap-
pendix F.2]. Any spiked structure generated in the initially random spontaneous
emission of the active medium will gain energy quickly and —after some round-trips
in the resonator —may form a short stable pulse. The largely differing peak intensity
in the pulsed field configuration can be utilized in this respect in different passive
mode-locking techniques. For example, a suitable absorbing material, a fast saturable
absorber, may be inserted into the resonator, absorbing the laser radiation but be-
ing saturated and thus transparent for high intensities [Svelto 1998, section 8.6.3.2
& appendix F.2]. The saturable absorbance may also be included in the resonator
end-mirrors using semiconductor saturable absorber mirrors (SESAM) [Keller et al.
1996].

KLM is likewise a passive mode-locking technique but relies on the non-linear optical
Kerr-effect, see e.g. [Svelto 1998, section 8.6.3.2] and thus on refraction rather than
absorption. For low field intensities the definition of the refractive index ng = </v,u(A)

as a function of the phase velocity of the light vp,(A) and therefore the wavelength A
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2. Strong laser fields and ultrashort laser pulses

is a very good approximation. In contrast, in very strong fields, the refractive index
shows an additional dependence on the laser intensity /(¢) and is given by [Svelto
1998, section 8.6.3.2]

n(t) = ng + noI(t). (2.15)

The second order indez of refraction nsy in this expression is a (very small) positive
constant. Typical values are around 107 cm?/W to 10717 cm? /W, see e.g. [Boyd
2003, table 4.1.2], such that the second order term is negligible for low intensities.
With increasing intensity, however, the influence of the second terms grows and for
ultrashort strong field can become significant. If a TEMg, pulse with a Gaus-
sian transverse intensity distribution travels through a non-linear medium inside
the resonator, eq. (2.15) causes a refractive index that changes over the transverse
coordinate. Effectively, for ny > 0 a spherical lens is formed, focusing the beam
towards the resonator axis [Svelto 1998, section 8.6.3.2]. This is commonly referred
to as self-focusing. An aperture or an appropriate geometry of the resonator itself
can be used in order to suppress any continuous field components.

If an aperture is present or the geometry of the resonator itself is appropriately
chosen, the focusing is required for a sufficient reduction of losses and therefore
pulsed field components are favored in the resonator. In each round trip of the pulse,
the leading and trailing edge are suppressed due to their lower intensity and the
pulse gets shortened [Kneubiihl et al. 2008, section 10.2.2]. One advantage of KLM
is the almost instantaneous response of the medium [Svelto 1998, section 8.6.3.2].
Moreover, in particular for Ti:sapphire laser systems, it is beneficial that the laser
crystal itself may serve as a non-linear medium for the optical Kerr-effect [Keller
et al. 1991].

2.1.2. Dispersion in matter

In particular for short laser pulses, dispersion in matter is an important issue due
to their large bandwidth according to eq. (2.12). While traveling along é, through a
transparent material, a short laser pulse accumulates a spectral phase of [Siegmann

1986, section 7.2]
O(w) = 2, (2.16)
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2.1. Mathematical description of laser pulses

quantity relation
phase velocity Uph wo /A
group velocity Ug /B

group velocity dispersion  GVD C

Table 2.1.: Definition of phase velocity, group velocity and group velocity dispersion
and the relation of this values to eq. (2.17) as found e.g. in [Siegmann
1986, section 9.1].

where n(w) is the refractive index of the material and ¢ the speed of light in vacuum.
Since the carrier frequency wy even of few-cycle pulses is large compared to their
spectral width dw and the refractive index usually sufficiently smooth, this expression

can be approximated by a Taylor expansion, cf. [Siegmann 1986, section 9.1]

P(w) = (wo) + 83{)&}) _(w —wp) + ; 88(1;(;0) _(w —wp)® + O<w3). (2.17)
A B — )8 —

The three factors A, B and C' depend on the characteristics of n(w) and are—for
fixed wy—material constants. Usually, the related quantities listed in table 2.1 are
used for characterization.

The influence of such phase functions on the pulses and their duration was already
depicted in section 2.1.1. In particular in the design of femtosecond laser systems
also higher orders as the third order dispersion (TOD) have to be considered and
compensated as accurately as possible, see e.g. [Brabec et al. 2000]. Furthermore, if
the phase function is not sufficiently smooth on the scale given by Aw, a (low-order)
Taylor expansion might be a less good approximation. Instead, ®(w) can be derived
from n(w) which is often well characterized. The pulse shape and duration can then
numerically be calculated according to eq. (2.2). After all, dispersion in media may
lead to temporal broadening of short pulses and therefore has to be compensated

(or precompensated) in order to obtain short pulses in the experiment.
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2. Strong laser fields and ultrashort laser pulses

2.1.3. General properties of focussed laser beams

Laser beams can be focussed onto a well defined spot using lenses or curved mirrors.
Not only the maximum intensity achievable but also a detailed knowledge about the
intensity distribution near the focus, the “shape” of the focal volume, is desirable
for two reasons: First, the interaction processes between light and matter strongly
depends on the intensity, see e.g. section 3.1. Thus, in the case of a gas jet of
finite diameter where the laser is focussed on (see chapter 4), not all atoms will
experience the same laser intensity. In fact, an intrinsic averaging over different
intensities is present which has to be considered in the interpretation of the data,
see e.g. [Posthumus 2004]. Second, the geometry of the laser focus is important for
the experiment since it defines the interaction region as the spatial overlap with the
usually much more extended gas jet, see section 4.1.2 and section 4.3.

The intensity of a laser beam can, if exclusively fundamental modes are considered,
be described by a Gaussian transverse profile as seen in section 2.1.1. In case of a
focussed beam this still holds at any position 2, along the laser propagation direction
é.. However the beam diameter then depends on z;. A focussed beam can therefore
be described with [Eichler et al. 2010, section 12.2 & 12.3]

Ly(r) = " - exp l_uﬁz’;)l (2.18)

with

w(z) = woy/1 + 2°/23, (2.19)

Wy = >‘f/7rRL, (220)
2p = win/x. (2.21)

Here, r is the transverse spatial coordinate perpendicular to é,, A the wavelength
in the beam, f the focal length of the lens or mirror, R, the radius of the laser
before focusing and zp the Rayleigh length, the distance along é, between the waist
of the focus and the point, where its diameter has increased by a factor of v/2. At
this position the intensity has decreased to 1/2 of the peak intensity as present in
the center of the focus. In contrast to this, wy = w(z = 0) describes the transverse

distance from the center of the focus to the radius, where the intensity has decreased
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Figure 2.2.: Intensity distribution in a Gaussian laser focus according to eq. (2.22)
with lines of equal intensity (black solid lines) calculated with eq. (2.23)
for (from origin) o = 0.8, 0.6, 0.4 and 0.2, respectively. The positions
where the intensity has dropped to 1/e? is shown as red dashed line.
The parameters used in the calculations are A = 790nm, f = 7cm,
Rp, = 0.5cm. The red solid lines denote w(z) calculated with eq. (2.19).
A similar calculation and illustration of the contour lines can be found
in [Posthumus et al. 2001, section 2.2]

to 1/e? &~ 1/7.4. Although both parameters describe the dimensions of the laser focus
it is important to keep in mind that they can not simply be related to each other.

I7* denotes the intensity on the beam axis in the plane defined by z = 25. An
integration of eq. (2.18) over ¢ and r in each of this planes has to yield the same
value since the total power of the radiation is preserved. Therefore it is I5** =
(w0 fu(z0))*I™ where [™ = ] max) is the global maximum of the laser intensity. The

intensity distribution in the laser focus is thus given by [Posthumus et al. 2001,

I(z,r) = ]max< ‘o )2 exp [—272] (2.22)

w(z) w?(2)

This expression is plotted in fig. 2.2 for typical parameters of the experiment,

section 2.2]

namely A = 790nm, f = 7em, Ry, = 0.5cm. Solid red lines represent w(z). The
intensity distribution is much more elongated in the propagation direction of the
laser than perpendicular to it. Note that the distance shown along z in fig. 2.2 is 20
times larger than the one shown along r. To emphasize this characteristic feature of

laser foci, curves of equal intensity can be calculated. Demanding I(z,7) = o™
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2. Strong laser fields and ultrashort laser pulses

with o € [0, 1] in eq. (2.22) yields [Posthumus et al. 2001, section 2.2]®)

r*(z) = £ Re ;wQ(z) In [1< o )2] . (2.23)

a\w(z)

The contour lines defined by this relation are shown in fig. 2.2 —starting from the
origin outwards—for a = 0.8, 0.6, 0.4 and 0.2, respectively. The typical extent of
the focus with respect to z and r can be calculated with ay = 1/e2, shown as dashed

red line. The condition r*°(z) = 0 and the calculation of 7*°(0) thus yields

Ar = 2wy ~ 7.0 pm,
Az = 2zpy/(e2 — 1) = 250 pm. (2.24)

Note that Ar also denotes the diameter of the laser focus in radial direction rather
than the radius. After all, the circumference of the focus along the direction of prop-
agation is much larger than its transverse diameter. As can be seen from eq. (2.20)
and eq. (2.21), both quantities are proportional to A. Therefore, light with shorter
wavelengths can be focussed “harder”, in the case of A = 395 nm for example, onto
a spot of half the extension in each direction. The relations in this section are only
valid for laser beams with perfect Gaussian beam profile. However, real laser beams
often show deviations from this ideal situation which is usually described by a value
M? > 1 (=1 for a Gaussian profile), see e.g. [Eichler et al. 2010, section 12.5]. As
a consequence, the focus dimensions are usually larger than described by eq. (2.24).
Since the aim of this section is more the qualitative description than the derivation

of exact numbers, this more complex situation is not treated here.

2.2. Laser pulse generation and manipulation

For the different experiments presented in this thesis, laser pulses of different dura-
tion and central wavelength are required. However, in each case, the first step is the

generation of strong ultrashort pulses with a commercial femtosecond laser system.

(3)The original equation contains a typing error which is corrected here.
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2.2. Laser pulse generation and manipulation

These pulses are then modified in different subsequent processes in order to achieve

e.g. shorter pulse durations or a different central wavelength.

2.2.1. The femtosecond laser system

In all experiments presented in this thesis a commercial FEMTOLASERS “FEM-
TOPOWER compact PRO HP/HR” Ti:sapphire® laser system is used as a source
for strong and ultrashort laser pulses. General information about Ti:sapphire laser
systems can be found e.g. in [Diels et al. 2006, section 6.7.2] and [Svelto 1998,
section 9.2.8]. The specific information about the system used in the experiments
are compiled from [FemtolasersCP; Femtolasers 2006]. The system consists of a
mirror-dispersion controlled Ti:sapphire oscillator [Stingl et al. 1995] producing ul-
trashort (< 10fs), close to Fourier limited, but weak pulses at a high repetition
rate. These pulses are stretched in time and subsequently amplified in a second
Ti:sapphire crystal in a chirped pulse amplification (CPA) scheme [Strickland et al.
1985]. With this technique, damage of the Ti:sapphire crystal in the amplification
stage is prevented as it would occur otherwise due to the extreme intensities and
thereby caused non-linear effects.

In a multi-pass setup, the laser beam is guided through the amplifier crystal. After
the fourth pass, the repetition rate is reduced to around 3kHz by a Pockels cell.
Thus, most of the pulses are suppressed and only one pulse is further amplified in
every shot of the pump laser. A description of a very similar amplifier system can
be found in [Lenzner et al. 1995]. The strong but temporally stretched pulses are
compressed in a subsequent prism compressor where a complex interplay of optical
prisms and chirped mirrors provide a negative refraction index and at the same time
correct for higher order dispersion [Spielmann et al. 1995]. The pulse duration is
specified to less than 30 fs, the pulse energy to larger than 800 mJ. Gain narrowing,
the reduction of the spectral width in the amplification process, see e.g. [Diels et
al. 2006, section 7.2.2], mainly causes the increase of the pulse duration compared
with the output of the oscillator. In fig. 2.4 (a) and (b), the two spectra can be
compared. The overall dispersion of the laser pulses is controlled by third-order

dispersion (TOD) precompensation after the oscillator and careful adjustment of

(Dtitanium-doped sapphire (Ti:Al,O3)
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2. Strong laser fields and ultrashort laser pulses

the compressor stage. Thus, close to Fourier limited pulses are emitted by the laser

system.

2.2.2. Generation of few-cycle pulses

In the pulses emitted by the laser system, the electric field fulfills more than ten os-
cillations with a periodicity of approximately 2.6 fs. Even shorter, few-cycle pulses,
where the pulse duration is in the same order of the field periodicity, see e.g. [Brabec
et al. 2000], can be generated in a subsequent process [Sartania et al. 1997]: Since
the minimum pulse duration of the pulses delivered by the laser system is limited
mainly by the width of the spectral profile, the first step towards shorter pulses
is the generation of additional wavelength components. For this, a nonlinear op-
tical effect namely self-phase modulation (SPM), see e.g. [Boyd 2003, section 7.5],
in a gaseous medium is utilized. Afterwards the pulses can be compressed with

specifically designed chirped mirrors.

Spectral broadening by self-phase modulation

In section 2.1, the optical Kerr effect was discussed causing an intensity-dependent
refractive index, eq. (2.15):
n(t) = ng + nol(t).

If the dispersion experienced by an initially Fourier limited TEMg, pulse, while
traveling through a medium of length L with ny, > 0 € R, is neglected, the accumu-
lation of a phase is the only remaining effect [Boyd 2003, section 7.5]:
L
B(t) = —no 27 (1) (2.25)
Co

This time-dependent phase shifts the frequencies in the pulse resulting in [Boyd
2003, section 7.5]

w(t) = wo d((};l(f)
_ wo(l _ mi‘?), (2.26)
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Figure 2.3.: Schematic overview about the setup used for the generation of few-cycle
laser pulses. The pulses delivered by the femtosecond laser system are
focussed onto a neon-filled hollow-core fiber filled with neon. The beam
is spatially stabilized using two controlled mirrors and two segmented
photodiodes, see text for details. After spectral broadening by SPM in
the neon gas, the laser pulses pass a A/s-plate ensuring linear polariza-
tion. Chirped mirrors temporally compress the pulses and also precom-
pensate for the dispersion on the path to the REMI. Fine-adjustment
of the overall dispersion and pulse-duration is performed by movable
glass-wedges.

where w(t) is referred to as the instantaneous frequency in the pulse. In the leading
edge of the pulse, where d/(t)/ar > 0, the frequency is shifted towards lower values
while higher frequencies are generated in the trailing edge. Thus, the spectrum of the
pulse is broadened and the pulse itself is positively chirped although the temporal
pulse shape is not changed in the first instance [Diels et al. 2006, section 8.1.1].
However, it is of course affected by the usual dispersion in the material. In reality,
the situation is much more complex due to effects as self-steepening [Boyd 2003,
section 13.3] or finite nonlinear response times [Boyd 2003, table 4.1.1] neglected
here. A consequence is e.g. the non-symmetric broadening of the spectrum visible in
fig. 2.4 not covered by eq. (2.26) for Fourier limited pulses with symmetric envelope.
The enhanced spectral width of the laser light forms the basis of the generation of
even shorter pulses.

In the experimental setup schematically shown in fig. 2.3, the pulses delivered by
the laser system are focussed onto a hollow-core glass fiber with an inner diameter
of 250 pm. By using a lens with a large focal length of about 1.5m, the laser

focus created is very elongated (see section 2.1.3) and —since additionally confined
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in the hollow center of the fiber —extends to the full fiber length of about 1 m. Over
this distance, the light can interact with neon atoms inside the hollow core, which
represent the nonlinear medium for the SPM process. Since the optimal and stable
incoupling into the fiber is crucial, small spatial drifts of the laser beam over time
have to be efficiently compensated. For this purpose, a focus stabilization system
was built [Krupp 2011]. It contains two four-fold segmented photodiodes where
small parts of the beam are focussed on and thus small drifts can be detected. A
computer can react by small adjustments with two motorized mirrors. A */s-plate

after the fiber is used to ensure linear polarization of the light.

Chirped mirror compression

Due to the extremely broad spectrum, the laser pulses are very sensitive to dis-
persion. While traveling through optical elements and the air on the way to the
spectrometer, see chapter 4, the different frequencies in the pulses gather an indi-
vidual phase, see section 2.1.2. In order to compensate for this, chirped mirrors
with an effective negative dispersion are used [Szipocs et al. 1994]. These mirrors
are specially designed and coated such that the red components of the beam can
penetrate deeper into the material and thus travel a longer distance compared to
the blue. Three matched pairs of chirped mirrors are used in the experiment while
each mirror is hit twice by the laser beam resulting in twelve reflexions in total.
Fine tuning of the overall dispersion is performed with an additional small amount
of glass, a pair of movable wedges.

Figure 2.4 (b) and (c!=V#1) show spectra obtained after the chirped mirrors for
different pressures of neon in the fiber. Apart from (small) losses on the optical
elements, (b) resembles the output spectrum of the femtosecond laser system de-
scribed in section 2.2.1. However, short wavelengths around 500 nm and below are
suppressed due to insufficient reflectivity of the chirped mirrors in this range. An
approximation for the Fourier limit of the pulses is given for each of the spectra in
fig. 2.4, as it can be obtained by a calculation of the temporal shape of the electric
field according to eq. (2.4)® and a subsequent Gaussian fit to the temporal intensity

distribution associated.

(5)The integral in the expression is replaced by a sum over the binned spectrum.
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Figure 2.4.: Typical laser spectra obtained at different steps of the ultrashort pulse

generation a

nd their Fourier limits. (a) In the oscillator. (b) After the

chirped mirrors and the Mach-Zehnder interferometer with an empty

fiber. Apart
resembles th

from (small) losses on the optical elements this spectrum
e output spectrum of the femtosecond laser system. (c!) to

(V1) Same as (b) but with nonzero, different absolute neon pressures
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limit of the

SPM broadens the spectrum and thus reduces the Fourier
pulses. In the region of short wavelengths the spectrum is

suppressed by the low reflectivity of the chirped mirrors used.
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Figure 2.5.: Schematic picture of the Mach-Zehnder interferometer. The incoming
pulses are split into two identical copies. The time delay of one pulse
with respect to the other can be controlled by adjusting the length of
one arm of the spectrometer.

The duration of the pulses delivered by the system was measured to be around 6 fs
before, see [Kremer 2009; Fischer 2010], using autocorrelation and ZAP-SPIDER(®)
techniques [Baum et al. 2004]. However, in order to obtain information about the
pulse duration during the alignment of the setup for few-cycle pulses, in this work
a single-shot Stereo-ATI) phasemeter [Wittmann et al. 2009] was utilized. De-
tailed information about the setup can be found in [Hofrichter 2009]. Since the
quality of the CEP-signal delivered by this device depends crucially on the pulse
duration [Sayler et al. 2011], it can be used as a qualitative indicator for the pulse
duration at least for alignment purposes, where no accurate value has to be ex-
tracted.

2.2.3. Setup for pump-probe measurements

For the time-resolved pump-probe measurements presented in chapter 5, two pulses
are required with an adjustable time delay with respect to each other. In such

experiments, the first “pump” pulse is used to start dynamics in the target system

(6)zero-additional-phase spectral phase interferometry for direct electric field reconstruction
(Mabove-threshold ionization
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