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Abstract

We consider bipartite systems as versatile probes for the estimation of transformations acting locally
on one of the subsystems. We investigate what resources are required for the probes to offer a
guaranteed level of metrological performance, when the latter is averaged over specific sets of local
transformations. We quantify such a performance via the average skew information (AvSk), a convex
quantity which we compute in closed form for bipartite states of arbitrary dimensions, and which is
shown to be strongly dependent on the degree of local purity of the probes. Our analysis contrasts and
complements the recent series of studies focused on the minimum, rather than the average,
performance of bipartite probes in local estimation tasks, which was instead determined by quantum
correlations other than entanglement. We provide explicit prescriptions to characterize the most
reliable states maximizing the AvSk, and elucidate the role of state purity, separability and correlations
in the classification of optimal probes. Our results can help in the identification of useful resources for
sensing, estimation and discrimination applications when complete knowledge of the interaction
mechanism realizing the local transformation is unavailable, and access to pure entangled probes is
technologically limited.

1. Introduction

Quantum metrology is one of the most promising branches of quantum technology and studies how to exploit
the laws of quantum mechanics to improve the precision in the estimation or identification of some target
parameter characterizing a quantum system of interest [ 1-5]. A typical estimation scenario involves three
distinct phases [3]: (i) a probe system is initialized in an input state; (ii) the probe interacts with the system that
encodes the parameter to be estimated; (iii) the output state of the probe is measured and compared with the
input state. From the comparison, if we know the physical mechanism that governs the combined probe—target
dynamics (e.g. the interaction Hamiltonian), we can deduce the value of the parameter. In general, the
measurement process is affected by statistical errors, whose origin can be extrinsic (e.g. environmental noise) or
intrinsic (e.g. Heisenberg uncertainty relations, input and output states being in general non-orthogonal and
hence not distinguishable with certainty).

To improve the precision of the estimation, several strategies can be adopted. First, we can optimize the
input state of the probe so that the probe—target interaction is able to imprint the highest possible amount of
information about the target parameter into the probe, i.e. the input and output states become most
distinguishable. In particular, there might be states of the probe that are left unchanged by the interaction with
the measured system and are useless in this sense, so we usually want to avoid them. Second, we can repeat the
measurement several times to enlarge our statistical ensemble of data and extract a sharper expectation value.
This can be realized by preparing many copies of the probe and making them interact independently with the
system (parallel scheme), or by making the same probe interact repeatedly with the system before extracting the
information (sequential scheme). Third, we can exploit the presence of genuine quantum resources, such as
quantum coherence, or quantum correlations either between the many copies of the probe or between the probe

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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and some ancillary system that is kept as a reference, to gain advantage over purely classical strategies. In
particular, it is well known that the presence of entanglement allows one to estimate a parameter encoded in a
unitary dynamics (e.g. a phase shift) with an error that scales as 1 /N with respect to the number N of collected
measurements, while classical strategies can at most achieve a scaling of 1/ JN [3,5].

In some specific cases of practical relevance, we may not have a complete trusted knowledge of the probe—
target interaction mechanism and therefore we may find it harder to optimize the input state of the probe in
order to maximize the efficiency of the estimation. For example, we could imagine a situation in which we
become aware of unwanted noise sources just before we retrieve the output state, meaning that the actual
transformation is different from what we expected when we prepared the probe, which is then likely to be sub-
optimized. As another example, we could be asked to prepare a passe-partout probe state that must be good
whenever the interaction with the measured system is described by a Hamiltonian picked at random from a
given ensemble, so that we have no interest in optimizing the probe for a particular element of the ensemble. It
turns out that in such and similar situations, that we may describe as instances of ‘black-box’ quantum
metrology, the presence of correlations gives another fundamental advantage [6—10]. While with a single probe
system we always run the risk of preparing the probe in a state which is left unmodified by some unlucky
interaction mechanism with the target system, by exploiting correlations between the probe and an ancillary
system kept as a reference we can instead guarantee a minimum detection efficiency.

Itis then interesting to ask the following question: given a certain minimum efficiency that we want to
achieve in a black-box quantum metrology task, what resource should we look for in our probe state? The
answer has been found in several recent works [6—10] and in short is: discord-type correlations. These are general
quantum correlations that encompass entanglement but also describe the nonclassical nature of most separable
states. They have been introduced for the first time in 2001 under the name of quantum discord [11, 12] and
have been the subject of extensive studies in the last decade [13]. In particular, it has been recently shown that
quantum correlations in a bipartite probe can be exploited to guarantee a minimum precision in the estimation
ofalocal phase [7, 8] or a minimum probability of detecting a remote object in a quantum illumination [9] or
quantum reading [10] scenario. Let us stress the following fact. While, as one could expect, pure maximally
entangled states of the probe-ancilla bipartite system are still the best option for the considered tasks,
entanglement is not a necessary resource in the black-box scenario. On the contrary, discord-type correlations
embody the fundamental feature that provides, guarantees and quantifies a quantum over classical advantage in
avast class of metrology tasks (see also [14]). Therefore, one can also consider using ‘cheaper’ separable but
quantumly correlated states [15, 16] if the required minimum precision is not too stringent, and in general if the
production of pure entangled states is hindered by technological limitations.

In this paper we extend the above analysis a significant step further. As just discussed, the amount of discord-
type quantum correlations in the input state of the probe is all the information that we need in order to know
what the worst-case performance will be and hence guarantees a minimum estimation efficiency. However two
states with the same amount of discord-type correlations are not fully equivalent resources from a general
metrological point of view. Indeed, although they are characterized by the same minimum estimation efficiency,
one of the two states could be better on average and thus preferable over the other, as long as the information
about the system-target interaction remains partially unknown. For all practical purposes, truly versatile probes
for quantum metrology should then be able to offer acceptable performances on average when employed for a
broad range of tasks. Therefore, other than investigating the resources involved in determining a worst-case
performance as done earlier, one should address a different key question: given a certain average efficiency that
we want to achieve in a black-box quantum metrology task, what resource should we look for in our probe state?
Here, we discuss this aspect in full detail and we provide a comprehensive classification and characterization of
bipartite quantum probe states in terms of their average metrological performance. Together with previous
results [6—10], our analysis can have a direct impact on the concrete search for optimal and versatile probe states
useful for a plethora of metrological applications in realistic conditions.

To deliver a quantitative analysis, we focus here on the skew information I (p, H) = —Tr[[/p, HI*1/2,
which expresses the amount of information stored in a state p that cannot be accessed by measuring the
observable H, due to the noncommutativity between state and observable [17, 18]. The skew information is one
possible extension of the classical Fisher information to the quantum domain, being part of a larger family of
Riemannian contractive metrics on the quantum state space [19, 20]: therefore, it directly quantifies the
susceptibility of a probe state p to an infinitesimal change in a target parameter encoded in the observable H. If
the observable acts locally on one subsystem of a bipartite state, the skew information is bounded from below by
the amount of discord-type correlations in the state and its minimum value can be used in fact as a measure of
discord-type correlations, defined in [6] as the local quantum uncertainty (LQU). This quantity is closely related
to other measures, such as the interferometric power (IP) [7] and the discriminating strength (DS) [9], that have
adirect interpretation in terms of metrological tasks in worst-case scenarios. For example, the LQU coincides
with the DS for qubit systems and gives a lower bound to the IP in general. Therefore the LQU can be interpreted
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as a minimum susceptibility of a bipartite state to local transformations on one subsystem, thus being relevant
from a quantum estimation perspective. Moreover it is based on a simple functional, the skew information, that
is typically easy to compute and serves as a good starting point for our investigation.

For arbitrary states of a generic bipartite system, we compute here the average of the skew information over
specific classes of local observables acting on one subsystem. The resulting quantity, referred to as average skew
information (AvSk), quantifies therefore the average susceptibility of a bipartite state to local transformations.
Remarkably, such an average susceptibility can be expressed through a simple analytical expression, that clearly
shows what is the role played by the properties of the observables and by the properties of the state in
determining the average performance. Thanks to this, we provide an extensive characterization of the AvSk and
of its features. In the specific case of a two-qubit system, where the LQU is also computable in closed form [6], we
then carry out a parallel study of our new quantity and of the LQU that allows us to identify which states of the
probe are better given different constraints. It turns out that the resources needed in the probe state to optimize
the average metrological performance are quite distinct from those (discord-type correlations) needed instead to
guarantee a minimum performance. We also find that our AvSk is equivalent, up to a numerical prefactor, to
another quantity recently introduced by Luo and coworkers [21] which is similarly based on the skew
information but considers a different kind of averaging. This connection allows us to easily prove that the AvSk
can be adapted to define a measure of correlations but not specifically of quantum (like the LQU) or classical
correlations. Furthermore, our analysis complements that of Luo et al by finding a nice closed analytic
expression and a clear operational meaning for their measure. Finally, we also compute the variance of the skew
information to investigate what additional knowledge can be gained from higher moments of the statistics.

The main content of the paper is structured as follows. In section 2 we compute the average of the skew
information over an ensemble of local observables with fixed non-degenerate spectrum. In section 3 we
enumerate and prove the basic properties of the AvSk. In section 4 we discuss how the AvSk depends on the
choice of the spectrum of the local observable. In section 5 we compute the AvSk for specific classes of states and
we derive some general bounds. In section 6 we make a detailed analysis of the two-qubit case, comparing the
AvSk with the LQU (i.e. the minimum skew information). In section 7 we also compute the variance of the skew
information and we discuss what this refined statistics can tell us about the presence of quantum correlations. In
section 8 we discuss the connection between our quantity and the one recently introduced by Luo et al [21], and
we provide additional comments on the role of correlations. Finally, in section 9 we provide an explicit
interpretation of the main results of this paper from a metrological point of view. We present our concluding
remarks in section 10. Some technical derivations are deferred to appendices.

2. Average of the skew information over local observables with fixed non-degenerate
spectrum

If pis a density operator on a Hilbert space Hy and H is an Hermitian operator on Hy, the skew information of p
with respect to His defined as[17, 18]

1(p, H) = %Tr[uﬁ, HP 5

and expresses the amount of information stored in a state p that cannot be accessed by measuring the observable
H, due to the noncommutativity between state and observable. Note that in general it is always possible to find an
observable H, which is diagonal in the eigenbasis of p and therefore can grant complete knowledge of the state,
ie. I(p, H)) = 0.However, this is no longer true if we make the additional assumption that observables act only
on apart of the global system.

It has been recently shown [6] that when p = p, ; is a density operator of a bipartite system described by the
Hilbert space Hap = Ha ® Hpand H = Hy ® Ipisalocal Hermitian operator acting only on H,, the skew
information is bounded from below by the presence of general nonclassical correlations of the discord type [11—
13] in the state p. Quantum discord, as proposed in the original formulation [11, 12], measures the part of the
information stored in the correlations of a bipartite system AB that cannot be retrieved by measuring locally one
of the subsystems (say A). These locally unaccessible correlations arise because a local measurement can perturb
the state of the system by projecting it onto a particular local basis for A, losing some information in the process,
and the existence of an unperturbing measurement is not guaranteed. In the same spirit, taking the minimum of
the skew information over some ensemble of local observables of a bipartite system gives the minimum
incompatibility between the state p and the ensemble of observables, i.e. the amount of information that always
remains hidden under a certain family of local measurements. In particular, if one considers the set of all local
observables with a fixed non-degenerate spectrum, one obtains the LQU introduced in [6]
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UM(p) = min I(p, H(A), @
{HAW}
which is in fact a good quantifier of discord-type correlations. In equation (2) the minimum is taken over a set of
local observables with fixed non-degenerate spectrum A, = Zi Aili)a (i], where {|i)4 } is an orthonormal basis
of A and the \;’s are all different. This is necessary to ensure that the identity [, is excluded from the
minimization set and the trivial case I (p, ) = 0 is avoided (this must hold also if considering any subspace of
H,). That is, only observables of the form H (A4) = UyA,U," are considered, where Uy is any local unitary
transformation on subsystem A. As shown in [6], the LQU satisfies all the properties required to a well-behaved
measure of discord-type quantum correlations [22, 23]. In particular it is zero if and only if the original quantum
discord is zero and hence captures the same type of correlations. Moreover, the LQU is strongly connected to
other measures of quantum correlations, such as the IP [7] and the DS [9], that have a clear interpretation in a
metrological context. For example, the LQU coincides with the DS if the bipartite system is made of two qubits,
and in this case it measures the minimum efficiency of a given bipartite state as a probe for a quantum
illumination task [24] where one must decide if any transformation in a given set of isospectral local unitary
operations has been performed or not on the probe.

Here, instead of taking the minimum as in equation (2), we compute the average of the skew information
over the set of Hermitian operators Uy A4 U, " spanned by the unitary group on H,. In light of the above
discussion, this quantity, which will be named simply AvSk, can be interpreted as the average susceptibility of a
bipartite probe to local transformations and local parameters. The AvSk can be written as an integral with
respect to the Haar measure of the unitary group dyu; (Uy)

() = [ dpa @Iy Uiba U = = 3 [ dug (UDTE(L/7, UM, 3

In choosing our notation, we made explicit the fact that the AvSk depends only on the state and on the specific
choice of the spectrum. To compute the integral in equation (3) we start by rewriting equation (1) for the case of
abipartite state p = p, andalocal observable H = Hy ® Izas

I(p, Hy) = Tr[(JpHA)(Ha /p) — (JpHA)(JpHa)]
=[Tr(JpapHa @ Hy Jpap — JPapHa © [0 a5 H 2)Sapias], 4)
where following the procedure of [25] we introduced a copy Hap = H y ® Hp of the original Hilbert space

Hag = Ha ® Hp and the swap operator Sy54p actingon Hyp @ H 4p [26]. Using equation (4) and the
properties of the swap operator (see appendix A) we can now rewrite equation (3) as

T2 (p) = Tr[(ppp @ Lup — JPap @ JPap) TP N4 @ Ay) Sapaw'], (5)
where 7@(A4 ® A ) is the so-called twirling channel [27-29] applied to the operator Ay ® A ; (see
appendix B)
T, @A) = [y U & U0 @ AU} @ U))

_ NaTr[AsP — Tr[A}]

Ny Tr[A4] — Tr[As]? S
NyA(Nj = 1)

NG ©

I

In writing equation (6) we introduced the dimension N, of the Hilbert space H,. Plugging the last two lines of
equation (6) into equation (5), using again the properties of the swap operator, and evaluating the trace, we
finally get a remarkably compact formula for the AvSk of an arbitrary bipartite state p

Ny Tr[A4] — Tr[As]?
Ni(Nx — 1)

We stress that the analytic expression equation (7) holds for any dimension of the Hilbert spaces H, and Hp.

TM(p) =

[Ny — Trp[(Tra[ VP D11 ™)

3. Properties of the AvSk

We discuss now some properties of the AvSk Z*4(p).

Property 1a—For any fixed spectrum, the AvSk is non-negative. This is trivially true as the skew information
is non-negative and this is not changed by taking the average.

Property 1b—For any fixed non-degenerate spectrum, the AvSk is zero if and only if the state is of the form

I
= — Q pg. 8
PaB Ny Pp ®)
The proof of this is rather long and is postponed to section 5.
Property 2—The AvSkis invariant under local unitary operations Wy, Vj.Indeed, consider the
transformation p — (W4 ® VB)p(WZ ® Vg) which also maps ,/p into (W, ® VB)\/ﬁ(W); ® Vg). Then, by
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exploiting the cyclic property of the trace in equation (7), it is easy to see that
TM(Wa ® V) p(Wi ® Vi) = T (p). ©)

Property 3—The AvSkis non-increasing over all completely positive trace-preserving (CPTP) maps acting
locally on B. To show this, let us first decompose an arbitrary local CPTP map ®5(p,5) as a unitary interaction
with an external environment followed by a partial trace over the degrees of freedom of the environment [30]

p(pyp) = TrelUse(pap @ pp) Uggl, (10)

where we can further assume that the unitary operation involves only the subsystem B and the environment,
without affecting A. Mimicking the demonstration of Property 2, we can show that the skew information satisfies
the following property

I(Ust (pap ® pp) Ugp> Ha) = 1(pap ® pp» Ha) (1n
and it is also easy to see that
I(psp @ pp» Ha) = 1(psp> Ha)- (12)
Finally, it was proven in [31, 32] that

1(®p(pap)> Ha) = I(Tre[Use (pap @ pp) Uggl, Ha)
< I(Use(pag @ pp) Ui, Ha) = I(pap Ha). (13)

Since Property 3 is true for the skew information itself, it remains true also when taking the average.
Property 4—For pure states, the AvSk is an entanglement monotone. Indeed, given a pure state |¢)),5, we

have that /|45 (| = |¥)ap (¢|. Plugging this into equation (7) leaves us with

_ Ny Tr[A}] — Tr[AaP

Aq
T2 (|1)a) NiN D)

[Ny — Trslp2]], (14)

where p; = Tru[|1))ap (¢]]. For pure states, a convenient measure of entanglement is provided by the
generalized concurrence C (|¢)55) [33], which depends only on the purity of the marginal density operators

TrB[pé] =Ty [pi] as C(|)ap) = J2 — 2T [pé] . We can then rewrite

_ NiTr[A}] — Tr[AaP C(1$)an)*
Ny(Nj — 1) 2

M (I¥)an) [M — 1+ , (15)
which clearly makes the AvSk an entanglement monotone. Note that, however, it cannot be considered strictly
speaking as a measure of entanglement since it does not vanish on all separable (product) states; still, one can
obtain a fully fledged entanglement measure on pure states by rescaling the AvSk subtracting the dimension-
dependent constant in equation (15).

Property 5—The AvSkis convex with respect to the state. The result follows simply from the convexity of

the skew information [17], that is preserved by taking the average
IM(ppy+ (1= p)py) < p IM(p) + (1 = p) T(py), (16)

for any two states p,, p, andaprobability 0 < p < 1. This is noteworthy, since convexity is lost instead when
taking the minimum rather than the average [6].

From Property 1, we immediately see that, at variance with the LQU, the AvSkis not a proper measure of
discord-type quantum correlations [22], because in general it is different from zero when evaluated on the set of
classical-quantum (CQ) or classical—classical (CC) states [ 13]. In fact, the AvSk can be non-zero even for
completely uncorrelated states, e.g. for any state of the form |¢))4 ® |1), meaning that it is neither a measure of
classical nor total correlations. Nevertheless, we will see in section 8.2 how to construct a proper measure of total
correlations based on a modification of the AvSk, recovering and complementing the analysis donein [21]. We
remark however that our focus here is not to define yet another abstract measure of correlations. Instead, we are
going to use the AvSk operationally as a guidance to identify optimal probe states for (black-box) quantum
metrology, adopting their average performance as our figure of merit.

In the following sections we are going to compute the AvSk for some specific classes of states and derive some
general bounds, that can be straightforwardly established thanks to convexity. Finally, if we study
simultaneously the AvSk and the LQU, we can point out what states are better used in quantum sensing and
metrology tasks such as state discrimination and parameter estimation, depending on the rules of the game.
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4. Dependence of the AvSk on the spectrum

The expression equation (7) for the AvSk that we found at the end of section 2 explicitly factors the dependence
on the spectrum of the observable and the dependence on the state. In this section, we investigate how different
choices of the spectrum relate to one another.

4.1. Invariance under translation of the spectrum
First we show that if two spectra A, and A/, are connected by a rigid shift, the two induced AvSks are equal. The
rigid shift condition is expressed as A, = A, + nl,, where nis any real number. We then have

Tr[A}] = Tr[Aa] + 7Ny, (17)
Tr[N?] = Tr[A3] + 2 Tr[Aa] + 17°Ny. (18)

Plugging the above expressions into equation (7) and considering only the part containing the spectrum, we
easily see that

Ny Tr[Aj?] — T[NP Ny Tr[Aa?] — Tr[Aa]®
NN = 1) NN -1

19)

This implies that Z*4(p) = Z™+7(p), V1. Therefore, this allows us to simplify equation (7) by considering
only spectra with trace equal to zero

Tr[A}
Tr[AAl =0 =  Ih(p) = NZ[ A]l [Ny — Trp[(Tra[ P11, (20)
2

4.2, Scaling under scalar multiplication of the spectrum
Next, we consider what happens if we take a spectrum A4 and transform it to A4 by scalar multiplication.
Thanks to equation (20), it is immediate to see that Z "4 (p) = n? ™ (p) for any value of 7).

4.3. Optimal spectrum

We can now ask which spectrum yields the highest prefactor to the AvSk. From the previous results, it is obvious
that multiplication of a spectrum by a big real number can make the prefactor as big as desired. However, we
want here to highlight the role played by the distribution of the eigenvalues, rather than their magnitude. We can
make a fair comparison by exploiting the translation invariance and the scaling introduced above, and
considering only positive spectra with unit trace (i.e. we map each spectrum to a density matrix). We then see

from equation (7) that all the information about the spectrum is in the prefactor %, which for a fixed
dimension N4 depends only on the spectrum purity. Therefore it is immediate to see that the best spectraare
those that have Ny — 1degenerate eigenvalues, i.e. those spectra that can be mapped into pure-state density
matrices by means of rigid shifts and scalar multiplications. For example one such spectrum, taken traceless to
satisfy the condition discussed in section 4.1,is givenby Ay = {(Ny — 1)/Ny, —1/Ny e —1/Ny}.

This means that if we want to encode some information on a state but we cannot choose the encoding basis,
an almost fully degenerate spectrum allows to encode, on average, the maximum amount of information. We
stress that this situation is almost opposite to what happens for the LQU [6] and for similar measures of quantum
correlations such as the IP [7] and the DS [9] that consider the worst-case performance, where it is instead
believed that the optimal spectrum is harmonic [9, 34], i.e. fully non-degenerate and with equally spaced
eigenvalues. Furthermore, we see that the AvSk is non-trivial as soon as the spectrum has some different
eigenvalues, i.e. assoonas A4 = I4. We do not need to impose here the stricter condition of full non-degeneracy
required, for example, by the LQU.

5. Dependence of the AvSk on the state

In this section, we study the AvSk for specific classes of states or, conversely, we look for the states that yield the
maximum and the minimum AvSk given specific constraints. All the results provided here hold for any
dimension of Hy ® Hg. Withoutloss of generality, we consider traceless spectra (see section 4.1).

5.1. AvSk for pure states
We start by considering pure bipartite states. As we have seen in section 3, the AvSk takes a simple form on the set
of pure states |1))4p
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Tr[A;]

TM(|Y)ap) = v

A

[NA — Trglp3ll, 21

where pg = Tra[|1)ag (¢|]1s the reduced state of subsystem Band Trp[p B] is its purity, which can take values
between 1/min { Ny, Np} and 1. Therefore we can find the following bounds for the AvSk of pure states:

Tr[A]] A Tr[A] ;
Ny — 11 < IM S - ) N
NA [ A — ] (|¢>AB) Nﬁ —1 I\[A min{Z\lA) NB} ( )

where the upper bound is saturated by pure maximally entangled states and the lower bound is saturated by pure
product states.

5.2. AvSk for separable states

Another interesting class of states is given by separable states. Here we have no entanglement and we can
investigate if the presence of discord-type quantum correlations has a specific impact on the AvSk, as it has for
the LQU [6]. We start by considering a general separable state

pSEp Z—p p(l) (1) (23)

where pg) and pg) are arbitrary density matrices of Aand B, p; > 0 and Zi p, = 1.From the convexity of the
AvSKk (see section 3), we have
0 < IM(pyy) < Zp, M @ py) < max Th(p, © pp), (24)
{oa®pp}
where in the last term we take the maximum over all product states p = p, ® pg. By direct substitution in
equation (20), we have

2 2
Tr[A ] A o Tr[\/E]Z] < Tr[AA]

NA—l SN2 -1

IAA (PA & PB) = [Ny — 1] (25)

and finally

Tr[A4]
Ni -

0 < Th( Psep) < [N - 1]. (26)
The lower bound is saturated, for example, by product states of the form p = I, /Ny ® pg (as announced in
section 3, and as we are going to show, these are the only states with zero AvSk) while the upper bound is
saturated, for example, by product states where the local density matrix on A is pure,i.e. p = [¢)4 (Y| @ pg.

A few remarks are in order here. First of all, we notice that all separable states yield alower AvSk than any
pure entangled state. We can then use the AvSk as a witness of entanglement and say that
Th(p) > oA

Ni

[NA — 1] = p is entangled. 27)
Furthermore, since the maximum AvSk among separable states is reached by a completely uncorrelated state, we
can claim that the presence of quantum correlations other than entanglement has no specific effect on the
average susceptibility of a bipartite state to local transformations. Of great importance is instead the local purity
of the probing subsystem A: as soon as p, is not maximally mixed, an average metrological performance is
guaranteed even in absence of a correlated reference subsystem B.

We recall, however, that discord-type correlations as measured by the LQU determine instead the minimum
susceptibility of a bipartite state to local transformations. A comparative analysis of the AvSk and of the LQU can
serve then to identify states that simultaneously yield satisfactory levels of complementary figure of merits and
emerge as suitable probes for sensing applications. We will come back to this point in section 6, where we
investigate the specific case of two qubits.

5.2.1. AvSk for CQ states

We compute here the AvSk for a specific class of separable states, i.e classically correlated states that have zero
LQU (or equivalently zero quantum discord). Since we are considering local measurements on subsystem A, the
set of classically correlated states is given by the so called CQ states [11, 13]

Ny
Peq = 2P 1 (il ® (28)
i=1
where {p,} is a set of probabilities, { |7), } is an orthonormal basis of A and {pg) } are general density matrices for
subsystem B. Note that for any such state the existence of a commuting local observable H, that nullifies the
skew information is guaranteed (i.e. when H, is diagonal in the basis { |i), }). The CQ states include the so called
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CCstates
Ny Np

Pcc = ZZPU ll & |]> < | (29)

i=1j=1

where now also { | j)g} is an orthonormal basis of B. Starting from an arbitrary CQ state, we plug equation (28)
into equation (20) and get

Trs[( Tl [Pag])* 1= Tr Zplp(1)+2 Z /o8, SO S| =142 Z b Trlp9 o1 (30)

j>i= j>i=1
Alower bound to equation (30) is given by Trg[( Tty [/ Pcql )2] = 1. The bound is saturated, for example, when

only one of the p;’s is non zero, i.e. for product states [1))4 (/| ® pg. Another possibility is that the ,/ pg) "sareall

orthogonal to each other. For example, the set { p(é) } could be a set of pure orthogonal states { | ;)5 (¢;| } on B
(thus giving a CC state). The corresponding upper bound to the AvSk of CQ states becomes

Tr [A,ZL;]
3 —
We can also find an upper bound to equation (30) if we use the inequality Tr [(,/ pg) -/ pg) )?] > 0,namely

1 +2 Z b, el o)1 < 1+ Z oip; (Telod] + Trip))

j>i=1 ]11

=142 3 B = M—

j>i=1 i,j= 1

I™(pog) < [NA — 11 (€29

PJ

= Ny (32)

The bound is saturated if and only if p; = 1/N, for each iand all the pg)’s are equal. In other words, the CQ state
must be of the form I,/Ny ® pj to have zero AvSk. In conclusion, the bounds to the AvSk of CQ states become

2
0 TM(pq) < o i — (33)
7o

5.2.2. AvSk for quantum—classical (QC) states

We can also compute the AvSk on the set of QC states that, opposite in spirit to the CQ states, can have a finite
amount of discord-type quantum correlations (as measured e.g. by the LQU with respect to subsystem A). An
arbitrary QC state can be written as

Pac = ZP, P(l) ®@ |i)p (i, (34)

i=1

where { |i)3 } is an orthonormal basis of Band {p(’) } are general density matrices for subsystem A. We plug this
into equation (20) and get

Np

1< Tral (Tral Jpoc D’ ] Zp,(Tr[JT ? < Nu. (35)

Thelower bound is saturated if and only if all the { p(’) } in equation (34) are pure states, i.e. for all density
matrices that can be written in the form

Ppac = ZP |9i)a (il @ 1i)s (il (36)

where { |1);)4 } is a set of generic pure states of A (in particular we do not require them to be orthogonal, at
difference with the set { |i)g }). We will use the name (pure quantum)-classical (pQC) for states of the form
equation (36). Westress that p, ¢ is not itself pure in general (that’s why we put the word ‘pure’ between
parenthesis in the full name and we write a small ‘p’ in the abbreviation). The upper bound is saturated if and
onlyifall the { p([? } are proportional to the identity, i.e. again for states of the form I, /Ny ® pj.
Correspondingly, for the AvSk we get
2
0 TM(pg0) < 8 i — (37)
Nj —

As anticipated, we see that the AvSk on the subset of QC states achieves the same bounds as the AvSk on the set of
CC states. This means that general quantum correlations have no clear effect on the average susceptibility of the
state. Instead, we see again that the purity of the local state of A has a great importance.
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5.3. Maximum and minimum of the AvSk for general states
Another interesting question is what states, including potentially entangled states, have the absolute highest and
lowest AvSk. Consider a general bipartite state p and its diagonal expansion onto some basis { |/; )45 }

p =0 Wias (il —  Jp =D b 1%i)as (¥il. (38)

From the convexity of the AvSk we have

2
M (ZP:-W%) AB <7/)i|) <o TM() ap (i) < :é[ﬁA]l [NA e {Z\IIA, Nol ], (39)
where the absolute maximum of the AvSk for pure states, and hence for all states, is reached only by the
maximally entangled states.

Welook now for the minimum. From the very definitions of the LQU and of the AvSk, we have the simple
relation Z* (p) > U™ (p). Therefore, the states with minimum AvSk can only be found within the set of states
with minimum (zero) LQU, i.e., the CQ states. As we have already seen, among all the CQ states only the states of
the form I,/Ny ® pg have zero AvSk. This gives a proof of Property 1b, that we formulated in section 3.

5.4. Minimum of the AvSk for fixed LQU
Another interesting question is what states have AvSk equal to their LQU. We recall that the LQU can be
expressed as

UM(p) =1 — Tr[JpHx JpHAl (40)

where H, is some Hamiltonian minimizing the skew information. The AvSk over all Hamiltonians with the
same spectrum can be equal to the LQU ifand only if

Tr[JpHa ypHal = Tr [P (Ui Ha Up) P (UL HA U] = Tr[(Us Jp UJ) Ha (Us Jp U Hal, ¥ Up.

Note that we can always add an arbitrary local unitary transformation Vj to the density matrix without affecting
the above equality. In other words, we can ask that

Tr[JpHa JpHal = Tr[(Us ® V5 Jp Ui @ V) Hx X (Ux @ Vg Jp U} @ V) Hal, V Ui (41)
A sufficient condition for equation (41) is expressed as
VUi, 3 Vg such that /p = (Uy ® Vp Jp Uj @ V}). (42)

Therefore, we must look for states that are invariant under any unitary operation U, if we allow the application
of an arbitrary local correction Vp. Some examples, when Ny = Nj, are given by the Werner states [35], that
satisfy pyy = (U ® U)pyw (U ® U)' VU, and by the isotropic states [27], that satisfy

pr=U® U"p (U U VU.

6. AvSk for two qubits

We focus now on the exemplary case of two qubits, for which the analysis becomes particularly simple and
insightful. Indeed, in this case we can also explicitly compute the LQU [6] and we can classify all the states
according to their minimum and average susceptibility to local transformations, looking at the results of
section 5 in more detail. Furthermore, the LQU of two qubits coincides with their DS [9], and the AvSk can be
then rigorously interpreted as the average discrimination efficiency of the state in a quantum illumination task
[24]. The analysis takes then an explicit metrological connotation.

From the results of section 4 we can fix Ay = o, without loss of generality, where o, is the third Pauli matrix,
and the expression of the AvSk for any two-qubit state becomes then

70 (p) = %[2  Trsl(Tul 71211, (43)

We compute the AvSk and the LQU (using the formula in [6]) for 10° randomly generated two-qubit states. In
figure 1 we plot the AvSk of each state vs. the corresponding LQU.
The results of section 5 are clearly illustrated by the plot. Namely, we observe the following:

+ Since the LQU is obtained through a minimization over all possible unitaries and the AvSk is obtained through
an average, we must have that 7% (p) > U%(p). Thislower bound, shown by a blue solid line in figure 1, is
saturated, for example, by isotropic and Werner states (see appendix C).

+ The separable states, including the CQ states (for which the LQU vanishes) and the QC states, satisfy the
bound {Z % (Pyep)> Z%(pcg)s L% (poc) } < 2 /3. CQ states are shown by a green dot—dot—dashed line in

9
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Bell

AvSk

00 02 04 06 08 10

LQU

Figure 1. AvSk and LQU for 10° randomly generated two-qubit states (gray dots). Special classes of states are highlighted by different
lines and detailed in the sketch on the right. See also the main text for a complete description of the various regions and boundaries.

figure 1. pQC stateshave all Z% (p o) = 2/3 and are shown by the horizontal dashed black line. CCstates all
have U%(pec) = 0and I% (pec) = 2/3.

+ From [9], we know that the separable states must have limited LQU, 4/%( psep) <1 / 2. Therefore, they must lie
left of the vertical dashed black line in figure 1. Combined with the previous observation, this allows us to
identify a region where only entangled states exist and a region where separable and entangled states coexist
(see also appendix C).

+ The pure states satisfy the bound 2/3 < Z%(|¢))43) < 1. Thelower bound is saturated by separable pure
states and the upper bound is saturated by maximally entangled states (Bell states). The Bell states also achieve
the highest AvSk among all states. Moreover, for any given value of the LQU, the highest possible AvSkis
achieved by a pure state. For pure states of two qubits, we have

a, 2
To((t)s) = %[1 LU (ZMAB)] _ %[1 N C<|w2>AB) ] )

where C (|1)4p) is the concurrence. Pure states are indicated by a red dot—dashed line in figure 1.

+ States of the form (I4/2) ® pj are the only states having zero AvSk.

The simultaneous analysis of the AvSk and of the LQU provides a useful guide when we need to decide which
states of the two-qubit probe are more suitable to perform a given metrological task (e.g., in the present case,
state discrimination). We immediately see that maximally entangled states, as can be expected, are the best
choice when we focus on both the worst-case performance and the average performance as figures of merit.
However, if we have limited resources and do not have access to entangled states, we can still achieve good results
using separable states. For example, the state

p= %|o>A (0] [0} (0] + %|+>A<+I © 1) (1] (45)

yields a LQU equal to 1/2 and an AvSk equal to 2/3 (recall that the maximum is 1 for both quantities). This state,
among all separable states, has the highest amount of discord-type correlations. This confirms that quantum
correlations beyond entanglement are indeed useful for metrological applications, although they play a relevant
role only in determining the worst-case performance but have little effect on the average performance (the value
2/3 for the AvSk can be reached even with product states). Another observation that we can make is the
following. If one needs to guarantee a minimum efficiency of the probe, i.e. fix the LQU as a primary figure of
merit, there is still some freedom in the choice of the initial state, with pure states being on average better than
any other possibility. Our analysis of the AvSk can be very useful in this sense.

7. Variance of the skew information

In this section, we complement the above analysis by computing the variance of the skew information, which
tells us how much the efficiency of a given probe state is fluctuating around the average value for different
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Figure 2. Left: color plot of the square root of the variance of the skew information for 10° randomly generated two-qubit states (gray
dots), as a function of the AvSk and of the LQU. Right: square root of the variance of the skew information plotted as a function of
AvSk—LQU. Special classes of states (detailed in the main text) are highlighted by different lines, using the same style in both figures for
comparison.

choices of the encoding unitary. The variance is defined as
AZM(p) = f dug (UD I (p, UsAaUn®) — (M (). (46)

The first term on the right-hand side of equation (46) can be computed following the prescriptions of appendices
D and E, and the expression for two-qubit states is given by equation (E13). We can further impose that Ay = ¢,
without loss of generality. Since analytic insight is out of reach for such a cumbersome expression, we resort
again to computing the variance numerically for the 10> random two-qubit states generated before.

The results are presented in figure 2. On the left panel, we show a density plot of the square root of the
variance, given the corresponding AvSk and LQU. It is immediate to see that the variance is zero on the isotropic
and Werner states, for which the average is equal to the minimum, and is bigger when the difference between the
average (AvSk) and the minimum (LQU) is bigger, as should be expected. Moreover, we find that there are
precise quantitative relations that describe this behavior. To show this, on the right panel of figure 2 we plot the
square root of the variance versus the corresponding value of the difference (AvSk — LQU). All the points lie
within a well-defined region and we can find the states lying on the boundaries by constructing educated guesses
based on several special classes of states that are simple to parameterize.

7.1. Pure states

We expand the pure states of two qubits in their Schmidt basis and write them as [{)),p = Z; Vi 1a 1i)ss
where {|i)4 } and { i) } are orthonormal basis of A and Band ¢ + ¢ = 1, so theyare easily parameterized by a
single number ¢;. Thanks to this, we can easily show that

T ()as) — U()ag) = %(1 ~20)2. (47)

Moreover, equation (E13) can be greatly simplified for pure states and the variance can be computed analytically
4
AZ%(|p)ap) = — (1 — 2a)*. (48)
45
In the end, we find the simple relation

1
VAZ=([P)ap) = —= T %=(Y)ap) — U%(|Y))ap)) (49)
NG
These states provide the lower boundary for the right plot of figure 2 and are highlighted with a red dot—dashed
line. A red dot—dashed line is also shown in the left plot for comparison.

7.2.Product states

Next we consider the product states, which all have zero LQU. We seek a family of product states depending on
only one parameter and interpolating between one state of the form (I4/2) ® pg, which has zero AvSk, and one
pure product state, which has the highest AvSk among product states. Therefore, we consider the family of states
given by
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Pprod (P) = (p [0)4 (O] + (1 — p)%) ® |0)5 (0], with p € [0, 1]. (50)
Their AvSk is easily computed
T% (Pyroa(P)) = 31 = T = 7). (51)
Equation (E13) can be again evaluated analytically in this case and becomes
AT (g () = == (1 = T = p)% (52)
In the end, we find the same simple relation as for pure states
AT (pproa(P)) = %m Pproa (P) — U (P (P)))- (53)

Therefore, these product states also lie on the lower boundary of the right plot of figure 2 and are highlighted
with a green dot—dot—dashed line. A green dot—dot—dashed line is also shown in the left plot for comparison.

7.3.pQC states
Another interesting class of states is given by the pQC states, introduced above (see equation (36) in section 5.2).
For two qubits, these are states of the form

Poac = PlYo)a (Yol @ [0)s (O] + (1 — p)lihna (¥l @ [1)s (1], (54)
with | )4 and |1} )4 arbitrary pure states. A special subset of pQC states is obtained by taking

1 — 1
Poac (P) = TP|0>A (0] @ 10)s (0] + %MA (+] @ |1 (11, (55)

with p € [0, 1], which linearly interpolates between a pure product state (when p = 1) and the maximally
discordant separable state of equation (45), i.e. the one having LQU equal to 1/2 [9] (when p = 0). These states
have constant AvSk, with value 2 /3. Their LQU and their variance can also be explicitly computed as functions
of p, although we do not report here the expressions. Combining the three quantities, we get the following
relation

2
JAT% (ppc (p) = %\/ 1+ 3((1@ (Prac () — U(pac(P))) — %) . (56)

We conjecture that pQC states provide the upper boundary for the right plot of figure 2 as highlighted with a
black dashed line. This is well supported by the numerical evidence. A black dashed line is also shown in the left
plot for comparison.

7.4. Separable states

From section 7.3 we see that the state which behaves most differently (in terms of the variance) with respect to
pure and product states is given by the maximally discordant separable state of equation (45). The leftmost upper
curve for the right plot of figure 2 (shown by a black dotted line) connects this state p with a state of the form
(I4/2) ® pg. We then make an ansatz that separable states of the form

brp(®) = L0} (01 @ 10 (0 + 1+ Gl @ 10n (1 + (1 p)%, (57)

with p € [0, 1], will attain the boundary. We see that once again our ansatz is well supported by the numerics. A
black dotted line is also shown in the left plot for comparison. For states of the form given in equation (57), the
relation between the variance, the average and the LQU is given by

AT (0 (p) = %(I”z (Puap () — U(pygy (P)))- (58)

8. The role of correlations

In this last section we are going to discuss the influence played by correlations on the average and the variance of
the skew information.

8.1. Bounds on quantum correlations
We have already seen that the amount of quantum (discord-type) correlations has no specific effect on the AvSk.
However, since the minimum susceptibility (i.e. the LQU) is instead a proper measure of quantum correlations,
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the variance of the skew information is affected as well. Roughly speaking, we can see that if two states have the
same AvSk but one state has more discord-type correlations (i.e. higher LQU)), its variance will be smaller
compared to the other. We can turn this into a quantitative statement and derive bounds for the LQU by
combining the information about the average and the variance of the skew information. In the case of two
qubits, these bounds read

max {0, Z%(p) — /5AZ%(p) } < U%(p)
T%(p) = 73BT () if AT (p) < 1/455

< ] T (59)
() = 5 - N5AZ7(p) — S if1/45 < AT ).

We expect that these bounds become tighter and tighter by introducing higher moments of the statistics. Indeed,
knowing more about the distribution should also give more information about the minimum. For two-qubit
states this is not very useful, since we can easily compute the LQU directly [6]. However, in higher dimensions it
is not known how to perform analytically the optimization involved in the computation of the LQU and one has
to resort to numerical analysis. The approach presented here exploits quantities (the average and the variance of
the skew information) that are exactly computable in any dimension (although their expressions could be rather
involved) and could be then easily generalized beyond the two-qubit case.

8.2. Connections with a recent measure introduced by Luo et al

We now show that the AvSk can be corrected to yield a proper measure of correlations. In order to do this we
recall that a big contribution to the value of the AvSk comes from the purity of the local state of subsystem A.
Roughly speaking, this accounts for the fact that a pure state |1/ ) is more efficient than a mixed state (e.g. the
maximally mixed state p, = I,/N,) in detecting the action oflocal operations. Moreover, if we think in terms of
the discrimination protocol described in [9], we can consider the situation in which we use a bipartite probe but
perform only local measurements on A to extract the information (e.g. if we lose access to the reference
subsystem B). In the latter case, the only resource that we can exploit is the local purity of the state p, = Trz[p,5].
Every benefit that we gain by measuring the global state p, , must hence come from correlations. Motivated by
the above reasoning, we define the quantity

Tr[A}]

I (pap) = T (pyp) — T (py @ pp) )

[(TralyTrslpapl D* — Trsl(Tral Jpas D11 (60)

Note that the quantity 7™ (p, ® pp) in equation (60) actually depends only on p, and not on the other marginal
pp = Tralpypl-

We now show that the above quantity is equal (up to a prefactor) to the quantity introduced by Luo and
collaboratorsin [21]. They define

F(pap) = Qa(pap) — Qalps @ pp), (61)

where Q4 (p) is the average of the skew information with respect to any family of N2 orthonormal hermitian
operators, i.e. with respect to any orthonormal basis for the real Hilbert space L (H,) according to the scalar
product (A, B) = Tr[AB]. Thatis

N;
Qa(p) =D I(p, Xi), with X; € L(Hy4) and Tr[X;X;] = §;. (62)
i=1
The quantity Q4 (p) can be evaluated by writing the skew information as in equation (4) and noting that
Zi‘l X; ® X; = Saju /Na, where Sy 4 is the swap operator. After some manipulations, the final expression
Qa(pyp) = Ny — Trg[(Tral/pa51)* 1 can be found. We see that Q4 (p, ) coincides with T (pyp) apartfroma
numerical prefactor that depends only on the choice of the spectrum. Therefore Z24 (p4p) 1s proportional to

F(p,) in general. Luo et al have shown [21] that F (p, ;) satisfies the following properties:
* F(pyp) = Oifandonlyif p,; = p, ® pp.
* F(pyp) = F(Uy ® Vapyp U;{ ® VZ) is invariant under local unitary operations, V Uy, V.

* F(p,p) is decreasing under arbitrary CPTP maps on subsystem B. It is also conjectured that F (p, ) is
decreasing under arbitrary CPTP maps on subsystem A.
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From these, they argue that F (p, ) is a measure of total correlations, but cannot be specifically regarded as a
measure of classical or quantum correlations. We conclude that the same holds for our quantity Z24 (Pap)
defined in equation (60).

Our analysis, though, complements the results of Luo et al in two key points. First, we have provided a closed
and compact expression that can be evaluated for any dimension of the Hilbert spaces H, and Hjp and thatis not
explicitly found in [21]. Second, we have given a clear operative interpretation to Z4 (p4p)» as the advantage
that we can gain in doing some metrology task (e.g. state discrimination) by fully exploiting the amount of

correlations in a bipartite probe.

9. Skew information and metrology

As we discussed in the introduction and mentioned several times throughout the paper, the choice of the skew
information has the twofold advantage of allowing easy manipulations and retaining interesting connections
with the field of quantum metrology. Here we make these connections explicit, in the hope of conveying a clearer
message to the reader before moving to the conclusions.

Two common problems that are studied in quantum metrology are phase estimation [1-5] and state
discrimination [1, 36, 37]. In phase estimation, the goal is estimating a continuos parameter ¢ that characterizes
the unitary transformation p — e~ H?pelf? of the initial state of the probe. After choosing the best possible
measurement strategy and the best possible estimator (Nﬁbest (i.e. a function of the measurement outcomes and
probabilities that is used to guess the actual value ¢), the achievable precision in the limit of n > 1repetitions of
the protocol is determined by the quantum Cramer—Rao bound [1, 38], which relates the variance of the
estimator A%best "Zh /(nF (p, H)) to the inverse of the quantum Fisher information F (p, H). In state
discrimination, the goal is discriminating between the initial state of the probe p and a transformed state p’.
Since pand p’ are in general not orthogonal, therefore not perfectly distinguishable, the figure of merit used in

this case is the probability p of guessing correctly, that scales asymptotically in the number n of repetitions as
n>

p(n) - Q(p, p'Y',where Q(p, p') = min, Tr [p5,0’1 “lis the quantum Chernoff bound [36, 37].

The skew information is strictly related to both the quantum Fisher information and to the quantum
Chernoff bound, as we show in the following. First of all, the original quantum Fisher information [1, 38]is not
the only generalization of the classical Fisher information, but there is a whole family of so-called generalized
quantum Fisher informations [19, 20]. They all share a set of fundamental properties, e.g. are convex and have
the same value for pure states, and they are all upper bounded by the original quantum Fisher information. The
Wigner—Yanase skew information (multiplied by a factor 4) belongs to this family [20] and this fact combined
with another recent result [39], allows us to write

L g2t L 1
81[p, H] Flp, Hl  4I[p, H]

(63)

We see that the skew information can be used to set upper and lower bounds to the estimation precision.
Therefore, if we fix a set of isospectral generators H (A) for the unitary phase transformation e~ ()¢, the LQU
[6] and the AvSk give strong indications about the minimum and the average estimation precision with respect
to this set.

Second, it was shown in [9] that the quantity 1 — Q(p, p’) shares strong connections with the skew
information. Specifically I (p, H) can be seen as the efficiency of a discrimination process where the two states
that need to be distinguished are given by { p, e~ pei'} and the unitary transformation e~ is a small
perturbation of the identity operator. That is, we have the relation

1 — Q(p, e Hpellh), (64)

where {h;} are the eigenvalues of H (see [9] for a formal characterization). Moreover, the relation between the
skew information and the quantum Chernoff bound becomes even more stringent when H is any operator
acting on the Hilbert space of a qubit: indeed, in this special case the two quantities are proportional and we get

1(p, ) "R

=al, b& . .
I, ) %71 = Qup, eiipeith), (65)

We see that the LQU and the AvSk can therefore be used to characterize the minimum and average efficiency in
discriminating the elements of any of the couples { p, e i peif}, ..., { p, e 1 peifl"}, where H; ,..., H, belong to
aset of isospectral Hamiltonians.

All the above discussion remains valid even if we assume that p = p,  is a bipartite state and the
transformations act only on subsystem A, as we did throughout the paper. Moreover, with these additional
assumptions we can use the LQU and the AvSk to draw another bridge between quantum metrology and

quantum information theory, analysing the role of several resources in enhancing the metrological performance
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of different quantum states. It’s precisely in this sense that the analysis of section 6 acquires a strong relevance
with respect to metrological applications.

10. Conclusions

In this work we have investigated a question of joint fundamental and practical relevance, namely which
resources and which bipartite states are useful as versatile probes, to achieve a required average performance in
quantum metrology tasks [3, 5] involving a variable set of operations encoding an unknown parameter on one
subsystem. We demonstrated that the average susceptibility of a state to local unitary transformations can be
reliably quantified by the AvSk, a quantity that we introduce and calculate in closed form for bipartite quantum
states of arbitrary dimension. The AvSk is found to be a convex measure strongly dependent on the local purity
of the probing subsystem, and in general requiring entanglement to reach its maximum value. However,
separable or even product states can still achieve fairly satisfactory degrees of AvSk, meaning that they can be
reliable metrological resources on average, when entanglement is not available.

The results of our analysis have been contrasted with the related, but different setting, in which the worst-
case (rather than the average) susceptibility to local transformations is studied for bipartite states [6—10]. Such a
worst-case performance can be quantified by the minimum skew information, known as LQU [6], which is
instead determined entirely by quantum correlations of the discord type. By analysing comparatively the
minimum, the average, and the variance of the skew information, we have identified the role of state purity,
separability, and correlations to identify probe states with extremal properties, classifying their broad potential
for metrological tasks such as parameter estimation and state discrimination. The general analysis has been
illustrated in particular in the simplest yet particularly relevant instance of two-qubit probe states, for which we
have provided a complete numerical characterization.

In this paper we were not concerned with another important issue in quantum metrology, i.e. how the
precision of the estimation scales as we increase the number of ‘constituents’ in the probe. Much is already
known on the problem. For example, as mentioned in the introduction, one can show that by using pure
entangled states of n qubits the minimum estimation error can be reduced by a factor </ with respect to using a
pure separable state [3, 5]. Moreover, a recent work [14] has provided evidence that a similar enhancement can
be found for discordant mixed states of n qubits over classical mixed states, under particular measurement
strategies. We remark that in this paper we did not study the role of correlations (and other properties of the
probe) with respect to optimal performances. Instead we focused on a complementary aspect, i.e. versatility, and
left outside, at least for the moment, considerations regarding the scaling of our functionals.

We expect that the study of the minimum and AvSk for continuous variable systems [40—42] would provide
us with further insights In this case, for example, it comes naturally that one does not have experimental access to
the whole infinite-dimensional Hilbert space and must work with limited resources (e.g. limited classes of states
and operations, limited energy, limited squeezing, limited amount of entanglement, limited purity, ...). The
minimum and the AvSk would provide then clear and simple-to-evaluate criteria that can help in picking
optimal probes among the set of accessible states. Based on the recent progress in calculating some of these
measures (such as the IP and the DS) for Gaussian states of continuous variable systems in a worst-case scenario
[8, 10, 43], we believe that a Gaussian version of the AvSk might be amenable to analytical evaluation; it would
then become particularly important to study its scaling with the resources typically involved in optical
interferometry, such as the mean energy of the probing system [8], and with other nonclassical features such as
squeezing and entanglement. This is left for future investigation.

This work has provided yet another application of the Wigner—Yanase skew information, defined more than
halfa century ago [17], in quantum information theory. The skew information represents one of the most
insightful and mathematically convenient quantum generalizations of the classical Fisher information [19, 20],
and it has proven useful already to derive improved uncertainty relations [ 18], to define measures of asymmetry
(coherence) [44, 45] and correlations [6, 21], and to construct generalized geometric quantum speed limits [46].
The latter application, in particular, deals with the question: how fast can a quantum state evolve under a closed
or open system evolution? The study presented in this work can be framed in a similar perspective, as the AvSk
introduced here quantifies precisely how fast, on average, a quantum state of a bipartite system evolves under any
local unitary dynamics (within a fixed spectral class) affecting one of its subsystems. The more versatile probes
for quantum metrology are exactly those whose reaction to the local dynamics is faster, indicating an increased
susceptibility to the unknown parameter encoded in the dynamics itself.

Itis finally interesting to comment on the information-theoretic resource unlocking such an enhanced
susceptibility to local dynamics. If the figure of merit is the minimum susceptibility, the resource is local
asymmetry (coherence) in all possible reference bases for the probing subsystem, which is equivalent to discord-
type quantum correlations [6, 7]. If the figure of merit is the average susceptibility, instead, we demonstrated that

15



10P Publishing

NewJ. Phys. 18 (2016) 013049 A Faraceetal

the resource is local purity for the probing subsystem. This is clear when one considers that the ‘free’ states with
vanishing AvSk are those of equation (8), taking the form of a product of the maximally mixed state for the
probing subsystem, tensor any state for the other reference subsystem. Therefore any degree of local purity
becomes useful in this context. This suggests that the AvSk could be further investigated as a quantum
thermodynamical resource [47]. Namely, considering the case in which the probing system A has all degenerate
energy levels (so that the maximally mixed local states are the only free states), the AvSk defined in this paper
might be related to the amount of work that can be extracted from A by some optimal thermal machine with
access to the reference storage system B, provided the machine is coupled to a heat bath [48]. Investigating these
intriguing connections further will be the subject of an independent study.
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Appendix A. The swap operator

Let Hy and H y be isomorphic Hilbert spaces spanned by the orthonormal basis {|i)x }and {[i),’ }. The swap
or flip operator Sy|y is defined by the relation Sx|x'li)x 17)x’ = |j)x li)yx’ [26]. A possible representation is
given by

Sxix' = Z|1 (leljx (il (A1)
We report some useful properties that we use throughout the paper.

1. (S;qxr)2 = I, where I, = Iy ® I, istheidentity operator on Hx ® H’;

2. Sxix' = Sajx ® Spyp» if Hx = Ha ® Hp and Hy' = H,y ® Hy, with ‘H, isomorphic to H , and Hp
isomorphic to H g';

3. Sxix'(Ox ® Q) Sxx' = ((x ® ©y), where Oy x' and () x’ are linear operators on the corresponding
Hilbert spaces;

4. (Ox ® Q) Sxix' = Sxix' € ® © ), which simply follows from Property 3 if we apply Sx|x’ to both terms;
5. Ty x'[(Ox ® Qx)Sxx'] = Trx[Ox ],

For completeness, we sketch the proof of Property 5. Without loss of generality we set

Ox = D> 0lix (jl, O =D wenl€)x (ml. (A2)

ij [
By explicit computations we have

TI‘X[@XQ)(] = ZO,-jwj,- (A3)

and

Tryx[(Ox @ Qy)Sxx1= > > > Giwem Trlli)x (jla)x (Bl ® |€)x (m|B)y (all

ij £,ma,[3
- ZZZQ’J Wem 60{] 5[31 nzf’(s’im - Zzal] Wem ]fézm - 291] Wiis (A4)
ij £,mo, (3 ij £,m

thus concluding the proof.

Appendix B. The twirling channel

Let Hx and 'H ' be isomorphic Hilbert spaces and © , an operator acting on the tensor of the two Hy ® H .
The twirling channel modifies this operator by applying the same local unitary operation simultaneously to X
and X’ and then averaging this action over all possible local unitaries. This is expressed as
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TOO) = [duy (V) Us @ Uy) Oy (U} @ U}, (B1)

where dyij; (U) is the Haar measure over the unitary group { U (Nx) } and Ny = dim(Hx). It can be shown that
the integral in equation (B1) has a simple solution in terms of the swap operator as introduced in appendix A

_ NxTr[GXX’] — Tr[SXlX/GXX'] Tow 4 NxTI'[S)qx’@XX’] — TI’[@XX’]

TO(O Sx|x’ B2
(O Ne(N; = 1) “ Ne(N; — 1) e 8
Appendix C. Isotropic states of two qubits
We consider the isotropic states of two qubits [27]
1—-F 4F — 1
Pr = 3 Iap + 3 e (sl (C1H

parametrized by 0 < F < 1, where Fis the fidelity between the isotropic state and the Bell state
[1.) = (|00) + |11))/~/2. The AvSk can be easily computed by decomposing the identity on the Bell basis

pr = 1) (0] TG (6 + ) (Wl Bl (W, (©2)

B = |18 (6 + [T 10 (@ + [T 1) (] + VFld) Gl (C3)

Plugging this into equation (20), we get that the AvSkis givenby 1 — [2% + 24/F % ] Similarly, the
LQU can be computed following the prescription of [6] and the result is again given by the same expression
1 - [2% + 2JF,/ % ], as anticipated in the main text. Isotropic states of two qubits lie on the blue line in
figure 1. Entangled isotropic states (with F > 1/2) have AvSk = LQU > 2 73‘/3
simple proof that some entangled states lie on the left of the curve LQU = 1/2.

so that

~ 0.09. Therefore, this gives a

Appendix D. Integrals over the unitary group
Consider a general integral of the form
[ @ V) Ui, Ui Ui, (U1 (U0 AU Dt (1)

where U'is a unitary matrix acting on the Hilbert space Hy, dj; (U) is the Haar measure over the unitary group
{U (Ny) } and Ny = dim(Hy). Such an integral is called a moment of order (1, m) of the unitary group and is
zero whenever n = m [49]. Inthe case n = m, the integral can be computed using the Weingarten calculus [50]
and yields the expression [51]

n
Z c(n, o) H 6iaf,—(a) 6jak7'n(u)’ (D2)
0, TES, a=1
where o and 7 belong to the symmetric group, i.e. they are permutations of n elements, and ¢ (n, o) are the so
called Weingarten functions which depend on the number of elements appearing in the integral and on the
particular permutation of those n elements. The analytic expression of the Weingarten functions is explicitely
known for small values of 1 [51], and it can be computed for higher # with some effort.
Note that the twirling channel implicitly contains an integral of the form equation (D1), with n = m = 2.

D.1. Weingarten functions for thecase n = m = 4

The case n = m = 4is particularly interesting to us since it appears in the computation of the variance of the
skew information. We report here the Weingarten functions for n = 4, taking them from [51]. Firstlet us set
some notation to deal with permutations. A permutation o of 4 elements will be written as its action on the
string {1, 2, 3, 4}. So for example, the permutation (3 2 4 1) maps {1, 2, 3, 4}to {3, 2, 4, 1}, i.e. brings the
first element to the fourth place, the third element to the first place, the fourth element to the third place and
leaves the second element unchanged. Where possible we will index these permutation by the associated
permutation class, e.g. (3 2 4 1) — [o] = [1, 3] as given by one cycle over three elements (1, 3 and 4 in the
example) and one cycle over one element (2 in the example). With this in mind, we can now write
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g 6(4) g, NX)
(o] = [4] —
(Nx — 3)(Nx — 2)(Nx — 1)Nx(Nx + 1)(Nx + 2)(Nx + 3)
2N% — 3
(o] = [1, 3] X
(Nx — 3)(Nx — 2)(Nx — 1)Nx(Nx + 1)(Nx + 2)(Nx + 3)
2
(o] = 27 Mo .
(Nx — 3)(Nx — 2)(Nx — 1)Nx(Nx + 1)(Nx + 2)(Nx + 3)
o] = [, 2] !
(Nx — 3)(Nx — )Nx(Nx + 1)(Ny + 3)
(0] = [] Ny — 8N: + 6
(Nx — 3)(Nx — 2)(Nx — 1)Nx(Nx + 1)(Nx + 2)(Nx + 3)

In other words, the Weingarten functions depend only on the class of the permutation. An important thing to
notice is that the Weingarten functions with n = 4 diverge for Ny < 4 (and in general they diverge when

Nx < n). However, it has been proven that the sum in equation (D2) does not diverge because the poles in each
term cancel out after careful simplifications [49]. This allows us to compute the variance of the skew information
even for two-qubit states (having Ny = 2).

Appendix E. Second moment of the skew information for two-qubit states

The second moment of the skew information is defined as
(I*(p, A Yuyy = fdMH(UA)(Tr[[J_ U AU (ED
This expression can be expanded as
[ A UD T FUNUS BT+ Tel UM} (B UMAUSP
— 2 Tr[JpUsAa U Us AU} /p1 Tr[Jp UsAa U} yp UsAa U D). (E2)

The first term in equation (E2) can be integrated using the properties of the twirling channel and the result reads

2Tr[ALP — Tr[A}] N 2Tr[A}] — Tr[AGP
6

The second term in equation (E2) can be rewritten by expanding each operator on a basis { |i)4 | j)5} of Hap. For

simplicity we fix the local basis of A to make A4 diagonal.

f djuyg (Un) Tr[ UM U S5 UsAL UL

f dpug (Un) Te[JP UL U S = Tra[ (Trs[p])*].  (E3)

- fd/'LH(UA)[Z\/_ll] 12] UIZ 13A UZ n \/—14] is, ] UIS IGA Ulz i

X Z\/—// 2//U121%A U/ I\/—h;]/ ;1 /UlslsA U/ /

- ZV Pisjiziy, NP isjprisi, N P il il isisN P i, l/JIA A’GAlaA’é

iji'j
xfd,uH(UA)(U U UppUp s UL UL UL LU ). (E4)

inis Yisic Yinis Yisig Yigiy Yiei iy igi)
Using the results of appendix D, we can compute the integral over the unitary matrices and equation (E4) reduces to

S, 0, 2) F(ro, A) Ga(, p) (E5)
where
F(1o, Ay) = Z AN A, A RJr

izigilil

{inigi {/5illyro ({iniginil)) (E6)

is a function which depends only on the spectrum and on the composition of permutations 7 o, while

G p) = 32 Z ZZ\/_ll]l i2j, \/_1412 is) */_1111 lsz*/_mz’ 15’1’6 linisizisht (linivipil)) (E7)

iyigigisifi 214’5]112 J, Jz
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is a function which depends only on the state and on the permutation 7. Both F and G, can be analytically
computed for each choice of o and 7. Assuming that the spectrum is traceless, we find that F depends only on the
class on the permutation 7o

TO F(ro, A4)
o] = [4] Tr[A}]
[ro] = [1, 3] 0
E8
[ro] = [22] Tr[AL)? (58)
[ro] = [P, 2] 0
[ro] = [11] 0
while G, assumes different values even among permutations belonging to the same class.
T GZ (T’ P) T G2 (7-) /0) T G2 (7—: P)
(1234) 1 2314 €& (G412 D
(1243) A 2341 F 3421 g
(1324 B (2413 F @123 F
(1342) E (2431 E (4132 & (E9)
(1423) & 3124 E 4213) &
(1432) B (3142 F @“231)| B
(2134) A (G214 B @4312] ¢
(2143) C (3241] € @321| D
The various letters in the last table are shorthand notation for the following expressions
A = Trp[(Tral Jp D1,
B = Tral(Trzlp])* 1,
C=A,
D =Try[(Trs[(y ® (ap) - Ta @ (o5 D1
E=Trl[Jp - (Trglp] ® Tl /P D],
F=Tul(Trs[Jp - Ta @ Tl JpDD?1,
G ="Try[(Trs[(Ay @ Jpap) - T © JPap)]) Supal. (E10)

In the last expression, Sy 4’ is the swap operator [26] discussed in appendix A.
The third term in equation (E2) can be tackled similarly to the second term (note that we explicitly wrote it
with U, and U] appearing 4 times each). The result is

—2) . _c(4,0,2) F(1a, A) Gs(7, p) (E11)

where Fis the defined in equation (E8) and G; is defined below

T Gi(1, p) T Gs(t,p) T Gs(7, p)
(1234 1 2314 1 3412 &
(1243) A (2341 A (G421 B
(1324 B (2413) A 4123) 2
(1342) E (2431 A (4132 28 (E12)
(1423) E (3124 2B (4213) £
(1432) B (3142 26 (4231 B
(213 4) 2 (3214 B (4312 B
(214 3) 24 (3241) S (4321 I3

By putting together equations (E3), (E5) and (E11) we find
22 4 4y 272
(P, Ao = 2Tr[A4] - Tr[AL] n 2Tr[AL] - Tr[A4] B
+ ZC(4> g, 2) F(TJ> A) (GZ(T: P) - 2G3 (7—) P)) (E13)

oT

Unfortunately, we cannot further simplify this expression to explicitly show that the poles appearing in each
c(4, o, 2) cancel out. However, a direct computation proves that equation (E13) does not diverge.
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