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Abstract 

The metabolic networks of bacteria have been evolving for billions of years. The results 

of this unceasing evolution are networks, which are incredibly complex, tightly-

regulated, strikingly niche-specific, and extremely diverse across species. Albeit it is 

beyond dispute that the structure and function of metabolic networks have evolved to 

be well-adapted to the conditions of an organism’s lifestyle and natural habitat, 

surprisingly little is known about the adaptive origin of metabolic traits. 

In this thesis, I will address one specific aspect of bacterial metabolic network 

evolution: the adaptive loss of metabolic capabilities. In this context, a comparative 

study of the biochemical networks of more than 900 bacterial species revealed that the 

loss of biosynthetic genes is a much more common trend than previously thought and 

is not only limited to bacteria living in nutrient-rich and constant environments, such 

as intracellular symbionts. In fact, more than 75% of analysed bacteria including free-

living organisms are lacking the ability to produce one or more metabolites, which are 

required for cell growth, thus, rendering these organisms auxotrophic. 

However, do bacteria lose metabolic reactions due to neutral genome erosion (i.e. 

drift) or are auxotrophies adaptive and their evolution therefore governed by natural 

selection? This question was addressed using a synthetic approach, in which 

biosynthetic genes for amino acid, nucleotide, and vitamin production were deleted from 

the prototrophic ‘wild type’ Escherichia coli and Acinetobacter baylyi strains, thus 

rendering the engineered mutants auxotrophic. In virtually all cases, the auxotrophs 

had an increased fitness compared to their respective prototrophic ancestor when the 

focal metabolite was sufficiently present in the growth medium, even in direct 

competition. 

Analysing the fitness consequences of multiple biosynthetic gene deletions in 

different biosynthetic pathways per genotype revealed further that both, positive and 

negative epistatic interactions between loss-of-biosynthetic-function mutations affected 
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the degree of the fitness advantage of auxotrophs. In line with these results is the 

observation, that most pairs of auxotrophies in the bacterial metabolic networks 

analysed occurred more often than expected by chance. These results suggests, that 

adaptive benefits can explain the loss of metabolic capabilities from bacterial genomes. 

Furthermore, measuring the selective benefits of auxotrophies in two different 

carbon environments showed that the fitness of auxotrophic mutants is strongly 

environment-dependent. This implies that reductive evolution by the successive loss of 

biosynthetic genes depends – beyond the presence of the focal metabolites – also on the 

nature of the resources available in the habitat. 

Following the observed strong carbon source-dependent growth- and fitness 

consequences of metabolic gene loss, the question emerged: What metabolic causes can 

explain the unexpectedly substantial fitness advantages gained upon biosynthetic gene 

loss if the focal metabolite is present in the environment? To answer this question, a 

metabolic network model of E.coli was used in combination with flux balance analysis 

to computationally estimate how much of a provided carbon source is allocated to the 

production of a given metabolite. The results of this analysis showed indeed that the 

biosynthetic costs strongly depended on the chemical nature of the carbon source, which 

was provided for growth. Thus, the architecture of the metabolic network, with which 

different carbon sources are transformed into metabolites, could explain the observed 

costs. Using the amino acid metabolism in E. coli as a test case, it was further possible 

to experimentally verify the in silico estimations. 

In conclusion, resource-efficiency is a major criteria for the metabolic adaptation of 

bacteria to improve their ability to thrive in their natural environment. The applied 

systems biological approach using an economic concept of metabolite production costs 

facilitated new insights into the evolution of bacterial metabolic network structures and 

metabolic flux coordination. Finally, I argue in this thesis that the principle of metabolic 

cost minimisation does not only govern the evolution of metabolism, but likely also 

affects the way bacteria compete and cooperate with other species to optimally utilize 

limiting resources. The results have further direct medical and biotechnological 

implications, as they can for example guide the development of new strategies to control 

the growth of microorganisms. 
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Zusammenfassung 

Bakterien haben sich im Laufe der Evolution an ihre jeweiligen Umweltbedingen 

angepasst. Viele dieser Anpassungen finden auf der Ebene metabolischer Netzwerke 

statt. Die metabolischen Netzwerke von Bakterien bestehen aus hunderten bis 

tausenden biochemischen Reaktionen und sind charakterisiert durch ihre komplexe 

Struktur sowie durch eine starke Regulierung der Reaktionsflüsse. Verschiedene Arten 

von Bakterien unterscheiden sich mitunter hochgradig in der Struktur ihrer 

metabolischen Netzwerke und somit auch in ihren biochemischen Fähigkeiten. Auch 

wenn oft angenommen wird, dass diese Unterschiede eine Anpassung an die jeweiligen 

ökologischen Nischen darstellen, ist bisher wenig über die adaptive Evolution von 

Netzwerkeigenschaften bekannt. 

Diese Arbeit beschäftigt sich speziell mit dem adaptiven Verlust von metabolischen 

Fähigkeiten. Der Vergleich von über 900 metabolischen Netzwerken verschiedener 

Bakterienarten ergab, dass mehr Arten als ursprünglich angenommen Gene verloren 

haben, die sonst an der Biosynthese von wachstumsrelevanten Metaboliten beteilig 

sind. Etwa 75% aller untersuchten Bakterien haben die Fähigkeit verloren, einen oder 

mehrere chemische Stoffe zu synthetisieren, die für das Wachstum notwendig sind. 

Dementsprechend sind diese auxotrophen Bakterien darauf angewiesen, die Metabolite 

aus ihrer natürlichen Umgebung aufzunehmen. Dieses Ergebnis trifft nicht nur auf 

Bakterien zu, die in einer nährstoffreichen Umgebung vorkommen (z. B. intrazelluläre 

Symbionten) sondern auch auf freilebende Bakterien, die oft in nährstoffärmeren 

Umgebungen, z. B. aquatischen Lebensräumen, vorkommen. 

Bisher ist unklar, ob der häufige Verlust von biosynthetischen Fähigkeiten durch 

natürliche Selektion oder durch genetischen Drift erklärt werden kann. Diese Frage 

wurde mit einem synthetisch-biologischen Ansatz untersucht, indem einzelne 

biosynthetische Gene für die Produktion von Aminosäuren, Nukleotiden oder 

Vitaminen aus den Genomen von den Bakterien Escherichia coli und Acinetobacter 

baylyi entfernt und somit auxotrophe Mutanten erzeugt wurden. In einer Umgebung, 

in der der entsprechende Metabolit zum Wachstumsmedium hinzugefügt wurde, 



4 
 

hatten die auxotrophen Mutanten in nahezu allen Fällen eine höhere Fitness als die 

entsprechenden Wildtypstämme, die den Metaboliten weiterhin eigenständig 

herstellen konnten. 

Außerdem wurde die Auswirkung von multiplen Auxotrophien (der Verlust von 

mehreren biosynthetischen Genen) pro mutierten Genotyp auf die Fitness in gleicher 

Weise untersucht. Dieses Experiment zeigte, dass die Auswirkung des Verlustes eines 

biosynthetischen Genes auf die Fitness in über 50% der möglichen Kombinationen 

davon abhängt, ob und welche weiteren Gene anderer Biosynthesewege der Stamm 

bereits verloren hat – ein Effekt, der Epistasis genannt wird. Diese Beobachtung 

stimmt überein mit dem Vergleich von bakteriellen metabolischen Netzwerken, bei 

denen bestimmte Kombinationen von Auxotrophien häufiger und andere 

Kombinationen seltener als erwartet vorkommen. Zusammenfassend lassen die 

Ergebnisse darauf schließen, dass der Verlust von biochemischen Fähigkeiten von 

Bakterien durch selektive Vorteile von auxotrophen Genotypen erklärt werden kann. 

Weiterhin konnte gezeigt werden, dass der Fitnessvorteil von auxotrophen 

Genotypen stark davon abhängt, welche Kohlenstoffquelle zur Verfügung steht. 

Ausgehend von dieser Beobachtung und dem bisherigen Wissen, dass verschiedene 

Kohlenstoffquellen zu verschiedenen Reaktionsflussverteilungen durch das 

metabolische Netzwerk führen, ergab sich die Frage: Wie können die selektiven 

Vorteile von auxotrophen Genotypen in Umgebungen, in denen die entsprechenden 

Metabolite vorkommen, biochemisch erklärt werden? Um diese Frage zu beantworten 

wurde ein metabolisches Modell von E. coli in Kombination mit Flussbilanzanalyse 

(FBA) verwendet, um die biosynthetischen Kosten von Metaboliten theoretisch 

vorherzusagen. Die biosynthetischen Kosten wurden dabei als Anteil einer gegebenen 

limitierten Kohlenstoffquelle berechnet, der während des Zellwachstums für die 

Produktion eines bestimmten Metaboliten benötigt wird. Diese Analyse deutete darauf 

hin, dass die biosynthetischen Kosten tatsächlich stark von der Art der 

Kohlenstoffquelle abhängig sind, welche für das Wachstum zur Verfügung steht. Die 

Unterschiede zwischen Kohlenstoffquellen bezogen auf die Biosynthesekosten konnten 

dabei durch die Architektur des metabolischen Netzwerks erklärt werden. Die 

Modellvorhersagen zu den Kostenunterschieden von Metaboliten, abhängig von der 

Kohlenstoffquelle, konnten weiterhin auch experimentell in E. coli für Aminosäuren 

nachgewiesen werden. 

Die Fähigkeit, limitierte Ressourcen möglichst optimal zu nutzen, ist entscheidend 

für das Wachstum und die Fitness von Bakterien in ihrer natürlichen Umgebung. 

Durch einen systembiologischen Ansatz konnte gezeigt werden, dass die metabolischen 
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Kosten, die mit der Produktion von wachstumsrelevanten Metaboliten in Verbindung 

stehen, die Evolution der metabolischen Netzwerke von Bakterien beeinflussen 

können. Speziell der adaptive Verlust von metabolischen Fähigkeiten kann vermutlich 

auch erklären, warum die Mehrheit von bekannten Bakterienarten nicht mit üblichen 

Techniken im Labor kultivierbar ist und warum viele Bakterien untereinander 

metabolische Produkte austauschen. 

 



6 
 

  



7 
 

 

 

 

 

Contents  

Abstract 1 

Zusammenfassung 3 

Contents 7 

Glossary of terms 11 

Chapter I – Introduction 15 

1. Evolution of bacterial metabolic networks 17 

2. Approaches to reveal and predict bacterial metabolic adaptations 30 

3. Mathematical formalisation and analysis of genome-scale metabolic networks 37 

4. Objectives of this study 42 

Chapter II – Computing autocatalytic sets to unravel inconsistencies 

in metabolic network reconstructions 45 

1. Abstract 47 

2. Introduction 47 

3. Material and Methods 50 

4. Results and discussion 55 

5. Conclusion 64 

Chapter III – Less is more: selective advantages can explain the 

prevalent loss of biosynthetic genes in bacteria 67 

1. Abstract 69 

2. Introduction 69 

3. Material and Methods 71 



8 
 

4. Results 75 

5. Discussion 83 

6. Conclusions and outlook 87 

Chapter IV – Plasticity and epistasis strongly affect bacterial fitness 

after losing multiple metabolic genes 89 

1. Abstract 91 

2. Introduction 91 

3. Materials and Methods 93 

4. Results 98 

5. Discussion 105 

6. Conclusions and Outlook 108 

Chapter V – Metabolic network architecture and carbon source 

determine metabolite production costs 109 

1. Abstract 111 

2. Introduction 111 

3. Results 113 

4. Discussion 118 

5. Methods 121 

Chapter VI – General discussion 127 

1. Reductive evolution of metabolic networks 129 

2. The relationship between microbial growth and metabolism 137 

3. The evolution of autocatalytic reaction cycles in metabolic networks 140 

4. Concluding remarks 141 

Acknowledgements 144 

References 146 

Author contributions to manuscripts 164 

Supporting information for chapter II 167 



9 
 

Supporting information for chapter III 173 

Supporting information for chapter IV 195 

Supporting information for chapter V 211 

Curriculum vitae 219 

Eigenständigkeitserklärung 223 

 

  



10 
 

  



11 
 

 

 

 

 

Glossary of terms 

The terms listed here are frequently used in scientific literature, but, depending on the 

context, sometimes with different definitions. To prevent confusion, this glossary states 

how the terms are used throughout this thesis. 

 

Biosynthetic cost. The amount of an exogenous resource (e.g. carbon source), which 

is required to produce a certain metabolite. 

Core-metabolic network. The intersection of all reactions of the metabolic networks 

of a given group of strains (usually from the same species). In other words: the set 

of reactions, which are part of all metabolic networks of the analysed strains. 

Evolvability. The ability of an organism to evolve heritable phenotypic variation [1]. 

Fitness cost (of a trait). The reduced fitness of a genotype carrying the trait (e.g. 

antibiotic resistance) compared to genotypes without the trait in environments 

where the trait is not needed for growth and proliferation (e.g. in the absence of the 

antibiotic). 

Fitness landscape. A map of individual phenotypes (or sometimes genotypes), which 

are represented as combinations of multiple traits (axes), to the corresponding 

fitness values (surface) [2]. 

Growth efficiency. Amount of biomass produced per unit of assimilated carbon 

source[3]. 

Growth rate (microbial). Number of progeny cells produced per unit of time. 

Growth yield. Same as growth efficiency. 

Life history trait. A trait which affects the reproduction and/or survival of an 

organisms and thereby contributes to the organism’s fitness [4]. 
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Metabolic adaptation. A dynamic evolutionary process that increases the fitness of a 

species in its environment and that relies on beneficial mutations, which affect the 

performance and regulation of enzymes and transporters. 

Metabolic cost. Same as Biosynthetic cost. 

Metabolic flux. The rate at which an enzyme converts the substrate(s) into the 

product(s). 

Metabolic function. In analogy to a mathematical function, a metabolic function is 

the transformation of (a) precursor metabolite(s) into (a) chemically different 

metabolite(s). A metabolic function can be a single reaction or a complete pathway. 

Metabolic genotype. The genetic information of an organisms that affects its 

metabolic capabilities. The metabolic genotype included the structure of the 

metabolic network (determined by enzyme- and transporter-encoding genes), the 

regulatory circuits that control metabolic fluxes (e.g. transcription factors), and the 

kinetic properties of enzymes. 

Metabolic innovation. A newly acquired metabolic phenotype that provides the 

corresponding genotype with a qualitative fitness advantage.  

Metabolic niche. The combination of an organism’s environmental conditions and the 

organism’s lifestyle. 

Metabolic phenotype. The distribution of metabolic fluxes throughout the metabolic 

network and the individual metabolite and enzyme concentrations at a given time 

point. 

Pan-metabolic network. The union of all reactions of the metabolic networks of a 

given group of strains (usually from the same species). 

Plasticity (of metabolic fluxes). The ability of an organism to respond to changing 

environmental conditions by adjusting metabolic fluxes through the metabolic 

network. 

Synthetic biology. The rational construction of a biological system for a specific 

purpose; e.g. the commercial production of value-added compounds or to investigate 

the physiology and behaviour of organisms under defined conditions [5]. The design 

of the system may include the environmental conditions (e.g. nutrient availability, 

pH, or temperature), the consortia of involved organisms, and their genotypes. 
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1. Evolution of bacterial metabolic networks 

Metabolism is utterly central for every organismal life. It provides building block 

metabolites and energy for all cellular processes including macromolecule 

polymerisation, biosynthesis of monomers, transport reactions, cell maintenance, and 

movement. In order to synthesize all required constituents of a bacterial cell, between 

250 and more than 2,000 reactions are required depending on the complexity and 

variability of the organisms’ natural habitats [6,7]. A majority of the reactions are 

catalysed by enzymes, which are encoded by genes [7]. Hence, the genome contains the 

information of a complex network consisting of numerous biochemical transformations, 

which the organism is able to perform. In other words, the metabolic network 

represents the anabolic (i.e. which metabolites can be produced) and catabolic (which 

substrates can be degraded and thereby serve as energy source) capabilities of an 

organism and, at the same time, also the nutritional requirements an organism needs 

to meet in the environment in order to thrive and proliferate. 

All microorganisms allocate resources to various metabolic pathways in response to 

the nutritional condition of the environment [8]. Furthermore, metabolic processes are 

also tightly involved in microbial community activities, for example during the 

assembly of microbial communities [9], the colonisation of new environments [10], and 

communication between cells of the same- or different species including multicellular 

host organisms [11]. 

Due to this intrinsic role of metabolism in determining the evolutionary fate of a 

species, natural selection should act decisively on the structure and regulation of 

metabolic networks. Thus, the architecture of microbial metabolic networks and the 

coordination of its reactions reflect the biotic and abiotic composition of prior selection 

environments in which an organism evolved over generations [12]. Fundamental 

questions in the evolution of biochemical networks are: (i) What biophysical and 

ecological factors govern the evolution of metabolic networks? And, (ii) what 

evolutionary processes are involved? A better understanding of the metabolic 

innovations, which led to the adaptation of bacteria to their habitats will facilitate to 

disclose the factors, which determine how bacteria exploit resources, interact with other 

organisms, and assemble in microbial communities. Furthermore, it will enable 

predictions of bacterial evolution in laboratory settings as well as in natural 

environments. Unravelling the factors that govern the ecology and evolution of bacteria 

on a metabolic network level can be highly relevant for medical, biotechnological, 
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bioremediation, and environmental conservation applications involving 

microorganisms.  

1.1. How can metabolic networks change in the course of evolution? 

The term metabolic genotype refers to the make-up of all genetic traits, which have an 

impact on the organism’s metabolic functions and thereby describes the organism’s 

biochemical capabilities [7]. Mutations, which affect the metabolism of an organism can 

occur at two different levels of the metabolic genotype: First, a metabolic network can 

change on a structural level by adding or deleting certain reactions. Second, a metabolic 

network can change on its functional level, which includes how individual reactions, 

transporters, and whole pathways are coordinated in response to environmental 

conditions and/or the cellular state [8]. The function of a metabolic network further 

includes the kinetic parameters of enzymes, which determine the dynamics and limits 

of fluxes through the respective catalysed reaction. In combination with the 

environmental conditions, the metabolic genotype determines the expressed metabolic 

phenotype, which is characterised for example by the distribution of fluxes, the 

concentration of metabolites and enzymes, the expression rates of metabolic genes, 

nutrient uptake- and metabolite secretion/release rates.  

 

                                                
*  For Michaelis-Menten enzyme kinetics, ��  is the substrate concentration, at which the 
reaction rate equals half of the maximal reaction rate ����. 

 
Figure 1. Scheme of the elements of the metabolic genotype and metabolic phenotype. The 

genome of an organism determines the metabolic genotype, which describes the structure and 

function of the metabolic network. The function of the metabolic network comprises the regulatory 

circuits, which control metabolic gene expression and enzyme activities. Moreover, the function 

includes also the kinetic parameters of enzymes (e.g. reversibility, maximum reaction rates ��	
, 

and Michaelis-Menten constants ��
*). Other factors – besides the environment and the metabolic 

genotype – that may affect the metabolic phenotypes are biophysical constraints and stochasticity. 
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Evolution of the metabolic network structure 

In the past decades, new developments in isolation-, screening-, and sequencing 

methods revealed a tremendous diversity within the prokaryotic kingdom with respect 

to the species lifestyles, habitats, metabolic phenotypes, or genome sizes [13]. In spite 

of this rich diversity, the biochemistry for the formation of the cell’s constituents is 

rather conserved across bacteria [14]. The biosynthetic pathways of amino acids, 

nucleotides, lipids, carbohydrates, and vitamins are frequently recurring across known 

bacterial species and only very few alternative pathways are known for a given 

metabolite (see supporting information for chapter III for merged biosynthetic 

pathways known in bacteria and reference [14]). For instance, there is only a single 

native pathway found so far for the biosynthesis of tryptophan, which involves five 

enzymes converting the same substrates into the identical intermediates across all 

domains of life [15,16]. Despite the limited number of alternative pathways for the 

production of a given metabolite, combinations of all alternatives for all metabolites 

required for cell growth create a multi-dimensional space of metabolic reaction sets and 

thereby a large number of theoretically possible metabolic genotypes (Fig. 1.1) [17,18]. 

Several molecular mechanisms are described, which can result in the acquisition of 

new reactions or pathways. For example, after the duplication event of an enzyme-

encoding gene, one copy can potentially evolve a new catalytic function, which may has 

been only a weak side activity of the original enzyme, while the other copy retains its 

original function [19,20]. New reactions can also be acquired by horizontal gene 

transfer, which is especially prevalent in prokaryotes [21]. In contrast to the evolution 

of a new enzymatic activity evolving upon gene duplication, a new catabolic activity 

does not need to evolve de novo when an enzymatic reaction is added to a metabolic 

network via horizontal gene transfer. In the case of E. coli, it has been estimated that 

almost all enzymatic reactions, which were acquired in the past 100 million years were 

obtained via horizontal gene transfer [22]. In contrast, only a single gene pair (i.e. 

ornithine carbamoyltransferase 1 and 2) originated due to a duplication event within 

this time period [22]. 

Loss of metabolic reactions is the result of loss-of-function mutations that can have 

diverse molecular causes, e.g. complete or partial gene deletions [7] and 

pseudogenisation (for example through frame-shift mutations) [23]. The loss of 

reactions from the metabolic network is especially common in bacteria with symbiotic 

lifestyles. For example, the networks of the endosymbiotic bacteria Buchnera 

aphidicola and Blattbacterium cuenoti comprise each less than 300 reactions [24,25], 

whereas E. coli or B. subtilis, which can be found in various and nutritional more 
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unstable environments, are able to catalyse more than 1,400 reactions [26,27]. 

However, a comprehensive survey of extent of metabolic capability loss in natural 

bacterial populations is still missing. Yet, the evolutionary reduction of metabolic 

complexity through the loss of biochemical abilities seems to be a frequent trend for 

many life forms. For example, even many vertebrate species including anthropoid 

primates have repeatedly lost the ability to synthesize vitamin C [28]. 

Although, the sizes of metabolic networks and their biosynthetic capabilities seems 

to be strongly dependent on the environmental conditions, there are also properties of 

the global network organisation, which are conserved across all domains of life [29]. 

One of such structural features are autocatalytic cycles. A metabolite is considered 

autocatalytic if it is required for its own biosynthesis [30]. Hence, an initial amount of 

the autocatalytic metabolite is necessary to enable its production and thereby creates 

an autocatalytic cycle. Interestingly, the compounds within metabolic networks, which 

have this self-replicating property, are well-conserved across all domains of life and 

include typically the main energy currency ATP and reaction cofactors such as NAD+, 

coenzyme A, tetrahydrofolate, and quinones [30]. Furthermore, the number of 

autocatalytic compounds in metabolic networks is smaller than expected in random 

biochemical reaction networks [31]. It has been proposed, that autocatalytic cycles play 

a major role in the origin of life [32,33], not only on the level of metabolic networks; e.g. 

a DNA molecule is required for its own synthesis/replication. Hence, the conservation 

of autocatalytic cycles embedded in metabolic networks indicate that not only 

environmental conditions, but also biochemical and biophysical constraints can govern 

the evolution of network structures. 

In summary, the architectures of bacterial metabolic networks are highly diverse 

with respect to the network size, the ability to utilize different substrates, and 

biosynthetic capabilities. Furthermore, the network structure is highly dynamic on 

evolutionary time scales due to various molecular processes. 

Evolution of metabolic network function 

The function of a metabolic network denotes how the network of biochemical reactions 

operates in response to environmental and endogenous conditions by adjusting and 

distributing metabolic fluxes throughout the whole network. Hence, the network 

function signifies, which metabolic phenotypes an organism can possibly express. In 

general, cells face the task to simultaneously coordinate the activity of hundreds of 

different enzymes to provide energy, building block metabolites, and growth factors 

required for cell maintenance and growth [8]. The regulatory circuits that allow 
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coordinated flux distributions are complex and involve various molecular mechanisms: 

The flux through an enzymatic reaction can be regulated by adjusting the enzyme’s 

concentration level via transcriptional regulation, e.g. by governing promotor activity; 

or translational regulation, e.g. by controlling the recruitment of ribosomes to mRNA. 

Furthermore, the activity of the enzyme itself can be altered by post-translational 

regulation, namely covalent protein modifications and allosteric regulation by 

metabolite binding. 

The regulatory circuits for the coordination of bacterial metabolism are much more 

complex than the structure of the metabolic network itself. For instance, the 

abovementioned perfectly conserved pathway for tryptophan biosynthesis is regulated 

by very diverse mechanisms across microorganisms [16]. Hence, due to the various 

levels of metabolic flux coordination there are more targets for natural selection to 

change functional properties of metabolic networks than structural traits. Moreover, in 

contrast to the metabolic network structure, which is a qualitative trait (reactions are 

either present or absent from a given metabolic genotype), the metabolic fluxes that are 

carried by enzymatic reactions under certain environmental and cellular conditions are 

quantitative traits and, thus, allow more fine-tuned evolutionary adjustments. This 

complexity of metabolic regulation provides bacteria with extensive metabolic plasticity 

to respond to different environmental conditions and also with high evolvability to 

metabolically adapt to novel environments [34–36]. Indeed, evolution experiments 

using bacteria have provided evidence that metabolic regulation is highly flexible 

[37,38] and new regulatory programs, which steer the activities of a larger number of 

central metabolic enzymes can evolve within surprisingly few generations [39,40]. For 

instance, Charusanti et al. (2010) deleted the major metabolic gene pgi, which encodes 

a phosphoglucose isomerase, a central enzyme from glycolysis [39]. The gene deletion 

caused a nearly 5-fold decrease in the growth rate of the mutant compared to the wild 

type. In an evolution experiment over 50 days the mutant regained a 3.6-fold increased 

growth rate compared to the un-evolved mutant. The authors were able to show that 

the growth recovery was facilitated by mutations in genes encoding other central 

enzymes and global metabolic regulators, which re-distributed the metabolic fluxes 

through the network and thereby allowed a faster conversion of the carbon source 

glucose into biomass [39]. 

Several evolution experiments have shown, that adaptation of bacteria is often 

driven by early mutations in global metabolic regulators [41–44]. Yet, the regulatory 

consequences of these mutations for the expression of other genes and enzyme activities 

is challenging to understand and often remain unresolved [45]. A possible way to fill 
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this gap of mechanistic understanding is to ask how metabolic fluxes should be 

distributed according to prior important evolutionary selection criteria [40], while 

disregarding the molecular mechanisms, which ensure flux coordination. This approach 

has been successfully applied to predict metabolic phenotypes* (flux distribution) of 

cells without the need for comprehensive knowledge of the regulatory circuits that 

underlie metabolic decision making [46]. For example, experimentally evolving E. coli 

for 900 generations in minimal medium with lactate as sole carbon source, which E. 

coli initially utilized with sub-optimal yield (number of cells per unit of utilized lactate), 

the bacterium increased substantially in growth rate and yield [47]. This derived 

phenotype was achieved by rewiring the regulatory network in order to redistribute 

metabolic fluxes towards the predicted optimum [40]. 

In summary, the regulation of cellular biochemical networks involves multifaceted 

molecular mechanisms. The regulatory network, which coordinates reaction fluxes adds 

another dimension to the complexity of metabolic networks. In contrast to the structure 

of the metabolic network, insufficient information of regulatory circuits exists and 

thereby hamper a mechanistic understanding of how the whole-cell metabolism is 

coordinated. Yet, mathematical modelling of how metabolic fluxes through a metabolic 

network should be distributed can provide valuable insights into the regulatory 

adaptation to different environmental conditions and different selection pressures. 

1.2. Metabolic reaction loss through genetic drift 

As shown in the previous section, several molecular processes are known, which can 

genetically cause alterations of the metabolic network architecture and its functions. 

However, a fundamental question remains: Which evolutionary forces govern these 

changes and, thus, the evolution of metabolic networks [22]? 

In this thesis, the main focus is on the loss of metabolic capabilities through the loss 

of biosynthetic genes. A comparison of the gene content of 35 groups of closely related 

bacteria has suggested that the evolutionary rate of gene loss is three times higher than 

the rate of gene gain [48]. Furthermore, the genome reduction is typically also 

associated with metabolic network diminution through loss of enzymatic reactions 

[49,50]. While the selective advantages of reaction additions to the metabolic network 

can be typically explained by an improved network functionality [22,51,52], the 

potential benefits of reaction loss are more difficult to understand. So far it remains 

                                                
* The method for the prediction of metabolic flux distribution is explained in section I.3.2. 



23 
 

highly discussed and obscure to what extent the reductive evolution of genomes (e.g. as 

in the case of endosymbiotic bacteria) and metabolic networks is driven by adaptive or 

neutral processes. 

Metabolic genes loss, and thus network size reduction, from a population can be 

caused by genetic drift. This is because mutations in metabolic genes can accumulate 

and passed to the next generation when natural selection is not strong enough to 

remove mutations, i.e. if they do not interfere with the organism’s ability to survive and 

reproduce. The frequencies of such mutations within a population can increase thereby 

solely due to random sampling of alleles from the population for every new generation 

[53]. The effect of genetic drift is especially large if the population undergoes repeated 

bottlenecks of relatively small population sizes. It has been proposed that bacterial 

endosymbionts of insects experience serious bottlenecks when they are transmitted 

from one host individual to another and that this may explain the strongly reduced 

genome- and metabolic network sizes of these bacteria [54–56]. Moreover, 

experimentally evolving populations of Salmonella enterica, which were regularly 

exposed to severe one-cell bottlenecks also showed extensive genome size reductions 

within relative short evolutionary time [57]. 

Taken together, genetic drift can have a strong impact on the evolution of metabolic 

networks. However, the contribution of genetic drift on the loss of metabolic capabilities 

in natural populations remains difficult to estimate, because important knowledge on 

the evolutionary history of the species including potential population size bottlenecks 

and previous selection pressures is usually lacking.  

1.3. Metabolic reaction loss through natural selection 

Another evolutionary force that could explain metabolic gene, and thus enzymatic 

reaction loss is natural selection. It has been proposed that natural selection could 

favour metabolic gene loss by a process termed genome streamlining [58]. This 

hypothesis poses that the loss reduces the metabolic burden of a cell and thereby results 

in selective advantages of biosynthetic-deficient genotypes over other genotypes, which 

still have to bear the cost of the focal biosynthetic function [58]. Yet, the contributions 

of different cell-physiological factors on the metabolic burden of a given biosynthetic 

function remain difficult to estimate. These factors include (i) the metabolic resource 

costs that are caused by the flux through the corresponding reaction or pathway to 

produce one unit of the biosynthetic product, (ii) the costs to produce and maintain the 

respective enzyme levels, (iii) the costs to maintain the genes within the genome, and 
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(iv) the resources required for the regulatory circuits that control the expression of the 

pathway and the activity of its enzymes. In this thesis, I will mainly focus on the first 

factor: the metabolite production costs. 

Metabolite production costs 

Like all other organisms, bacteria require several nutrients from their environment for 

cell growth. The major bioelements constituting the organic material of the cell are 

carbon, hydrogen, oxygen and nitrogen. Another requirement is an energy source, 

which is utilized to build ATP, the primary energy carrier within cells [14]. Phototrophic 

bacteria obtain their energy from light to create the high-energy phosphate bonds in 

adenosine triphosphate (ATP). Chemotrophs enzymatically break down chemical 

compounds by exergonic reactions, which are coupled to the formation of ATP from ADP 

and inorganic phosphate Pi. Most of the known bacteria are chemotrophs and a majority 

of them in turn are chemoorganotrophs, which use organic compounds as energy source 

[59]. Hence, metabolism fulfils, in most bacteria, the dual function of energy supply 

(catabolism) and synthesis of monomers (anabolism), which are required to build all 

cell constituents [3]. 

Any metabolic function that consumes resources induces an intrinsic burden, a 

metabolic cost, to the cell because, the used resources are not available anymore for 

other cellular functions. In general, microbial cells face the problem to allocate 

resources to several different cellular processes [60]. One particular resource allocation 

problem is the distribution of fluxes (i.e. the rate at which an enzyme converts a 

substrate into the product) through the metabolic network to optimally provide building 

block metabolites (i.e. amino acids, nucleotides, lipids) and growth factors such as 

vitamins and co-factors for cell growth [46]. The biosynthesis of each metabolite thereby 

has a metabolic cost depending on the resource requirement of the biosynthetic 

pathway.  

For well-studied microorganisms such as E. coli, B. subtilis, and Saccharomyces 

cerevisiae most biochemical reactions, which are part of the organism’s metabolic 

network are presumably known [14].  Hence, for those microorganisms it is possible to 

estimate the costs of certain biosynthetic functions based on the structure of the 

metabolic network [61–63]. The terms metabolic costs and biosynthetic costs, are 

frequently mentioned in the context of the evolution of biochemical networks and 

denote how much resource an organism needs to invest in the biosynthesis of a specific 

metabolite. Several different currencies have been used to quantify these costs, which 

is due to the fact that different types of resources can be considered for cost 
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quantification. For example, the carbon- or nitrogen source can be used to determine 

the bioelement costs or ATP for the bioenergetic costs. ATP is often considered as the 

major energy currency of cell. However, quantifying metabolic costs as bioenergetic 

currency in terms of ATP can be misleading because, (i) the cell itself produces its ATP 

pool whose production consumes and depends on other resources (e.g. light or organic 

compounds), and (ii) the transformation of a carbon source via biosynthetic pathways 

into a given metabolite does not necessarily consume ATP. The biosynthesis of some 

amino acids for instance even produces ATP from ADP and Pi [63]. Yet, this does not 

necessarily mean that these biosynthetic functions do not entail bioenergetic costs on 

the cell, because an organic energy source may also serve as a carbon source, especially 

since most bacteria derive their energy and carbon from degrading organic compounds. 

In this case, the chemical transformation of the carbon source into a metabolite diverts 

also a fraction from the potential energy source and has, thus, also bioenergetic costs. 

Craig and Weber (1998) combined bioenergetic- and carbon costs by estimating the 

biosynthetic costs of amino acids as the amount of ATP that is consumed on the 

biosynthetic pathway plus the amount of ATP that could be produced if the carbon 

source would be completely oxidised and not transformed into the focal amino acid [62]. 

An alternative approach is to directly quantify biosynthetic costs as the amount of an 

organic resource that is needed as ‘material’-carbon source to build the focal metabolite 

plus the resource quantity required as energy source to fuel the reactions of the 

biosynthetic pathway (chapter V). 

Although different approaches exist in the literature to assess biosynthetic costs, 

three main factors determine the cell’s metabolite production expenditures. First, the 

architecture of the metabolic network designates possible biochemical transformations 

from an available resource towards the focal metabolite [14]. Second, the structural 

complexity of the metabolite contributes to the bioelement and energetic requirement 

for its biosynthesis [64], and third, environmental conditions, especially the nutritional 

composition of the organism’s habitat, affect metabolite production efficiency [65]. In 

context of the latter factor, chapter V shows how the chemical nature of different carbon 

sources affect the biosynthetic costs of proteinogenic amino acids. 

Fitness consequences of biosynthetic costs 

The natural environments of most microbes are limited in bioelement resources [4]. In 

such habitats, the number of progeny cells that can be produced by a microbial 

population is constrained by the quantity and quality of available resources [4]. 

Furthermore, a microorganism is typically also in a constant battle for confined 
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substrates with other species and genotypes [66]. Hence, the growth and survival of an 

organism is closely connected with the strategic exploitation and allocation of limited 

resources [67].  

Cell growth and reproduction requires the joint operation of various biosynthetic 

processes. Each process entails metabolic costs (see previous section) depending on the 

amount of resources needed to produce one unit of the biosynthetic product and the 

amount of the product required per unit biomass. When resources are limiting, 

metabolic costs can directly translate into fitness costs, because any mechanism that 

reduces the resource consumption of a biosynthetic process would increase growth and, 

hence, also the organism’s fitness ([60], chapters III and V). It is therefore not 

surprising that microorganisms are under strong selective pressure to economize their 

resource allocation and consumption by metabolic processes [61,68]. 

One interesting example of how biosynthetic costs can govern genetic changes in 

the course of evolution of a species is the amino acid composition of highly-expressed 

proteins [61,62,64]. Usually, only a small fraction of amino acids within a protein has a 

specific function, which is related to the amino acid’s side chain [69]. Hence, non-

synonymous mutations in those parts of the protein, which do not necessarily disrupt 

the function of the protein may only marginally affect fitness [69]. In contrast to this is 

the observed strongly biased usage of amino acids in highly-expressed proteins in many 

tested organisms [70]. Richmond (1970) hypothesized, that the amino acid composition 

of proteins has evolved as a response to natural selection, which was not mainly 

directed by the protein’s function, but by constraints in the synthesis process of the 

protein itself [68]. Indeed, Akashi and Gojobori (2002) showed that differences in 

biosynthetic costs between the 20 proteinogenic amino acids constrain their frequencies 

in the proteome of the bacteria E. coli and B. subtilis [61]. In other words, less-costly 

amino acids (e.g. glycine or alanine) are more frequently incorporated into highly-

expressed proteins than more costly amino acids (e.g. tryptophan or phenylalanine). 

Later, similar cost selection effects, which direct the amino acid usage in proteomes, 

were detected in a broader range of bacteria [71] and even in eukaryotes and archaea 

[65]. These examples illustrate that metabolic costs are endogenous factors contributing 

to the molecular evolution of genomes through natural selection. 

Furthermore, the stringent regulation of biosynthetic pathways implies that the 

production of metabolites is costly for the organism and affects its fitness. A commonly 

found regulatory motif is a feedback inhibition loop. Here, the end product metabolite 

of a pathway controls its own production by inhibiting the flux through the pathway as 

the concentration of the metabolite increases ([e.g. 16]). Such regulatory circuits ensure 
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that the production rate is tuned to match the rate at which the metabolite is required, 

thereby avoiding waste of limiting resources [72]. 

As already mentioned, biosynthetic costs are largely determined by the metabolic 

network. It is important to note that also the metabolic network itself is shaped by 

evolutionary processes and so are biosynthetic costs. It is widely acknowledged that 

biosynthetic cost minimisation is an objective of organisms especially in conditions of 

nutrient scarcity [73,4]. The cost minimisation for fitness maximisation is even often 

considered as basic design principle of metabolic networks [12,67]. Such an 

‘engineering’ perspective on the evolution of biochemical networks has been 

demonstrated to successfully predict evolutionary changes of the network topology [22] 

and metabolic phenotypes (i.e. metabolic flux distributions; see section 3.2). However, 

it is essential to recognise the metabolic networks we can find today in nature not as 

static entities but as the outcome of accumulated metabolic optimisation. 

Taken together, biosynthetic costs are a limiting factor of microbial fitness and thus 

shape the evolution of microorganisms on the level of the metabolite usage, the 

regulation of biosynthetic pathways, and the structure of the metabolic network. 

Metabolic complementarity and the pan-genome 

The evolution of the metabolic networks might not only be governed by the abiotic 

composition of the environment but also by the metabolic capabilities of co-existing 

organisms [74]. One possible adaptation of a microorganisms to the presence of another 

microbial species could be the evolution of metabolic strategies to better compete for 

limiting resources [66,75]. Another possibility is that the metabolic activities of one 

species benefits another [76], for example the release of metabolic waste products by a 

community member could serve as a resource for another strain [77,78]. The result of 

obligatory interactions based on the exchange of metabolites – termed metabolite cross-

feeding – are interconnected metabolic networks. These networks are characterised by 

metabolic complementary, meaning that some metabolic functions, which are seemingly 

essential in the environment of the strains are portioned to the different strains 

residing in the community [76]. 

In fact, a comparison of 61 Escherichia coli and Shigella spp. genomes revealed a 

surprisingly extensive plasticity in gene content: 95% of all predicted gene families were 

only present in a subset of the 61 genomes (i.e. the pan-genome; [79]). Interestingly, the 

pan-genome contains also metabolic genes, which were deemed essential for the growth 

of E. coli [80–82]. Thus, the strains, which lack these genes must complement the 

missing metabolic capability either by environmentally available metabolites or by the 
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provisioning of the focal metabolites by strains, which coexist in the microbial 

community. 

A theory, which could explain the evolution of such metabolic complementary is the 

Black Queen Hypothesis (Box 1; [83]). Briefly, it assumes that metabolic functions are 

‘leaky’, which means that a certain proportion of the product metabolite is released from 

the producer cell and therefore available as public good for other cells, which may lose 

the genes for the specific metabolic function to reduce their metabolic burden. 

Furthermore, the exchange of metabolites upon the loss of metabolic functions may 

also be the basis for the evolution of cooperative interactions [76,84]. Cooperative 

metabolic cross-feeding in microbial communities occurs when certain compounds are 

exchanged between two or more parties in the consortia while each party receives a 

mutual benefit. Although, it has already been shown that the cooperative exchange of 

metabolites can be explained by selective advantages of cooperative genotypes over non-

cooperators, the metabolic factors that favour the evolution of the division of 

biosynthetic labour remain so far widely unexplored. 

Taken together, microorganisms do not live in pure isolation in nature. In contrast, 

metabolic interactions between different species, which coexist in the same 

environment are prevalent in microbial communities [85,86]. Thus, to understand the 

adaptive evolution of metabolic networks, including the loss of metabolic reactions, it 

is necessary to consider also the ecological interactions between species. 

Epistasis 

Epistatic interactions between mutations refers to the effect when the phenotypic 

impact of one mutation depends also on the presence of another mutation [87]. The 

Box 1. The Black Queen Hypothesis 

The Black Queen Hypothesis (BQH) was formulated by Morris et al. (2012) to explain genome 

reduction and the evolution of dependencies through adaptive gene loss [83]. It uses an analogy 

to the card game Hearts, in which a typical strategy for a player is to avoid to have the queen of 

spades (black queen) on her/his hands at the end of the game. The BQH posits that, in evolution, 

certain biological functions are, like the black queen card, costly and therefore provide genotypes 

with selective advantages, which have lost the genes to perform the function. However, the 

function also needs to be retained, at least in a subgroup of the community members, because it 

provides an essential product that is required by all individuals [83]. This requires, that the 

biological function is also ‘leaky’, which means that the product of the function is, at least partly, 

available as public good for neighbouring cells. 
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interactions between mutations thereby significantly affect also the shape of the fitness 

landscape (Box 2, [88]). Several studies have already shown, that epistatic interaction 

between gene deletion mutations, which cause the loss of metabolic functions, are 

prevalent in bacterial metabolic networks [89,90,88]. Hence, the reductive evolution of 

microbial genomes, which might be associated with the adaptive reduction of the 

bacterial network, is likely to be also strongly influenced by epistasis. However, the 

functional and molecular associations, which cause epistatic effects between metabolic 

genes often remain unresolved. 

Box 2. An epistasis measure for fitness – the multiplicative model 

Epistasis describes the effect when the phenotypic outcome of one mutations is altered if 

combined with another mutation [87]. To quantify epistasis for a quantitative phenotypic trait 

between two mutations we need to know what phenotypic effect of the combined mutations is 

expected, if the two mutations are independent of each other. For fitness as phenotypic outcome 

the most commonly used model to estimate the expected fitness effect of two mutations is the 

multiplicative model [87,91–93]. This model states that the fitness effect of the combined mutations 

is given by 

�
��� � �
���� � � 

Where WA’B’ denotes the observed relative fitness of the double mutant A’B’ compared to the un-

mutated ‘wild type’ of fitness �
� � 1. WA’ and WB’ are the fitness values of single mutants A’ and 

B’, respectively, and 	� is the fitness effect, which is due to epistasis. No epistasis (i.e. � � 0) 

ensues if both mutations independently affect the mutant’s fitness (see figure below). Positive or 

negative epistasis occurs if the effect of mutation A’ is accelerated (i.e. 	� � 0) or diminished 

(i.e.	� � 0), respectively, in the presence of mutation B’. Sign epistasis denotes the case, in which 

the sign of the fitness effect of mutation A’ is reversed (beneficial → deleterious, or vice versa) if 

combined with mutation B’ [94]. 
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2. Approaches to reveal and predict bacterial metabolic 

adaptations 

Since the origin of life, evolution has shaped bacterial metabolism towards species-

specific and tightly-regulated biochemical networks. The study of the origin and 

evolution of metabolism is highly restricted in retracing the individual evolutionary 

changes of metabolic networks mainly due to (i) the absence of natural metabolic 

network fossils* , (ii) the rather incomplete knowledge on the conditions of ancient 

environments and their potential metabolic niches, and (iii) the confounding complexity 

of ‘contemporary’ networks that hinders to identify the historical sequence in which 

different metabolic innovations occurred. Especially revealing properties of metabolic 

networks, which have evolved by means of natural selection has been difficult, because 

metabolic adaptations rely on beneficial mutations, which are very rare and therefore 

difficult to detect and retrace within a population [95]. Moreover, the fitness effects of 

adaptive mutations, which affect the performance of the metabolic network are 

challenging to quantify – especially in a natural setting. 

Papp et al. (2009) nicely summarized approaches available to disclose aspects of 

adaptive metabolic network evolution and classified them into three classes [96]: First, 

optimality models can be applied to predict the optimal design of a given metabolic trait, 

which subsequently can be compared to the actual conformation of the organism. 

Second, inferential analysis can be used to compare metabolic networks between species 

with regard to the assumption that different selection pressures caused divergent 

metabolic network properties. Third, synthetic ecology and experimental evolution 

techniques allow to discriminate the effects of natural selection and non-adaptive 

evolutionary processes by experimentally comparing the performance of alternative 

metabolic strategies. In the following sections, I explain how these three different 

approaches can been applied to formulate and test hypotheses on the adaptive evolution 

of bacterial metabolic networks. Moreover, also advantages and limitations of each 

approach are discussed. 

                                                
* Meant is the structure and function of metabolic networks of ancestral nodes in the phylogeny 
of cellular life. 
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2.1. Theoretical and computational approaches 

Metabolic optimality models 

Optimality models predict the state of a given system, which represents the solution 

that either maximises or minimises an a priori defined objective function. In 

evolutionary biology, optimality models are used to predict phenotypes, which 

maximise the organism’s fitness [2]. The combinations of several phenotypic traits that 

contribute to the organism’s fitness create a space of individual phenotypes [97] and 

the mapping of the phenotypic space to the corresponding fitness values is defined as 

the fitness- or adaptive landscape [2]. The central assumption behind optimality models 

is that the evolution of traits is mainly driven by natural selection [98]. The models can 

be useful to predict the phenotype, which represents a peak in the fitness landscape 

and to identify how close a given population of organisms is to this fitness optimum [2]. 

In other words, optimality models can predict how organisms should behave to be 

optimally adapted to a given environment [40]. 

Flux balance analysis (FBA) is the most frequently used optimality model for the 

evolution of metabolic networks, which optimises distribution of reaction fluxes through 

the metabolic network (see section 3.2). Besides metabolic flux states, different 

optimality models were developed (as reviewed in [96]), which suggest adaptive 

metabolic network evolution that shaped global network topology [29], functional 

robustness against mutations [51], pathway regulatory circuits [99,100], and protein 

assembly strategies for multimere enzymes [101].  

One vital limitation of optimality models is the necessity to ideally consider all 

metabolic trait alternatives that evolution can theoretically attain [96]. For instance, 

to predict the optimal metabolic flux distribution and assuming steady-state conditions, 

all theoretically possible metabolic flux states can be mathematically described (see 

[46,102], and section 3.2) and considered in order to predict the optimal metabolic 

phenotypes. The situation is more challenging for the topology of biochemical networks: 

First, albeit ample knowledge is available on a vast spectrum of biochemical reactions 

across a wide range of species, most likely there are many yet-undiscovered organismal 

metabolic capabilities. Second, enzymatic reactions or pathways might exist, which 

were part of ancient metabolic networks, but were lost and replaced by alternative 

reactions in the course of evolution. Third, to support a hypothesis that states that a 

given network topology represents the optimal solution it would be necessary to collect 

all theoretically plausible alternative networks and assess their performance with 

respect to a defined fitness measure; e.g. mutational robustness or growth rate. Such 
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approaches, which rely on the enumeration of all network alternatives, however, 

usually fail for genome-scale metabolic networks, because of the combinatorial 

complexity of theoretically possible biochemical network architectures [7]. In contrast, 

optimality models can give insight into the adaptive origin of smaller sub-network 

topologies of metabolism. Hatzimanikatis et al. (2005) enumerated all combinations of 

known biochemical reactions, which, at least theoretically, would enable the production 

of the aromatic amino acids from the common precursor chorismate [52]. They found 

around 75,000 possible pathways for phenylalanine; 350,000 for tyrosine, but only 13 

for tryptophan. Analysing these pathways for their thermodynamic properties revealed 

that the biosynthetic pathways that are used in nature are thermodynamically optimal 

and are, thus, most likely those pathways, which natural selection has favoured [52]. 

This observation also provides a plausible explanation why all investigated organisms, 

which are able to produce tryptophan employ the exact same pathway [15]. 

Another limitation of optimality models is the formulation of the objective function, 

which is ideally closely related to the species’ fitness. However, which metabolic traits 

contribute to fitness and to what extent is not trivial to judge [103]. As already 

mentioned above, one of the main traits, which contributes to fitness of bacteria is their 

ability to grow. Yet, it has been shown that there can be differences in the optimal 

metabolic strategies depending on whether the selective pressure is favouring optimal 

growth rate or growth efficiency [4,104,105]. Hence, to gain meaningful insights into the 

operation and evolution of metabolic networks using optimality models requires 

detailed knowledge on the selection pressures that shaped the network. 

Taken together, optimality models are powerful tools to predict the adaptive 

evolution of the metabolic network function and structure. Still, their predictive 

potential vitally depends on comprehensive consideration of evolutionary plausible 

metabolic trait alternatives and the selective pressures that governed the evolution of 

the species’ metabolic networks. 

Inferential analysis of metabolic network structures 

The number of available bacterial whole-genome sequences is constantly increasing. At 

the time of writing this thesis, the Genomes Online Database (GOLD)* contained more 

than 42,500 bacterial genomes [59]. Comparative genomics and nucleotide substitution 

models made it possible to infer signatures of natural selections at the level of 

                                                
* http://gold.jgi-psf.org (retrieved last on July 28th 2015) 
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nucleotide sequences without the need for fossil DNA, e.g. by using dN/dS ratios* in 

protein-coding genes [106]. Advances in genome-based and (semi-)automatic methods 

to reconstruct the corresponding biochemical networks further enabled to survey 

species-to-species variation in bacterial metabolic capabilities [107]. Is it thus possible 

to also infer adaptive features within metabolic network structures in a phylogenetic 

context by comparing them between multiple species in a similar fashion as comparing 

gene sequences?  

Differences and similarities between bacterial metabolic networks are a phenotypic 

manifestation that reflects the past adaptive evolution of bacteria. Forst et al. (2006) 

algebraically compared microbial metabolic networks and showed that the network 

structures contained similar phylogenetic information as commonly used 16S RNA 

sequences [108]. However, the difficult task is to disentangle, which features arose due 

to the adaptation to distinct metabolic niches from those that are simply due to drift. 

 Pál et al. (2005) compared the metabolic capabilities of E. coli K12 and Salmonella 

typhimurium to infer, which metabolic reactions were acquired by E. coli since the split 

of the two lineages [22]. The results were combined with flux balance analysis of the 

metabolic network of E. coli, while considering different environmental conditions 

varying in their carbon source and oxygen availability. In this way, the authors were 

able to show that the reactions, which were acquired since the split from the Salmonella 

genus provided E. coli with the ability to grow (or at least to form biomass) in novel 

nutritional environments, which suggests that acquisition of biochemical reactions may 

represent an adaptation of E. coli to changing environments [22]. This example shows 

that a combination of optimisation models and inferential analysis of metabolic 

networks can provide insights into the adaptive evolution of biochemical networks. 

In a similar study, the metabolic networks of the previously mentioned 

endosymbiont B. aphidicola and Wigglesworthia glossinidia were compared to the 

metabolic network of the close free-living relative E. coli [109]. The metabolic networks 

of the endosymbionts are characterised by a severe reduction of network size, which is 

due to successive losses of biosynthetic genes that are disposable in the intracellular 

environment. Also in this example, the authors combined the network comparison with 

flux balance analysis and showed that the different environments and the 

expendability of certain reactions can account for the observed differences in the 

metabolic networks between the endosymbionts and E. coli [109]. However, whether 

                                                
* Rate of non-synonymous nucleotide substitutions (dN) per rate of synonymous substitutions 
(dS) within a protein-coding gene. 
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the loss of metabolic reactions is governed by natural selection or drift cannot be 

inferred using this approach. In fact, is remains obscure to what extent the reductive 

genome evolution of metabolic networks can be explained by selective advantages, 

which genotypes gained that lost the biosynthetic functions. 

In general, inferential (or comparative) analyses of reconstructed metabolic 

networks are a rich resource to formulate hypotheses on the evolution of metabolic 

networks. In combination with other approaches such as optimisation models or in vivo 

experiments, the comparison of metabolic networks between species facilitates a better 

understanding of the adaptive evolution of microorganisms on a biochemical level. 

However, it is yet not possible to statistically discriminate the effect of natural selection 

and drift solely based on network topology comparisons. The reason is the difficulty to 

construct a probabilistic model for network evolution [96] in a similar way as nucleotide 

substitution models to identify footprints of natural selection in protein-coding 

sequences. This is because metabolism fulfils numerous different tasks related to 

bacterial cell growth and proliferation. Thus, different parts of the metabolic network 

are likely to be shaped by different selection pressures, which complicated the 

mathematical formulation of a global objective for network topology evolution. 

Nonetheless, comparative analyses of metabolic networks can contribute significant 

insights into the study of metabolic network adaptation, by providing a wide survey of 

metabolic strategies that exists in nature. For instance, the databases KEGG [110] or 

MetaCyc [111] collect the knowledge of biochemical reaction with the aim to represent 

and analyse the global diversity of metabolism and to make metabolic networks 

comparable between species. An assessment of possible alternatives to perform a 

certain metabolic function is crucial to decide if a specific metabolic trait has evolved as 

an adaptation to a microorganism’s environment and lifestyle. 

2.2. Experimental approaches to unravel metabolic adaptations 

Laboratory experiments with microorganisms have the unique advantage to explore 

the performances of different alternative metabolic strategies in vivo. By rationally 

designing growth environments and even by manipulating genotypic constitution of the 

focal strains, different scenarios with diverse selection pressures can be systematically 

tested to specifically address adaptive hypotheses. Moreover, experiments also enable 

to monitor evolutionary changes on many different levels of organisation: the genome, 

transcriptome, proteome, fluxome, metabolome, or secretome. 
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Synthetic biology 

In synthetic biology, biological systems are rationally constructed for a specific purpose, 

for example for the commercial production of value-added compounds by 

microorganisms [112]. The design of the system may include the environmental 

conditions (e.g. nutrient availability, pH, or temperature), the consortia of involved 

organisms, and their genotypes. In evolutionary biology, for instance, such an approach 

can be used to investigate the fitness consequences of individual mutations under given 

biotic and abiotic environmental conditions. 

For example, Chou et al. (2011) studied the effect of four mutations in 

Methylobacterium extorquens EM, which affect the expression of a metabolic pathway 

that is necessary for the utilisation of methanol as sole carbon source [113]. The authors 

showed that each individual mutation entailed selective benefits compared to the non-

mutated ‘wild type’ strain but the proportional selective benefits decreased when 

mutations were introduced in genetic backgrounds, which already carry one of the other 

beneficial mutations – an effect termed diminishing returns epistasis (Box 2; and 

[113,114]). This example demonstrated the potential of synthetic approaches to study 

the metabolic adaptation of bacteria and that epistasis also impacts the evolution of 

metabolic networks [113]. 

Synthetic ecology is an extension of synthetic biology, where also ecological 

interactions between different organisms are subject of the rational design. For 

example, Shou et al. (2007) constructed an ecosystem that consisted of two yeast 

strains, which obligatorily cooperate by the mutual exchange of essential metabolites 

(i.e. adenine and lysine) [115]. This study has impressively shown that ecological 

interaction – such as metabolite cross-feeding (see section 1.3) – can be synthetically 

introduced between different microorganisms by targeted modifications of genomes. 

Furthermore, such engineered systems can be used to test hypotheses on the origin and 

stability of cooperative ecological interactions [5,115]. In fact, Pande et al. (2014) 

demonstrated with a conceptually similar approach – an engineered obligate cross-

feeding consortia of two E. coli strains – that cooperating genotypes gained selective 

advantages in co-culture compared to the non-cooperating ancestral wild type strain 

[76]. This example provided evidence that metabolic interdependencies and 

complementarity might evolve through natural selection and therefore contribute also 

to the evolution of metabolic networks. 

In summary, synthetic biology approaches can be used to assess the fitness 

consequences of individual mutations, which affect the structure and/or function of 

metabolic networks. The results gained from synthetic biology model systems can 
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inform the prediction of how bacteria adapt to new environments and to understand 

how modern bacterial metabolic networks have evolved, by replaying specific 

evolutionary metabolic transitions. Synthetic biology is still a relatively new approach 

to test evolutionary hypotheses. However, due to the high flexibility to manipulate 

several different settings of biological systems, synthetic approaches will facilitate 

further insights into the origin and evolution of metabolic networks. 

Experimental evolution 

The strength of experimental evolution lies in the possibility to monitor the genotypic 

and phenotypic changes over time within a population in a defined experimental setup. 

Depending on the focal hypothesis, a precisely defined selection pressure can be applied 

to the evolving population. Most evolution experiments are making use of 

microorganisms, mainly because of their short generation time. Fast-growing bacteria 

such as E. coli can divide every 20 min under optimal growth conditions [116]. As an 

illustration, within a 3-year PhD project, one could conduct an evolution experiment 

with E. coli for more than 78,000 generations (assuming no constraints on growth), 

which corresponds to approximately 1.8 million years of human evolution. Another 

advantage of microorganisms is the possibility to create a comprehensive library of 

‘fossil records’ of viable cells by regularly freezing population samples. In contrast to 

inferential analysis of metabolic adaptation (section 2.1), experimental evolution has 

the strong advantage that is allows one to ‘observe’ evolutionary processes; including 

natural selection and genetic drift [41]. 

Evolution experiments can provide evidence that a specific evolved trait is adaptive 

if the trait emerged and is maintained in several independent parallel populations and 

if the trait evolved and is maintained statistically more often in the presence of a 

specific selection pressure than in the absence of the pressure. However, it needs to be 

mentioned, that parallel evolution supports an adaptive hypothesis, but it is not a 

necessary feature of adaptive traits [117].  

Furthermore, evolution experiments can give insights into adaptive evolution if the 

mutation, which caused an evolved trait is known. In this case, the trait can be directly 

introduced into the genetic background of the ancestral strain and the fitness of the 

engineered genotype relative to the ancestral genotype can be assessed in competition 

experiments (a synthetic biology approach). By means of these measures, the dynamics 

of metabolic adaptation of microorganism has been extensively studied including the 

evolution towards optimal flux distributions [40,118], adaptive evolution of metabolite 

cross-feeding [119], the acquisition of metabolic capabilities to utilize novel resources 
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[117], evolution of resource specialisation [120], sympatric speciation towards distinct 

metabolic niches [121,122,119], and the adaptive difference between the evolution 

towards growth rate or growth efficiency [123]. 

 

In summary, synthetic biology and experimental evolution approaches are powerful 

tools to test hypotheses about the evolution of structural and functional traits of 

metabolic networks. However, it also needs to be noted that experimental studies on 

metabolic adaptation are typically limited to fast-growing microorganisms, which are 

culturable in the laboratory. Furthermore, another limitation is that it is difficult to 

mimic natural environmental conditions in a laboratory setting, e.g. with respect to the 

stochasticity of the abiotic and biotic composition. 

3. Mathematical formalisation and analysis of genome-

scale metabolic networks 

3.1. Genome-scale metabolic network reconstructions 

Systems biology is a pluralistic approach, which brings together different disciplines 

from biology, chemistry, physics, mathematics, and engineering to test and create new 

hypothesis on how living systems are organized, function and evolve [124]. A system 

can be defined as a set of components, which interact with each other. Systems biology 

seeks to identify the components and the types of interactions within a living systems, 

to formalise the resulting network in mathematical terms, and to draw conclusions from 

the network structure on the function and dynamics of the system. Considering the 

cellular metabolism as the biological systems of interest, a central goal of systems 

biology is to generate models that allow to predict metabolic phenotypes from the 

genotype of a given organism. 

Genome-scale metabolic network reconstructions are large models of cellular 

metabolism with the aim to integrate all catalytic reactions for which a gene of the 

corresponding enzyme is present in the genome, all relevant non-enzymatic reactions 

as well as transport reactions [125]. The main levels of information of such models are: 

(i) the gene-enzyme relationship states what enzyme is encoded by which gene, or by 

which set of genes in case of multimer enzymes; (ii) the enzyme-reaction mapping 

specifies what reaction an enzyme is able to catalyse, and (iii) the cross-linking of 

reactions through metabolites into a coherent network. In the latter level, each reaction 
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is characterized by its stoichiometry, which is the combination of the compounds 

involved and their quantities that are consumed or produced. The whole set of 

reactions, i.e. the metabolic network, can be represented by a so-called stoichiometric 

matrix �, where each column denotes a specific reaction and each row a metabolite. An 

entry ��� specifies the production (positive value) or consumption (negative value) of the 

corresponding metabolite �  by the respective reactions � . The stoichiometric 

representation of metabolic networks is a useful concept to computationally analyse the 

network topology [126]. Moreover, stoichiometric models have been successfully applied 

to predict metabolic flux distributions [46]. Commonly used computational methods for 

metabolic flux analysis are elementary flux modes [102,127], flux balance analysis (see 

section 3.2), and ordinary differential equations [128,129]. 

The strength of genome-scale metabolic networks lies in their comprehensiveness. 

For example, one purpose of genome-scale models of metabolism is to simulate 

microbial growth [46]. Cellular growth involves the production of a large set of different 

metabolites including amino acids, nucleotides, lipids, vitamins, co-factors, and 

carbohydrates whose biosynthesis requires numerous of reactions. In combination with 

constraint-based modelling approaches (see section 3.2), genome-scale metabolic 

networks have been shown to be a powerful tool to simulate microbial growth and 

facilitate precise predictions on how growth is affected by genetic perturbations of the 

metabolic network [130] or different nutritional conditions [131]. 

Another example for an application of genome-scale models of microbial metabolism 

is systems metabolic engineering of microorganisms for the production of value-added 

chemicals [132]. In this context, genome-scale metabolic models are applied to predict 

genetic modifications, which presumably enhance or enable the economical production 

of a desired compound. Such genetic modifications include amongst others the addition 

of biosynthetic genes to introduce new synthetic metabolic pathways [132,133], the 

overexpression of certain genes to increase the flux through a specific pathway 

[132,134–136], or the deletion of biosynthetic genes to reroute metabolic fluxes 

[132,135]. 

In addition to the simulation of microbial growth and the development of metabolic 

engineering strategies, genome-scale metabolic network reconstructions have been 

successfully applied to understand microbial metabolic interactions within ecosystems 

[10,137], to design cultivation media and processes [138,139], for drug target 

predictions [140], and to assess the evolutionary plasticity of metabolic networks 

[108,17]. Taken together, genome-scale metabolic network reconstructions are 
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comprehensive and functional models of an organisms’ biochemical capabilities with 

vast predictive potential to aid genotype-phenotype mapping. While a quantitative 

understanding of enzyme activities within metabolism remains difficult for genome-

scale networks and is still mainly limited to small sub-networks [7], genome-scale 

metabolic networks are of increasing importance to understand biological processes 

that involve many or even almost all metabolic pathways of a cell. 

3.2. Flux balance analysis 

Flux Balance Analysis (FBA) is a computational framework to model metabolism on a 

genome-scale network level. It predicts the evolutionary optimal distribution of 

metabolic fluxes by optimising a cellular objective, which is linked to the maximisation 

of the species’ fitness. The most commonly used objective function is the optimisation 

of biomass formation [103]. Others are the generation of ATP or the minimisation of 

the sum of fluxes to economise the burden of total enzyme levels needed for metabolism 

[103]. Independent of the type of the objective function, FBA solves a resource allocation 

problem on the bases of the structure of the metabolic network by optimally exploiting 

limited resources and complying with thermodynamic constraints such as the 

reversibility of reactions [141]. 

The FBA framework assumes a metabolic steady-state, in which each internal 

metabolite* is produced and consumed at the same rate such that reaction fluxes are 

balanced to keep all metabolite concentrations constant. In a mathematical formulation 

using the stoichiometric matrix �, a distribution of fluxes that complies with the steady 

state constraint ��� is given by 

 

 � ��� = �. (1) 

 

Besides the stoichiometry and the steady-state assumption, further constraints can be 

added to the model such as maximal rates for individual reactions and maximal 

nutrient uptake rates. Linear programming (LP) can be subsequently applied to 

identify a flux distribution ���  , which complies with all constraints and reflects the 

optimal solution for a given objective function. LP is a mathematical optimisation 

                                                
* To set boundaries to the model, metabolites are divided into internal and external metabolites. 
External metabolites are assumed to be buffered, e.g. like nutrients in a chemostat or molecules 
like water which are presumably by order of magnitudes more abundant than other metabolites. 
Internal metabolites on the other hand are thought to be limited in their availability and the 
only source for these metabolites are metabolic reactions forming them. 



40 
 

method, which calculates the best outcome of a given objective function, whose 

variables contribute each linearly to the functions results and where variables are 

subject to linear inequality constraints. A flux balance analysis problem is usually 

represented in the canonical form of LP problems, for example: 

 

Maximise !"� (Objective function) (2)

Subject to �� � � (Steady-state constraint) (3)

and ��#$ ≤ � ≤ ��&' (Individual flux limits) (4)

 

Where the vector ! specifies how much each reaction linearly contributes to the given 

objective and � is the vector for the actual flux distribution to be optimised. � states the 

flow through each reaction of the network. The vectors for the capacity constraints ��#$ 

and ��&'  denote the lower and upper limits for each reaction. By specifying the 

constraints for the individual flux limits, the reversibility or irreversibility of reactions 

can be integrated in the model: If a reaction A → B is irreversible, the direction of the 

reaction flux can be defined by setting ��#$ = 0  and ��&' > 0 . In contrast, if the 

reaction is reversible (A ↔ B) both direction are allowed by setting the lower flux limit 

to ��#$ < 0. 

In combination with genome-scale metabolic networks, FBA models have been 

applied extensively and became a standard tool in systems biology for analysing 

metabolic networks [141]. The models have made significant contributions in the fields 

of cellular physiology, synthetic biology, ecology, metabolic network evolution, and 

network reconstruction [137,142,141]. 

3.3. Other mathematical techniques to analyse genome-scale metabolic 

networks 

For the project presented here, flux balance analysis to model the allocation of limiting 

resources in the genome-scale metabolic network of E. coli and inferential analysis to 

systematically compare the metabolic capabilities of a wide range of bacterial species 

were applied. There are of course more computational techniques to study the structure 

and function of genome-scale metabolic networks and which have also contributed to a 

better understanding of network evolution. Two of these methods, i.e. ordinary 

differential equations and elementary flux modes, are briefly outlined in the following. 



41 
 

Ordinary differential equations (ODEs) are widely used to model biochemical 

reaction systems. These models have the unique advantage to be able to predict 

dynamic changes of reaction rates (fluxes) and metabolite concentrations including 

oscillations and bi-stability within reaction systems [143]. ODE-models require 

mechanistic knowledge of the involved enzymes to mathematically formulate the 

reaction rate kinetics. However, such knowledge is often limited to a small subset of all 

enzymes encoded in the genome of an organism, which has limited the applicability of 

ODE-models to small- or medium size metabolic networks [144]. Nevertheless, some 

approaches now exist, which have combined genome-scale models of metabolism by 

integrating enzyme kinetics [144,145] and thereby were able to simulate dynamic 

metabolic responses on a genome-scale metabolic network level. 

Elementary flux modes (EFMs) are, as flux balance analysis, a theoretical concept 

to study reaction networks that assumes steady-state conditions [102]. A flux mode ��� 

is defined as non-zero vector of reaction rates � , which enures a steady-state of 

metabolite concentrations (Equation 1). Furthermore, a flux mode is elementary if it 

cannot be represented as a linear combination of other flux modes [102]. The advantage 

of this definition is that the number of possible elementary flux modes (� is finite for a 

given network, while the number of feasible flux modes can be infinite. Every metabolic 

steady-state (flux mode) ��� can thereby be decomposed by the weighted sum of all )  

EFMs: 

 

��� =  * +#(�
$

#,-  

 

Where +#  corresponds to the weight of the EFM (�  in the flux mode ��� . This 

representation of all feasible steady-state flux distributions can be the basis for further 

analysis to characterise cellular metabolism [146]. However, the enumeration of all 

EFMs in genome-scale metabolic networks is infeasible due to the large number of 

possible elementary flux modes [147,148]. Nonetheless, there are studies that focused 

on the enumeration of subsets of EFMs [149,150] and it has been shown that such an 

approach can, for example, successfully be used to predict reaction knock-out strategies 

for metabolic engineering [151]. 
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4. Objectives of this study 

Our knowledge of the biochemistry of metabolism, which has been constantly 

increasing over many years and advances in the computational analysis of whole-

genome sequences enabled to infer the structure of metabolic networks and the circuits 

for the regulatory coordination of its reactions based on individual genomes. However, 

the factors that govern the evolution of metabolic network structures and regulatory 

circuits remain obscure. The overarching questions of this thesis are: What is the 

contribution of natural selection on the evolution of metabolic networks? And which 

properties of bacterial metabolic networks affect the species’ fitness and thereby 

indicate adaptation to specific environmental conditions and/or to biophysical 

constraints in biochemical networks? 

More specifically, I will address the following questions in this thesis: (i) Can the 

fact that metabolic networks usually involve only relatively few autocatalytic cycles, be 

used to unravel inconsistencies in genome-scale metabolic network reconstructions in 

order to improve the accuracy of the in silico networks and thereby also the potential 

of these models to make valuable predictions? (ii) How common is the loss of 

biosynthetic genes across bacteria? (iii) Can the gene loss and, hence, the loss of 

metabolic autonomy be explained by selective advantages, which auxotrophic genotypes 

gain if the focal metabolite can be obtained from the environment? (iv) Do certain 

combinations of biosynthetic functions tend to be jointly absent from bacterial genomes 

in nature? (v) Can the co-occurrences of auxotrophies be explained by epistatic 

interactions between auxotrophy-causing mutations? (vi) How do different carbon 

sources affect the fitness consequences of biosynthetic gene loss? And (vii) how are the 

costs, which a cell needs to invest in the performance of a given biosynthetic function, 

influenced by the metabolic network architecture and the type of carbon source? 

To answer these questions, experimental and theoretical approaches were 

combined. On the theoretical side, the metabolic networks of more than 900 bacterial 

species were compared for their biosynthetic capabilities and how the differences could 

be explained by the species’ lifestyles. Furthermore flux balance analysis was employed 

to simulate different resource allocation strategies of E. coli under different carbon 

source environments. Experimentally, different metabolic function-deficient genotypes 

of the prototrophic E. coli and Acinetobacter baylyi strains were synthetically generated 

and tested for their growth kinetics and relative fitness under various carbon 

environments. 
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In the end of this thesis, I discuss the main results of the project to elaborate the 

role of metabolic adaptation in the bacterial biosphere and how the results may explain 

metabolic complementary, the immense bacterial diversity found in nature, as well as 

the observation that most known bacteria could not be cultured and characterised 

under laboratory conditions. Moreover, I highlight practical implications of the results 

for medical and biotechnological applications. 
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1. Abstract 

Motivation: Genome-scale metabolic network reconstructions have been established 

as a powerful tool for the prediction of cellular phenotypes and metabolic capabilities of 

organisms. In recent years, the number of network reconstructions has been constantly 

increasing, mostly because of the availability of novel (semi-)automated procedures, 

which enabled the reconstruction of metabolic models based on individual genomes and 

their annotation. The resulting models are widely used in numerous applications. 

However, the accuracy and predictive power of network reconstructions are commonly 

limited by inherent inconsistencies and gaps.  

Results: Here we present a novel method to validate metabolic network 

reconstructions based on the concept of autocatalytic sets. Autocatalytic sets correspond 

to collections of metabolites that, besides enzymes and a growth medium, are required 

to produce all biomass components in a metabolic model. These autocatalytic sets are 

well-conserved across all domains of life, and their identification in specific genome-

scale reconstructions allows us to draw conclusions about potential inconsistencies in 

these models. The method is capable of detecting inconsistencies, which are neglected 

by other gap-finding methods. We tested our method on the Model SEED, which is the 

largest repository for automatically generated genome-scale network reconstructions. 

In this way, we were able to identify a significant number of missing pathways in 

several of these reconstructions. Hence, the method we report represents a powerful 

tool to identify inconsistencies in large-scale metabolic networks. 

Availability and implementation: The method is available as source code on 

http://users.minet.uni-jena.de/∼m3kach/ASBIG/ASBIG.zip. 

2. Introduction 

In recent years, genome-scale metabolic network reconstructions have become an 

important tool in systems biology [152]. They have the strong potential to combine 

distinct experimental data with bibliomic resources to generate a comprehensive 

knowledge base [142,153]. The resulting network reconstructions have been widely 

used to simulate metabolic processes or to explore the metabolic capabilities of various 

species [154,155]. A prominent approach applying network reconstructions is 

constraint-based modeling, such as flux balance analysis (FBA) [155,156]. The use of 

metabolic models and associated methods has granted access to diverse scientific 

subjects, such as analysis of the bacterial metabolism [50], the prediction of growth 
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rates of Escherichia coli [46], the comparison of growth rates between wild type and 

mutant strains of E. coli [130] and metabolic engineering [157].  

Until recently, the process of network reconstruction was time-consuming and 

necessarily required laborious curation effort [158]. To cope with the increasing amount 

of available data, automated methods became necessary to produce high-throughput 

reconstructions as well. Several approaches are available to address this issue [159–

161]. The Model SEED project successfully implemented one of these approaches and 

contains >190 metabolic reconstructions, which were primarily generated in an 

automated way [162].  

However, the automated process may neglect metabolic capabilities of the focal 

organism or include wrongly identified functionalities [163]. To minimize this bias, 

manual refinement and optimization are instrumental in the reconstruction process 

[152,162], representing the most intricate elements in the workflow. To accelerate 

model curation, automated and semi-automated methods for the detection and 

correction of gaps were developed and integrated in the automated reconstruction 

process by the Model SEED (GapFind and GapFill) [162,164]. The most common 

approach used to identify gaps in network reconstructions is constraint-based modeling 

that relies on optimization-based algorithms. The predominant aim is to detect 

metabolites that cannot be produced at a steady state [164–166].  

Here we report ASBIG (Autocatalytic Set-Based Identification of Gaps), a method 

that detects incomplete parts of network reconstructions based on a novel approach: 

identifying elements (compounds) of catalytic cycles. ASBIG screens models for 

essential, self-replicating metabolites, which are pivotal elements of the underlying 

metabolism. A metabolite is considered to be pivotal if it is required for metabolism to 

proceed. The compounds are called ‘self-replicating’, or ‘autocatalytic’, as they are 

usually required for their own biosynthesis [30]. Hence, their production is inaccessible 

unless an initial amount of the compound is already available. Self-replicating 

metabolites are energy-currency cofactors, such as ATP and NAD. If these compounds 

are not present within the cell, even a rich nutritional medium is often insufficient for 

an organism to produce all of its biomass components. The definition of self-replicating 

metabolites originates from the work of Eigen and Schuster (1977), in which the 

concepts of catalytic cycles and autocatalysis were described on a molecular level [167]. 

The search for autocatalytic compounds is conducted via the method of scope analysis 

[168].  

The set of self-replicators in each network reconstruction is generally small [30]. 

Furthermore, autocatalytic sets of different organisms very likely contain similar well-
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conserved compounds. These observations can be used to survey any given metabolic 

network to detect inherent inconsistencies. If the number of self-replicating compounds 

is comparably large or unexpected elements and large macromolecules are included in 

the set, conclusions about possible inconsistencies can be drawn. Hence, gaps in the 

reconstructed network can lead to the presence of unexpected compounds in the set of 

self-replicators (owing to the impaired biosynthesis of this compound or its successors).  

ASBIG enriches the tool box of gap-finding procedures, as common flux calculating 

methods are susceptible to overlook gaps associated with autocatalytic cycles. One 

simple example is a cofactor that is required for the production of a biomass component 

but itself is not present in the biomass reaction. In such a case, it would be sufficient 

for constraint-based methods, such as FBA, if reactions that replenish the cofactor exist 

to produce biomass. A biosynthetic route of this essential cofactor would not be required 

making the detection of a lack of this route impossible for FBA. ASBIG uses scope 

analysis to determine such inconsistencies. Although this approach disregards the 

exact stoichiometric properties of metabolic reactions, our method is not susceptible to 

problems known to occur when using purely topology-based procedures [169].  

To outline the benefit of ASBIG, selected reconstructions from the following 

organisms were examined: E. coli, Arabidopsis thaliana, Saccharomyces cerevisiae, 

Bacillus subtilis, Chlamydomonas reinhardtii, and Zea mays (Table 1). Using our 

method, we were able to identify missing pathways in all of these networks except for 

the E. coli reconstruction. Subsequently, the detected inconsistencies were resolved 

using information from the KEGG database [170] and other resources, like BioCyc, 

BsubCyc [171] or the Plant metabolic pathway database [172]. Furthermore, all 

available reconstructions of the Model SEED project [162] have been screened to 

demonstrate the applicability of the method on a large scale. As one substantial benefit 

of this screening, common inconsistencies widespread across numerous models were 

identified. Additionally, ASBIG detected missing reactions that were deleted manually 

from the model of E. coli for validation purposes, demonstrating the reliability and 

applicability of our method.  



50 
 

In summary, ASBIG is a reliable method for the detection of inconsistencies in any 

metabolic network reconstruction. It provides an efficient approach to validate 

metabolic models. By pinpointing discrepancies of network reconstructions, the method 

supports the improvement of the high number of incomplete models generated by high-

throughput methods. Thus, ASBIG can significantly contribute to improve the quality 

of metabolic network reconstructions. 

3. Material and Methods 

3.1. Models 

ASBIG uses a genome-scale reconstruction of metabolic networks as input. It was 

applied to investigate the following models: iJO1366 of E. coli K-12 MG1655, iBSU1103 

of B. subtilis 168, AraGEM of A. thaliana, iRC1080 of C. reinhardtii, iMM904 of S. 

cerevisiae and DTMaize_C4GEM_45632 of Z. mays. Additionally, >190 models provided 

by the Model SEED project [162] (as available in October 2012) were screened. 

3.2. Identification of autocatalytic metabolic sets 

The algorithm was implemented in JAVA. Genome-scale metabolic networks are 

processed in the standardized Systems Biology Markup Language using the JAVA 

package jigcell.sbml2 [177].  

3.3. Initial set of metabolites (seed set) 

A predefined set of metabolites, named ‘initial seed set’, acts as the starting point for 

ASBIG. It combines the components of a nutritional medium with additional pivotal 

Table 1. Closely investigated models. 

Organism Model 

E. coli K-12 MG1655 iJO1366 [26] 

B. subtilis 168 iBSU1103 [27] 

A. thaliana AraGEM [173] 

C. reinhardtii iRC1080 [174] 

S. cerevisiae iMM904 [175] 

Z. mays DTMaize_C4GEM_45632 [176] 
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elements. The set of additional elements is composed of two subsets: metabolites 

identified as crucial by ASBIG (see section 3.1 and autocatalytic compounds whose 

biosynthesis depends on their own presence (cf. [30]). These were as follows: Adenosine 

triphosphate (ATP), nicotinamide adenine dinucleotide (NAD) and coenzyme A (CoA).  

Hence, the composition of the initial seed set is assumed to include all essential 

components necessary for the growth of the organism.  

3.4. Scope analysis 

ASBIG uses the concept of scopes [168], which can be determined for a given sets of 

metabolites. The scope is a (large) set of metabolites and corresponds to all compounds 

that can, in principle, be produced from a (small) predefined set of metabolites. The 

concept of scope analysis relies on three aspects [168] (i) a reaction is considered to take 

place if all of its substrates (or products in the case of reversible reactions) have non-

zero concentrations, (ii) products of one reaction are immediately considered as 

potential substrates of another one and (iii) starting with a small set of metabolites, 

iteratively increasing sets of reactions (and metabolites) are generated by screening the 

model for further reactions with a non-zero flux. The fundamental principle of ASBIG 

relies on the calculation of a scope set based on a given seed set of metabolites.  

3.5. Biomass reaction 

An essential feature among most network reconstructions is the biomass reaction, 

which is crucial for the ASBIG method. During a run of ASBIG, this reaction is used as 

a benchmark to evaluate generated metabolite sets. The biomass reaction constitutes a 

hypothetical reaction within the model that includes all metabolites necessary for the 

growth of the corresponding organism as substrate (biomass compounds). Usually, it is 

an essential element of FBA [178]. For ASBIG, it is reasonable to use this reaction as 

benchmark and compare metabolite sets based on their ability, to provide access to the 

biomass compounds. A seed set cannot be considered as adequate for the corresponding 

organisms until all biomass compounds are within the scope of the seed set.  

3.6. Expanded seed set 

Given the initial seed set, not all biomass compounds are necessarily part of the 

computed scope. Hence, the initial seed set is insufficient and needs to be expanded to 

generate a scope comprising all biomass components. Iteratively, metabolites, named 
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‘add-on metabolites’, are added using a greedy approach. In each iteration, each 

metabolite that is not within the previously calculated scope is considered and inserted 

into the extended seed set on a trial basis. Finally, the compound, which results in the 

biggest increase of scope size represents the add-on metabolite of this iteration and 

remains in the extended seed set (independent of its impact on the biomass function). 

To this end, a scope analysis has to be performed for each metabolite, which was not 

part of the previously computed scope. If two metabolites yield an identical increase in 

scope size, the smaller metabolite in terms of the number of carbon atoms is chosen. 

Subsequently, a scope analysis is conducted with the temporary expanded seed set. The 

expansion process stops when the current expanded seed set results in a scope set that 

comprises all biomass compounds (Fig. 1 A and B). 

3.7. Determining the minimal seed set 

Most likely, not every metabolite of the expanded seed set contributes significantly to 

biomass production. For this reason, we aimed to determine a minimal seed set in terms 

of size during the second phase of ASBIG (Fig. 1C). To minimize the size of the expanded 

seed set, each element is removed on trial, and the scope of the remaining seed set is 

computed. If all biomass compounds are still within the scope, the element remains 

 
Figure 1. Workflow of ASBIG. (A) Based on an initial seed set of metabolites (light gray squares), 

a scope set is calculated using scope analysis (this scope set might not include all biomass 

compounds). (B) The initial seed set is extended with add-on metabolites (dark gray squares) 

leading to a larger scope set (dark gray circle), until the corresponding scope set contains all 

biomass compounds. (C) The extended seed set is reduced to the smallest possible seed set that 

still contains all biomass components (final minimal seed set). 
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removed, otherwise it is reinserted. Potential dependencies between compounds of the 

expanded seed set impede a deterministic strategy to remove elements from the 

expanded seed set. Alternatively, a strategy accomplishing randomized removal of seed 

compounds is applied—with respect to one constraint: Elements of the initial seed set 

(depicted as light gray squares in Fig. 1) were prioritized and were only examined once 

all other add-on metabolites (dark gray squares in Fig. 1) have been tested (random 

removal with priorities). Unconstrained randomized removal can be critical, as the 

following example illustrates (Fig. 2): Three metabolites, A, B, and C, are included in 

the expanded seed set. A and B are initially given compounds, whereas C was appended 

as add-on metabolite. C, self-evidently, enlarges the scope size. However, the 

enlargement may not affect the biomass production (Fig. 2A and B together unlock the 

same biomass compounds as the presence of C). In other words, C constitutes an add-

on metabolite, because of its impact on the scope size, but C is not necessary for biomass 

production. However, in case of an unconstrained random approach to calculate the 

minimal seed set, it is two times more likely that C remains in the minimal seed set: if 

and only if C is deleted first, A and B remain in the minimal seed set. In the two 

remaining cases of primary deletion of A or B, C will be part of the minimal seed set to 

ensure the accessibility of the relevant biomass compounds. This would be in contrast 

to the basic principle of ASBIG to retain the initial metabolites. To minimize this bias, 

all components of the initial seed set are prioritized. 

This illustrates the problem of dependencies between different compounds of the 

seed set, which, of course, can occur between any subset of metabolites.  

 
Figure 2. Scenario to illustrate the necessity of a random approach to minimize the 

extended seed set. A and B represent initial metabolites, whereas C is an add-on compound. 

Light gray circles symbolize intermediates of the depicted pathways, and the dark gray circles 

represent biomass compounds. Dashed arrows hint further reaction routes. A and B together lead 

to the same biomass components as the availability of C. If, for example, A is deleted in the second 

phase of ASBIG, B alone lacks the potential to maintain the producibility of the two biomass 

compounds. Consequently, C would emerge in the final minimal seed set. 
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To account for such properties of the expanded seed set, the actual implementation 

comprises two iteratively repeated steps: During the first step, a distinct number of 

runs of random removal with priorities is performed to generate a pool of potential 

minimal seed sets (possibly, all potential minimal seed sets are different). For the 

analyses presented here, 100 runs were performed in one cycle. In the second step, the 

temporary minimal seed sets are evaluated and the metabolite(s) with the maximal 

number of occurrences is (are) marked as definite element(s) of the final minimal seed 

set (marked in black in step 2 of Fig. 3). Subsequently, fixed metabolites are not 

removed on trial anymore in the following iterations. Instead, they constitute an 

invariant part of every temporary minimal seed set once they have been fixed. In the 

next iteration, only the remaining compounds of the expanded seed set are removed on 

trial. The procedure is repeated until the set of fixed metabolites is capable of 

generating a scope that includes all biomass compounds. 

 To obtain more information about the reasons why a specific metabolite occurs in 

the seed set, it can be beneficial to repeat the workflow using a slightly different 

approach (‘producibility constraint’). The difference to the default procedure is an 

additional constraint during seed set expansion restricting the possibility of any 

considered compound to become part of the expanded seed set. More precisely, each 

metabolite outside the previously computed scope is considered as putative add-on 

 
Figure 3. Visualization of the minimal seed set generation. Beginning with the extended seed 

set, the method computes 100 (potentially different) minimal seed sets with the constrained 

random procedure as described. Out of these, the most prevalent compound(s) (depicted in black) 

are marked as inherent part of the emerging minimal seed set and are not considered in following 

iterations. Within these, the procedure is repeated until the set of fixed elements is capable of 

producing a scope that comprises all biomass components (bottom part). 
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metabolite only if its corresponding scope contains a reaction that ensures the 

production of the metabolite.  

The described change in the workflow is not part of the default preferences. It is left 

to the user whether an additional run with the altered approach is required.  

3.8. Final minimal seed set 

ASBIG computes a final minimal seed set, whose scope set includes all biomass 

compounds. The minimal seed set consists of two major parts: initially given 

metabolites and add-on metabolites. The incorporated add-on metabolites can be 

divided into two major classes: (i) metabolites described in Section 3.1, which are 

elementary because of the structure of the model and not of principal interest, and (ii) 

metabolites, which show an autocatalytic behavior and embody a pivotal part of the 

metabolism. These compounds constitute the crucial result of ASBIG, as their presence 

in the minimal seed set indicates potential gaps within the metabolic network 

reconstruction. 

4. Results and discussion 

We developed a new method to detect inconsistencies in metabolic network 

reconstructions. The key step in this method is the identification of metabolites, which 

are necessary to ‘unlock’ specific metabolic pathways, that is, to make them accessible. 

Such metabolites usually represent cofactors that are required, besides the substrate 

of a pathway, to produce the corresponding products. As outlined above, although a 

wide range of metabolites of a biochemical network can usually be produced from a 

small set of precursor metabolites, an additional set of cofactors such as ATP and NAD 

is required to make most of metabolism accessible. The central goal of our approach is 

to identify these cofactors, which we call autocatalytic compounds, for a specific network 

and compare them with the usually well-conserved set of autocatalytic compounds of 

other metabolic models. If uncommon autocatalytic compounds are identified, this can 

usually be regarded as an indicator of missing metabolic functionality in a network 

reconstruction.  

Figure 1 depicts the methodical procedure. First, the reconstruction of interest is 

examined via scope analysis with a predefined initial seed set (always containing the 

same metabolites regardless of the metabolic model investigated). This initial seed set 

is incrementally expanded by additional compounds until all biomass components are 
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included in the computed metabolic scope (leading to an expanded metabolic seed set, 

Fig. 1B). Each compound added, named add-on metabolite, unlocks certain pathways 

in the model and leads to a larger metabolic scope. However, not every add-on 

metabolite contributes to the biomass production. Hence, in the last step of the ASBIG 

analysis, the expanded seed set is minimized to the minimal set of compounds required 

for biomass production (Fig. 1C).  

In summary, for every metabolic reconstruction, a minimal set of metabolites is 

computed. This minimal set allows the production of all biomass components and 

consists of initially given metabolites and a subset of add-on metabolites (see 2.8). As 

prerequisite for each model investigation, it is assumed that those parts of the model 

that are necessary for the biomass production can be unlocked with the initially given 

metabolites. However, this assumption was not true for most investigated metabolic 

reconstructions and add-on metabolites had to be included. Each add-on metabolite has 

the capacity to provide access to priorly blocked parts of metabolism, and thus, uncovers 

putative gaps within a metabolic network reconstruction.  

4.1. Commonly identified inconsistencies in multiple reconstructions 

Initial runs of ASBIG indicated the presence of common autocatalytic compounds in all 

(or at least the majority of) the investigated metabolic models. This observation was a 

consequence of similar features among different models. Often, protein-derived reaction 

components, like the cofactor thioredoxin or the cofactor-carrying acyl carrier protein 

(ACP), were implemented as discrete compounds. However, biosynthesis of ribosomal 

protein is not included in most metabolic network reconstructions. As a result, these 

protein-derived compounds were present in the minimal seed set. Occasionally, 

metabolites that require protein-derived compounds for their biosynthesis appeared in 

the minimal seed set. Their assignment to the corresponding protein-derived compound 

involved additional effort, which could be avoided by integrating the protein-derived 

reaction components in the initial seed set.  

Another metabolite identified by ASBIG in several network reconstructions was 

dihydrolipoamide. In these models, dihydrolipoamide was part of small isolated 

reaction cycles, excluding its own de novo biosynthesis. Hence, dihydrolipoamide and 

other commonly identified metabolites could be regarded as autocatalytic, although the 

lack of their biosynthetic pathways represented a common flaw of the corresponding 

metabolic networks. Consequently, the compounds were added to the initial seed set for 
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subsequent analyses (see supplementary information for a complete list of initial seed 

set compounds).  

4.2. Application to selected reconstructions 

Escherichia coli 

The metabolism of E. coli is well investigated and the associated metabolic 

reconstruction is one of the best-curated models [26]. Accordingly, no peculiarities or 

gaps were detected by ASBIG.  

Arabidopsis thaliana 

ASBIG identified several inconsistencies in the A. thaliana model. The presence of 

cytosolic nicotinamide adenine dinucleotide phosphate (NADP) in the minimal seed set 

unraveled the lack of a NAD phosphorylation reaction in the cytosol. Similarly, plastidic 

NADP turned out to be autocatalytic because of its metabolic connection to plastidic 

hexadecanoic acid (palmitic acid), which was also found in the minimal seed set.  

Plant hexadecanoic acid production involves the NADH-dependent reduction of 

trans-2-hexadecenoyl-ACP to hexadecanoyl-ACP. However, the insertion of plastidic 

NAD, ACP and CoA did not result in the biosynthesis of hexadecanoic acid. Instead, 

plastidic NADP that is required in its reduced form (NADPH) during the reduction of 

oxohexadecanoyl-ACP to hydroxypalmitoyl-ACP was present in the minimal seed set. 

Thus, plastidic CoA, ACP, NADH and NADPH are crucial factors to enable fatty acid 

biosynthesis in the A. thaliana model. However, the requirement of NADPH in addition 

to NADH was unexpected and had to be resolved through detailed manual network 

analysis.  

The requirement of both plastidic and cytosolic NADPH suggested a gap in the 

phosphorylation process of NAD. The A. thaliana genome contains two genes coding for 

NAD kinases, which are annotated as NADK1 and NADK2 [179]. The two 

corresponding enzymes were found to be localized in the cytosol and plastid stoma, 

respectively [180]. The reactions catalyzed by theses enzymes (EC 2.7.1.23) were absent 

in the metabolic reconstruction of A. thaliana, and NADPH lost its autocatalytic 

property by adding the reaction EC 2.7.1.23 to the cytosol and to the plastidic stoma 

compartment. Consequently, plastidic and cytosolic NADPH was not detected in the 

minimal seed set anymore.  
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Bacillus subtilis 

Applying ASBIG to iBSU1103, the metabolic network model of B. subtilis, revealed two 

pathways with deficient or no accessibility: cell wall biosynthesis and thiamine 

biosynthesis.  

Although the relevant genes for thiamine biosynthesis in B. subtilis are known 

[181], the corresponding pathway was not present in iBSU1103. As a result, thiamine 

was an inevitable component of the minimal seed set. Adding the thiamine biosynthetic 

pathway resulted in a gain of functionality for the model and the elimination of 

thiamine from the minimal seed set.  

In addition to thiamine, geranylgeranyl diphosphate (PP) and glycerol teichoic acid 

were part of the final minimal seed set. In the model, geranylgeranyl PP is the direct 

precursor of undecaprenyl PP (UDPP), which is an intermediate in the biosynthesis of 

the cell wall components peptidoglycan (PGL) and teichoic acid (Fig. 4, EC 2.7.8.13 and 

EC 2.7.8.33) [182]. Hence, geranylgeranyl PP and glycerol teichoic acid were required 

in the minimal seed set for the cell wall biosynthesis. 

The corresponding pathways in the model were examined to resolve the need for the 

two compounds. The teichoic acid biosynthetic pathway was implemented in iBSU1103. 

However, teichoic acid synthesis remained locked in a scope analysis with the initial 

seed set owing to the unavailability of UDPP. As mentioned above, geranylgeranyl PP 

is assigned as the direct precursor of UDPP in the iBSU1103 model. In contrast, the 

database BsubCyc indicates trans,trans-farnesyl PP as the precursor of UDPP 

 
Figure 4. Schematic representation of parts of the PGL and the teichoic acid biosynthetic 

pathways in the B.subtilis model. The conflicting minimal seed substrate (italics) is 

geranylgeranyl PP in case of the model and, in contrast, trans,trans-farnesyl PP according to 

information from KEGG and BsubCyc. Further, addition of the reaction depicted by the bold arrow 

would omit the need for PGL as crucial compound. Key intermediates of the pathway are 

highlighted in gray; the remaining metabolites complete the reactions. Each reaction is labeled 

with the corresponding EC number (if available). Dashed arrows mark several reaction steps. 

Abbreviation: IPPP—isopentenyl diphosphate. 
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(BsubCyc: di-trans,poly-cis-undecaprenyl phosphate biosynthesis). Furthermore, the 

gene uppS in B. subtillis encodes an UDPP synthase [183], which requires trans,trans-

farnesyl PP to produce UDPP (EC 2.5.1.31, Fig. 4). Apparently, the reaction EC 2.5.1.31 

of the model included an incorrect substrate assignment leading to the substrate 

incorporation into the minimal seed set, a conflicting minimal seed metabolite. The 

exchange of geranylgeranyl PP with trans,trans-farnesyl PP in the reaction EC 2.5.1.31 

resolved the need for the conflicting minimal seed metabolite and geranylgeranyl PP 

was eliminated from the minimal seed set. The identification of conflicting minimal 

seed metabolites demonstrates the ability of ASBIG to detect wrongly implemented 

reactants.  

Despite the modification of reaction EC 2.5.1.31, teichoic acid remained in the 

minimal seed set because of its ability to provide the PGL polymer to the metabolic 

scope (the backward reaction of EC. 3.6.3.40 removes teichoic acid from PGL, Fig. 4). 

To avoid this property of teichoic acid, a reaction, which transforms multiple PGL 

monomers to a polymer, was implemented in the model (Fig. 4, light gray dashed 

arrow). As a result, no polymers had to be provided as self-replicators anymore, and 

teichoic acid was eliminated from the final minimal seed set. To sum up, the application 

of ASBIG substantially improved the integrity of the B. subtilis model iBSU1103 

leading to a more comprehensive representation of the in vivo metabolism. 

Furthermore, the investigation of iBSU1103 illustrates central characteristics of the 

method: computed add-on metabolites not necessarily indicate the corresponding 

pathway or specific location of an inconsistency, and the results generated by ASBIG 

can suggest the inclusion of further functionality for the model.  

Chlamydomonas reinhardtii 

The minimal seed set for iRC1080, the metabolic model of C. reinhardtii, contained add-

on metabolites that indicated the lack of functionalities in some biosynthetic pathways. 

To access all components of the biomass reaction, thiamine, glutathione, chorismate, 

magnesium-protoporphyrin IX 13-monomethyl ester and plastidic plastoquinone 

expanded the initial seed set.  

The biosynthesis for thiamine was not implemented in the model, likely because 

critical parts of the pathway still require experimental confirmation [184]. However, 

the basic metabolic routes of de novo thiamine biosynthesis in C. reinhardtii are known, 

and the corresponding reactions could be added to the model. After the implementation, 

thiamine lost its autocatalytic property.  
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The presence of glutathione in the minimal seed set could be linked to the 

biosynthetic pathway of cysteine. Assimilatory sulfate reduction in C. reinhardtii 

depends on glutathione and leads to the generation of hydrogen sulfide. Subsequently, 

hydrogen sulfide can be incorporated into O-acetyl-l-serine to form cysteine. Hence, it 

was assumed that hydrogen sulfide, glutathione or cysteine were required to be part of 

the minimal seed set. Three runs of ASBIG, each with one out of the three components 

in the initial seed set, confirmed this assumption (and resulted, for hydrogen sulfide 

and cysteine, in the replacement of glutathione in the minimal seed set).  

It was further possible to identify an impaired biosynthesis of chlorophyllide a 

explaining the presence of protoporphyrin IX 13-monomethyl ester in the minimal seed 

set. S-adenosyl-l-methionine (SAM) was one of the substrates to produce the 

protoporphyrin ester. Hence, another run of ASBIG was performed with SAM included 

in the initial seed set. This led to the removal of protoporphyrin IX 13-monomethyl 

ester, implicating the relevance of SAM.  

The essential character for both plastidic SAM and cytosolic chorismate could be 

explained with a missing transport reaction between plastid and cytosol or missing 

biosynthetic pathways in one of the compartments. A putative transport enzyme could 

overcome this lack in both cases, even though no such transporters have been identified 

in C. reinhardtii yet. However, an enzyme to import SAM into the chloroplast was 

reported for A. thaliana [185]. Therefore, the findings of ASBIG highlight the need for 

further investigations of the metabolic capabilities of C. reinhardtii.  

The putative plastoquinone biosynthetic pathway for C. reinhardtii is available in 

the KEGG database (KEGG: ubiquinone and other terpenoid-quinone biosynthesis). As 

it was not integrated in the investigated C. reinhardtii metabolic model, plastoquinone 

possessed autocatalytic property. Despite the lack of experimental evidence, the 

pathway was added to the model. First, the network reconstruction had to be expanded 

by two metabolites previously not implemented: nonaprenyl PP and 2-methyl-6-

solanyl-1,4-benzoquinol. Nonaprenyl PP is the product of the reaction of geranylgeranyl 

PP with five molecules of isopentenyl PP (catalyzed by EC 2.5.1.85). Subsequently, 

nonaprenyl PP reacts with homogentisate to form 2-methyl-6-solanyl-1,4-benzoquinol 

[186], which is further converted to plastoquinone in a SAM-dependent reaction. The 

enzyme involved in the plastoquinone formation is not yet characterized, however, it is 

assumed that VTE3 codes for the corresponding enzyme [186]. By adding the 

aforementioned metabolic reactions to the C. reinhardtii model, plastoquinone lost its 

autocatalytic property and was eliminated from the minimal seed set.  
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The results for the examined network reconstruction of C. reinhardtii, iRC1080, 

show the versatile capabilities of ASBIG, for example, to identify inconsistencies that 

require additional experimental investigation as shown for the case of SAM or 

chorismate.  

Saccharomyces cerevisiae 

In the S. cerevisiae model iMM904, dolichol was identified as a crucial add-on 

metabolite of the minimal seed set, implying an impaired biosynthesis of the compound. 

A survey of the metabolic model confirmed the absence of the corresponding pathway, 

although the biosynthesis of dolichol in S. cerevisiae has been previously described 

[187]. To implement the metabolic route in the network reconstruction, several 

additions were required: (i) the condensation of farnesyl PP with 13 units of isopentenyl 

pyrophosphate to form polyprenyl PP (EC 2.5.1.87), (ii) the formation of polyprenol from 

polyprenyl PP and water (both polyprenyl PP and polyprenol had to be implemented as 

novel compounds in the model) and (iii) the conversion of polyprenol to dolichol. Manual 

expansion of the network reconstruction of S. cerevisiae provided access to the novel 

biosynthetic pathway of dolichol, thus eliminating the compound from the minimal seed 

set.  

Another unexpected metabolite in the minimal seed set was NADP located in the 

endoplasmatic reticulum (ER). This compound remained in the minimal seed set 

because of the lack of information on a potential pathway providing NADP in the ER.  

Even though dolichol is the only gap-indicating add-on metabolite, the identification 

of NADP as an autocatalytic compound suggests general inconsistencies of the model.  

Zea mays 

Application of ASBIG to the Z. mays model DTMaize_C4GEM_45632 revealed four add-

on metabolites in the final minimal seed set that required further investigation: 

thiamine, NADP, undecaprenyl phosphate (UDP), and 4-methylthio-2-oxobutanoate 

(all localized in the cytosol).  

Although maize is capable of thiamine biosynthesis, the pathway has not yet been 

fully characterized [188], and thus, is not entirely represented within the metabolic 

network model. As a result, the biosynthetic route of thiamine was blocked and 

thiamine had to be incorporated in the minimal seed set. With the future availability 

of novel information, the model can be improved by additionally including this specific 

biosynthetic pathway.  
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The absence of a cytosolic NAD kinase necessitated NADP to be an element of the 

minimal seed set. However, transcriptome analysis and automated annotation 

suggested the existence of a functional NAD kinase in Z. mays (UniProt ID: 

B6TAB2_MAIIZE) [189]. Therefore, the reaction (EC 2.7.1.23) was added leading to the 

elimination of NADP from the minimal seed set.  

Subsequently, the crucial character of UDP was examined and a missing reaction 

to phosphorylate uridine 5′-phosphate (UMP) to UDP in UTP biosynthetic pathway was 

identified. As for the NAD kinase, transcriptome data and electronic annotation 

(UniProt ID: B6T904_MAIZE) [189] suggested the presence of a functional UMP kinase. 

Hence, the detected gap could be resolved by implementing the additional reaction, thus 

eliminating UDP from the minimal seed set.  

The application of the more restrictive ‘producibility constraint’ during the seed set 

expansion (see section 2) allowed to link the autocatalytic metabolite 4-methylthio-2-

oxobutanoate with the biosynthetic pathway of methionine. 4-Methylthio-2-

oxobutanoate was part of the minimal seed set owing to its ability to bypass a blocked 

canonical methionine biosynthetic pathway (KEGG: map00270). It was assumed that a 

limited availability of cysteine, an essential intermediate in the methionine 

biosynthesis, caused the blocked methionine production (see also cysteine biosynthesis 

in C. reinhardtii). By adding cysteine to the initial seed set, folate instead of 4-

methylthio-2-oxobutanoate was represented as an essential add-on metabolite of the 

minimal seed set. Evidently, the canonical methionine biosynthetic pathway was 

inaccessible unless cysteine and folate (or precursors/intermediates of the 

corresponding pathways) were part of the minimal seed set. A derivative of folate, the 

methyl group donor methyltetrahydropteroyltri-l-glutamate, is vital for the last step of 

the methionine biosynthesis [190]. However, the biosynthesis of folate and its 

derivatives was impaired in the model, likely because the in vivo pathway is not yet 

fully understood [191], leading to the inevitable role of folate. Comparable with 

thiamine, the implementation of the biosynthetic pathway in the model depends on 

additional experiments to elucidate folate biosynthesis in Z. mays.  

Another inconsistency in the last step of the methionine biosynthesis was identified: 

According to literature, the triglutamate of methyltetrahydrofolate (MeTHF), 

methyltetrahydropteroyltri-l-glutamate, acts as the substrate for the methionine 

synthase (EC 2.1.1.14) [192,193]. In the Z. mays model, this enzyme used ‘pure’ MeTHF 

as methyl donor (Fig. 4), indicating a conflicting minimal seed metabolite. Additionally, 

another methionine-producing reaction (EC 2.4.2.7), which involved 

methyltetrahydropteroyltri-l-glutamate as substrate, was available. However, the 
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latter reaction was misassigned, as the denoted EC number characterizes an adenine 

phosphoribosyltransferase (EC 2.4.2.7). Thus, methyltetrahydropteroyltri-l-glutamate 

was implemented as substrate for the methionine synthase (EC 2.1.1.14), and the 

redundant misassigned reaction (EC 2.4.2.7) was deleted. As the Z. mays model lacked 

the reactions necessary for the transfer of the single carbon to tetrahydropteroyltri-l-

glutamate, the triglutamate of MeTHF replaced folate (precursor of MeTHF) in the 

final minimal seed set. Although the exact mechanism of the methyl group transfer is 

not completely characterized for plants, the basic pathway composed of two reactions is 

known [194]. Hence, the pathway was implemented in the model to connect 

methyltetrahydropteroyltri-l-glutamate with the folate metabolism. Subsequently, 

folate and cysteine were part of the minimal seed set again and enabled methionine 

biosynthesis.  

Each of the four identified add-on metabolites indicates substantial restrictions in 

the Z. mays model DTMaize_C4GEM_45632. Even though not each issue could be 

resolved, the results of ASBIG provide valuable indications to the Z. mays model for 

improvements.  

4.3. Application to automatically reconstructed networks 

To further scrutinize the ability of ASBIG to improve the consistency of metabolic 

network reconstructions, we analyzed 193 genome-scale metabolic networks, which 

have been reconstructed automatically based on the organisms’ genome sequences and 

genomic annotations [162]. Among all models, 234 different metabolites were identified 

as crucial elements in the final minimal seed set after adding them during scope 

analysis. This list of compounds suggested that reactions were possibly missing in the 

biosynthetic pathways linked to these metabolites (Supplementary Table S1). A median 

of 6 additional compounds per model, necessary to facilitate biomass production, was 

identified (Supplementary Fig. S2). In 69% of all models, PGL polymer (n–1 subunits) 

was identified as an inevitable compound. Peptidoglycan polymers are found in the 

membranes of bacteria and occur with a varying number of subunits [195]. The 

elongation and shortening of this polymer are included in the models, but not the de 

novo biosynthesis. Furthermore, in multiple models, which were analyzed by ASBIG, 

external spermidine (47%), the glutamate-accepting tRNA (26%), thiamine (24%), 

external alanylhistidine (22%) and glycyl-l-asparagine (21%) were frequently identified 

as compounds that could not be synthesized. The recurrence of these compounds might 

be owing to missing knowledge of possible biosynthetic routes or owing to properties of 



64 
 

the reconstruction process (all 193 automated reconstructions analyzed here were 

generated using the same procedure) [162]. On the other hand, 194 of the 243 

compounds were identified in <5% of all automated reconstructions analyzed, 

suggesting model-specific gaps or errors in the reconstruction or actual auxotrophies of 

the organisms.  

Taken together, our analysis of a wide range of different automatically reconstructed 

metabolic networks reveals that several metabolites have an autocatalytic property or 

are inevitable for biomass production. The identification of these autocatalytic 

metabolites using ASBIG can improve the quality of the reconstruction by suggesting 

that the de novo biosynthetic pathways of the identified metabolites are either 

incomplete or missing.  

4.4. Validation of ASBIG on auxotrophic mutants of E. coli 

As mentioned above, no gaps were identified in the E. coli model iJO1366. Using this 

network, we knocked out reactions, recalculated the minimal seed set and compared 

the changes with reported experimental phenotypes of single-gene deletion mutants of 

E. coli K12 derivatives [196]. Using this approach, we were able to validate ASBIG in 

terms of the method’s potential to predict gene essentiality as well as altered nutritional 

requirements of mutants compared with the wild type strain. We deleted 10 reactions, 

one at the time, each one in the biosynthetic pathways of a specific amino acid. The 

deleted reactions correspond to gene deletions, which are known to cause a specific 

auxotrophy for the focal amino acid of the mutant strain [196]. For each of the mutated 

networks, ASBIG identified an add-on metabolite, which was necessary to ensure 

biomass production. The add-on metabolite was the final product (the amino acid) of 

the affected pathway, an intermediate within the pathway or a derivative of the focal 

amino acid (for an overview see Supplementary Table S2). Hence, the output of ASBIG 

reflects the auxotrophy of the mutant strain impressively demonstrating the capability 

of ASBIG to detect gaps within primary metabolic pathways. 

5. Conclusion 

In conclusion, ASBIG is an efficient method for detecting inconsistencies in existing 

genome-scale metabolic network reconstructions. The method facilitates network 

validation and automated gap detection in primary metabolism contributing 

considerably to the quality improvement of metabolic models. ASBIG combines the 
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conceptual approaches of autocatalytic metabolites and scope analysis, thereby 

allowing to test network reconstructions for their integrity. For each investigated 

metabolic model, a minimal seed set of metabolites, which provides access to all 

fundamental metabolic pathways, is computed. Putative flaws of the model can be 

deduced directly from identified minimal seed set.  

The benefit of ASBIG was demonstrated by investigating different metabolic 

models. In the closely examined models, numerous kinds of errors could be identified 

including i) missing reactions, ii) missing pathways or iii) gaps caused by insufficient 

knowledge of metabolic processes. Furthermore, not only single gaps in individual 

models were identified, but also common flaws simultaneously present in several 

network reconstructions, could be detected in a large screen of 190 network 

reconstructions.  

In contrast to the commonly applied gap-finding approach (i.e. deriving putative 

gaps from the calculated flux distributions), ASBIG is a simple method and detects 

other types of inconsistencies. Hence, the application of ASBIG contributes significantly 

to model refinement and validation representing a complementary approach to existing 

gap-finding methods. 
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1. Abstract 

Bacteria that have adapted to nutrient-rich, stable environments are typically 

characterized by reduced genomes. The loss of biosynthetic genes frequently renders 

these lineages auxotroph, hinging their survival on an environmental uptake of certain 

metabolites. The evolutionary forces that drive this genome degradation, however, 

remain elusive. Our analysis of 949 metabolic networks revealed auxotrophies are 

likely highly prevalent in both symbiotic and free-living bacteria. To unravel whether 

selective advantages can account for the rampant loss of anabolic genes, we 

systematically determined the fitness consequences that result from deleting 

conditionally essential biosynthetic genes from the genomes of Escherichia coli and 

Acinetobacter baylyi in the presence of the focal nutrient. Pairwise competition 

experiments with each of 20 mutants auxotrophic for different amino acids, vitamins, 

and nucleobases against the prototrophic wild type unveiled a pronounced, 

concentration-dependent growth advantage of around 13% for virtually all mutants 

tested. Individually deleting different genes from the same biosynthesis pathway 

entailed gene-specific fitness consequences and loss of the same biosynthetic genes from 

the genomes of E. coli and A. baylyi differentially affected the fitness of the resulting 

auxotrophic mutants. Taken together, our findings suggest adaptive benefits could 

drive the loss of conditionally essential biosynthetic genes. 

2. Introduction 

Although it has been known for a long time that factors such as deletions, duplications, 

and horizontal gene transfer can drastically shape the size and information content of 

bacterial genomes, one of the most surprising insights that resulted from sequencing 

multiple isolates of the same, seemingly identical species was the enormous plasticity 

that characterized all genomes analyzed so far [197–199]. For example, a comparison 

of 61 publicly available Escherichia coli and Shigella spp. genome sequences revealed 

that only 6% of the predicted gene families were represented in every genome (i.e., the 

“core genome”), whereas all others were present only in a subset of strains (i.e., the 

“accessory” or “pan-genome”; [79]). Interestingly, even the gene repertoire that 

constituted the core genome lacked genes that were otherwise deemed essential for the 

growth of E. coli [80–82]. These observations raise the question what major forces drive 

the loss of genes that essentially contribute to cellular fitness. 
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Genome reduction is a typifying feature of bacteria that occur in nutrient-rich or 

constant environments such as lactic acid bacteria [200], endosymbionts [56], or 

pathogens [54], respectively. Under these conditions, coding regions that provide little 

or no adaptive value in a given environment may be lost [54,201]. This so-called 

“genome streamlining” is thought to reduce the metabolic burden for basic cellular 

processes and could thus provide the resulting genotype with selective advantages over 

other genotypes that still bear these costs [58]. Adaptive benefits as a consequence of 

losing essential biosynthetic functions may arise when the corresponding metabolite is 

sufficiently present in the bacterial growth environment or provided by a co-occurring 

organism [83]. The latter scenario likely explains why amino acid biosynthesis 

pathways are sometimes partitioned between a eukaryotic host and its prokaryotic 

endosymbiont [202] or between multiple co-symbionts [56]. 

A second factor that could explain the loss of genetic information from bacterial 

genomes is genetic drift [49,203,204]. When bacteria transition from a free-living to a 

symbiotic lifestyle such as the bacterial endosymbionts of insects [54–56], repeated 

bottlenecks of relatively small populations may result in a weakened selection even for 

required genes, thus resulting in an elimination of dispensable genes [205]. Indeed, 

experimentally evolving Salmonella enterica by subjecting it to regular population 

bottlenecks resulted in a reduction of genome size and a concomitant loss of essential 

genes [57]. Similar mechanisms might act on obligate bacterial endosymbionts, thus 

explaining their typically extremely reduced genomes that retain few essential 

biosynthetic genes. However, it is generally difficult to infer from genomic analyses 

whether drift or selection was the main force to explain genome degradation. Hence, 

alternative approaches are necessary to determine the drivers of bacterial gene loss. 

In vitro approaches are ideal for this purpose, because experiments can be 

purposefully designed and environmental conditions rigorously controlled. Long-term 

evolution experiments, in which different bacterial strains were serially propagated 

and thus allowed to adapt to the respective environments have shown that large 

genomic deletions are indeed prevalent under these conditions [206–208]. Moreover, 

fitness advantages accompanied some of these deletions, suggesting selection rather 

than drift drove the loss of these genes [114,207,208]. Interestingly, in a study with the 

bacterium Methylobacterium extorquens AM1 [208], the observed fitness advantage did 

not seem to result from a general shortening of the genome, but was rather due to the 

loss of specific genes. However, determining whether the deletion of a metabolic gene 

has a negative, neutral, or beneficial effect on the fitness of the resulting mutant is a 

nontrivial task. Problems that arise when naturally evolved mutants are being 
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analyzed are first that very often multiple genes are lost simultaneously [207], thus 

making it difficult to link an observed change in fitness to the loss of a particular gene. 

Second, multiple auxotrophies often hamper the culturability and hence experimental 

amenability of a given strain (e.g., bacterial endosymbionts). Third, genetic interactions 

among different mutations that arose independently impede the determination of 

fitness consequences of a single mutation. These problems can be circumvented by 

analyzing genetically well-characterized natural or engineered mutants. Indeed, 

Bacillus subtilis [209] and E. coli [210] mutants impaired in tryptophan biosynthesis 

revealed significant fitness advantages in the presence of the amino acid relative to 

prototrophic cells. However, whether the loss of essential metabolic genes always 

results in selective advantages when the required metabolite is present in the 

environment as well as which causal mechanisms explain this observation remain 

obscure. 

Here, we combine in silico analyses with systematic laboratory experiments of 

genetically engineered mutants to address the following questions: (1) How widespread 

is the loss of conditionally essential metabolic genes among bacteria in nature? (2) What 

fitness consequences result from the loss of a metabolic gene? (3) Does the fitness effect 

depend on (a) the gene analyzed, (b) the concentration of the corresponding metabolite 

in the growth environment, or (c) the position of the catalytic enzyme within a metabolic 

pathway?, and (4) Do different species differ in their fitness consequences upon gene 

loss? 

3. Material and Methods 

3.1. Prediction of auxotrophies and bioinformatics analysis 

To predict putative auxotrophies in different bacterial species, the metabolic networks 

of 949 bacteria were examined for the presence of metabolic routes leading to the 

formation of amino acids, vitamins, or nucleobases. As a first step, all biosynthetic 

pathways known in bacteria to be involved in the formation of each of 20 amino acids, 

three vitamins, and two nucleobases (Table S1) were collected from the manually 

curated metabolic pathway database MetaCyc [211]. The pathways were consolidated 

(Fig. S1) to identify alternative biosynthetic routes and pathway dependencies (e.g., a 

pathway that provides the precursor metabolite). In a second step, the existence of the 

individual pathway reactions in 949 bacterial species was inferred using the 
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MicroScope genome annotation and analysis platform [212]. Briefly, the MicroScope 

platform is a collection of microbial metabolic networks, which consist of a subset of 

those reactions from the MetaCyc database, for which a genome segment (including 

plasmids) was identified or predicted, that is part of a gene for an enzyme that can 

catalyze the corresponding reaction. In a third step, an organism was predicted to be 

auxotrophic for a given metabolite if all possible metabolite-forming routes (Fig. S1) 

lacked more than 50% of the pathway's reactions as indicated by the absence of the 

corresponding annotated genes from the organism's genome sequence. This 50% cut-off 

was chosen, to increase robustness of the predictions against sequencing errors (i.e., 

missing annotations) and errors during the process of the metabolic network 

reconstruction. Genes annotated as pseudogenes were excluded from the analysis 

because pseudogenes are often a transitional stage of the gene from a functional gene 

toward complete gene loss [213]. Therefore, all reactions that depended on pseudogenes 

were classified as “not present.” The observed results thus represent a conservative 

estimate of the frequency of auxotrophies in bacteria with a sequenced genome. 

All bacterial strains were categorized as “free-living,” “gut-inhabiting,” or 

“endosymbiotic” based on the genome meta-information stored in the Genomes OnLine 

Database [214]. 

The total mass of each protein in Mega Dalton (i.e., mass of the individual protein 

multiplied with the abundance of protein copies per cell) that was involved in the 

biosynthesis of Arg, His, and Trp was obtained from Wessely et al. (2011) [153]. 

3.2. Culture conditions 

All cultures were incubated at 30°C under shaking conditions and experiments were 

performed in minimal medium for Azospirillium brasillense (MMAB) [215] without 

biotin and using fructose (5 g L−1) instead of malate as carbon source. Growth kinetic 

studies were performed in 96-microwell plates (Nunc, Denmark) with a culture volume 

of 0.2 mL. Competitive fitness experiments were performed in 96-deepwell plates 

(Eppendorf, Germany) with a culture volume of 1 mL. 

3.3. Construction of strains 

Single-gene deletions in E. coli that would lead to auxotrophy for a single amino acid, 

nucleobase, or vitamin were identified using the KEGG pathway [216] and the Ecocyc 

database [217]. All deletions were transferred from existing strains [80] using P1 
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phage-mediated transduction [218] into E. coli BW 25113 [80]. To distinguish different 

strains in competition experiments, the arabinose utilization locus (Ara+) of E. coli 

strain REL 607 [219] was introduced into all auxotrophs by P1 transduction. Potential 

genetic targets to construct auxotrophs for Arg, His, Leu, and Trp in A. baylyi were 

identified using the KEGG pathway database [216] and deletion mutants were 

constructed as described ([220]; see Supporting Methods for details). Conditional 

lethality of these mutations in MMAB medium was verified in previous studies 

[80,81,221] as well as by inoculating 105 colony-forming units (CFUs) mL−1 of these 

strains into 1 mL MMAB medium. After 24 h, their optical density (OD) was determined 

spectrophotometrically at 600 nm using a Tecan Infinite F200 Pro platereader (Tecan 

Austria GmBh, Austria) and the mutation was deemed conditionally essential when 

the auxotroph's growth did not exceed the OD600nm of uninoculated minimal medium. 

In contrast, when the mutant was able to grow (i.e., exceed the OD600nm of uninoculated 

minimal medium), the strain was excluded from further analysis and the next gene 

upstream the biosynthetic pathway was deleted until a mutant was found that satisfied 

the criterion of conditional essentiality. Gene deletions were in all cases confirmed by 

sequencing the corresponding genomic regions.  

3.4. Growth kinetic and fitness assays 

For all experiments, auxotrophs were precultured at 30°C in MMAB medium 

supplemented with 200 µM of the required nutrient. Growth kinetics of auxotrophic 

strains and a matching prototrophic wild type (WT) were recorded in MMAB medium 

supplemented with the focal nutrient at the respective concentration. The pH of the 

medium did not change significantly over the course of the experiments. The medium 

was inoculated with ∼105 CFUs mL−1 of an overnight culture (i.e., 16 h). Growth kinetic 

experiments were performed in a Tecan Infinite Pro 200 plate reader (Tecan Austria 

GmBh). Growth was measured as absorbance at 600 nm (i.e., OD) every 8 min for 24 h 

with 3 min of shaking between measurements. The maximum population density (i.e., 

OD) reached was calculated using the Magellan 7.1 software (Tecan Austria GmBh). 

The relative maximum OD was calculated by dividing the OD of the auxotroph by the 

OD of the WT grown at the same metabolite concentration. Monoculture experiments 

of every auxotroph and its cognate WT control were replicated four times for each 

metabolite concentration tested. 

For competitive fitness assays, ∼105 CFUs mL−1 of either WT or auxotrophs were 

inoculated into 1 mL MMAB medium with the requisite nutrient concentration and cell 
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numbers were determined at 0 and 24 h by plating. Escherichia coli auxotrophs were 

differentiated from WT using the arabinose utilization marker (Ara+/Ara−) as described 

[219] and A. baylyi strains were differentiated using an antibiotic marker (kanamycin). 

The ara marker was swapped between competitors. None of the two markers used 

incurred detectable fitness costs (paired-samples t-test: P > 0.05, n = 8). Competitive 

fitness of auxotrophs versus WT was determined by calculating the Malthusian 

parameter (M) of both genotypes: M = (ln (Nf/Ni)/24), where Ni is initial number of CFUs 

at 0 h and Nf is the final CFU count after 24 h [219]. Relative fitness was calculated as 

the ratio of Malthusian parameters. Coculture experiments were replicated eight times 

(i.e., comparison of [1] WT and deletion mutants within the same biosynthetic pathway, 

and [2] WT and auxotrophic A. baylyi mutants) or four times for each metabolite 

concentration tested (all others). 

The two methods used to quantify bacterial productivity were quantitatively 

comparable, as indicated by a significant correlation between CFU plate counts and OD 

readings (Spearman rank correlation: ρ = 0.76, P = 4.4 × 10−26, n = 128).  

3.5. Statistical analysis 

Frequency distributions of auxotrophic bacteria with different lifestyles were compared 

with a Pearson's Chi-squared test with Yates’ continuity correction and the 

distributions of the number of auxotrophies per organism with the Wilcoxon rank sum 

test with continuity correction. The Levene's test was used to assess homogeneity of 

variances and variances were assumed to be inhomogeneous when P > 0.05. 

Statistical differences in the growth parameters (i.e., OD, relative fitness) of WT 

and auxotrophs were determined by independent sample t-tests (monoculture growth 

experiments) or paired-sample t-tests (coculture competition experiments). Brown–

Forsythe tests followed by either Tamhane's T2 (nonhomogenous variances) or LSD 

(homogenous variances) post-hoc tests were used to infer statistical differences in the 

relative fitness of mutants lacking different genes of the same biosynthetic pathway. 

The false discovery rate (FDR) procedure of Benjamini et al. (2006) was applied to 

correct P values after multiple testing [222]. The concentrations required by auxotrophs 

to exceed WT fitness were compared with Mann–Whitney U-tests. Two-sample t-tests 

were used to detect fitness costs of genetic markers. The relationship between 

monoculture OD and plate counts as well as between protein mass invested and the 

relative position within the three biosynthetic pathways was investigated by applying 

Spearman's rank correlations. All statistical analyses were performed using the R 
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software ([223], version 2.15.3) and the SPSS package (version 17.0, IBM, Rochester, 

MN). 

4. Results 

4.1. Loss of conditionally essential biosynthetic functions is common in 

bacteria 

To determine how common the loss of conditionally essential biosynthetic functions is 

among natural bacterial isolates, we investigated the frequency with which 

auxotrophies occurred in each of 949 sequenced eubacterial genomes. The set of 

genomes analyzed covered a phylogenetically diverse spectrum of bacterial phyla (Fig. 

S2), yet was biased in its composition toward bacteria of biotechnological or medical 

relevance. Taking advantage of genome sequences, pathway information, and genome 

annotation, we focused our analysis on all 20 proteinogenic amino acids, two 

nucleosides, as well as three vitamins (Table S1). A majority of Eubacteria (i.e., 76%) 

were predicted to be auxotrophic for between one and 25 different metabolites that are 

needed for growth and metabolism (Fig. 1 A). The most commonly predicted compounds 

that could not be synthesized by the organisms analyzed were biotin (36%), 

phenylalanine (36%), and asparagine (37%; Fig. 1 C). In contrast, very few bacteria (i.e., 

7%) were auxotrophic for proline and isoleucine. Notably, three-fourths of all strains 

predicted to be auxotrophic had lost more than 85% of the genes involved in the 

biosynthesis of tryptophan, histidine, leucine, pyrimidines, and purines (Fig. S3), which 

are the longest linear pathways analyzed (Fig. S1). This finding suggests that 

auxotrophic strains tend to lose entire pathways once a biosynthetic function has been 

lost. 
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When putative auxotrophy frequencies were determined for the phylum 

Enterobacteriaceae (i.e., 116 organisms), 13% of all strains in this subset were predicted 

to be auxotrophic (Fig. 1 A). Here, the most commonly found auxotrophy was tyrosine 

(Fig. 1 D), which could not be synthesized by 9% of the tested Enterobacteriaceae. None 

of the enterobacterial genomes analyzed had lost the ability to produce methionine or 

threonine. 

 
Figure 1. Distribution of metabolic auxotrophies in bacteria. Loss of a given biosynthetic 

function was predicted in silico using 949 eubacterial, genome-annotated taxa [211,212]. (A) 

Distribution and median (dashed line) of the number of predicted auxotrophies per auxotrophic 

organism for Eubacteria (dark gray, n = 949) and Enterobacteriaceae (light gray, n = 116) for all 

25 metabolites analyzed. Percentages indicate the fractions of predicted auxotrophic organisms. 

Violin plots are scaled to the same maximum width. (B) Distribution and median (dashed line) of 

the number of auxotrophies for all auxotrophic Eubacteria depending on their lifestyle. 

Percentages indicate the fractions of predicted auxotrophic organisms within each lifestyle group. 

The lifestyle group sizes are as follows: free-living (n = 246), intestinal microflora-associated (n = 

111), and endosymbiotic organisms (n = 57). Violin plots are scaled to the same maximum width. 

Frequencies of auxotrophies within (C) Eubacteria (n = 949), and (D) Enterbacteriaceae (n = 116). 

See Table S1 for abbreviations of metabolite names. 
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Mapping all detected auxotrophies onto the lifestyles of the 949 eubacterial species 

analyzed [214] indicated that 85% free-living, 64% gut-inhabiting, and 91% 

endosymbiotic bacteria were predicted to be auxotrophic for at least one metabolite 

(Fig. 1 B). Bacteria of the intestinal microflora were less frequently auxotrophic than 

free-living bacteria and endosymbionts (Chi-squared test with Yates correction: χ2 = 19, 

P = 1.5 × 10−5, n = 111 and 246 and χ2 = 13, P = 3.3 × 10−4, n = 111 and 57, respectively; 

Fig. 1 B). Furthermore, auxotrophic endosymbionts were predicted to be auxotrophic 

for 20 metabolites per organism (median), which is significantly more than was 

predicted for auxotrophic free-living and gut-inhabiting bacteria (both groups: median 

of two auxotrophies per organism; Mann–Whitney U-test with continuity correction: W 

= 9541, P < 2.2 × 10−16, n = 52 and 209 and W = 3033.5, P = 8.8 × 10−10, n = 52 and 71, 

respectively; Fig. 1 B). The phylogenetic distribution of lifestyles among the 949 

analyzed organisms strikingly matched the phylogenetic distribution of all known 

bacteria with a completely sequenced genome (Fig. S4). 

Taken together, our in silico analysis of eubacterial genomes predicted a 

surprisingly pervasive loss of multiple conditionally essential metabolic functions 

including the biosynthesis of amino acids, nucleosides, and vitamins. Furthermore, the 

distribution and frequency of auxotrophies was strongly dependent on the lifestyle of 

the bacterial species analyzed. 

4.2. Auxotrophy-causing mutations are beneficial when the focal metabolite is 

present in the environment 

The growth of E. coli WT in monocultures was significantly enhanced by the 

supplementation of five compounds (i.e., His, Met, Phe, Trp, and Nad; FDR-corrected 

independent sample t-tests: P ≤ 0.05, n = 4; Fig. S5A, C) although different 

concentrations of each metabolite were required to achieve this effect. In contrast, 

growth was unaffected by the addition of eight metabolites (i.e., Ile, Leu, Lys, Pro, Tyr 

Cyt, Bio, and Pan; FDR-corrected independent sample t-tests: P > 0.05, n = 4; Fig. S5) 

and even inhibited by three of the 16 metabolites tested (i.e., Arg, Thr, and Gua; FDR-

corrected independent sample t-tests: P ≤ 0.05, n = 4; Fig. S5A, B). 

When each of these metabolites was supplied in increasing concentrations to the 

corresponding auxotrophs, growth was strongly dependent on the concentration of the 

respective nutrient (Fig. S6). Half of all gene deletions tested resulted in a maximum 

population density (i.e., OD) that was significantly increased over WT levels (FDR-

corrected independent sample t-tests: P ≤ 0.05, n = 4; Figs. 2 A, S6) at some 
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concentration of the focal metabolite. Exceptions were the auxotrophs for His, Lys, Phe, 

Tyr, Cyt, and Nad, whose maximum population density did not exceed WT levels (FDR-

corrected independent sample t-tests: P > 0.05, n = 4, Figs. 2 A, S6) as well as the Pro 

and Thr auxotrophs that did not even reach WT levels under the range of 

concentrations tested (FDR-corrected independent sample t-tests: P < 0.05, n = 4; 

Figs. 2 A, S6A). The growth advantage over WT of the Arg and Gua auxotrophs was 

probably attributable to a significant inhibitory effect of the metabolites added on the 

growth of the WT (FDR-corrected independent sample t-tests: P ≤ 0.05, n = 4; Figs. S5A, 

B and S6A, B), rather than an enhanced growth of the auxotrophic strains. Notably, 

growth of vitamin auxotrophs exceeded WT levels at much lower concentrations (0.2–

0.5 µM) than was the case for nucleobase and amino acid auxotrophs (25–200 µM; 

Mann–Whitney U-test: P = 1.04 × 10−9, n = 12 and 28; Figs. 2 A, S6). 

To verify whether the observed fitness advantages also manifest when an 

auxotrophic mutant directly competes against its prototrophic ancestor, pairwise 

competition experiments were performed, in which each of 16 auxotrophs were directly 

competed against the prototrophic WT in environments that contained different 

concentrations of the focal metabolites. Under these conditions, all auxotrophs except 

the Cyt and Nad auxotrophs reached fitness values that significantly exceeded WT 

levels (FDR-corrected paired-sample t-tests: P ≤ 0.05, n = 4; Figs. 2 B, S6). This included 

also auxotrophs, whose fitness did not increase over WT levels in monocultures (i.e., 

auxotrophs for His, Lys, Phe, Pro, Thr, Tyr). Similar to monocultures, vitamin 

auxotrophs achieved their maximum relative fitness at much lower concentrations 

(0.05–0.5 µM) than amino acid- and nucleobase-deficient strains (25–200 µM) required 

to exceed WT growth (Mann–Whitney U-test: P = 3.58 × 10−10, n = 16 and 52; Figs. 2 B, 

S6). Biotin, one of the compounds for which biosynthesis genes were most frequently 

lost in natural bacterial isolates (Fig. 1) was required in the lowest concentrations of 

all metabolites analyzed in both mono- and coculture experiments (Figs. 2 A, B, and 

S6). 
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 Taken together, these results indicate that the loss of essential biosynthetic genes 

from the genome of E. coli generally resulted in strong and significant fitness 

advantages over the prototrophic WT when the required compounds were sufficiently 

present in the environment. The extent of fitness advantage, however, was context-

dependent and strongly affected by (1) the concentration of the metabolite in the 

environment, (2) the identity of the metabolite, and (3) the absence/presence of a 

competitor.  

4.3. Fitness benefits depend on which gene of a biosynthetic pathway is lost 

Amino acid biosynthesis involves the action of multiple enzymes that are encoded by 

different genes. Thus, the fitness benefit a strain gains by not having to carry out a 

 
Figure 2. Maximum productivity and competitive fitness of Escherichia coli auxotrophs 

relative to WT. (A) Maximum OD in monoculture and (B) maximum fitness in coculture of the 

amino acid (circles), vitamin (squares), and nucleobase auxotrophs (diamonds) relative to WT. All 

values are medians (±95% CI) of four replicates and are significantly different from WT levels (i.e., 

dashed line; FDR-corrected independent sample t-tests (monoculture) and paired-sample t-tests 

(coculture): P ≤ 0.05, n = 4), except those marked by “ns.” See Table S1 for abbreviations of 

metabolite names. 
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certain biosynthetic step may differ depending on which gene has been lost. Observing 

different fitness benefits when different genes of the same pathway are lost may reflect 

differences in the biosynthetic costs incurred at each step or regulatory interactions 

among genes. 

To verify this possibility, several genes were individually deleted from the 

biosynthetic pathways for Arg (six genes), His (four genes), and Trp (four genes; Fig. 3 

and Table S2) whose deletion renders the resulting mutant auxotroph for the 

corresponding amino acid. All generated mutants were individually competed against 

WT in three environments, which differed in the concentration of the focal amino acid. 

The range of these concentrations covered a span (±50 µM) around the concentration at 

which the terminal deletion mutant of each pathway had reached maximum fitness 

relative to cocultured WT (Figs. 2 B, S6). 

Fitness consequences resulting from the loss of a conditionally essential gene from 

one of the three multistep pathways analyzed strongly depended on both the identity 

of the lost gene as well as the concentration of amino acids available (Fig. 3). A pattern 

that seemed to emerge was that as the amino acid concentration in the environment 

increased, deletion of terminal genes tended to be more advantageous than the loss of 

more anterior genes (FDR-corrected paired-sample t-tests and Brown–Forsythe tests 

followed by an LSD or Tamhane's T2 post-hoc test: P < 0.05, n = 8; Fig. 3). This trend 

was evident in two out of the three amino acid concentrations assayed for each of the 

three pathways analyzed (Fig. 3). Furthermore, one of the three amino acid 

concentrations tested for each biosynthetic pathway caused a significant positive 

correlation between the mutants’ relative fitness and the position of the deleted gene 

within the pathway (Pearson product-moment correlation: Arg pathway, 100 µM: r = 

0.33, P = 0.012, n = 48; His pathway, 200 µM: r = 0.5, P = 0.05, n = 28; Trp pathway, 

200 µM: r = 0.55, P < 0.001, n = 32). Interestingly, when the amount of protein invested 

by E. coli to catalyze different steps of these biosynthetic pathways was taken into 

account, the protein investment also increased toward the end of these pathways 

(Spearman's rank correlation: ρ = 0.55, P = 0.02, n = 17; Fig. S7). Calculating the 

energetic cost for the individual coding sequences of these three pathways as well as 

the corresponding protein machinery in E. coli (Supporting Information Methods) 

revealed a significant greater protein cost (Wilcoxon signed rank test: P = 0.002, n = 10) 

that exceeded DNA biosynthesis costs by factor 34 (Table S3). Hence, these results 

suggest that a saving of protein costs may be involved in explaining the observed gain 

in fitness. 
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 In case of the Arg biosynthetic pathway, the argA deletion mutant displayed a 

particularly strong fitness increase over WT in two of the three Arg concentrations 

tested (FDR-corrected paired-sample t-test: P < 0.05, n = 8; Fig. 3 A). Interestingly, the 

gene product of argA (i.e., N-acetylglutamate synthase) catalyzes the first step in the 

Arg biosynthesis pathway and is the target enzyme for feedback inhibition by arginine 

 
Figure 3. Competitive fitness of auxotrophic Escherichia coli mutants that lack different 

genes of the same biosynthetic pathway. Fitness of different deletion mutants that are 

auxotrophic for (A) Arg, (B) His, and (C) Trp was determined relative to WT. Experiments were 

conducted in minimal medium to which 50, 100, and 150 μM of Arg (A) or 100, 150, and 200 μM 

of either His (B) and Trp (C) has been supplemented. X-axes are labeled with the last letter of the 

focal gene's name (e.g., A for argA, hisA, or trpA). Asterisks denote significant differences from 

WT levels (i.e., dashed line; FDR-corrected paired-sample t-tests: *P < 0.05, **P < 0.01, and ***P 

< 0.001). Different letters indicate significant differences among deletion mutants (univariate 

ANOVA followed by an LSD or Tamhane's T2 post-hoc test: P < 0.05; n = 8). Boxplot: median 

(horizontal lines in boxes), interquartile range (boxes, 1.5×-interquartile range (whiskers). Pathway 

insert: The flow of biosynthetic steps in each pathway. Unlabeled arrows represent nonessential 

genes. 5-PRDP: 5-phospho-α-d-ribose 1-diphosphate. 
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[224]. However, deletion of trpE and trpD (i.e., anthranilate synthase), which fulfill the 

same function in the Trp biosynthesis pathway [225], did not result in a similar effect 

(Fig. 3 C). Thus, the particularly strong fitness advantage gained by argA deletion 

mutants in the presence of sufficient amounts of Arg points to a special regulatory role 

this gene plays within the Arg biosynthesis pathway. 

Together, these results demonstrate significant gene-specific fitness effects that 

arise upon deletion of different genes of the same metabolic pathway and suggest the 

saving of protein costs may be involved in explaining these differences. 

4.4. Also Acinetobacter baylyi auxotrophs gain a fitness advantage upon gene 

loss 

All A. baylyi auxotrophs (i.e., ∆hisD, ∆leuB, and ∆trpB) except the ∆argH mutant 

gained a significant fitness advantage upon gene loss when the corresponding amino 

acid was present (FDR-corrected paired-sample t-tests: P ≤ 0.05, n = 8; Fig. 4). As 

previously observed in E. coli, the fitness advantage gained by A. baylyi auxotrophs was 

strongly dependent on the concentration of the focal metabolite, yet followed a 

completely different, downright opposite pattern (Fig. 4). Interestingly, only one of the 

four A. baylyi auxotrophs tested (i.e., ∆hisD) gained an advantage in relative fitness 

that was significantly increased over the fitness levels that the corresponding E. coli 

auxotrophs achieved under the same conditions (FDR-corrected independent sample t-

tests: P ≤ 0.05, n ≥ 4). In sum, these results corroborate that the loss of essential 

biosynthetic genes can be selected for when the required metabolite is present in the 

environment, yet point to significant, species-specific differences. 
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5. Discussion 

Our analysis revealed that the loss of conditionally essential genes, which likely results 

in metabolic auxotrophies, is not limited to bacterial endosymbionts, but equally 

prevalent among free-living bacteria. However, why do microorganisms loose genes at 

the expense of their metabolic autonomy? For endosymbiotic bacteria, this question is 

commonly answered by pointing to their small population sizes and a lack of genetic 

recombination. These factors should result in a relaxed selection even for essential 

genes and—combined with a strong effect of genetic drift—could explain the rapid 

erosion of symbiont genomes [49,54,55,202–204,226]. However, free-living and gut-

dwelling bacteria drastically differ from bacteria with an intracellular lifestyle in terms 

 
Figure 4. Competitive fitness of Acinetobacter baylyi and Escherichia coli auxotrophs 

relative to WT in increasing concentrations of the focal amino acids. Fitness of E. coli (circles) 

and A. baylyi (squares) mutants auxotrophic for Arg, His, Leu, and Trp relative to the 

corresponding WT. All values are medians of four replicates for E. coli and eight replicates for A. 

baylyi. The gray and dark gray regions mark the 95% confidence intervals for E. coli and A. baylyi, 

respectively, and the gray and dark gray asterisks mark significant differences of the E. coli and 

A. baylyi auxotrophs to WT levels (i.e., dashed line; FDR-corrected paired-sample t-tests: *P < 

0.05, **P < 0.01, and ***P < 0.001, n ≥ 4). 



84 
 

of their population biology as well as the selective environment they experience. Also, 

the high degree of metabolic complementarity and mutual interdependency that has 

been frequently observed among co-occurring endosymbionts [56,205,227] is likely 

favored and maintained by natural selection. 

To experimentally determine the potential role of selection in favoring mutants that 

lack essential genes, different biosynthetic genes were individually deleted from the 

genomes of two bacterial species and the resulting auxotrophic mutants systematically 

analyzed. This analysis revealed that (1) the loss of essential biosynthetic genes was 

generally beneficial when the required metabolite was sufficiently present in the cells’ 

growth environment, (2) the metabolite concentration an auxotroph required to attain 

WT growth levels differed significantly depending on the metabolite as well as the 

species analyzed, (3) the loss of different genes from the same metabolic pathway 

resulted in differential fitness consequences for the corresponding mutants, and (4) 

auxotrophs of two species that lacked the same biosynthetic gene responded very 

differently when exposed to the same concentrations of the required amino acid. 

5.1. What causes the unexpectedly strong fitness advantage? 

A key finding of this study is that the loss of different biosynthetic genes gave rise to 

different fitness benefits when the focal metabolite was sufficiently present in the 

mutants’ growth environment. This was not only true for genes of different metabolic 

pathways, but also when genes of the same biosynthetic pathway were considered. A 

number of relevant insights emerge from this analysis. First, it made a significant 

difference whether a mutant's phenotype was indirectly compared to WT (monoculture) 

or directly competed against WT (coculture). Here, both (1) the minimally required 

metabolite concentration as well as (2) the maximally achieved advantage over WT 

differed between the two perspectives. These findings cannot be exclusively explained 

by the costs auxotrophs save for the production of the focal metabolite relative to WT. 

Instead, other factors such as the cells’ requirement for a given metabolite and/or the 

auxotrophs’ transport efficiency with which they can take up different metabolites may 

have caused this pattern. Second, the finding that the deletion of different genes from 

the same biosynthetic pathway engendered different fitness consequences for the 

resulting auxotrophic mutants, suggests the unexpectedly strong fitness advantage of 

auxotrophs is at least partially caused by effects emanating from the loss of individual 

genes rather than a systemic response. The seeming increase of the fitness advantage 

auxotrophic mutants gained when terminal genes of a given pathway were deleted 
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together with the concurrent enlarged investment of protein mass toward the end of 

these pathways implies the saving of protein costs may contribute to the observed gain 

in fitness. This interpretation is in line with empirical evidence, which suggests protein 

costs can significantly limit bacterial growth [228–230] or cause redistributions of 

metabolic fluxes to less expensive pathways [231]. However, Dykhuizen (1978), who 

addressed this question previously in E. coli did not find evidence for a cost-saving of 

Trp auxotrophs relative to prototrophic revertants [210]. Another possibility is a 

metabolic or regulatory rewiring that renders auxotrophs more efficient in coping with 

amino acid-deficient conditions [232]. This could be achieved by an enhanced uptake of 

amino acids or a reallocation of the cell-internal protein pool. Future work should 

scrutinize these hypotheses. 

5.2. Distribution of metabolic auxotrophies in nature 

Our in silico analysis provides a first systematic assessment of the prevalence of 

putative metabolic auxotrophies among eubacteria. Even our conservative estimation 

indicated that the vast majority of genomes analyzed lacked conditionally essential 

biosynthetic genes. A recent study corroborates these findings: reconstructing 

metabolic models of 55 sequenced E. coli and Shigella strains revealed multiple 

auxotrophies for vitamins and amino acids in 12 of these strains [233]. Taken together, 

these analyzes suggest metabolic auxotrophies may be more widespread than 

previously thought. 

However, can the distribution pattern of auxotrophies predicted for 

Enterobacteriaceae (Fig. 1 D) be explained with the different fitness advantages 

observed in this study (Figs. 2, S6)? A series of statistical tests in which different kinetic 

parameters determined in this study (i.e., maximum OD/relative fitness reached after 

24 h, slope of metabolite dependency curve [i.e., metabolite concentrations vs. 

OD/relative fitness after 24 h]) was correlated to the predicted enterobacterial 

auxotrophy frequencies did not detect significant relationships between these 

parameters (Spearman rank correlation: P > 0.05 in all cases). This result is likely 

caused by fact that the frequency with which certain biosynthetic genes are lost is due 

to the availability of the corresponding metabolites in the strains’ natural environments 

and not the potentially gained fitness advantage. Moreover, because strains are likely 

auxotrophic for more than one metabolite (Fig. 1 A), epistatic interactions among these 

mutations may affect the fitness consequences of individual mutations. 
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5.3. Adaptive gene loss and the formation of interorganismal networks 

Our results imply that whenever local metabolite concentrations exceed certain 

threshold levels, strong selection pressures build up that favor the loss of the 

corresponding biosynthetic functions in bacteria. Thus, our analysis provides a 

plausible adaptive explanation for the widespread loss of conditionally essential 

biosynthetic genes (Fig. 1). Accordingly, amino acid concentrations in certain bacteria-

inhabited environments such as soil or insect guts generally exceeded the levels 

required for auxotrophic mutants to outcompete prototrophic cells by orders of 

magnitude (Fig. S8). In contrast, freshwater lakes exhibited only meager amounts of 

free amino acids (i.e., 2.6–4124 nM; [234]), which may explain why prototrophic E. coli 

strains seem to dominate in these environments [235]. Finally, metabolic auxotrophies 

have been observed to readily emerge in laboratory evolution experiments with, for 

example, Pseudomonas aeruginosa [236], mutator strains of E. coli [237] that adapted 

to the mouse gut or Legionella pneumophila parasites adapting to mouse macrophages 

[238]. 

As these examples illustrate, metabolites can either originate from the growth 

environment or be produced by another organism [83,239]. The “compensated gene loss” 

resulting from the latter [239] can account for the rapid reduction of genome size of 

both parasitic [240] and mutualistic bacterial symbionts and is likely also driving the 

formation of tightly integrated metabolic networks of co-occurring bacterial 

endosymbionts [56,241]. Our finding that this phenomenon is not restricted to 

organisms that interact over long periods of time, but also occurs among seemingly 

independent and free-living bacteria (Fig. 1) implies a pervasive role of adaptive gene 

loss for driving the evolution within microbial communities. An unavoidable leakage of 

vital metabolites during bacterial growth and subsistence [83] combined with the 

enormous and prevalent fitness advantages gained upon gene loss as observed in this 

and other studies [76,209,210], should result in the formation of intricately connected, 

intercellular networks. By mutually exchanging metabolites as “public goods,” while at 

the same time specializing in the production of a reduced subset of metabolites, both 

the individual genotype and the whole bacterial community might benefit [76,242]. In 

particular, the difference in the concentration-dependent fitness advantage observed 

between two bacterial species (Fig. 4) may facilitate interspecific cross-feeding 

interactions. The general difficulty to isolate bacterial species from the wild [243,244] 

may be a reflection of this pattern. 
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6. Conclusions and outlook 

Our study provides strong empirical support for the hypothesis that adaptive fitness 

advantages can account for the frequently observed loss of biosynthetic functions in 

bacteria. Our findings have a number of significant ramifications that should be 

investigated in future studies. First, the molecular causes underlying the unexpectedly 

strong fitness advantage upon gene loss should be identified. Second, as evidenced in 

our study, the natural bacterial isolates analyzed were rarely auxotrophic for just one 

metabolite, but commonly lacked multiple biosynthetic capabilities simultaneously  

(Fig. 1 A). Hence, future studies should address the question whether fitness effects 

combine additively when multiple auxotrophies are combined in one genetic 

background, or whether epistatic interactions limit an even further increase of the 

auxotrophs’ fitness. Third, the “black queen hypothesis” [83] predicts for bacterial 

strains, which loose costly metabolites by leakage and that coevolve within a microbial 

community, to continuously loose biosynthetic genes until an equilibrium is reached, at 

which the benefit of gene loss is outweighed by its costs. Our study provides a first 

estimate of these benefits, thus allowing to further explore how they affect the race for 

biosynthetic disarmament within microbial communities. 
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1. Abstract 

Many bacterial lineages lack seemingly essential metabolic genes. Previous work 

suggested selective benefits could drive the loss of biosynthetic functions from bacterial 

genomes when the corresponding metabolites are sufficiently available in the 

environment. However, the factors that govern this “genome streamlining” remain 

poorly understood. Here we determine the effect of plasticity and epistasis on the fitness 

of Escherichia coli genotypes from whose genome biosynthetic genes for one, two, or 

three different amino acids have been deleted. Competitive fitness experiments 

between auxotrophic mutants and prototrophic wild-type cells in one of two carbon 

environments revealed that plasticity and epistasis strongly affected the mutants’ 

fitness individually and interactively. Positive and negative epistatic interactions were 

prevalent, yet on average cancelled each other out. Moreover, epistasis correlated 

negatively with the expected effects of combined auxotrophy-causing mutations, thus 

producing a pattern of diminishing returns. Moreover, computationally analyzing 1,432 

eubacterial metabolic networks revealed that most pairs of auxotrophies co-occurred 

significantly more often than expected by chance, suggesting epistatic interactions 

and/or environmental factors favored these combinations. Our results demonstrate that 

both the genetic background and environmental conditions determine the adaptive 

value of a loss-of-biochemical-function mutation and that fitness gains decelerate, as 

more biochemical functions are lost. 

2. Introduction 

Bacterial genomes are not static entities, but are highly dynamic on evolutionary time 

scales in terms of both size and composition [48]. Variation in the size of prokaryotic 

genomes can be caused by the duplication of existing genes, the acquisition of new 

genetic information from the environment (i.e. horizontal gene transfer), or, 

alternatively, by gene loss. Reductive genome evolution is a feature that characterizes 

many bacterial taxa, and comparative genomics indicates that gene loss appears to be 

more important for shaping prokaryotic genomes than gene gain by horizontal gene 

transfer [48]. In many cases, one or more essential biosynthetic genes are lost, thus 

rendering the resulting auxotrophic bacteria dependent on an environmental uptake of 

the required metabolites [233,245,246]. Surprisingly, the loss of essential biosynthetic 

functions is not limited to endosymbiotic bacteria or intracellular parasites where 
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essential nutrients can potentially be obtained from the host, but also prevails in free-

living taxa such as saprophytes [247,248] or marine bacteria [249,250]. 

Two main scenarios can account for the frequently observed loss of conditionally 

essential biosynthetic genes from prokaryotic genomes: First, genetic drift may weaken 

selection even for essential genes and could thus explain the fixation of maladaptive 

mutations. This effect is likely strongest in small bacterial populations [57,203,204] 

such as endosymbiotic bacteria that repeatedly undergo severe population bottlenecks 

during host-to-host transmission [205]. Second, the loss of biosynthesis genes may be 

selectively favored when the required metabolite is either sufficiently present in the 

growth environment or provided by co-occurring organisms [83,250]. Under these 

conditions, mutations that deactivate the biosynthetic machinery for a certain 

metabolite may result in the saving of production costs or could induce regulatory 

changes to economize the cell's resources, for example by rerouting metabolic fluxes, 

which allow the bacterial cell to better cope with starvation for the required metabolite. 

Several studies using different bacterial species support the hypothesis that 

adaptive benefits may drive the loss of essential biosynthetic functions. In these cases, 

pairwise competition experiments between prototrophic bacterial cells and mutants 

lacking the ability to biosynthesize a certain metabolite pointed to a significant fitness 

advantage auxotrophs gain over prototrophic genotypes when the required metabolite 

is sufficiently present in the cells’ growth environment [209,210,245,245]. Even though 

these studies suggest that metabolic loss-of-function mutants can be selectively favored, 

very little is known on how metabolic auxotrophies evolve. 

Given that theoretical evidence predicts multiple auxotrophy-causing mutations are 

frequently co-occurring in the same genetic background [245], the extent to which these 

mutations interact with each other (i.e., epistasis) remains poorly understood. In other 

words, do the previously observed positive fitness effects combine additively as more 

loss-of-function mutations accumulate in the same genome, or do epistatic effects 

constrain the fitness achievable by a multiply auxotrophic genotype? Moreover, natural 

habitats of bacteria are usually quite complex and may not only contain several primary 

metabolites (e.g. amino acids or vitamins), but also differ in the available carbon source. 

Because fluxes through metabolic networks change depending on the carbon source 

used [88,251], fitness and ultimately also epistatic interactions among mutations are 

expected to depend on the carbon source metabolized (i.e. plasticity). 

An increasing number of studies suggest both epistasis [114,252,253] and plasticity 

[93,254] can significantly influence the trajectories of beneficial mutations accessible to 

evolving bacteria. The general pattern that seems to emerge from these analyses is that 
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negative epistasis is prevalent and often results in diminishing returns as more 

beneficial mutations accrue in a single genetic background [93,114,253]. 

Understanding the constraints that determine evolutionary routes leading to 

multiply auxotrophic bacteria requires insight into how plasticity and epistasis 

influence the fitness consequences upon loss of metabolic genes. However, examining 

these effects in natural isolates is hampered by difficulties of cultivating auxotrophic 

genotypes under laboratory conditions or to manipulate the genome of nonmodel 

organisms. Thus, deleting a defined number of genes from the genome of a well-

characterized model organism and evaluating the fitness consequences under carefully 

controlled growth conditions provides a tractable approach to quantify how 

environmental and genetic effects determine the fitness of multiply auxotrophic 

genotypes. Here we use a combination of computational and experimental approaches 

to address the following questions: (1) Do certain combinations of biosynthetic genes 

show an increased propensity to be jointly lost from bacterial genomes in nature? (2) 

How do fitness effects combine as multiple auxotrophy-causing mutations accumulate 

in the same genome? (3) Does the available carbon source affect fitness consequences 

of auxotrophy-causing mutations? (4) Do epistasis and plasticity interactively influence 

the effects of auxotrophy-causing mutations? 

3. Materials and Methods 

3.1. Co-occurrence prediction of multiple auxotrophies 

A previously published dataset of amino acid auxotrophies that were predicted for 

different bacterial species [245] was updated to include the most recently available 

sequenced genomes and the resulting 1,432 eubacterial metabolic networks were 

subjected to further examination. To test, whether pairs of auxotrophies were 

statistically over- or underrepresented, the presence of reactions required for amino 

acid biosynthesis [245] was randomized, while controlling for the number of deletions 

(i.e. absence of a particular reaction) per species and the number of species possessing 

a particular reaction. A total of 8,000 samples were randomly drawn from the [species 

× reaction existence] space using the Rasch Sampler [255] and auxotrophy frequencies 

were recalculated from these random samples. Then, the frequencies of auxotrophy 

pairs predicted in the original dataset to co-occur were compared to the expected 

distribution of double-auxotrophies inferred from the randomized dataset. This 
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approach allowed correcting the frequencies of predicted double-auxotrophies by the 

expected co-occurrence pattern of auxotrophies, which are simply due to chance (e.g. 

genetic drift) or the structure of the metabolic network (i.e. shared reactions in the 

biosynthetic pathways of two or more amino acids). 

To test whether the observed co-occurrence pattern was reflecting the distribution 

of amino acids in natural environments, predicted auxotrophy frequencies were 

correlated with a published dataset of 69 different aquatic, terrestrial, and host-

associated environments [256]. For this, the medians of the pairwise products of 

relative amino acid abundances were correlated with the pairwise co-occurrence of 

predicted amino acid auxotrophies. In this analysis, the amino acids Glu/ Gln and Asp/ 

Asn were not considered, because the dataset used did not allow distinguishing these 

pairs of amino acids. 

3.2. Bacterial strains and their construction 

Eleven different single gene deletions that each would render Escherichia coli 

auxotrophic for a single amino acid were identified and constructed as described 

([196,245]; Table S1). All deletion alleles were transferred from existing strains [80] 

into E. coli BW 25113 [80] using P1 phage-mediated transduction [218] and 

recombinants were selected for their ability to grow on kanamycin-containing LB plates 

(50 µg ml-1). In addition, 50 of the 55 possible combinations of double deletion mutants 

and 16 of 165 possible triple deletion mutants were successfully generated (Table S1). 

For this, single gene deletion mutants were first cured of the kanamycin resistance by 

excising the kanamycin cassette from the mutant's genomes using the pCP20 plasmid 

that harbors the FLP recombinase [257]. Subsequently, the second deletion allele was 

transferred into the resulting strains and successful recombinants were again selected 

for their resistance to kanamycin. A subset of double deletion mutants was cured of the 

kanamycin resistance cassette using the above-mentioned approach to yield triple 

deletion mutants. All generated genotypes used for subsequent experiments thus 

contained one copy of the kanamycin cassette in their genome, although at different 

chromosomal locations. 

To examine the possibility that unintended, secondary mutations have been co-

transduced, a control experiment was performed where the same deletion allele was 

repeatedly reintroduced into the same recipient genotype via P1 phage transduction. 

For this, three different deletion alleles were randomly selected (i.e. ∆asnB, ∆mdh, and 

∆argH). After transduction of E. coli BW 25113, the kanamycin cassette was cured and 
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the same phage lysates were used to re-infect the recipient now carrying a deletion 

allele. This procedure was repeated three times to mimic the number of transduction 

steps required to construct triple auxotrophic mutants. Fitness of the genotypes 

resulting from each mutational step was determined relative to the ancestral WT as 

described next. In none of the three cases was the fitness of the resulting mutants 

significantly affected by the number of transduction rounds (one-way ANOVA: P > 0.05, 

n = 8 for each genotype). Thus, the phage transduction procedure used is very unlikely 

to have produced unintended, secondary mutations. 

Conditional lethality of multiple auxotrophies was verified by inoculating 105 

colony-forming units (CFUs) of these genotypes into 1 mL minimal medium for 

Azospirillium brasilense (MMAB; [215]) without biotin and using fructose (5 g l-1) as a 

carbon source. The optical density (OD) the corresponding mutant strain achieved 

during 24 h of growth was determined spectrophotometrically at 600 nm using a Tecan 

Infinite F200 Pro platereader (Tecan Group Ltd., Switzerland). The mutation was 

deemed conditionally essential when the auxotroph's growth did not exceed the OD600nm 

of uninoculated minimal medium. This was the case for all double- and triple-gene 

deletion mutants generated. Gene deletions were confirmed by sequencing the 

corresponding genomic regions. To phenotypically distinguish genotypes in fitness 

experiments, the arabinose utilization locus (Ara+) from strain REL 607 [219] was 

introduced into BW 25113 using P1 phage-mediated transduction [218]. 

3.3. Culture conditions 

Cultures were incubated at 30°C under shaking conditions and experiments were 

performed in MMAB minimal medium [215] without biotin and using either fructose (5 

g l-1) or disodium succinate (8.86 g/l) instead of malate as a carbon source. The 

concentration of fructose and succinate was chosen such that, at least theoretically, the 

same amount of biomass could be produced under both carbon sources (see Supporting 

Information Methods for details). In addition, both media were supplemented with a 

mixture of all 11 amino acids, each at a concentration of 100 µM. 

3.4. Competitive fitness assays 

Competitive fitness experiments were performed in 96-deepwell plates (Eppendorf, 

Germany) with a culture volume of 1 ml. Auxotrophs were pre-cultured at 30°C in 

MMAB medium supplemented with amino acids and the corresponding carbon source. 
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For competitive fitness assays, ∼105 cfus ml-1 of WT and a focal auxotrophic mutant 

were co-inoculated into 1 ml MMAB medium (ratio: 1:1) supplemented with amino acids 

and the respective carbon source (i.e., fructose or succinate) and cell numbers were 

determined at 0 h and 24 h by dilution plating. Escherichia coli auxotrophs (Ara−) were 

differentiated from WT (Ara+) using the arabinose utilization marker as described 

[219]. Competitive fitness of auxotrophs versus WT was determined by calculating the 

Malthusian parameter (M) of both genotypes: M = (ln (Nf/Ni)/ 24), where Ni is initial 

number of CFUs at 0 h and Nf is the final CFU count after 24 h [219]. Relative fitness 

was calculated as the ratio of Malthusian parameters. Each competition assay was 

replicated eight times. Competition experiments between WT that did or did not 

contain the Ara marker provided no evidence for a fitness cost of the marker in either 

environment (i.e., fructose and succinate; independent sample t-test: P > 0.05, n = 8). 

Given that all auxotrophic mutants generated contained a kanamycin resistance 

cassette in their genome, a possible fitness cost of this marker could theoretically affect 

the determined epistasis values: erroneously considering the cost of the marker 

multiple times when calculating the fitness expected for double and triple mutants from 

the fitness values of single gene deletion mutants, yet just once when determining the 

observed fitness of double- and triple-mutants, could have resulted in an overestimation 

of the true epistatic effect. To assess if the kanamycin marker incurred a cost to the 

auxotrophic strains, the Malthusian parameter of 11 single, four double, and four triple 

auxotrophic strains containing the kanamycin marker was determined in coculture 

with the same genotypes that have been cured from the marker (Table S2) as described 

above. Each competition experiment was initiated by mixing ∼105 cfus ml-1 of both 

competitors (ratio: 1:1) into 1 ml MMAB medium that contained fructose as the sole 

carbon source. The number of CFUs at 0 h and 24 h was determined by plating on LB 

agar plates that did or did not contain kanamycin (50 µg/mL) and the Malthusian 

parameter was calculated as described above. Finding that in these competition 

experiments the Malthusian parameter of none of the kanamycin-resistant mutants 

differed significantly from its kanamycin-sensitive counterpart (independent sample t-

test: P > 0.05, n = 10 for all mutants, Table S2) provided no evidence for a fitness cost 

of this marker. The estimated minimum difference detectable by these tests [258] 

ranged between 0.24% and 2.8% (Table S2), which was well below the size of epistatic 

interactions determined (Tables S3 and S4), suggesting that a possible fitness cost of 

the kanamycin resistance marker used is very unlikely to have affected our results. 
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3.5. Calculating epistasis 

Epistasis for multiple deletion mutants was calculated as the difference between the 

observed and expected fitness. Expected fitness was calculated by applying the 

multiplicative model [91–93]. Accordingly, for a genotype bearing two auxotrophy-

causing mutations, the expected fitness would be the product of the observed relative 

fitness of the two mutations when individually present in a genotype. Epistasis was 

estimated as: 
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Equation (1) shows the calculation of epistasis for double deletion mutants and 

equation (2) for higher order (i.e., triple deletion) mutants. 2is the relative fitness, 

�
3  and �
34  is the relative fitness of strains with the entire set of two or three 

mutations, respectively, and �
, �3, and �4 is the relative fitness of genotypes with 

just one deletion mutation. For higher order interactions (eq. (2), the sum of the effect 

of the lower order mutations was subtracted from �
/1 in equation (2) to obtain the net 

effect of higher order epistasis as shown in (3): 
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Error for the estimated value of �  was calculated using the method of error 

propagation [91,92] and epistasis was considered significant for a given combination of 

deletion alleles if � was outside the error. 

3.6. Statistical analysis 

The statistical relationship between the co-occurrence of predicted auxotrophies and 

the distribution of the corresponding amino acids in natural environments was assessed 

via Kendall's rank correlation. Normal distribution of data was assessed using the 

Kolmogorov–Smirnov test. Homogeneity of variances was determined by applying 

Levene's test and variances were considered to be homogeneous when P > 0.05. Fitness 

differences between auxotrophic mutants and their wild-type competitors as well as 

between auxotrophic mutants in the two environments were determined with 



98 
 

independent sample t-tests. One-way ANOVAs followed by least significant difference 

(LSD) post-hoc tests were employed to test if the mutants’ fitness in either environment 

dependent on the number of mutations. Significant deviations of epistasis from zero (no 

epistasis) were determined by applying one sample t-tests to the values of all mutants 

quantified in both environments. The statistical relationship between expected fitness 

and epistasis was analyzed via a Pearson's product-moment correlation. The false 

discovery rate (FDR) procedure of Benjamini et al. (2006) was applied to correct P 

values after multiple testing [222]. The relationship between expected and observed 

fitness was analyzed using a type II regression model. Slopes of regression lines were 

considered to be significantly smaller than 1 when their 95% confidence intervals did 

not include the 45° line (i.e., the perfect correlation between expected and observed 

fitness, which is the null hypothesis for nonepistatic interactions). A general linear 

model with fitness as a dependent variable and environment as well as the presence of 

one of 11 mutations as mutation 1, mutation 2, and mutation 3 as fixed factors was 

calculated to identify interactive effects among mutations and/or the environment. 

Statistical analyses were performed using the SPSS package (version 17.0, IBM, USA) 

and the R software [223]. 

4. Results 

4.1. Prevalent positive co-occurrence of auxotrophies in eubacterial genomes 

A recent analysis of 949 eubacterial genomes and their inferred metabolic networks 

suggested that biosynthetic functions for amino acids, nucleotides, and vitamins are 

frequently lacking in the corresponding metabolic networks, indicating that 

auxotrophies are prevalent in natural populations of bacteria [245]. Interestingly, by 

reanalyzing a more recent collection of 1,432 eubacterial genomes, 37% of all bacteria 

analyzed were auxotrophic for two or more metabolites. If mutations that deactivate 

biosynthetic functions interact epistatically (i.e. nonadditively), pairwise co-occurrence 

patterns of auxotrophies are expected to significantly deviate from a random 

distribution. Testing this prediction for a subset of 458 eubacteria that were predicted 

to be auxotrophic for multiple amino acids revealed for most pairwise comparisons (152 

of 190) a significant positive association (FDR-corrected one-sample Wilcoxon test: P < 

0.05, n = 8,000, Fig. 1), indicating that auxotrophies co-occur more frequently than 

expected by chance. A smaller fraction of 37 auxotrophy pairs co-occurred significantly 
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less often than expected by chance (FDR-corrected one-sample Wilcoxon test: P < 0.05, 

n = 8,000) and only one pair (Gly-Thr) showed a distribution that was statistically 

undistinguishable from a random distribution (FDR-corrected one-sample Wilcoxon 

test: P > 0.05, n = 8000). Finding that virtually all amino acid double-auxotrophies 

deviate significantly in their frequency from the frequency expected by chance suggests 

epistatic interactions and/or environmental factors favored these combinations. 

To test whether auxotrophy co-occurrences were caused by an increased propensity 

of certain amino acids to co-occur in natural environments, the predicted auxotrophy 

frequencies were correlated with quantitative measurements of relative amino acid 

concentrations in 69 different environments [256]. At first, the median of pairwise 

 
Figure 1. Predicted pairwise co-occurrence of amino acid auxotrophies in eubacterial 

genomes. Sizes of circles represent the proportion of genotypes (%) predicted to be 

simultaneously auxotroph for the two corresponding amino acids. Filled circles indicate pairs of 

auxotrophies that co-occurred significantly more (black) or less often (gray) than expected by 

chance (FDR-corrected one-sample Wilcoxon test: P < 0.05, n = 8,000), whereas unfilled circles 

depict pairs with a random co-occurrence pattern (P > 0.05, n = 8,000). The dataset included 1,432 

eubacterial genomes that were predicted to be auxotrophic (584) for one or more of 20 different 

amino acids or prototrophic (848) for all amino acids. 
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products of relative amino acid concentrations did not correlate significantly with the 

auxotrophy co-occurrence data (Kendall's rank correlation: Rτ = 0.04, P = 0.49, n = 120). 

However, a closer look at this correlation revealed that in most environments the amino 

acids alanine (Ala) and glycine (Gly) were relatively abundant, while the corresponding 

auxotrophies were relatively rare [245]. As the two smallest proteinogenic amino acids, 

Ala and Gly are the metabolically cheapest to produce [61,63]. Thus, Ala and Gly 

auxotrophies might not be very frequent in eubacteria, because the energetic savings 

to lose these biosynthetic functions (i.e. the selective advantages) are relatively low. 

Moreover, several possible alternative biosynthetic reactions for Ala and Gly exist in 

prokaryotes [245], which might limit the frequency of auxotrophies. Excluding Ala and 

Gly from the analysis for these reasons resulted in a highly significant positive 

correlation between the frequency of double-auxotrophies and the pairwise abundance 

of amino acids in the environment (Kendall's rank correlation, Rτ = 0.22, P = 0.003, n = 

91, Fig. S1), which is consistent with an environmentally favored loss of metabolic 

genes. Taken together, the analysis of amino acid auxotrophy distributions in 

eubacteria suggests epistatic interactions and/or an environmentally compensated gene 

loss may have caused the observed co-occurrence pattern of amino acid auxotrophies. 

4.2. Negative epistasis causes diminishing returns with fitness of multiply 

auxotrophic genotypes 

How does cellular fitness scale with an increase in the number of auxotrophy-causing 

mutations? To address this question, one, two, or three of 11 genes that render the 

resulting mutant auxotrophic for amino acids were deleted from the same genetic 

background of E. coli. Altogether, 11 mutant strains bearing one (hereafter: single 

mutants), 50 mutants bearing two (hereafter: double mutants), and 16 strains bearing 

three different amino acid auxotrophy-causing mutations (hereafter: triple mutants) 

were generated (Table S1). Subsequently, the competitive fitness against prototrophic 

WT was determined for all 77 strains in two distinct growth environments that 

contained an equimolar concentration of 11 amino acids (100 µM each), yet differed in 

the carbon source available (i.e. either fructose or succinate). These carbon sources were 

chosen as they are important intermediates in the primary metabolism of most 

bacterial species, but derive from different points of the cells’ metabolic network: 

fructose-6-phosphate being a core metabolite in glycolysis, while succinate is part of the 

tricarboxylic acid pathway. 
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This analysis indicated for the fructose-containing environment that both double 

and triple mutants were significantly less fit than the corresponding single gene 

deletion mutants (one-way ANOVA followed by an LSD post-hoc test: P < 0.05, df = 76; 

Fig 2A). In contrast, the relative fitness of single-, double-, and triple-gene deletion 

mutants did not differ in the succinate environment (one-way ANOVA followed by an 

LSD post-hoc test: P > 0.05, df = 76; Fig 2B). 

Quantitatively assessing the degree with which the effects of focal mutations 

deviated from expected finesses revealed on average no predominant influence of either 

positive or negative epistatic effects (Fig. S2). This pattern held true for both the 

fructose (mean epistasis: –0.05 ± 0.05, one sample t-test: P = 0.26, df = 65, Fig. S2) and 

the succinate environment (mean epistasis: 0.003 ± 0.03, one sample t-test: P = 0.93, df 

= 65, Fig. S2). However, analyzing epistatic effects for all genotypes individually 

 
Figure 2. Change of relative fitness with increasing numbers of auxotrophy-causing 

mutations and relation between epistasis and expected relative fitness. (A, B) Competitive 

fitness of mutants bearing one, two, or three auxotrophy-causing mutations relative to prototrophic 

WT cells in minimal media containing either (A) fructose or (B) succinate. The dashed line 

represents fitness levels of the WT. Different letters indicate significant differences among deletion 

mutants (univariate ANOVA followed by a LSD post-hoc test: P < 0.05; n = 11 (single deletions), 

50 (double deletions), and 16 (triple deletions)). Boxplots: median (horizontal lines in boxes), 

interquartile range (boxes, 1.5×- interquartile range (whiskers). (C, D) Relation between absolute 

epistasis and expected fitness determined in minimal medium containing (C) fructose and (D) 

succinate. Values of all double- and triple gene deletion mutants are shown and both panels 

include the results of a Pearson's product-moment correlation. 
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uncovered for the fructose environment 20 cases of significantly negative and 13 cases 

of significantly positive epistatic interactions (Table S3), while in the succinate 

environment 26 instances showed significant negative and 25 cases significant positive 

epistatic interactions (Table S4) (one sample t-test: P < 0.05, n = 8; Table 1). Thus, 

positive and negative epistatic effects cancelled each other out, thereby causing the 

abovementioned nonsignificant average deviation. 

When the relation between expected relative fitness effects of multiple gene 

deletions as predicted from individual mutations and observed epistasis was 

scrutinized, a negative correlation (Pearson product-moment correlation: r = –0.27, P = 

0.03 for fructose and r = –0.27, P = 0.03 for succinate) was observed for both carbon 

environments tested (Fig. 2C, D). In other words, epistatic interactions among 

mutations became more negative as the predicted fitness increased. Theoretically, this 

relationship could also be caused through a phenomenon called regression-to-the-mean 

[259], in which measurement error alone can cause a negative correlation between 

expected fitness and epistasis due to the statistical nonindependence between expected 

fitness and epistasis. To test whether this phenomenon could explain the observed 

diminishing fitness returns, a Type II regression was applied. Finding no correlation 

between observed and expected fitness in either carbon environment (Type II 

regression: P > 0.05, n = 66, Fig. S3), while both slopes were significantly smaller than 

1 corroborated that the fitness of multiply auxotrophic genotypes showed a pattern of 

true diminishing returns. 

Taken together, these experiments showed that the fitness consequences of losing 

conditionally essential biosynthetic genes did not increase linearly with the number of 

biosynthetic functions lost and that negative epistasis caused diminishing returns with 

mutant fitness. 

Table 1. Number of epistatic interaction identified in 50 double- and 16 triple-gene deletion 

mutants in both carbon (C) environments analyzed. 

 Epistasisa in  
double mutants 

Epistasisa in  
triple mutants 

C-environment Negative Zero Positive Negative Zero Positive 

Fructose 14 27 9 6 6 4 

Succinate 22 14 14 4 1 11 

a For details on how epistatic interactions were determined please see Materials and Methods. 
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4.3. Fitness consequences of auxotrophy-causing mutations depend on the 

available carbon source 

Directly comparing the fitness levels the single gene deletion mutants achieved in both 

environments revealed that only the fitness of one of 11 auxotrophs tested (i.e., ∆ilvA) 

was plastic with respect to the carbon source present and significantly fitter in the 

fructose- than in the succinate-containing environment (FDR-corrected independent 

samples t-test: P < 0.05, df ≥ 8; Fig. 3A). When multiply auxotrophic genotypes were 

also considered, a tenth (5/50) of the double mutants and two of the 16 triple mutants 

tested attained a significantly higher relative fitness when grown in fructose than when 

grown in succinate (FDR-corrected independent samples t-test: P < 0.05, df ≥ 10; Fig 

3B, C). Conversely, about half of the other double and triple mutants (22/50 and 10/16, 

respectively) were fitter in the succinate than in the fructose-containing environment 

(FDR-corrected independent samples t-test: P < 0.05, df ≥ 10; Fig. 3B, C). However, the 

fitness of 23 double mutants (46%) and four triple mutants (25%) was unaffected by the 

available carbon source used (FDR-corrected independent samples t-test: P < 0.05; Fig 

3B, C). Together, these results suggest that the fitness of auxotrophic mutants is highly 

dependent on the ambient environmental conditions. 
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4.4. Plasticity and epistasis jointly influence the fitness of multiply auxotrophic 

mutants 

The above findings suggested that interactions among mutations (i.e. epistasis, G × G), 

interactions between mutations and the environment (G × E), and possibly also 

interactions of epistasis and the environment (G × G ×E) determined the fitness of 

defined auxotrophic mutant genotypes. Statistically evaluating the effect of these three 

parameters on the mutants’ fitness indicated indeed a highly significant effect of 

epistasis (univariate ANOVA: P < 0.0001), G × E (univariate ANOVA: P < 0.001), and 

G × G × E (univariate ANOVA: P < 0.0001). Together, these findings show that the 

fitness associated with loosing conditionally essential biosynthetic genes is strongly 

affected by other metabolic mutations in the genome as well as the given nutritional 

environment. 

 
Figure 3. Reaction norms of competitive fitness of different auxotrophic genotypes against 

prototrophic wild-type in two different carbon environments. Each line depicts the competitive 

fitness of genotypes having (A) one, (B) two, or (C) three auxotrophy-causing mutations. 

Competition experiments against prototrophic WT (dashed line) were conducted in minimal media 

containing either fructose (F) or succinate (S). Differences in the mutants’ relative finesses in both 

carbon environments were assessed using FDR-corrected independent sample t-tests (P < 0.05, 

df ≥ 8). Numbers above panels indicate the number of cases (left) and the total number of mutants 

tested (right). 
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5. Discussion 

Knowledge on how fitness effects of a given mutation depend on other mutations 

present in the genome, the selective environment, or both is key to understanding 

adaptive processes, because the topology of the genotype–phenotype map determines 

the evolutionary trajectories that are accessible to organisms evolving within these 

fitness landscapes. Here we focus on the fitness consequences upon loss of one or more 

conditionally essential amino acid biosynthesis genes from bacterial genomes. Our 

computational analysis of 1,432 eubacterial genomes uncovered that in the vast 

majority of cases pairs of different auxotrophy-causing mutations co-occurred 

significantly more often than is expected by chance. Experimentally evaluating the 

fitness consequences resulting from introducing one, two, or three auxotrophy-causing 

mutations into the genome of E. coli in the presence of the required amino acids and in 

one of two carbon environments unravelled that (1) both positive and negative epistasis 

were prevalent among auxotrophy-causing genes, (2) epistasis produced diminishing 

returns with increasing expected genotype fitness, and (3) both the fitness of 

auxotrophic mutants and epistatic effects strongly depended on the carbon source 

available in the environment. 

In our computational analysis, auxotrophy-causing genes showed a strong tendency 

to co-occur, which in most cases significantly exceeded what would be expected if 

mutations were randomly distributed (Fig. 1). Three main mechanisms may, 

independently or in combination, have contributed to this pattern: First, an increased 

co-occurrence of two amino acid auxotrophies could reflect the likelihood of the two 

corresponding amino acids to co-occur in the respective genotype's natural 

environment, thus favoring mutants that lose the corresponding biosynthesis genes. 

Indeed, the partial correlation observed between the co-occurrence of amino acids in 

nature and the co-occurrence of amino acid auxotrophies in bacterial genomes (Fig. S1) 

supports this scenario. Second, the probability of two amino acid biosynthesis genes to 

be simultaneously lost might be indicative of the fitness consequences arising upon loss 

of both genes in the corresponding bacterial strains. Third, amino acid biosynthesis 

genes that are localized in close spatial proximity on a bacterial chromosome might be 

simultaneously lost in large chromosomal deletion events, thus causing an increased 

co-occurrence of two amino acid auxotrophies. 

In contrast, drift is unlikely to produce the observed co-occurrence pattern, because 

randomly fixing deletion alleles should rather display a frequency distribution that is 

not different from a random distribution. As this was the case in only two of the 190 
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pairwise comparisons considered, drift is unlikely to be a major determinant of the 

observed co-occurrence pattern. 

However, statistically evaluating the relationship between the experimentally 

determined relative fitness or epistasis of different E. coli mutants with the frequencies, 

with which auxotrophy-causing mutations have been predicted to co-occur in 

eubacterial genomes (Fig. 1), did not yield significant correlations in either case 

(Spearman's rank correlation: P > 0.05). The lack of a statistical relationship between 

these parameters could be due to one or a combination of several of the following factors. 

First, bacteria frequently lose large portions of their genome. A simultaneous loss of 

multiple biosynthetic genes could thus explain the mismatch between the distribution 

of auxotrophy-causing mutations and expectations based on their epistatic interactions. 

Similarly, other mutations in the genome that were not considered in the present study 

could interact with auxotrophy-causing mutations, thus affecting the fitness of 

multiply-auxotrophic genotypes. Second, the effective size of bacterial populations is 

likely to affect the probability with which bacteria lose biosynthetic genes. Genetic drift 

is more effective when population sizes are small, as is the case for most endosymbiotic 

bacteria. Under these conditions, even nonadaptive alleles can fix in the population. 

Third, environmental conditions that the analyzed eubacterial strains experience in 

their natural environments were not evaluated in the current study, yet can affect the 

fitness of multiply-auxotrophic genotypes. Fourth, epistatic interactions identified for 

E. coli might not be representative for the taxonomic diversity of eubacterial genomes 

analyzed (Fig. 1). Fifth, in our study, exclusively structural biosynthetic genes were 

deleted. However, in an amino acid containing environment, natural selection might 

also favor mutations in regulatory elements, which could lead to the simultaneous 

deactivation of multiple biosynthetic pathways. Their subsequent loss from the 

mutants’ genome would reflect regulatory relationships among groups of genes rather 

than epistatic interactions among multiple genes that were individually lost. Thus, 

future work is necessary to elucidate how auxotrophies evolve and to which extent 

epistatic interactions determine the mutational paths taken. 

Previous work showed positive fitness effects generally accompany the loss of a 

conditionally essential biosynthetic gene when the focal metabolite is sufficiently 

available in the environment [76,209,210,245,260]. However, our study revealed that 

the sign and magnitude of fitness consequences can drastically change depending on 

the environment and the presence of additional auxotrophy-causing mutations. As 

such, our results strikingly matched theoretical predictions of a recent study, in which 

a flux-balance analysis of the metabolic network of E. coli identified strong effects of 
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the carbon source used on epistatic interactions among deleted metabolic genes [88]. 

However, which mechanisms caused this functional relationship? One factor that could 

account for these observations, is that the loss of conditionally essential biosynthetic 

genes is likely to trigger a strong regulatory response that allows bacterial cells to 

survive despite amino acid starvation [261]. Most probably, these changes involve an 

upregulation of amino acid transporters as well as a rerouting of metabolic fluxes 

through multiple pathways [261] leading to a globally restructured metabolism [262]. 

Because such systemic changes may be specifically tailored to compensate specific 

shortages associated with losing certain sets of genes, these regulatory differences could 

explain the observed plasticity and epistatic interactions among mutations. Second, our 

competition experiments were performed in relatively complex nutritional 

environments that, besides one of two carbon sources, also contained 11 different amino 

acids. Thus, epistatic effects could be caused by a competitive inhibition of amino acid 

uptake systems [263], competition of transporters for membrane space [264], or effects 

resulting from alterations of cell-internal amino acid pools [265]. Future work should 

examine these possibilities. 

Interestingly, increasing the number of metabolic auxotrophies did not result in an 

additive increase of fitness effects caused by individual mutations, but on average 

mostly showed an overall decline or neutral effect in the succinate and fructose 

environment, respectively (Fig. 2A, B). This observation is consistent with previous 

experimental works [93,113,114,253] showing that negative epistasis acts to diminish 

mutational effects. Finding this pattern also for auxotrophy-causing mutations 

suggests a common mechanism caused the beneficial fitness effects of different single 

gene deletion mutants. Intriguingly, a saving of protein expression costs has been 

previously suggested as a mechanistic cause for the fitness effects upon loss of 

conditionally essential biosynthetic genes from the genome of E. coli [245] as well as for 

the diminishing returns epistasis observed when four beneficial alleles were analyzed 

in Methylobacterium extorquens AM1 [113]. In any case, if epistatic interactions 

determine the order in which auxotrophy-causing mutations are fixed in bacterial 

genomes, the current work provides several testable hypotheses that could be verified 

in a laboratory-based evolution experiment. 

Finally, a particularly strong beneficial effect upon loss of the first metabolic gene 

may act as a spring-loaded mechanism that facilitates the establishment of metabolic 

cross-feeding interactions within microbial communities [76,83,266,267] or aids the 

establishment of symbiotic associations between microbial symbionts and their host 

[268,269]. 
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6. Conclusions and Outlook 

Our study provides first empirical insights into the selective consequences bacterial 

genotypes face when losing multiple auxotrophy-causing mutations. Especially the 

observed impact the ambient environment and the number of genes lost had on the 

fitness of auxotrophic genotypes implies a strong context-dependency of metabolic loss-

of-function mutations that needs to be taken into account when such mutations are 

interpreted. Observing that epistasis produced diminishing returns with increasing 

expected genotype fitness points to a yet unknown molecular mechanism that 

constrains the fitness achievable by multiply auxotrophic genotypes. Identifying this 

mechanism will not only shed light on what causes the strong fitness benefits conferred 

by auxotrophy-causing mutations, but will also help to understand the molecular links 

that connect different biosynthetic genes. In particular laboratory-based evolution 

experiments, in which bacterial populations evolve under carefully controlled 

environmental conditions, provide a unique opportunity to identify which genes (e.g. 

regulatory versus structural genes) are prime targets of natural selection during the 

adaptive evolution of metabolic auxotrophies. Together with the approaches used in 

this study, such experiments would allow to further dissect how phenotypic plasticity 

and epistasis interactively guide the adaptive loss of biosynthetic functions. 
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1. Abstract 

Metabolism is essential to organismal life, because it provides energy and building 

block metabolites. Even though it is known that the biosynthesis of metabolites 

consumes a significant proportion of the resources available to a cell, the factors that 

determine their production costs remain less well understood. In this context, it is 

especially unclear how the nutritional environment affects the costs of metabolite 

production. 

Here we use the amino acid metabolism of Escherichia coli as a model to show that 

the point at which a carbon source enters central metabolic pathways is a major 

determinant of individual metabolite production costs. Growth rates of auxotrophic 

genotypes, which in the presence of the required amino acid save biosynthetic costs, 

were compared to the growth rates that prototrophic cells achieved under the same 

conditions. The experimental results showed a strong concordance with 

computationally-estimated biosynthetic costs, which allowed us, for the first time, to 

systematically quantify carbon source-dependent metabolite production costs. 

Thus, we demonstrate that the nutritional environment in combination with 

network architecture is an important but hitherto underestimated factor influencing 

biosynthetic costs and thus microbial growth. Our observations are highly relevant for 

the optimization of biotechnological processes as well as for understanding the ecology 

of microorganisms in their natural environments. 

2. Introduction 

Most bacterial species are heterotrophic and thus derive their carbon from breaking 

down organic compounds [59]. The structural diversity of organic compounds bacteria 

encounter in their natural environments is remarkable and for several species it is 

known that they can utilize an extremely wide range of chemically different carbon 

sources [14]. Escherichia coli, for instance, is able to utilize more than 80 compounds 

as sole source of energy and carbon [270]. However, since carbon sources differ 

drastically in terms of their energy content as well as the molecular routes how a given 

bacterial cell can import and degrade the corresponding chemical, bacterial growth 

depends decisively on the nature of the carbon source used [271]. In this context, it has 

been proposed that biochemical constraints in the allocation of resources may limit the 

growth rate of bacterial cells [60,73]. In particular, such a pattern could be caused by 

the distribution of fluxes through the metabolic network to provide an optimal supply 
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of building block metabolites (i.e. amino acids, nucleotides, and lipids) and growth 

factors (i.e. vitamins and co-factors) for cell growth. 

Assuming that the architecture of a cell’s metabolic network determines fluxes 

through the network, flux distributions should depend on the point at which a given 

carbon source enters the metabolic network. Indeed, it has been shown that the entry 

points of a given carbon source can cause considerably higher relative fluxes through 

reactions closer to the entry point than fluxes of reactions more distant to the entry 

point of the carbon source [272]. As a consequence, locally increased fluxes could also 

affect the biosynthetic costs of metabolites by locally increasing the amount of substrate 

available to a given biosynthetic reaction relative to all other growth-related functions. 

Thus, differences in flux distributions caused by different carbon sources should also 

translate into different biosynthetic costs of metabolites. 

Here we test this hypothesis by combining theoretical predictions with targeted 

experiments using amino acid biosynthesis of E. coli as a tractable model. Amino acid 

metabolism was chosen as a test case, because the biosynthesis of amino acids diverts 

an immense fraction of the total carbon source budget of a bacterial cell during growth 

[273]. It is therefore not surprising that bacterial species are under strong selective 

pressure to economize their amino acid usage [61,68]. We used a genome-scale model of 

the metabolic network of E. coli to estimate the biosynthetic cost for each of 20 

proteinogenic amino acids depending on the utilized carbon source. Next, we validated 

these predictions by comparing the growth rates of genotypes auxotrophic for individual 

focal amino acids and the prototrophic wild type of E. coli grown on different carbon 

sources, while supplementing increasing concentrations of the focal amino acid to the 

growth environment. Under these conditions, auxotrophic genotypes increasingly saved 

the costs to biosynthesize the focal amino acid relative to the prototrophic wild type, 

and could thus invest the economized carbon source in other cell growth-related 

functions. By gradually relaxing the amino acid limitation for the growth of auxotrophs 

in this way, and comparing their maximum growth rates relative to the growth rates 

achieved by prototrophic wild type cells, allowed quantifying the carbon source-

dependent costs to produce individual amino acids.   

Both theoretical predictions and experimental results revealed strong differences in 

the production costs of central metabolites in bacteria depending on the point at which 

the utilized carbon source enters the cell’s metabolic network. The observed shifts of 

biosynthetic costs depending on the utilized carbon source are physiologically relevant 

and are caused by the structure of the underlying metabolic network. 
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3. Results 

3.1. Metabolic costs of amino acid depend on carbon source 

To determine whether or not the metabolic costs to biosynthesize each of 20 

proteinogenic amino acids depend on the carbon source used, amino acid production 

costs were computationally estimated for all 61 carbon sources, which are known to 

support the growth of E. coli K12 as sole source of carbon and energy [274] (Fig. 1). The 

mean costs of amino acids predicted in this way quantitatively matched previous 

predictions of energetic costs of amino acid biosynthesis (Pearson's product-moment 

correlation: R = 0.96, N = 20, P < 0.0001, supporting information Fig. S1, [61]). This 

correlation shows that the cost prediction method presented here is in line with 

previous estimations, but further enables to systematically assess metabolite 

production costs differences between various carbon substrates. To identify whether 

and to which extent the metabolic costs of a single amino acid were affected by the 

available carbon source, the metabolic cost estimated for all amino acid and 61 carbon 

sources were analyzed by principle component analysis (PCA) (Fig. 1C). Clustering for 

the correlation values of the observed amino acid costs with these three main principal 

components revealed three distinct groups: group 1 (blue) consisted of amino acids with 

precursors in glycolysis and/or the pentose phosphate pathway (i.e. Cys, Gly, His, Met, 

Phe, Ser, Trp, Tyr, and Ser), group 2 (green) contained pyruvate-derived amino acids 

(i.e. Ala, Leu, and Val), and group 3 (red) comprised amino acids with precursors from 

the tricarboxylic acid (TCA) cycle (i.e. Arg, Asn, Asp, Glu, Gln, Ile, Lys, Pro, and Thr) 

(Fig. 1A). The differences between groups reflect diverging biosynthetic costs associated 

to different classes of carbon sources: Amino acids of group 1 are metabolically cheaper 

to produce when glycolytic substrates (sugars/ sugar alcohols) are utilized as carbon 

source, yet more cost-intensive when only gluconeogenic substrates (e.g pyruvate, 

lactate, TCA-cycle intermediates) are available, and vice versa for the amino acids of 

group 2 and 3 (Tukey multiple comparisons of means: P < 0.05, for samples sizes see 

Fig. 1D). Consequently, there is a cost trade-off between the different groups of amino 

acids: reduced costs to produce amino acids in one group come at the expense of higher 

costs to synthesize amino acids of another group. 
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Furthermore, the quantitative impact of different types of carbon sources on the 

absolute metabolic costs of amino acids varied among amino acids (Fig. 2). The highest 

variability of metabolic costs were observed for the leucine and glutamate, whose 

biosynthetic costs varied up to 13% from the mean metabolic costs based on the 

 
Figure 1. In silico estimations of carbon source- and network structure-dependent 

metabolic costs of proteinogenic amino acids. (A) Schematic representation of the central 

metabolism of Escherichia coli (glycolysis – solid arrows, TCA cycle – dashed arrows, pentose 

phosphate pathway – dotted arrows). Carbon sources used in this study are shown in boldface, 

amino acids in italics. (B) Estimated metabolic costs of amino acids for 8 carbon sources including 

4 organic acids (grey) and 4 sugars/ sugar-alcohol (black). For a better visualization, metabolic 

costs of each amino acid were z-transformed (same range of values). (C) Principle component 

analysis (PCA) of estimated metabolic costs of amino acids based on 61 carbon sources. Shown 

are the correlations of the metabolic costs of each amino acid with the three main PCA 

components (Comp 1-3), which together explain >91% of the observed variation. Data points are 

colored according to k-means clustering with three centers: (group 1, blue): Cys, Gly, His, Met, 

Phe, Ser, Trp, and Tyr;  (group 2, green): Ala, Leu, and Val; (group 3, red): Asn, Asp, Arg, Gln, 

Glu, Ile, Lys, Pro, and Thr. (D) Estimated (z-transformed) metabolic costs of amino acids for 

glycolytic- and gluconeogenic carbon sources. Amino acids are grouped according to the k-means 

clustering in (C). Different letters denote significant differences (Tukey multiple comparisons of 

means: P < 0.05, numbers below amino acid groups denote sample sizes). 
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estimations assuming 61 different types of carbon sources. The lowest variability of 6% 

was observed for alanine. 

3.2. The response of auxotrophs to amino acid supplementation depends on the 

carbon source 

The maximum growth rate of all seven auxotrophs were tested under amino acid 

supplementation and eight different carbon source conditions. Auxotrophic strains 

were chosen to study the effect of amino acid supplementation and to ensure that the 

cells actually save the biosynthetic costs to produce the focal amino acids and use amino 

acids from the media. The seven auxotrophies were chosen for the experiments, because 

no other cellular function than the integration into proteins have been described for the 

respective amino acids. Other effects, than the saving of metabolic costs, of the amino 

acid supplementation on the growth of the E. coli auxotrophs could therefore be 

prevented.  

The maximum growth rate of all seven auxotrophs increased significantly with 

increasing amino acid supplementation (FDR-corrected linear mixed-model fit by 

maximizing the restricted log-likelihood: P < 0.05, n=42, Fig. 3 and Fig. S2). The only 

exception to the otherwise consistent pattern was the case of the isoleucine auxotroph 

using succinate as carbon source (FDR-corrected linear mixed-model fit by maximizing 

the restricted log-likelihood, P = 0.42, n = 42). In contrast, the maximum growth rates 

of populations of prototrophic E. coli wild type cells did not respond significantly to 

increasing amino acid concentrations in 32 out of 56 amino acid-carbon source 

combinations analyzed (Fig. S3). In 22 cases, the maximum growth rate increased 

significantly with amino acid supplementation, in two cases (i.e. histidine and xylose/ 

 
Figure 2. Variability of amino acid metabolic costs. The variability of metabolic costs was 

calculated as the 95% confidence interval size divided by the mean metabolic cost of the 

respective amino acid based on the costs estimations assuming 61 different types of carbon 

sources. 
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succinate) it even decreased significantly with increasing amino acid concentrations 

(FDR-corrected linear mixed-model fit by maximizing the restricted log-likelihood: P < 

0.05, n=42, Fig. S3). 

In virtually none of the cases examined did the auxotrophic genotypes reach 

maximal growth levels of WT populations (Figs. 3 and S2), indicating that under the 

focal conditions growth of auxotrophic genotypes was mainly limited by the availability 

of the required amino acid. After normalizing the auxotroph's growth rate by the growth 

rate the prototrophic WT strain had achieved under the same carbon source condition 

without amino acid supplementation (in the following, μ9max refers to the normalized 

growth rate), it became clear that the increase of the relative maximum growth rate 

μ9 max strongly depended on the carbon source provided for growth (FDR-corrected 

repeated measures ANOVA: all P < 0.001, dfcarbon sources = 7, dferror = 35, Figs. 3 and S2). 

For example, the tryptophan auxotroph responded to tryptophan supplementation with 

an increase of 4.4 μ9max (mM Trp)-1 (mean) with fructose as carbon source, whereas with 

10 μ9 max (mM Trp)-1 the increase was significantly higher when utilizing pyruvate 

(paired t-test: P < 0.001, n = 6, Fig. 3). 

Taken together, the growth-kinetic assays revealed a strong effect of the carbon 

source on the growth physiology of the seven amino acid auxotrophic strains tested 

when the availability of the required amino acid was limiting growth. 

 
Figure 3. Carbon source-dependent growth rate response of the tryptophan auxotrophic 

genotype to increasing tryptophan supplementation. Shown are the mean maximum growth 

rates (± 95% confidence interval) of the tryptophan (Trp) auxotrophic genotype relative (μ9max) to 

the prototrophic wild type (=1, dashed line) in four carbon source regimes and seven different Trp 

concentrations. Filled circles indicate growth rates of the auxotrophs, which are significantly lower 

than the maximum growth rate of the prototrophic wild type under the same carbon source 

conditions without Trp supplementation (FDR-corrected Welch two sample t-tests: P < 0.05, n = 

6). Unfilled circles denote no statistical difference. This figure is representative for the complete 

data set shown in Fig. S2. 
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3.3. Biosynthetic costs can explain the growth rate increase upon amino acid 

supplementation 

A significant positive correlation between estimated biosynthetic costs and growth rate 

increases was observed for five of the seven amino acids tested: histidine (P < 0.05), 

tryptophan (P < 0.01), leucine (P < 0.001), lysine (P < 0.05), and isoleucine (P < 0.001, 

FDR-corrected linear mixed-model fit by maximizing the restricted log-likelihood: n=48, 

Fig. 4). These five amino acids represent all three main groups identified in the above-

mentioned in silico analysis of the costs to biosynthesize the 20 proteinogenic amino 

acids (Fig. 1C). In other words, the same metabolic trade-offs in the efficiencies to 

synthesize amino acids that were theoretically predicted (Fig. 1D) were also found 

experimentally (Fig. 4). 

A significantly negative correlation was observed between the predicted 

biosynthetic costs and growth rate increases for tyrosine (FDR-corrected linear mixed-

model fit by maximizing the restricted log-likelihood: P = 0.001, n=48, Fig. 4), while no 

statistical relationship between these two parameters could be detected for 

 
Figure 4. Correlation of predicted- and measured biosynthetic costs. The response in growth 

rate of auxotrophic genotypes to amino acid supplementation can be explained by the metabolic 

network structure. Shown are the correlations of predicted metabolic costs :;,
 (x-axes) for amino 

acid k and carbon source x and the experimentally-determined increase of the relative growth 

rates μ9 max of auxotrophs with increasing amino acid concentration (Y). Mean values ± 95% 

confidence intervals are shown. See Table S1 for amino acid abbreviations. 
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phenylalanine (FDR-corrected linear mixed-model fit by maximizing the restricted log-

likelihood: P = 0.6, n=48, Fig. 4). 

4. Discussion 

Microorganisms invest a significant proportion of their available carbon resources in 

the biosynthesis of metabolites. The amount of carbon source a cell needs to produce 

individual metabolites (i.e. biosynthetic costs) can be estimated based on the organisms’ 

genome sequence and information on the nutritional composition of the natural habitat 

[65]. However, natural environments can fluctuate widely in the availability of different 

resources [275,276] and many microorganisms are able to utilize a broad range of 

different carbon sources [14]. Two main questions arise from these facts: i) How are 

metabolite production costs affected by the nutritional environment?, and ii) How 

variable are these costs within an organism? Here, we tested for the first time whether 

the variability of biosynthetic costs within a given organism can be explained by the 

carbon source used. The main findings of this study are that the structure of the 

metabolic network determines biosynthetic costs and that these costs are variable 

depending on (1) the position of the precursor metabolites within the metabolic 

network, and (2) the point at which the carbon source enters central metabolism (Fig. 

1D). 

A genome-scale metabolic network of E. coli was employed to predict differences in 

amino acid production costs depending on the nutritional environment. To test the in 

silico cost estimations, growth kinetic assays of amino acid auxotrophic E. coli strains 

and the prototrophic wild type were performed for eight different carbon sources and 

seven amino acids in increasing concentrations. By comparing the maximum growth 

rates achieved by auxotrophic and prototrophic genotypes under specific conditions, it 

was possible to experimentally determine the biosynthetic costs, which auxotrophic 

genotypes saved by not having to synthetize the respective amino acid autonomously. 

The experimental measures derived in this way matched theoretical predictions of the 

carbon source-dependent biosynthetic costs for five of the seven amino acids tested: 

histidine, isoleucine, leucine, lysine, and tryptophan (Fig. 4). A discrepancy between 

cost prediction and experimental approximation was observed only for phenylalanine 

and tyrosine. The biosynthetic pathways for these two amino acids are closely 

connected: both amino acids originate from the common precursor chorismate and the 

biosynthetic pathways consist both of three reactions where only the second step is 
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catalyzed by distinct enzymes [72]. Furthermore, both pathways are tightly co-

regulated [277]. This interconnection of both pathways might cause additional effects 

besides the focal biosynthetic costs, when only one of the two amino acids is 

supplemented to the media.  

To avoid confounding factors affecting the growth kinetics that are independent of 

biosynthetic costs, we focused our analysis on amino acids, which cannot be degraded 

and, hence, cannot be utilized as an alternative carbon source. Also, by using 

auxotrophic genotypes that cannot convert any other metabolite into the focal amino 

acid [196], it was possible to directly and precisely control the amount of the focal amino 

acid that was available to the cells. Taken together, our study provides, for the first 

time, a comparison of the growth response of E. coli to amino acid supplementation with 

a metabolic model using the flux balance analysis framework. The detected cost 

differences between carbon sources strongly influenced bacterial growth and thus 

significantly affected bacterial fitness.  

To understand the evolution of a microbial metabolic network requires knowledge 

on the factors that determine biosynthetic costs within a given organism. The results 

presented in this work provide first evidence that metabolite production costs are 

affected by environmental factors such as the available carbon source. Most notable 

differences were found for the amino acids leucine, glutamate, and glutamine, whose 

costs varied by up to 13% between carbon sources. The observation of carbon source-

dependent metabolic costs of amino acids is in line with recent findings that gene 

deletion mutations, which lead to the loss of biosynthetic functions, can have different 

fitness effects depending on which carbon source is provided for growth [278]. In 

addition, it has been shown that synthetically generated amino acid-, nucleotide- , and 

vitamin auxotrophic mutants of E. coli had a significant fitness advantage over their 

prototrophic ancestor in environments where the respective metabolite was sufficiently 

present – even when both strains directly competed against each other [245]. These 

fitness benefits are likely to be due to the biosynthetic costs, which the auxotroph save 

by not having to synthesize the respective metabolite [279].  

Another interesting outcome of our study was, that the comparison of the 

biosynthetic costs of all 20 proteinogenic amino acids for 61 different carbon sources 

pointed to a metabolic cost trade-off between the efficiencies to produce different classes 

of amino acids (Fig. 1D). Thus, amino acids that are less costly to produce utilizing one 

specific carbon source (e.g. amino acids derived from TCA cycle intermediates) relative 

to another carbon source come at the expense of higher costs for other amino acids (e.g. 

derived from glycolysis intermediates). Biochemical trade-offs are thought to play a key 
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role for metabolic specialization [9]. Hence, our results provide a plausible explanation 

for the evolution and maintenance of metabolic cross-feeding interactions where 

subpopulations, which specialized on preferentially performing certain metabolic 

functions, share the products of these functions [76]. Based on our results, metabolite 

cross-feeding could be especially promoted in environments, where multiple carbon 

sources are simultaneously present and subpopulation have specialized on utilizing 

distinct carbon sources. Sympatric specialization to utilize different carbon sources has 

been observed in laboratory evolution experiments of E. coli [117,119]. In a prominent 

example of a long term evolution experiment, in which E. coli was serially propagated 

in glucose minimal media, an adaptive mutation emerged in one population after 31,500 

generations, through which the newly evolved variants acquired the ability to utilize 

citrate as carbon source – an abundant yet previously unused carbon source, which has 

been included as part of the media formulation due to its iron-chelating properties 

[117]. In another long-term continuous culture of E. coli, where glucose was provided 

as sole carbon source, two subpopulations evolved: one, which utilized glucose and 

produced acetate as a metabolic by-product and a second subpopulation, which 

specialized to utilize the exogenously available acetate [119]. Consequently, the 

utilization of different carbon sources can cause significant differences in the 

distribution of metabolic fluxes [47,272,280] and, as shown in this study, different 

biosynthetic costs. Interestingly, the amino acid biosynthetic cost differences between 

the two specialized subpopulations in the two above mentioned examples are highly 

reciprocal, because glucose is a glycolytic carbon source, whereas citrate, or acetate, 

respectively are gluconeogenic substrates (Fig. 1D). These differences in turn could 

favor the evolution of amino acid cross-feeding, where each specialized subpopulation 

can receive mutual benefits by saving biosynthetic costs. 

Our results are not only relevant to understand adaptive processes of bacteria that 

are exposed to different nutritional environments, but have also implications for  more 

applied contexts, for example the optimization of biotechnological processes where 

microorganism are used to produce value-added compounds such as biofuels, amino 

acids, or recombinant proteins. Metabolic engineering uses recombinant DNA 

techniques to modify the structure of metabolic networks by introducing new 

biosynthetic capabilities to the cell or improving the production rate of a specific 

molecule [281]. Another way to optimize production rates of desired metabolites is to 

rationally design the nutritional environment that is used as culture media [282]. 

Based on the presented results, it will be possible to increase the yield of a desired 

compound by rationally choosing a carbon source that minimizes production costs of the 
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focal metabolite. Thus, a better understanding of the (environmental) factors that 

determine the production costs of desired compounds can significantly improve 

biotechnological production processes. 

All growing cells allocate resources to different biosynthetic pathways in response to 

the nutritional environment. The resource costs associated with the biosynthesis of 

metabolites strongly affect the fitness of a species. In this study, the interplay between 

the chemical nature of a carbon source and its conversion into cell constituents was 

systematically assessed. The presented results unravel the link between a cell’s 

nutritional environment and the architecture of its metabolic network as a key 

determinant of biosynthetic costs and microbial growth. As the structure of a metabolic 

network has evolved in response to natural selection, the here observed variability of 

biosynthetic costs depending on the available carbon source is indicative of the crucial 

role of the environmental context for the evolution of biochemical networks and the 

ecology of microorganisms. Future work is necessary to extent the economical concept 

of metabolic costs in more natural settings where multiple microbial species with 

diverse metabolic capabilities coexist and where several different substrates are 

available for cell growth. 

5. Methods 

5.1. Prediction of biosynthetic costs 

The biosynthetic costs of all 20 proteinogenic amino acids for 61 different carbon sources 

(see Table S3), which theoretically support the growth of E. coli, were estimated using 

flux balance analysis (FBA). Biosynthetic costs =>,' of an amino acid k were defined as 

the proportion of carbon source x, which is at least required to produce 1 mmol gDW-1 

h-1 of the amino acid relative to the amount of carbon source x required to form 1 mmol 

gDW-1 h-1 biomass. The estimation incorporates the ‘dual costs of amino acids’ [61]: (1) 

the resources required to generate energy in form of high-energy phosphor bonds (ATP 

and GTP) as well as the reducing power in form of NADH, NADPH, and FADH2, which 

is consumed by enzymes of the biosynthetic pathway, and (2) the resources required to 

produce precursors for amino acid synthesis. 

Two optimizations were performed within the FBA-framework using a genome-scale 

metabolic network reconstructions of E. coli K12 [26]: (1) nk,x was defined as the 

minimum amount of a carbon source x (in mmol gDW-1 h-1; DW = dry weight) to produce 
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one unit (i.e. 1 mmol gDW-1 h-1) of an amino acid k. nk,x was determined by minimizing 

the influx of the carbon source x and fixing an outflow reaction of the amino acid k to a 

flux value of 1 mmol gDW-1 h-1. (2) mx was defined as the minimum amount of a carbon 

source x required to form 1 mmol gDW-1 h-1  biomass. mx was calculated by constraining 

the flux through the biomass reaction (with 53.95 GAM estimate) of the metabolic 

model to a value equal 1 mmol gDW-1 h-1 and by minimizing the influx of the carbon 

source x. The optimizations were performed within Matlab 7.14 (Mathworks, USA) 

using the COBRA Toolbox version 2.0.5 [283] and the TOMLAB /CPLEX version 7.9 

(TOMLAB Optimization, USA) as linear programming solver. The media elements used 

for the genome-scale model were Ca2+, Cl-, CO2, Co2+, Cu2+, Fe2+, Fe3+, H+, H2O, K+, Mg2+, 

Mn2+, molybdate, Na2+, NH4+, Ni2+, O2, phosphate, SO4, tungstate, and Zn2+. 

Finally, the biosynthetic cost estimations pk,x for all amino acid – carbon source 

combinations were calculated as 

=>,' = )>,' �'⁄ . 

5.2. Bacterial strains  

Amino acid auxotrophic genotypes used in this study have been generated as described 

previously [245] (Table S2). The auxotrophic strains were derived from the E. coli 

BW25113 strain, which is the prototrophic wild type. Mutant strains were cured of the 

kanamycin resistance marker by excising the kanamycin cassette from the mutant’s 

genome using pCP20 plasmid, which harbors the FLP recombinase [257]. For unknown 

reasons, it was not possible to cure the tyrosine auxotroph of the kanamycin resistance. 

Thus, the original kanamycin resistant mutant was used for growth kinetic assays 

instead. However, it has been previously demonstrated that this resistance marker does 

not incur detectable fitness effects under non-selective (i.e. antibiotic-free) conditions 

[278]. 

5.3. Culture conditions 

All cultures were incubated under shaking conditions at 30 °C and grown in Minimal 

Media for Azospirillum brasilense (MMAB) [215] containing K2HPO4 (3 g L-1), NaH2PO4 

(1 g L-1), NH4Cl (1 g L-1), MgSO4 · 7H2O (0.3 g L-1), KCl (0.15 g L-1), CaCl2 · 2H2O (0.01 

g L-1), FeSO4 · 7H2O (0.0025 g L-1), Na2MoO4· 2H2O (0.05 g L-1), and using different 

carbon sources. The concentrations of the carbon sources were 5 g L-1 D-fructose, 8.86 

g L-1 disodium succinate, 8.61 g L-1 potassium L-lactate, 4.42 g L-1 glycerol, 8.17 g L-1 
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sodium pyruvate, 10.64 g L-1 disodium L-malate, 5 g L-1 D-maltose monohydrate or 5.06 

g L-1 D-xylose.  The concentrations of carbon sources were chosen such that – at least 

theoretically – the same amount of biomass could have been produced under all 

nutritional conditions. For this, we used the above-introduced value �' , i.e. the 

minimum amount of carbon source x required to form one unit of biomass. The final 

concentration of carbon source x was calculated as @' � @ABC ⋅ �' �ABC⁄  using 5 g L-1 

fructose (@ABC  = 27.75 mM) as reference. This procedure is similar to the approach 

described by [131]), where concentrations were adjusted to match the number of 

reducible carbon atoms. However, using the genome-scale metabolic network of E. coli 

allows to take the physiological capabilities of the cell to transform a certain carbon 

source into biomass more precisely into account. 

The eight carbon sources fructose, maltose, xylose, glycerol, pyruvate, lactate, 

succinate, and malate were chosen, because these substrates enter the central 

metabolic network of E. coli at different points (Fig. 1A) and the predicted biosynthetic 

costs of amino acids differed considerably between these carbon sources (Fig. 1B). 

Fructose, maltose, and glycerol are catabolized via the Embden-Meyerhof-Parnas 

(EMP) Pathway. Xylose is converted to the pentose phosphate pathway intermediate 

D-xylulose 5-phosphate. L-lactate can be oxidized to pyruvate, a central metabolite, 

which links the glycolysis and the tricarboxylic acid (TCA) cycle. The carbon sources 

succinate and L-malate are intermediates of the TCA cycle. 

5.4. Growth kinetic assays 

The response of seven amino acid auxotrophic E. coli mutants and the prototrophic wild 

type strain in terms of the maximum growth rate to the supplementation of the focal 

amino acids was quantified in growth kinetic assays. For this, seven genotypes that 

were auxotrophic for one of the following amino acids were selected (deleted gene in 

brackets): histidine (hisD), tyrosine (tyrA), phenylalanine (pheA), tryptophan (trpB), 

leucine (leuB), lysine (lysA), and isoleucine (ilvA). These amino acids were chosen based 

on three criteria: (1) these amino acids cannot be catabolized and utilized as carbon 

source by E. coli. Tryptophan was the exception, which can be partially degraded to 

pyruvate and indole (indole cannot be further degraded) [284]. (2) No other cellular 

functions besides protein synthesis is known for these seven amino acids. For example, 

E. coli cannot degrade methionine, but can utilize it also as a precursor for S-adenosyl-

L-methionine (SAM), the major methyl group donor in the cell. (3) No other reaction is 

known, with which E. coli can transform another metabolite into the focal amino acid 
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[196]. The above criteria were applied to exclude unwanted confounding effects to 

influence the growth kinetics. 

For each amino acid, six E. coli BW25113 wild type colonies and six colonies of the 

corresponding auxotrophic genotype were used to inoculate 1 ml overnight cultures (16 

h) with fructose as carbon source. The media used to cultivate auxotrophic strains was 

supplemented with the amino acid the focal auxotroph required to grow (see Table S1 

for exact amino acid concentrations). Each of these cultures was used to inoculate eight 

1 ml pre-cultures (96-deep-well plates, Eppendorf, Germany), each containing one of 

the eight different carbon sources (i.e. fructose, maltose, xylose, glycerol, pyruvate, 

lactate, succinate, and malate) and the focal amino acid (see Table S1 for exact amino 

acid concentrations). Precultures were incubated for 26 h at 30 °C under shaking 

conditions (220 rpm). 

To test whether the maximum growth rates of prototrophic wild type cells was 

sensitive to increasing amino acid concentration in the growth medium, wild type 

precultures were used to inoculate 50 µl cultures in 384-well plates (flat bottom and 

transparent, Greiner Bio-One, Kremsmünster, Austria) with an initial cell density of 

105 colony-forming units (CFUs) mL-1. The MMAB medium used for these experiments 

contained the same carbon source as the preculture, yet in addition one of eight 

different concentrations of the focal amino acid, with the lowest level corresponding to 

no amino acid supplementation (see Table S1 for exact amino acid concentrations). In 

this way, each of the 64 combinations of eight carbon sources and eight amino acid 

concentrations was independently replicated six times. A second 384-well plate with 

the exact same media layout was inoculated accordingly from the precultures of 

auxotrophic genotypes. Wells without amino acid supplementation were inoculated 

with the wild type strain as control. Growth kinetics were determined in a Tecan 

Infinite 200 Pro plate reader (Tecan Group, Männedorf, Switzerland) for automated 

kinetic measurements for 48 h at 30 °C and a 10 min kinetic cycle consisting of 7.5 

minutes of orbital shaking (2 mm amplitude), 1 min waiting (no shaking), and 1.5 

minutes for measuring the optical density at 600 nm (OD600nm, 10 nm bandwidth) with 

5 flashes. 

5.5. Statistical data analysis 

For each culture of the growth kinetic experiment, the maximum growth rate µmax was 

determined. Since E. coli reaches substantially different maximum growth rates in the 

eight different carbon source regimes and to compare the increase of µmax with 
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increasing amino acid concentration, the µmax values were normalized by the median of 

the maximum growth rates the wild type strain achieved under the same carbon 

condition without amino acid supplementation. Hereafter, we will refer to the 

normalized maximum growth rates as μ9max. The increase of the growth rate per µM of 

the focal amino acid (7 data points for the auxotrophic genotypes, 8 for the wild type 

strain) was calculated for each cognate population (i.e. populations which originated 

from the same clonal colony) and for each carbon source by linear regression [223,285]. 

For correlation analysis between increases of growth rates with either amino acid 

concentration or with predicted metabolic costs, a linear mixed-effects model was fitted 

considering the ‘cognate population identity’ as random effect and the ‘amino acid 

concentration’ or ‘predicted metabolic costs’, respectively, as fixed effects. Models were 

fitted by maximizing the restricted log-likelihood until convergence. Conditional R2 

values of the fitted models were calculated according to [286]. 

Principle component analysis (PCA) and k-means clustering were performed to 

analyze the variance of biosynthetic costs of amino acids under various carbon sources. 

Only the main PCA axes, which together explained more than 90% of the observed 

variation, were used for k-means clustering. The algorithm by [287], for k-means 

clustering was applied starting with 25 random initial sets and optimization 

(minimizing within-group sum of squares) until convergence. P-values were corrected 

after multiple testing using the false discovery rate (FDR) procedure of [222]). All 

statistical analyses were using the R software (version 3.1.1) [223]. 

Acknowledgements 

We thank the Experimental Ecology and Evolution Research Group, the Theoretical 

Systems Biology Research Group, Holger Merker, Gabriele Diekert, and Wilhelm 

Boland for constructive criticism and support. 

 

  



126 
 

 



 

 

 

 

 

 

 

Chapter VI 

General discussion 

  



128 
 

  



129 
 

1. Reductive evolution of metabolic networks 

1.1. Metabolic causes of the fitness advantages of biosynthetic gene loss 

A major outcome of this study was that biosynthetic gene deletion mutations provide 

the corresponding genotypes with selective advantages in environments, where the 

focal metabolite is available. The selective advantages may explain the prevalent 

reductive evolution of metabolic networks, but what causes the significant fitness 

advantages of auxotrophs? 

Deleting different metabolic genes within the same biosynthetic pathway showed 

that the highest fitness benefits was gained when the genes of those enzymes were 

deleted, which account for the highest protein mass of all enzymes involved in the 

pathway (chapter III). This observation is in agreement with previous studies, which 

suggest that bacterial growth rate can be limited by protein costs [228–230]. 

Furthermore, evolution experiments with E. coli have shown that the increase in 

growth rate is often associated with the reduction of proteins, which are not, or in less 

abundancy, required under the specific selection environment [288,289]. These results 

indicate that the costs, which are associated with the production of proteins can limit 

the fitness of bacteria. Interestingly, 57% of the complete protein mass within an 

Escherichia coli cell are proteins involved in metabolism [290,291], which highlights 

the immense resources a cell needs to invest into its metabolic network. 

Another factor, which provides auxotrophic genotypes with selective advantages are 

the resources, which are saved by auxotrophs by not transforming resources into the 

focal metabolite. These so-termed metabolic- or biosynthetic costs were subject of the 

study presented in chapter V, where it was computationally and empirically shown that 

these costs can also limit the growth rate of E. coli. Several previous studies have 

collected empirical evidence that these costs govern the evolution of amino acid usage 

in bacterial proteomes [62,61,71,65]. Additionally, due to the strong impact on the 

growth of bacteria, which was identified in this study (chapter V), biosynthetic costs 

are likely to affect also the evolution of the metabolic network structure, including the 

loss of biosynthetic capabilities. 

Other metabolic causes of the observed fitness advantages of biosynthetic gene loss 

possibly include regulatory costs and DNA costs. Regulatory costs denote the resources, 

which are invested in the coordination of metabolic fluxes, e.g. as a results of expression 

of transcription factors or the phosphorylation of enzymes to control their catalytic 
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activity [292]. DNA costs summarise the costs involved in the maintenance of the 

nucleotide sequence of the corresponding gene in the chromosome [293]. 

Presumably, all of these abovementioned factors contribute to the metabolic burden 

of a specific biosynthetic function of a metabolic network. However, to what extent each 

factor might be responsible for the selective advantages of biosynthetic gene loss in 

environments, in which the focal metabolite is available, remains difficult to quantify. 

In addition, their effect probably also varies among different microbial species and, as 

shown in chapter V, even for the same species but between different environmental 

conditions such as the available carbon source. 

1.2. The pan-metabolic network and metabolic complementarity 

Another significant finding of this research project was that biosynthetic functions for 

seemingly essential metabolites are frequently absent in the metabolic networks of a 

majority (i.e. 76%) of analysed eubacterial genomes. These results are in line with two 

previous studies, which compared the metabolic networks of 50 and 55 different E. coli 

and Shigella, respectively, strains [233,294]. These strains are closely related (all 

belong to the same family of Enterobacteriaceae) and are gut-dwelling bacteria. In 

contrast to their close relatedness and similar lifestyles, their metabolic capabilities are 

fairly diverse: Only 70% of all reactions are part of all analysed metabolic networks – 

termed the core-metabolic network [233]. This means, that 30% of reactions of the pan-

metabolic network – the union of all reactions found in the analysed networks – are 

absent in at least one of the strains. Interestingly, this includes 30% of all reactions 

involved in amino acid metabolism, which renders some of the strains auxotrophic 

[233]. Taken together, the systematic comparison of bacterial metabolic networks in 

this and in other studies revealed that auxotrophic bacterial species are prevalent in 

nature and that even the biosynthetic capabilities of strains of seemingly the same 

species are highly diverse. 

Metabolic complementarity 

The observed prevalence of auxotrophies raises the questions: What is the source of 

essential metabolites for auxotrophic genotypes? Intuitively, the source can be 

explained for a range of bacteria by their nutritional-rich environments, e.g. the 

environments of endosymbionts or gut-dwelling bacteria. However, the auxotrophy 

predictions (chapter III) suggest, that also free-living bacteria are frequently 

auxotrophic, including bacteria living in aquatic environments, which are often poor in 
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organic compounds [295]. In fact, auxotrophic bacterial strains have been isolated for 

example from freshwater lakes [296]. A plausible explanation is that essential 

metabolites are provided by other cells within the microbial community [83]. The Black 

Queen Hypothesis (see chapter I, Box 1) for example proposes, that not all essential 

metabolic functions need to be performed by all microbial cells within the community. 

Instead, the community-wide demand for the metabolic function’s product may be 

covered by a certain fraction of cells within the community, which still performs the 

functions and releases its product (in part) as public good [83]. The results presented in 

chapter III support this hypothesis by showing that the loss of biosynthetic genes 

provides the auxotrophic genotypes with selective advantages and thereby may govern 

the adaptive evolution of metabolic function loss within microbial communities. 

Nonetheless, if the loss of biosynthetic genes cause strong fitness advantages and if 

the metabolic demand for the focal metabolite can be covered by the production of other 

community members, why do most isolates have only a few auxotrophies and did not 

lose more biosynthetic functions? In contrast, the prediction of auxotrophies for free-

living organisms showed, that most bacteria have lost the ability to produce only one or 

two metabolites (chapter III, Figure 1). Also other studies report only few auxotrophies 

per strain of free-living bacteria [233,296]. A possible explanation is the epistasis of 

diminishing returns in fitness of multiple biosynthetic gene deletion mutations. The 

results presented in chapter IV show that, in most cases, the selective advantage of 

biosynthetic gene loss is diminished if the mutant is already auxotrophic for another, 

or even two other, metabolite(s) due to prior gene deletion mutation(s) (chapter IV, 

Figure 2A). In other words, the highest fitness benefits are usually gained upon the 

first auxotrophy-causing mutations. The consequence for a community of bacteria is 

that the distribution of multiple auxotrophies to different sub-groups may result in a 

higher average fitness gain within the whole community. In line with this theory are 

the observations of a recent study by Garcia et al. (2015), which show that metabolic 

pathways for the biosynthesis of amino acids and vitamins are distributed across 

different dominant members of a freshwater microbial community [296]. 

Taken together, selective fitness advantages of biosynthetic gene loss and epistasis 

are likely to have a strong impact on the evolution of metabolic networks. More 

specifically, the fitness consequences of metabolic gene loss may explain also the sub-

division of metabolic tasks, hence, metabolic complementarity in microbial 

communities and the formation of pan-metabolic networks. 
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1.3. Trade-off in metabolite production costs may explain epistasis between 

multiple biosynthetic gene deletions 

Using a synthetic biology approach, it was shown that epistasis has a strong impact on 

the fitness of E. coli after losing multiple metabolic genes (chapter IV). Epistasis had a 

significant impact of the fitness of 50% percent of double- and triple gene deletion 

mutants with fructose as the sole carbon source and even 77% in the succinate-

containing carbon environment (chapter IV, Table 1). What are the functional 

associations between biosynthetic gene deletion mutations that cause the observed 

strong epistasis? 

Epistatic interactions among metabolic genes have been predicted by Joshi et al. 

(2014) for three different microorganisms, including E. coli, based on the structure of 

the underlying metabolic networks and flux balance analysis [88]. Interestingly and in 

line with the results presented here, the computational analysis has also predicted a 

strong influence of the type of carbon source, which is provided for growth, on epistasis 

[88]. Joshi et al. (2014) concluded that epistasis among metabolic genes is not 

necessarily due to direct interactions between the genes (e.g. the genes are targeted by 

the same transcription factor), but can also be explained by the metabolic fluxes 

through the metabolic network. Hence, the epistasis-causing functional association 

among metabolic genes can be the biochemical pathways that carry carbon fluxes 

between both corresponding reactions, e.g. if both reactions are part of the same 

pathway [88].  

However, here, epistasis was observed among metabolic genes, which encode 

enzymes of distinct biosynthetic pathways for different amino acids. Thus, the 

metabolic flux though one reaction is not further passed on to the reaction of the other 

biosynthetic pathway and vice versa. How can the epistatic interactions among 

metabolic genes of distant pathways be functionally explained? One hypothesis is that 

metabolic trade-offs between different biosynthetic functions are responsible for the 

epistasis: In chapter V, a metabolic trade-off between the costs to produce amino acids 

was identified. That is, amino acids, which are synthesized from precursors from 

glycolysis or the pentose phosphate pathway, induce lower metabolic costs if a glycolytic 

carbon source (e.g. fructose) is provided for growth than if a gluconeogenic carbon source 

(e.g. succinate) is provided (chapter V, Figure 1). In contrast, the metabolic cost 

differences are reciprocal between the two groups of carbon sources (glycolytic and 

gluconeogenic) for amino acid, whose precursor metabolites are part of the tricarboxylic 

acid (TCA) cycle (chapter V, Figure 1D). This trade-off among biosynthetic costs of 



133 
 

amino acids under different carbon environments depicts possible interactions among 

biosynthetic pathways, which are due to the distribution of carbon fluxes through the 

metabolic network. For instance, the deletion of a metabolic gene involved in an amino 

acid biosynthetic pathway may increase the availability of the precursor metabolite 

which possibly also serves as precursor for another amino acid. Hence, the 

redistribution of fluxes upon a biosynthetic gene loss may affect the fitness 

consequences of a second biosynthetic gene deletion mutation. 

Taken together, the strategic allocation of a limiting carbon resource to all required 

metabolic pathways is a functional association, even between distant reactions (in 

terms of the metabolic network topology), which may account for epistatic interactions 

among metabolic gene deletion mutations. 

1.4. Resource efficiency may govern the evolution of metabolic cross-feeding 

through adaptive gene loss 

Cooperative exchange of metabolites plays a crucial role in the ecology of many 

microorganisms and is, for example, essentially involved in the assembly and 

disassembly of bacterial biofilms [297], the degradation of organic material in microbial 

communities [119,298], and metabolic cross-feeding interactions [76,298]. A 

fundamental question in evolution of cooperative metabolic interactions is: Why does 

an organism exhibit a costly metabolic function to benefit another species and, at the 

same time, coercively depends on actions performed by the partner, instead of 

accomplishing all necessary metabolic functions autonomously?  

In the case of obligate metabolite cross-feeding interactions, two strains exchange 

metabolites, which the respective other strain cannot synthesise on its own [76,84]. As 

a consequence, both strains save biosynthetic costs by not synthesising the metabolite 

that the respective partner strain is providing, but also invest resources in the 

biosynthesis of another metabolite to cover the demand of the partner. How can the 

selective advantages of the division of metabolic labour be explained? It has been 

proposed, that biochemical trade-offs within the metabolism of microorganisms have a 

strong impact on metabolic specialisation [9] and the evolution of cooperation [298,299]. 
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Here, evidence for one of such biochemical trade-offs in metabolism was found 

(Chapter V): Depending on the type of carbon source a bacterium utilises, the metabolic 

costs to produce an amino acid x may be low under carbon source A and high under 

carbon source B, whereas the costs for amino acid y can be high under carbon source A 

and low under B (Figure 1A). Assuming an environment in which multiple carbon 

sources, including A and B, are available and two different strains have specialised in 

the utilisation of carbon source A or B, respectively, the two strains will reciprocally 

differ in the biosynthetic costs to produce the amino acids x and y (Figure 1A). By 

mutually exchanging the respective amino acids, which each strain produced at lower 

biosynthetic costs than the other strain – i.e. the strain utilising A produces x and the 

B-utilising strain produces y – both strains may gain a benefit by saving limiting carbon 

resources (Figure 1B). 

It has to be noted that such a scenario assumes that the strains utilise only one 

carbon source, even if multiple are present in the environment. However, it seems a 

common pattern in the bacterial domain that the organisms first exploit one carbon 

 
Figure 1. Carbon source(cs)-dependent trade-off between biosynthetic costs of different 

amino acids (aa) may promote cross-feeding interactions. (A) The plot schematically shows 

the biosynthetic costs paa,cs (see chapter V) of two amino acids x and y under two different carbon 

sources A and B. The dashed line represents the isocline, at which biosynthetic costs of 

metabolites would be the same under both carbon sources, thus are carbon source-independent. 

The costs differences between the carbon sources are specified by Δpaa. (B) The scheme 

illustrates the metabolic cross-feeding of two strains, which utilise each a different carbon source. 

Each strain produces the specific amino acid, which the strain produces more efficiently (lower 

biosynthetic costs) than the partner strain and shares the produced amino acids with their 

respective partner. 
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source, until that resource is (nearly) exhausted, before the cells switch to an 

alternative substrate [300,119,117,9]. 

Taken together, mutualistic interactions that are based on the exchange of 

metabolites between bacterial cells or between bacteria and multicellular organisms 

could evolve due to structure of their metabolic networks, which determine the 

biosynthetic costs of metabolites. Thus, the method to estimate biosynthetic costs, 

which was described in chapter V, could also be extended to predict the evolution of 

metabolic interactions between species. Therefore, the biosynthetic cost predictions 

could be expanded to a wide range of metabolic networks of different microbial species 

in order to compare the biosynthetic costs between species and their specific carbon 

source preferences. In this way, it is possible to forecast which metabolites are likely to 

be exchanged due to the highest mutual benefits both partners would gain from the 

specific trade [301]. Promising approaches to test these ecological predictions are to 

evaluate the performance of synthetically engineered consortia of different microbial 

strains or co-evolution experiments of co-cultures with strains, which differ in their 

metabolic costs to synthesise the same metabolites (see also chapter I, section 2.2). 

1.5. Microbial un-culturability 

Several ambitious studies aimed to extrapolate archaeal and bacterial diversity, and 

estimated the number of species to range in the millions [302,303]. Despite the certainty 

about the existence of numerous microbial species, there is a gaping lack of knowledge 

on the ecological characteristics of a majority of microorganisms including the metabolic 

niches, which the focal species in a microbial community occupy [304]. This scarce 

functional information of the so-called microbial dark matter is mainly due to our 

inability to cultivate the majority of microorganisms in the laboratory [303]. 

It has been proposed that the difficulty to mimic the physical, chemical, and 

biological conditions of the environment, which a microorganism is adapted to, accounts 

at least partly for the prevalent unculturability [305]. The analysis of hundreds of 

eubacterial metabolic networks in chapter III revealed that the nutritional 

requirements of most bacteria involve beyond energy- and bioelement resources also 

amino acids, nucleotides, and vitamins. These essential compounds could for example 

be obtained from a pool of externally supplemented and freely available metabolites in 

the environment. In fact, most isolated bacteria which can be cultured under laboratory 

conditions require rich media, which contain a wide range of organic compounds 

including amino acids, nucleotides, and vitamins [306]. This observation suggests that 
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these bacteria are auxotrophic for one or more metabolites. However, missing 

biosynthetic capabilities (i.e. auxotrophies) are not always necessarily compensated by 

externally available chemicals, because it requires additionally specific transporters to 

import exogenously available metabolites into the cytosol across the cell membrane 

[307]. As discussed in the section 1.2, an alternative source for metabolites can also be 

neighbouring cells, which synthesise and provide the compounds.  

A recent study has shown that a consortia of obligate cross-feeding auxotrophic 

bacteria can exchange metabolites via intercellular nanotubes [308]. These are 

membrane-derived structures that bacteria use for direct cell-cell connections [308]. 

Until now, there is no broad survey of the ubiquity of such contact-dependent 

mechanisms for metabolite exchange in natural microbial communities. However, 

several observations and evolutionary theory provide evidence that metabolite cross-

feeding via physical contact is common in nature: First, auxotrophies are prevalent in 

free-living bacteria (chapter III) whose habitats are presumably poor in organic 

compounds, e.g. in marine environments. This implies that the essential metabolites 

are obtained from co-occurring organisms [296]. Second, if the focal compounds are 

obtained via nanotubes from neighbouring cells, no additional genes for transporters, 

which import the extracellular metabolites, are required. Third, contact-dependent 

metabolite exchange reduces the risk of metabolite loss due to diffusion [309], and 

fourth, the clustering of cells, which metabolically cooperate via cross-feeding protects 

cooperators of the invasion of interaction defectors. Interaction defectors are 

individuals, which gain benefits from the interactions (uptake of metabolites), but do 

not contribute to their production [308].  

As a consequence, an organism which coercively relies on the acquisition of 

metabolites by contact-dependent mechanisms would fail to grow in pure cultures 

isolated from their interaction partners, no matter how nutrient-rich the cultivation 

media is. Thus, metabolic interdependencies and complementarities between 

organisms may also play a major role for the vast diversity and extensive un-

culturability of bacteria [310]. In fact, there is a growing number of studies, where the 

growth of previous unculturable-categorised bacteria was facilitated by the cultivation 

of defined microbial communities consisting of the natural ecological interaction 

partner [296,311] or with other specific microorganism, which also were able to 

complement the metabolic needs of the organism of interest [310,312–314]. 



137 
 

2. The relationship between microbial growth and 

metabolism 

How microorganisms exploit available resources in order to grow is unquestionably 

tightly linked with the organism’s fitness. Hence, from an evolutionary perspective, an 

important question to ask is: What factors limit microbial growth [73]? In 1942, Jacques 

Monod showed that the bacterial growth rate can be limited by the concentration of 

substrate, namely the carbon source, when substrate levels are low, but the growth rate 

does not significantly increase further with increasing substrate availability when 

resource levels are already high [315]. Based on these empirical results, Monod 

formulated following equation to describe the relationship between bacterial growth 

rate and substrate concentration [315]: 

 

+ � +�&'  E F�G + FH 

 

Where +  is the specific growth rate of the bacterial population and +�&'  is the 

maximum growth rate the organism can possibly reach if substrate concentration F is 

not limiting growth. �G is the substrate concentration, at which the organism reaches 

half of its maximum growth rate +�&'. Note that this equation has the same form as 

the Michaelis-Menten-kinetics, which describes the rate of an enzymatic reaction as a 

function of the substrate concentration. 

But what limits growth if not the nutrient availability or other external conditions? 

It has been shown that the substrate concentration dependency of bacterial growth can 

be related to the physiological ability of cells to scavenge and import resources (e.g. 

[316,317]). Other studies in turn report that the growth rate is not necessarily limited 

by the substrate transport capacity [318–320]. Alternatively, it has been proposed, that 

besides the availability of resources, also the strategic allocation of resources may 

reflect the maximal bacterial growth rate and growth yield [60,98]. In particular, the 

structure of the metabolic network and how the network constraints the distribution of 

metabolic fluxes to optimally allocate resources to biosynthetic pathways can reflect the 

growth rate of bacteria [46,130,131]. In chapter V it was shown that biosynthetic 

functions require different amounts of resources under different carbon environments 

to produce the same amounts of the biosynthetic product. Hence, cells need to readjust 

their resource allocation strategy upon a shift between chemically different substrates 

to form biomass in the most resource-efficient way. Any mechanism which relaxes the 
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resource allocation problem, for example by the uptake of exogenously available amino 

acids (see chapter III), may lead to an increase in growth [60]. 

A comprehensive understanding of the relationship between growth and 

metabolism can help to find new methods to control microbial growth, which is essential 

in many practical instances, for example in medicine and biotechnology.  

2.1. Inhibiting microbial growth 

In cases where microorganisms are sought to be inhibited in growth or even sought to 

be killed, antibiotics – chemical compounds, which interfere with the reproduction 

and/or survival of the organism – are widely used. However, there is an increasing 

number of cases where bacteria evolved resistance to a wide range of available 

antibiotic drugs and this antibiotic resistance crisis [321] became one of the most 

pressing issues in medicine. Therefore, new antimicrobial agents and strategies to 

inhibit bacterial growth are pursued. To date, most antibiotics target to interrupt 

prokaryotic macromolecule polymerisation: DNA replication, RNA-, protein-, and cell 

wall synthesis [322]. Only a few antibiotics have been developed, which inhibit or 

damage metabolic enzymes [323]. The limited number of exploited antimicrobial 

metabolic targets is likely due to redundant metabolic pathways, the ability of 

prokaryotic pathogens to utilize a wide range of host nutrients, and too similar 

properties of a set of the pathogen’s and host’s metabolic enzymes, which might cause 

harmful side-effects to the host [323]. However, the reconstruction of bacterial 

metabolic networks (chapter II) and a subsequent structural and functional in silico 

analysis of the networks (chapter III – V) can serve as a platform to develop new 

antimicrobial drugs by identifying species-specific targets.  

Particularly, a detailed mechanistic understanding of how a prokaryotic pathogen 

has metabolically adapted to the host environment can facilitate to predict enzymatic 

targets for a medical intervention strategy that could disrupt the integrity of the entire 

microbial metabolic network. Such a strategy can for example aim to disrupt the 

economic resource allocation (see chapter V) of a microbial cell in order reduce the 

available resources for cell growth. 

The polyol xylitol, for example, is widely used for the prevention of caries as it 

inhibits the growth of Streptococcus mutans [324]. The growth inhibition is due to two 

mechanisms: First, xylitol is taken up by S. mutans and accumulates as xylitol-5-

phosphate, which inhibits enzymes involved in glycolysis [325]. Second, the 

accumulated xylitol-5-phosphate is partially dephosphorylated to intracellular xylitol, 



139 
 

which is further exported from the cell and taken up again by a 

phosphoenolpyruvate(PEP)-dependent phosphotransferase [325,326]. This import-

export of xylitol creates a futile cycle at the expense of PEP and ultimately also depletes 

the energy pool of the cell [326]. This example shows, that a targeted impairment of the 

bacterial cell’s resource economy can help to inhibit the growth of disease-causing 

bacteria.  

2.2. Promoting microbial growth 

In biotechnology, microorganisms are frequently used to produce value-added 

chemicals ranging from small molecules such as amino acids or vitamins to large 

polymer molecules, such as proteins. In these situations, an enhancement of microbial 

growth is usually desired. Metabolic engineering is an approach to rationally design 

microbial genotypes by linking growth to the overproduction of a desired compound 

[281,327]. Prominent strain design strategies are the knock-out of metabolic genes and 

the addition of new reactions or whole pathways to the metabolic network via the 

insertion of the corresponding enzymes-coding genes [328]. Several computational tools 

exist, which predict reaction knock-outs or additions to improve production yields 

[151,329–331]. However, these methods require a pre-defined description of the 

nutritional composition of the production media. The results presented in chapter IV 

and V clearly show that the effect of reaction knock-out mutations on the organism’s 

growth rate, fitness, and metabolite production costs are strongly affected by the 

chemical nature of the provided carbon source. Specifically, this means that an 

organisms may need to invest a higher proportion of its available carbon resource under 

one carbon source than under a chemically different carbon source to produce the same 

amount of a specific metabolite. Hence, metabolic engineering strategies for optimal 

microbial strain design need to go hand in hand with a rational design of the production 

‘environment’ to reduce resource costs and optimise production yields. This is because, 

reducing the carbon source requirement for the production of the desired compound 

may significantly reduce the economic costs. In fact, the estimated microbial 

biosynthetic costs of amino acids (chapter V) reflect also current market prices of these 

metabolites (Figure 2). The correlation is most likely due to the fact that bacteria such 

as Escherichia coli and Corynebacterium glutamicum are typically used to 

commercially produce amino acids [332] and economic costs for the growth substrate 

probably account to a large fraction for the market prices. 
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In summary, it is beyond dispute, that metabolism is tightly interwoven with cell and 

population growth [126]. However, due to the complexity of metabolic networks and 

their regulation, is has been difficult to elucidate how different structural and 

functional properties of metabolic networks contribute to the microbial growth kinetics. 

The results on the interplay between different carbon sources and loss-of-biosynthetic-

function mutations presented in this thesis (chapter III – V) revealed that resource-

efficiency is a major criteria for the metabolic adaptation of bacteria to improve their 

ability to grow.  

3. The evolution of autocatalytic reaction cycles in 

metabolic networks 

In chapter II, the concept of autocatalytic metabolites was introduced. These 

compounds are part of the metabolic network and are required for their own 

biosynthesis. Interestingly, the number of autocatalytic metabolites within metabolic 

networks is usually small and the compounds, which have the autocatalytic property 

are highly conserved (typically ATP, NAD, and coenzyme A) across different species; 

including multicellular organisms [30]. This fact has been used to unravel 

inconsistencies in genome-scale metabolic network reconstructions (chapter II).  

The strong conservation of the set of autocatalytic cycles within metabolic networks 

raises the question about their evolution and whether natural selection has favoured 

the small number and the identity of autocatalytic compounds within metabolic 

 
Figure 2. Correlation of amino acid catalogue prices with estimated biosynthetic costs in E. 

coli. Prices for amino acids in Euro per mole were calculated based on the purchase prices from the 

online catalogue of Carl Roth GmbH + Co. KG, Karlsruhe (http://www.carlroth.com; retrieved on 7th

September 2015). The biosynthetic costs estimates correspond to the predictions from chapter V for 

glucose as carbon source. Pearson’s product-moment correlation, r = 0.66, P = 0.002, n = 20. 
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networks [31]. Interestingly, the most common autocatalytic metabolites within 

metabolic networks (i.e. ATP, NAD, and coenzyme A) are involved in many enzymatic 

reactions within the networks – so-called metabolic hubs – even though most 

metabolites are consumed or produced only by a few enzymes [29]. This connectivity 

distribution, which follows the power law, deviated significantly from random networks 

[29] and the evolutionary processes, which led to this connectivity distribution are 

highly debated (see e.g. [96]). Jeong et al. (2000), for example, argued that this network 

feature might be adaptive as it increases (compared to random reaction networks) the 

network’s robustness against mutations, which lead to the removal of reactions [29]. In 

contrast, Pfeiffer et al. (2005) showed using computer simulations of network evolution 

that the high connectivity of a few metabolites could indirectly be the results of selection 

for growth rate in the early evolution of metabolic networks [333]. 

The relation between autocatalytic cycles and the connectivity of metabolic hubs 

remains elusive and needs further theoretical and experimental analysis; especially to 

elucidate whether or not natural selection has favoured these traits. However, both 

network features, autocatalytic sets and metabolic hubs, likely emerged during the 

early evolution of metabolic networks [32,333,334], which could explain the strong 

conservation across all domains of life. 

4. Concluding remarks 

During the past decades, awareness of the tremendous bacterial genetic and metabolic 

diversity has grown [13]. Especially in ecological, medical, and biotechnological contexts 

there is a growing need to understand the factors that govern bacterial adaptation to 

various environments and thus cause this multiplicity. The ability to exploit available 

resources and to use them for cell growth and reproduction has thereby a strong impact 

on the adaptive evolution of bacteria [335]. The metabolic network has central role for 

the utilisation of resources and consists of hundreds to thousands of different enzymatic 

reactions. 

In this thesis, I employed data mining approaches to compare the metabolic 

capabilities of more than 900 bacterial metabolic networks and flux balance analysis to 

address the question: How do metabolic networks evolve? More specifically, I focussed 

on the evolutionary factors that may govern the reductive evolution of metabolic 

networks. In short, the results presented here (i) indicate that the loss of metabolic 

capabilities to produce central metabolites such as amino acids and vitamins is much 
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more common among bacteria than initially assumed, (ii) provide evidence that the 

prevalent loss of biosynthetic capabilities in bacteria can be explained by selective 

advantages gained by auxotrophic genotypes, (iii) provide a first report on carbon 

source-dependent epistatic effects between mutations, which disrupt different 

biosynthetic pathways in E. coli, (iv) revealed the structure of the metabolic network as 

major determinant of metabolite production costs, and (v) provide a new computational 

method that helps to find and correct flaws in genome-scale metabolic network 

reconstructions by identifying autocatalytic cycles within the network.  

Due to the intrinsic role of metabolism for the evolutionary fate of a bacterial 

species, adaptive evolution of metabolic networks may explain complex microbiological 

phenomena, whose evolutionary origin is so far unclear. The results presented in this 

thesis give plausible explanations for some of these phenomena including the 

unculturability of a majority or know species, the tremendous genetic and metabolic 

diversity of bacteria, the evolution of cooperative interactions between microorganisms, 

the plasticity of bacterial genomes, and metabolic complementarity of organisms within 

natural microbial communities. 
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Instructions to run ASBIG 

The method is available as source code (additionally, the file including the initial seed 

set for the test model is provided). To successfully run the method, the JigCell SBML 

parser (available on SBML Parser) has to be included in the JAVA Build Path. 

 

For testing purposes, we recommend to use the model ARAGEM, which can be 

downloaded from the original publication (doi: 

http://dx.doi.org/10.1104/pp.109.148817). 

 

Initial seed set 

The initial seed set contains three different parts: (1) the elements of a minimal 

medium, (2) additional autocatalytic compounds according to Kun et al. and (3) 

metabolites to circumvent artifacts of the modeling procedure. 

 

Minimal medium: 

H2O, O2, HO4P, NH3-/H4N, Glucose, Mn2-, Zn2-, SO42-, Cu2+, Ca2+, H+, Cl-, Co2+, K+, NO3-, 

Ni2+, Mg2+, Na+, Fe2+, H2MoO4, Fe3+ 

 

Known/assumed autocatalytic metabolites: 

ATP, NAD, CoA 

 

Additional metabolites: 

Apo-ACP, Holo-[carboxylase] (Biotin-Protein), Thioredoxin, Dihydrolipoamide, Cbl 

(Cob (I)alamin) (Vitamin B12s) (only as external metabolite) 

In a few models three special pseudo-compounds are implemented: 

DNA replication, RNA transcription, protein biosynthesis 

 

 

 

 

Reference: 

Á. Kun, B. Papp, and E. Szathmáry, ‘Computational identification of obligatorily 
autocatalytic replicators embedded in metabolic networks’, Genome Biol, vol. 9, no. 3, 
p. 51, 2008  
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Table S1. Frequency of compounds identified in 190 automatically reconstructed 

metabolic networks. 

Compound Identified in x% of the models 

peptidoglycan polymer (n-1 subunits) 68% 
spermidine 47% 
tRNA-Glu 26% 
Thiamine 24% 
alanylhistidine 22% 
glycyl-L-asparagine 21% 
glycerol teichoic acid (n=45) 20% 
L-methionine 18% 
glycyl-L-tyrosine 17% 
L-tryptophan 12% 
6,7-dimethyl-8-(1-D-ribityl)lumazine 12% 
glycyl-L-phenylalanine 12% 
adenosylcobinamide-GDP 12% 
glycyl-L-cysteine 11% 
5-formyltetrahydrofolate 11% 
N-L-alanyl-L-threonine 11% 
N-glycyl-L-methionine 11% 
glycyl-L-leucine 11% 
L-arginine 10% 
L-valine 10% 
riboflavin 9% 
L-2-lysophosphatidylethanolamine 8% 
inosine 5‘-triphosphate 7% 
L-isoleucine 7% 
meso-2,6-diaminoheptanedioate 7% 
dihydropteroate 7% 
(R)-S-Lactoylglutathione 7% 
alpha-ribazole-5‘-phosphate 7% 
L-alanyl- L-glutamine 7% 
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Table S2. Examined E. coli amino acid auxotrophs. 

Deleted 

gene 

Affected reaction Auxotrophy 

caused 

Add-on metabolite 

identified 

argH arginosuccinate lyase L-arginine L-arginine 

hisD histidinol dehydrogenase L-histidine L-histidine 

ilvA L-threonine deaminase L-isoleucine 2-oxobutanoate 

leuB 3-isopropylmalate 
dehydrogenase 

L-leucine 3-carboxy-4-methyl-2-
oxopentanoate 

lysA diaminopimelate 
decarboxylase 

L-lysine fructoselysine 

metB O-succinylhomoserine 
lyase 

L-methionine L-methionine 

pheA chorismate mutase L-phenylalanine prephenate 

proC pyrroline-5-carboxylate 
reductase 

L-proline L-prolinylglycine 

thrC threonine synthase L-threonine L-threonine O-3-
phosphate 

trpC indole-3-glycerol-
phosphate synthase 

L-tryptophan N-methyltryptophan 
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Figure S1. Histogram of identified add-on metabolites using ASBIG per 
automatically reconstructed metabolic network from the Model SEED repository. A 
total number of 190 networks were investigated. 



 

 

 

 

 

 

Supporting information for chapter III 

Less is more: selective advantages can explain the prevalent loss of 

biosynthetic genes in bacteria 
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Supporting methods 

Computation of protein and DNA sequence biosynthetic costs 

Biosynthetic costs were estimated as the amount of carbon source that is required to 

produce (1) the amount of a certain protein per cell and (2) the DNA sequence of a certain 

gene. We used flux balance analysis within the Cobra toolbox v2.0 (Schellenberger et al. 

2011) in a genome-scale metabolic network of Escherichia coli K12 (Orth et al. 2011). For 

each protein, the artificial reactions for protein synthesis,  

(J7 K L * )M& aMOP∈ RR + ST ∗ �VWATP[ → K ∗ �V  H^O + T ADP +  T Phosphate +  T Hg  
or for the synthesis of the corresponding DNA sequence 

6h) i ∗  * )MjkP ∈ l
  dM → i ∗ �nl
 Pyrophosphate 

have been included into the model. AA is the set of all 20 proteinogenic amino acids, NA is 

the set of the four desoxynucleoside triphosphates dATP, dCTP, dGTP, and dTTP. na
j 

represents the number of occurrences of amino acid aj in the amino acid sequence of the 

protein and nd
j the number of occurrences of the desoxynucleoside triphosphate dj in the 

DNA sequence of the gene. mp is the length of the amino acid sequence of the protein and 

mDNA the length of the corresponding DNA sequence. The abundance of the protein per cell 

has been incorporated in the calculations by the parameter l and the number of DNA 

sequence copies by parameter k. Protein abundance data were taken from Wessely et al. 

(2011) and a maximum of 6.54 DNA sequence copies k=6.54 were assumed for all 

sequences, which corresponds to the maximal chromosomal copy-number of a single-locus 

gene near the origin of replication in an E. coli cell at 2.5 doublings per hour (Klumpp et al. 

2009). The parameter q represents the ATP requirement per amino acid residue during the 

polymerization process of translation. A previously reported value of q=4.2 was used (Kaleta 

et al. 2013). 

The lower bound for the flux of these reactions was set to a value of 1. The consumption 

of fructose as sole carbon source was minimized by linear programming to determine the 

minimal amount of fructose required to produce the corresponding proteins and DNA 

sequence. DNA and protein sequences were retrieved from the EcoCyc database (Keseler 

et al. 2013).  
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Construction of auxotrophic strains of Acinetobacter baylyi 

Linear constructs of the kanamycin cassette with 5’-overhangs homologous to the insertion 

site were produced by PCR. To this end, plasmid pKD4 Datsenko and Wanner 2000 DNA 

was used as a template to amplify the kanamycin resistance cassette. Upstream and 

downstream regions homologous to argH, hisD, leuB, and trpB were amplified using primers 

with a 5’-extension that was complementary to the primers used to amplify the kanamycin 

cassette (Table S4). The three resulting products were combined by PCR to finally obtain 

the kanamycin cassette fused to the upstream and downstream homologous overhangs. 

Natural competence of A. baylyi was utilized to transform the linear fragments into the WT 

strain. Transformation was done by diluting 20 µl of a 16 h old culture grown in LB medium. 

This diluted culture was again incubated at 30 °C with shaking. 50 µl PCR mix containing 

the deletion cassette was added to this culture and again incubated at 30 °C with shaking 

for 2 h. Finally, the whole culture volume was concentrated to 100 µl and plated on LB agar 

plates containing kanamycin and incubated at 30 °C for colonies to appear. 
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Figure S2. Taxonomic distribution of eubacterial strains used for in silico prediction of 

auxotrophies. Triangle size indicates the proportion of the phylum in the sample of 949 

bacterial species from the MicroCyc database, which were used for auxotrophy prediction 

left cladogram and, for comparison, the proportion of each phylum in the National Center 

for Biotechnology Information NCBI taxonomy database of all phylum-classified Eubacteria 

(status: March 2013). Phylogeny adapted from Ciccarelli et al. (2006). 
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Figure S4. Phylogenetic distribution of free-living, gut-inhabiting, and endosymbiotic 

bacteria within the MicroCyc database (i.e. 949 organisms; Vallenet et al. 2009) and the 

Genomes OnLine Database GOLD; 10,489 organisms; Pagani et al. 2012). Only organisms 

for which the whole genome sequence as well as its lifestyle as listed in the Genomes 

OnLine Database were known were included. Numbers below bars indicate the number of 

organisms within the corresponding phylum and database. Phylogeny adapted from 

Ciccarelli et al. 2006. 
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Figure S1. Metabolic pathways that were considered for the prediction of auxotrophies. 

Pathways including EC numbers were collected from the MetaCyc database (Caspi et al. 

2012). Target compounds of each metabolic route are written in red. Metabolites written in 

black bold type are indicating dependencies on other biosynthetic pathways. All reactions 

are named by the corresponding EC number or the MetaCyc reaction ID if no EC number 

is assigned to the reaction in MetaCyc. UMP uridine monophosphate is the precursor for 

cytosine and IMP inosine monophosphate is the precursor for guanosine. Abbreviations: 

pyr: pyruvate, acCoA: acetyl CoA, tRNACys: uncharged tRNA for L-cysteine, Cys-tRNACys: 

L-cysteine-charged tRNA for L-cysteine, 2-keto-Ile: 2-keto-isoleucine, 2-mb-CoA: 2-

methylbutanoyl-CoA, carb-p: carbamyl-phosphate, N-acOrn: N-acetyl-L-ornithine, orn: L-

ornithine, akg: α-keto-glutarat, glu-semiAH: L-glutamate-5-semialdehyd, THDP: S-2,3,4,5-

tetrahydrodipicolinate, DAP: L,L-diaminopimelate, mDAP: meso-diaminopimelate, kyn: L-

kynurenine, cysth: L-cystathionine, hSer: L-homoserine, hCys: L-homocysteine, THF: 

tetrahydrofolate, mTHF: 5,10-methylenetetrahydrofolate, acp: acyl carrier protein, mal-acp: 

a malonyl acp, acyl-acp: a long chain acyl-acp, pim: pimelate, pim-acp: pimelyl-acp, a-oxon: 

8-amino-7-oxononanoate, hAnth: 3-hydroxyanthranilate, pr-ai:  5-amino-1-5-phospho-β-D-

ribosylimidazole, pr-ai-carboxy: 5-amino-1-5-phospho-D-ribosylimidazole-4-carboxylate, 

prop-diam: propane-1,3-diamine,  [spon]: spontaneous reaction. 
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Figure S3: Incompleteness of the biosynthetic pathways forming tryptophan, histidine,  

leucine, pyrimidine, and purine within all Eubacteria predicted to be auxotrophic for these 

metabolites. The numbers behind the auxotrophy indicate the total number of strains, which 

are predicted to be auxotrophic for the corresponding compound. Predictions are based on 

analyses of the MicroCyc database (i.e. 949 organisms; Vallenet et al. 2009). These five 

pathways were chosen, because they are the longest linear pathways in the data set (see 

Fig. S1). 
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Figure S5: Growth response of Escherichia coli WT to increasing concentrations of the 

focal metabolites. Growth within 24 h was determined as optical density at 600 nm and is 

displayed as growth in minimal medium that contained a particular metabolite at a certain 

concentration relative to its growth in pure minimal medium. Each plot shows the 

concentration-dependent normalized growth response of WT in the presence of (A) an 

amino acid, (B) a nucleobase, or (C) a vitamin. All values are medians of four replicates 

and the grey-shaded area delimits the 95% confidence intervals. Asterisks mark significant 

differences from the growth of the WT in the absence of the focal compound (i.e. dashed 

line; FDR-corrected independent sample t-tests: *P<0.05, **P<0.01, and ***P<0.001, n=4). 

See Table S1 for abbreviations of metabolite names. 
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Figure S6. Productivity and competitive fitness of Escherichia coli auxotrophs relative to 
WT in increasing concentrations of the focal metabolites. Productivity (i.e. OD) and fitness 
of auxotrophic mutants within 24 h was determined relative to WT in both mono- circles or 
coculture squares using minimal medium that has been supplemented with (A) an amino 
acid, (B) a nucleobase, or (C) a vitamin in increasing concentrations. Relative OD of 
monocultures was determined as the ratio of the auxotroph’s and the WT’s optical densities 
measured at 600 nm and the relative fitness of cocultures is expressed as the ratio of their 
Malthusian parameters. Medians of four replicates are displayed. The dark and light grey 
regions mark the 95% confidence intervals for mono- and cocultures, respectively. Black 
and light grey asterisks mark significant differences of auxotrophs to WT levels (i.e. dashed 
line in mono- and cocultures, respectively monocultures: FDR-corrected independent 
sample t-tests, cocultures: FDR-corrected paired sample t-tests: *P<0.05, **P<0.01, and 
***P<0.001; n=4). See Table S1 for abbreviations of metabolite names. 
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Figure S7. Relationship between the amount of protein invested by Escherichia coli into a 
certain biosynthetic step and the position of the gene within the biosynthetic pathways of 
arginine (Arg), histidine (His), and tryptophan (Trp). Protein investment in Mega Dalton is 
the mass of the individual protein multiplied with the abundance of protein copies per cell. 
Data was obtained from Wessely et al. (2011). Pathway position is the normalised 
localisation of each gene between the start (0.1) and the end (1.0) of the pathway. The line 
is the linear fit line between both variables. 
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Figure S8. Amino acid concentrations in natural habitats of bacteria. Concentrations of 

individual amino acids found in (A) three different soil samples mM kg-1 soil (Werdin-

Pfisterer et al. 2012) and (B) the gut of four different termite species mM gut-1 (Fujita and 

Abe 2002). Each circle indicates the amount of amino acid quantified in either a single soil 

sample or termite species. The dashed line represents the upper limit of amino acid 

concentrations i.e. 200 µM used in this study to determine the fitness of auxotrophic 

mutants. Crosses (X) signify instances in which the corresponding amino acid was not 

detected.  

  

A 

B 
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Table S1. Overview over the different auxotrophies analysed and the abbreviations used. 

   Auxotrophy analysed in 

Class Metabolite Abbreviation Escherichia coli Acinetobacter baylyi 

Amino acid Alanine Ala   

 Arginine Arg   

 Asparagine Asn   

 Aspartic acid Asp   

 Cysteine Cys   

 Glutamine Gln   

 Glutamic acid Glu   

 Glycine Gly   

 Histidine His   

 Isoleucine Ile   

 Leucine Leu   

 Lysine Lys   

 Methionine Met   

 Phenylalanine Phe   

 Proline Pro   

 Serine Ser   

 Threonine Thr   

 Tryptophan Trp   

 Tyrosine Tyr   

 Valine Val   

Nucleobase Cytosine Cyt   

 Guanine Gua   

Vitamin Biotin Bio   

 
Nicotinamide 
adenine 
dinucleotide  

Nad   

 Pantothenate Pan   
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Table S2. Strains used in this study. Abbreviations: ara+/- = ability to use arabinose as a C-

source absent/ present, AT = auxotroph, WT = wild type. 

Strain Genotype Phenotype Reference 

Escherichia coli  
BW25113 ara- 

F-, ΔaraD-araB567, ΔlacZ4787::rrnB-3, λ-, 
rph-1, ΔrhaD-rhaB568, hsdR514 

WT Red Baba et al. 2006 

Escherichia coli  
BW25113 ara+ 

F-, ΔaraD-araB567, ΔlacZ4787::rrnB-3, λ-, 
rph-1, ΔrhaD-rhaB568, hsdR514, araA 

WT White This study 

∆argH ara- WT ara-, ∆argH::kanR AT This study 

∆hisD ara- WT ara-, ∆hisD::kanR AT This study 

∆ilvA ara- WT ara-, ∆ilvA::kanR AT This study 

∆leuB ara- WT ara-, ∆leuB::kanR AT This study 

∆lysA ara- WT ara-, ∆lysA::kanR AT This study 

∆metA ara- WT ara-, ∆metA::kanR AT This study 

∆pheA ara- WT ara-, ∆pheA::kanR AT This study 

∆proC ara- WT ara-, ∆proC::kanR AT This study 

∆thrC ara- WT ara-, ∆thrC::kanR AT This study 

∆trpB ara- WT ara-, ∆trpB::kanR AT This study 

∆tyrA ara- WT ara-, ∆tyrA::kanR AT This study 

∆pyrF ara- WT ara-, ∆pyrF::kanR AT This study 

∆guaB ara- WT ara-, ∆guaB::kanR AT This study 

∆bioF ara- WT ara-, ∆bioH::kanR AT This study 

∆nadA ara- WT ara-, ∆nadA::kanR AT This study 

∆panC ara- WT ara-, ∆panC::kanR AT This study 

∆argH ara+ WT ara+, ∆argH::kanR AT This study 

∆hisD ara+ WT ara+, ∆hisD::kanR AT This study 

∆ilvA ara+ WT ara+, ∆ilvA::kanR AT This study 

∆leuB ara+ WT ara+, ∆leuB::kanR AT This study 

∆lysA ara+ WT ara+, ∆lysA::kanR AT This study 

∆metA ara+ WT ara+, ∆metA::kanR AT This study 

∆pheA ara+ WT ara+, ∆pheA::kanR AT This study 

∆proC ara+ WT ara+, ∆proC::kanR AT This study 

∆thrC ara+ WT ara+, ∆thrC::kanR AT This study 

∆trpB ara+ WT ara+, ∆trpB::kanR AT This study 

∆tyrA ara+ WT ara+, ∆tyrA::kanR AT This study 

∆pyrF ara+ WT ara+, ∆pyrF::kanR AT This study 

∆guaB ara+ WT ara+, ∆guaB::kanR AT This study 

∆bioH ara+ WT ara+, ∆bioH::kanR AT This study 

∆nadA ara+ WT ara+, ∆nadA::kanR AT This study 

∆panC ara+ WT ara+, ∆panC::kanR AT This study 

∆argA ara- WT ara-, ∆argA::kanR AT This study 

∆argB ara- WT ara-, ∆argB::kanR AT This study 

∆argC ara- WT ara-, ∆argC::kanR AT This study 
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∆argE ara- WT ara-, ∆argE::kanR AT This study 

∆argG ara- WT ara-, ∆argG::kanR AT This study 

∆argA ara+ WT ara+, ∆argA::kanR AT This study 

∆argB ara+ WT ara+, ∆argB::kanR AT This study 

∆argC ara+ WT ara+, ∆argC::kanR AT This study 

∆argE ara+ WT ara+, ∆argE::kanR AT This study 

∆argG ara+ WT ara+, ∆argG::kanR AT This study 

∆trpA ara- WT ara-, ∆trpA::kanR AT This study 

∆trpD ara- WT ara-, ∆trpD::kanR AT This study 

∆trpE ara- WT ara-, ∆trpE::kanR AT This study 

∆trpA ara+ WT ara+, ∆trpA::kanR AT This study 

∆trpD ara+ WT ara+, ∆trpD::kanR AT This study 

∆trpE ara+ WT ara+, ∆trpE::kanR AT This study 

∆hisA ara- WT ara-, ∆hisA::kanR AT This study 

∆hisB ara- WT ara-, ∆hisB::kanR AT This study 

∆hisC ara- WT ara-, ∆hisC::kanR AT This study 

∆hisA ara+ WT ara+, ∆hisA::kanR AT This study 

∆hisB ara+ WT ara+, ∆hisB::kanR AT This study 

∆hisC ara+ WT ara+, ∆hisC::kanR AT This study 

∆argH WT, ∆argH::kanR AT Baba et al. 2006 

∆hisD WT, ∆hisD::kanR AT Baba et al. 2006 

∆ilvA WT, ∆ilvA::kanR AT Baba et al. 2006 

∆leuB WT, ∆leuB::kanR AT Baba et al. 2006 

∆lysA WT, ∆lysA::kanR AT Baba et al. 2006 

∆metA WT, ∆metA::kanR AT Baba et al. 2006 

∆pheA WT, ∆pheA::kanR AT Baba et al. 2006 

∆proC WT, ∆proC::kanR AT Baba et al. 2006 

∆thrC WT, ∆thrC::kanR AT Baba et al. 2006 

∆trpB WT, ∆trpB::kanR AT Baba et al. 2006 

∆tyrA WT , ∆tyrA::kanR AT Baba et al. 2006 

∆pyrF WT , ∆pyrF::kanR AT Baba et al. 2006 

∆guaB WT, ∆guaB::kanR AT Baba et al. 2006 

∆bioF WT, ∆bioH::kanR AT Baba et al. 2006 

∆nadA WT, ∆nadA::kanR AT Baba et al. 2006 

∆panC WT, ∆panC::kanR AT Baba et al. 2006 

∆argA WT ,∆argA::kanR AT Baba et al. 2006 

∆argB WT ,∆argB::kanR AT Baba et al. 2006 

∆argC WT ,∆argC::kanR AT Baba et al. 2006 

∆argE WT, ∆argE::kanR AT Baba et al. 2006 

∆argG WT, ∆argG::kanR AT Baba et al. 2006 

∆trpA WT, ∆trpA::kanR AT Baba et al. 2006 
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∆trpD WT, ∆trpD::kanR AT Baba et al. 2006 

∆trpE  WT, ∆trpE::kanR AT Baba et al. 2006 

∆hisA WT, ∆hisA::kanR AT Baba et al. 2006 

∆hisB WT, ∆hisB::kanR AT Baba et al. 2006 

∆hisC WT, ∆hisC::kanR AT Baba et al. 2006 

REL 606 
F-,tsx-467Am, araA 92D, lon, rpsL227 
strR, hsdR, [mal+]LamS 

 Studier et al. 2009 

REL 607 
F-, tsx-467Am, araA 92G, lon-, rpsL227 

strR, hsdR-, [mal+]LamS 
 Lenski et al. 1991 

Acinetobacter 
baylyi ADP1 

 WT 
Vaneechoutte  
et al. 2006 

A. baylyi ∆argH WT, ∆argH::kanR AT This study 

A. baylyi ∆hisD WT, ∆hisD::kanR AT This study 

A. baylyi ∆leuB WT, ∆leuB::kanR AT This study 

A. baylyi ∆trpB WT, ∆trpB::kanR AT This study 

 

 

Table S3. Comparison of biosynthetic costs for DNA sequence and the corresponding 
protein. Cost are given as fructose molecules that are at least needed to produce the DNA 
sequence of the gene or the amount of the protein. NA=no data available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Gene 
Cost of DNA Sequence 
104 fructose molecules 

Cost of Protein 
104 fructose molecules 

argA 1.783502731 3.439609569 

argB 1.088531764 NA 

argC 1.373221287 NA 

argE 1.555713634 5.507498182 

argG 1.796792481 273.9335755 

argH 1.8338215 64.23576185 

hisA 1.042527654 NA 

hisB 1.451117531 NA 

hisC 1.452515028 30.78864344 

hisD 1.739683547 24.86644536 

trpA 1.126263614 61.31053206 

trpB 1.607108823 89.72362679 

trpD 2.103003962 16.01084019 

trpE 2.061666192 15.98466297 
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Table S4. Primers used for the construction of Acinetobacter baylyi auxotrophs. UF = 

upstream forward, UR = Upstream reverse, DF = downstream forward, DR = downstream 

reverse.   
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Supporting information for chapter IV 

Plasticity and epistasis strongly affect bacterial fitness after losing multiple 

metabolic genes 
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SUPPORTING METHODS 

Adjustment of fructose and succinate concentrations 

We used Flux-Balance-Analysis and a genome-scale metabolic model of E. coli 

(Orth et al. 2011) to calculate how many mole of a carbon source are needed to 

produce '1 mole of biomass'. We refer to this value using T' for a carbon source x. 

In detail, T' was calculated by constraining the flux through the biomass reaction 

(growth associated maintenance (GAM) estimate: 53.95) of the model to a value 

equal 1 mmol x gDW-1 x h-1 and by minimizing the influx of the carbon source x. The 

optimization was performed within Matlab 7.14 (Mathworks) with the COBRA 

Toolbox version 2.0.5 (Schellenberger et al. 2011) and the TOMLAB v7.9 as linear 

programming solver. The final concentration of carbon source x was calculated as 

@' � @ABC ⋅ T' TABC⁄  

using 5 g l-1 fructose ( @ABC = 27.75 mM) as reference. The corresponding 

concentration of disodium succinate was 8.86 g l-1 (@GCq = 54.68 mM). 

 
This procedure is similar to the approach used by Adadi et al. (2012), where 

concentrations were adjusted to match the number of reducible carbon atoms. Using 

the genome-scale metabolic network of E. coli also takes the physiological 

capabilities of the cell to transform a certain carbon source into biomass into 

account. 
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SUPPORTING FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Correlation of the frequency of double auxotrophies among 1,432 eubacteria 

and the median of pairwise products of amino acid abundances in 69 natural environments 

(Moura et al. 2013). Kendall’s rank correlation: Rτ = 0.22, P = 0.003, n = 91. 
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Figure S2. Frequency distribution of epistatic effects for 55 double- and 16 triple gene 

deletion mutants as determined in (A) the fructose- and (B) the succinate-containing 

environment. 
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Figure S3. Type II Standard Major Axis (SMA) regression of observed and expected fitness 

as determined in (A) the fructose- and (B) the succinate-containing environment. The solid 

red line represents the regression (P > 0.05, n = 66), while the dotted black line indicates 

the null model assuming no epistasis. 
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SUPPORTING TABLES 

 

Table S1. Strains used in this study. Abbreviations: ara+/- = ability to use arabinose as a 

carbon source present/ absent, AT = auxotroph, WT = wild type. 

 

Strain Genotype Phenotype Reference 

Escherichia coli  
BW25113 ara- 

F-, ΔaraD-araB567, ΔlacZ4787::rrnB-3, 
λ-, rph-1, ΔrhaD-rhaB568, hsdR514 

WT Red Baba et al. 2006 

Escherichia coli  
BW25113 ara+ 

F-, ΔaraD-araB567, ΔlacZ4787::rrnB-3, 
λ-, rph-1, ΔrhaD-rhaB568, hsdR514, araA 

WT White D’Souza et al. 2014 

∆argH  WT ara-, ∆argH::kanR AT D’Souza et al. 2014 

∆hisD  WT ara-, ∆hisD::kanR AT D’Souza et al. 2014 

∆ilvA WT ara-, ∆ilvA::kanR AT D’Souza et al. 2014 

∆leuB  WT ara-, ∆leuB::kanR AT D’Souza et al. 2014 

∆lysA  WT ara-, ∆lysA::kanR AT D’Souza et al. 2014 

∆metA  WT ara-, ∆metA::kanR AT D’Souza et al. 2014 

∆pheA  WT ara-, ∆pheA::kanR AT D’Souza et al. 2014 

∆proC WT ara-, ∆proC::kanR AT D’Souza et al. 2014 

∆thrC  WT ara-, ∆thrC::kanR AT D’Souza et al. 2014 

∆trpB  WT ara-, ∆trpB::kanR AT D’Souza et al. 2014 

∆tyrA  WT ara-, ∆tyrA::kanR AT D’Souza et al. 2014 

∆argH ∆ilvA  WT ara-, ∆argH, ∆ilvA::kanR AT This study 

∆argH ∆leuB WT ara-, ∆argH, ∆leuB::kanR AT This study 

∆argH ∆lysA WT ara-, ∆argH, ∆lysA::kanR AT This study 

∆metA ∆argH  WT ara-, ∆metA, ∆argH::kanR AT This study 

∆argH ∆pheA WT ara-, ∆argH, ∆pheA::kanR AT This study 

∆proC ∆argH  WT ara-, ∆proC, ∆argH::kanR AT This study 

∆argH ∆thrC WT ara-, ∆argH, ∆thrC::kanR AT This study 

∆argH ∆trpB WT ara-, ∆argH, ∆trpB::kanR AT This study 

∆argH ∆tyrA WT ara-, ∆argH, ∆tyrA::kanR AT This study 

∆ilvA ∆hisD  WT ara-, ∆ilvA, ∆hisD::kanR AT This study 

∆leuB ∆hisD WT ara-, ∆leuB, ∆hisD::kanR AT This study 

∆lysA ∆hisD  WT ara-, ∆lysA, ∆hisD::kanR AT This study 

∆metA ∆hisD  WT ara-, ∆metA, ∆hisD::kanR AT This study 

∆hisD ∆pheA   WT ara-, ∆hisD, ∆pheA::kanR AT This study 

∆hisD ∆proC WT ara-, ∆hisD, ∆proC::kanR AT This study 

∆hisD ∆thrC WT ara-, ∆hisD, ∆thrC::kanR AT This study 

∆hisD ∆trpB WT ara-, ∆hisD, ∆trpB::kanR AT This study 

∆hisD ∆tyrA WT ara-, ∆hisD, ∆tyrA::kanR AT This study 

∆ilvA ∆leuB WT ara-, ∆ilvA, ∆leuB::kanR AT This study 

∆ilvA ∆lysA  WT ara-, ∆ilvA, ∆lysA::kanR AT This study 

∆ilvA ∆metA WT ara-, ∆ilvA, ∆metA::kanR AT This study 

∆ilvA ∆pheA   WT ara-, ∆ilvA, ∆pheA::kanR AT This study 
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∆ilvA ∆proC WT ara-, ∆ilvA, ∆proC::kanR AT This study 

∆ilvA ∆thrC WT ara-, ∆ilvA, ∆thrC::kanR AT This study 

∆trpB ∆ilvA  WT ara-, ∆trpB, ∆ilvA::kanR AT This study 

∆ilvA ∆tyrA WT ara-, ∆ilvA, ∆tyrA::kanR AT This study 

∆leuB ∆lysA  WT ara-, ∆leuB, ∆lysA::kanR AT This study 

∆metA ∆leuB  WT ara-, ∆metA, ∆leuB::kanR AT This study 

∆pheA  ∆leuB  WT ara-, ∆pheA, ∆leuB::kanR AT This study 

∆proC ∆leuB  WT ara-, ∆proC, ∆leuB::kanR AT This study 

∆thrC ∆leuB  WT ara-, ∆thrC, ∆leuB::kanR AT This study 

∆leuB ∆trpB WT ara-, ∆leuB, ∆trpB::kanR AT This study 

∆lysA ∆metA  WT ara-, ∆lysA, ∆metA::kanR AT This study 

∆lysA ∆pheA  WT ara-, ∆lysA, ∆pheA ::kanR AT This study 

∆lysA ∆proC WT ara-, ∆lysA, ∆proC::kanR AT This study 

∆thrC ∆lysA  WT ara-, ∆thrC, ∆lysA::kanR AT This study 

∆lysA ∆trpB WT ara-, ∆lysA, ∆trpB::kanR AT This study 

∆metA ∆pheA   WT ara-, ∆metA, ∆pheA::kanR AT This study 

∆proC ∆metA  WT ara-, ∆proC, ∆metA::kanR AT This study 

∆metA ∆thrC WT ara-, ∆metA, ∆thrC::kanR AT This study 

∆metA ∆trpB WT ara-, ∆metA, ∆trpB::kanR AT This study 

∆pheA ∆proC WT ara-, ∆pheA, ∆proC::kanR AT This study 

∆pheA ∆thrC WT ara-, ∆pheA, ∆thrC::kanR AT This study 

∆pheA ∆trpB WT ara-, ∆pheA, ∆trpB::kanR AT This study 

∆pheA ∆tyrA WT ara-, ∆pheA, ∆tyrA::kanR AT This study 

∆proC ∆thrC WT ara-, ∆proC, ∆thrC::kanR AT This study 

∆trpB ∆proC  WT ara-, ∆trpB , ∆proC::kanR AT This study 

∆thrC ∆trpB      WT ara-, ∆thrC, ∆trpB::kanR AT This study 

∆thrC ∆tyrA WT ara-, ∆thrC, ∆tyrA::kanR AT This study 

∆trpB ∆tyrA WT ara-, ∆trpB, ∆tyrA::kanR AT This study 

∆trpB ∆pheA ∆tyrA WT ara-, ∆trpB, ∆pheA, ∆tyrA::kanR AT This study 

∆lysA ∆metA ∆argH WT ara-, ∆lysA, ∆metA, ∆argH::kanR AT This study 

∆lysA ∆metA ∆thrC WT ara-, ∆ lysA ∆metA ∆thrC::kanR AT This study 

∆trpB ∆pheA ∆metA WT ara-, ∆trpB, ∆pheA, ∆metA::kanR AT This study 

∆trpB ∆pheA ∆leuB WT ara-, ∆trpB, ∆pheA, ∆leuB::kanR AT This study 

∆metA ∆thrC ∆argH WT ara-, ∆metA, ∆thrC, ∆argH::kanR AT This study 

∆metA ∆thrC ∆hisD WT ara-, ∆metA, ∆thrC, ∆hisD::kanR AT This study 

∆thrC ∆lysA ∆hisD WT ara-, ∆thrC, ∆lysA, ∆hisD::kanR AT This study 

∆trpB ∆pheA ∆hisD WT ara-, ∆trpB, ∆pheA, ∆hisD::kanR AT This study 

∆proC ∆thrC ∆ilvA WT ara-, ∆proC, ∆thrC, ∆ilvA::kanR AT This study 

∆trpB ∆leuB ∆thrC WT ara-, ∆trpB, ∆leuB, ∆thrC::kanR AT This study 

∆metA ∆argH ∆hisD WT ara-, ∆metA, ∆argH, ∆hisD::kanR AT This study 

∆proC ∆lysA ∆hisD WT ara-, ∆proC, ∆lysA, ∆hisD::kanR AT This study 
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∆proC ∆lysA ∆tyrA WT ara-, ∆proC, ∆lysA, ∆tyrA::kanR AT This study 

∆ilvA ∆thrC ∆trpB WT ara-, ∆ilvA, ∆thrC, ∆trpB::kanR AT This study 

∆trpB ∆pheA ∆thrC WT ara-, ∆trpB, ∆pheA, ∆thrC::kanR AT This study 

∆argH::kanS WT ara-, ∆argH::kanS AT This study 

∆hisD::kanS WT ara-, ∆hisD::kanS AT This study 

∆ilvA::kanS WT ara-, ∆ilvA::kanS AT This study 

∆leuB::kanS WT ara-, ∆leuB::kanS AT This study 

∆lysA::kanS WT ara-, ∆lysA::kanS AT This study 

∆metA::kanS WT ara-, ∆metA::kanS AT This study 

∆pheA::kanS WT ara-, ∆pheA::kanS AT This study 

∆proC::kanS WT ara-, ∆proC::kanS AT This study 

∆thrC::kanS WT ara-, ∆thrC::kanS AT This study 

∆trpB::kanS WT ara-, ∆trpB::kanS AT This study 

∆ilvA ∆leuB::kanS WT ara-, ∆ilvA, ∆leuB::kanS AT This study 

∆ilvA ∆thrC::kanS WT ara-, ∆ilvA, ∆thrC::kanS AT This study 

∆thrC ∆trpB::kanS     WT ara-, ∆thrC, ∆trpB::kanS     AT This study 

∆thrC ∆trpB::kanS     WT ara-, ∆thrC, ∆trpB::kanS     AT This study 

∆ilvA ∆thrC ∆trpB::kanS WT ara-, ∆ilvA, ∆thrC, ∆trpB::kanS AT This study 

∆lysA ∆metA ∆thrC::kanS WT ara-, ∆lysA, ∆metA, ∆thrC::kanS AT This study 

∆trpB ∆pheA ∆thrC::kanS WT ara-, ∆trpB, ∆pheA, ∆thrC::kanS AT This study 

∆trpB ∆leuB ∆thrC::kanS WT ara-, ∆trpB, ∆leuB, ∆thrC::kanS AT This study 

∆argH WT, ∆argH::kanR AT Baba et al. 2006 

∆hisD WT, ∆hisD::kanR AT Baba et al. 2006 

∆ilvA WT, ∆ilvA::kanR AT Baba et al. 2006 

∆leuB WT, ∆leuB::kanR AT Baba et al. 2006 

∆lysA WT, ∆lysA::kanR AT Baba et al. 2006 

∆metA WT, ∆metA::kanR AT Baba et al. 2006 

∆pheA WT, ∆pheA::kanR AT Baba et al. 2006 

∆proC WT, ∆proC::kanR AT Baba et al. 2006 

∆thrC WT, ∆thrC::kanR AT Baba et al. 2006 

∆trpB WT, ∆trpB::kanR AT Baba et al. 2006 

∆tyrA WT , ∆tyrA::kanR AT Baba et al. 2006 
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Table S2. Fitness cost of the kanamycin resistance marker. Mean Malthusian parameter (± 

95% confidence interval (CI)) of kanamycin resistant (kanR) and sensitive (kanS) auxotrophic 

mutants was determined by coculturing both competitors in the fructose-containing 

environment for 24 h. Each comparison has been replicated 10 times. P values of 

independent sample t-tests are given. % MDD = minimum detectable difference calculated 

as described (Zar 1999). 

 

Genotype Malthusian parameter ± 95% CI P value % MDD 

∆argH::kanR 5.59 0.24 
0.95 2.80 

∆argH::kanS 5.60 0.20 

∆hisD::kanR 4.64 0.10 
0.10 0.24 

∆hisD::kanS 4.76 0.09 

∆ilvA::kanR 5.93 0.30 
0.73 2.24 

∆ilvA::kanS 6.01 0.28 

∆leuB::kanR 5.48 0.13 
0.31 0.92 

∆leuB::kanS 5.55 0.11 

∆lysA::kanR 5.10 0.17 
0.31 0.85 

∆lysA::kanS 5.01 0.05 

∆metA::kanR 5.24 0.07 
0.66 1.84 

∆metA::kanS 5.27 0.07 

∆pheA::kanR 5.09 0.10 
0.62 1.67 

∆pheA::kanS 5.05 0.09 

∆proC::kanR 4.89 0.11 
0.05 0.13 

∆proC::kanS 4.75 0.06 

∆thrC::kanR 5.24 0.05 
0.82 2.27 

∆thrC::kanS 5.23 0.06 

∆trpB::kanR 6.29 0.07 
0.65 2.15 

∆trpB::kanS 6.27 0.06 

∆ilvA ∆leuB::kanR 4.82 0.24 
0.91 2.31 

∆ilvA ∆leuB::kanS 4.83 0.18 

∆ilvA ∆thrC::kanR 5.38 0.67 
0.33 0.93 

∆ilvA ∆thrC::kanS 4.88 0.73 

∆lysA ∆metA::kanR 5.04 0.07 
0.67 1.77 

∆lysA ∆metA::kanS 5.02 0.07 

∆thrC ∆trpB::kanR     4.92 0.58 
0.42 1.07 

∆thrC ∆trpB::kanS     4.59 0.52 

∆ilvA ∆thrC ∆trpB::kanR 6.19 0.19 
0.41 1.35 

∆ilvA ∆thrC ∆trpB::kanS 6.29 0.11 

∆lysA ∆metA ∆thrC::kanR 5.66 0.09 
0.91 2.72 

∆lysA ∆metA ∆thrC::kanS 5.67 0.14 

∆trpB ∆pheA ∆thrC::kanR 5.87 0.07 
0.68 2.09 

∆trpB ∆pheA ∆thrC::kanS 5.89 0.08 

∆trpB ∆leuB ∆thrC::kanR 5.78 0.07 
0.49 1.51 

∆trpB ∆leuB ∆thrC::kanS 5.83 0.12 
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Table S3. Relative fitness and epistatic interactions among auxotrophy-causing mutations 

in the fructose-containing environment. Mean fitness of each mutant genotype relative to 

wild type (± 95% confidence interval (CI)) was calculated from 8 replicates. Epistasis was 

estimated by comparing estimated and observed fitness values using a multiplicative model. 

Instances of significant epistasis are depicted in bold. NA = not applicable. 

 

Genotype Relative fitness ± 95% CI Epistasis 

∆argH 0.84 0.08 NA 

∆hisD 0.95 0.05 NA 

∆ilvA 1.23 0.13 NA 

∆leuB 1.02 0.08 NA 

∆lysA 0.88 0.05 NA 

∆metA 1.21 0.07 NA 

∆pheA 1.17 0.10 NA 

∆proC 1.00 0.04 NA 

∆thrC 0.99 0.07 NA 

∆trpB 0.95 0.08 NA 

∆tyrA 1.01 0.04 NA 

∆argH ∆ilvA 1.02 0.03 -0.01 

∆argH ∆leuB 1.02 0.03 -0.03 

∆argH ∆lysA 0.95 0.06 0.20 

∆metA ∆argH 0.82 0.07 -0.20 

∆argH ∆pheA 1.02 0.04 0.02 

∆proC ∆argH 1.07 0.03 0.21 

∆argH ∆thrC 1.07 0.11 0.23 

∆argH ∆trpB 1.12 0.06 0.30 

∆argH ∆tyrA 0.72 0.09 -0.13 

∆ilvA ∆hisD 0.84 0.05 -0.32 

∆leuB ∆hisD 0.88 0.09 0.04 

∆lysA ∆hisD 1.03 0.05 0.19 

∆metA ∆hisD 1.06 0.05 -0.09 

∆hisD ∆pheA 0.88 0.06 -0.23 

∆hisD ∆proC 0.86 0.03 -0.08 

∆hisD ∆thrC 0.66 0.05 -0.28 

∆hisD ∆trpB 0.88 0.08 -0.02 

∆hisD ∆tyrA 0.72 0.03 -0.23 

∆ilvA ∆leuB 0.84 0.03 -0.42 

∆ilvA ∆lysA 0.96 0.11 -0.12 

∆ilvA ∆metA 0.81 0.08 -0.68 

∆ilvA ∆pheA 0.81 0.06 -0.63 

∆ilvA ∆proC 0.75 0.06 -0.49 

∆ilvA ∆thrC 1.14 0.09 -0.08 

∆trpB ∆ilvA 1.11 0.22 -0.07 

∆ilvA ∆tyrA 1.01 0.07 -0.23 

∆leuB ∆lysA 1.05 0.16 0.15 

∆metA ∆leuB 0.94 0.17 -0.29 

∆pheA  ∆leuB 1.03 0.05 -0.17 

∆proC ∆leuB 0.87 0.06 -0.15 
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∆thrC ∆leuB 0.95 0.06 -0.06 

∆leuB ∆trpB 0.94 0.05 -0.04 

∆lysA ∆metA 1.06 0.04 -0.01 

∆lysA ∆pheA 1.21 0.12 0.17 

∆lysA ∆proC 1.08 0.07 0.19 

∆thrC ∆lysA 1.17 0.08 0.29 

∆lysA ∆trpB 1.02 0.08 0.17 

∆metA ∆pheA 1.10 0.09 -0.32 

∆proC ∆metA 0.85 0.02 -0.36 

∆metA ∆thrC 0.69 0.04 -0.51 

∆metA ∆trpB 0.89 0.12 -0.27 

∆pheA ∆proC 0.77 0.06 -0.41 

∆pheA ∆thrC 0.78 0.10 -0.38 

∆pheA ∆trpB 0.75 0.09 -0.37 

∆pheA ∆tyrA 0.89 0.08 -0.28 

∆proC ∆thrC 0.76 0.08 -0.24 

∆trpB ∆proC 0.84 0.05 -0.12 

∆thrC ∆trpB 0.89 0.10 -0.06 

∆thrC ∆tyrA 0.93 0.10 -0.07 

∆trpB ∆tyrA 0.75 0.07 -0.21 

∆trpB ∆pheA ∆tyrA 1.01 0.13 0.74 

∆lysA ∆metA ∆argH 0.77 0.07 0.23 

∆lysA ∆metA ∆thrC 0.79 0.04 -0.10 

∆trpB ∆pheA ∆metA 0.81 0.04 0.41 

∆trpB ∆pheA ∆leuB 1.08 0.12 0.51 

∆metA ∆thrC ∆argH 0.85 0.10 0.31 

∆metA ∆thrC ∆hisD 0.74 0.04 0.48 

∆thrC ∆lysA ∆hisD 0.90 0.06 -0.13 

∆trpB ∆pheA ∆hisD 0.79 0.11 0.49 

∆proC ∆thrC ∆ilvA 1.35 0.12 0.91 

∆trpB ∆leuB ∆thrC 0.93 0.07 0.51 

∆metA ∆argH ∆hisD 0.90 0.08 0.10 

∆proC ∆lysA ∆hisD 0.79 0.07 -1.48 

∆proC ∆lysA ∆tyrA 0.77 0.07 -0.37 

∆ilvA ∆thrC ∆trpB 0.84 0.08 0.71 

∆trpB ∆pheA ∆thrC 0.79 0.07 -0.16 
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Table S4. Relative fitness and epistatic interactions among auxotrophy-causing mutations 

in the succinate-containing environment. Mean fitness of each mutant genotype relative to 

wild type (± 95% confidence interval (CI)) was calculated from 8 replicates. Epistasis was 

estimated by comparing estimated and observed fitness values using a multiplicative model. 

Instances of significant epistasis are depicted in bold. NA = not applicable. 
 

Genotype Relative fitness ± 95% CI Epistasis 

∆argH 0.95 0.15 NA 

∆hisD 0.85 0.07 NA 

∆ilvA 0.90 0.03 NA 

∆leuB 1.02 0.08 NA 

∆lysA 0.95 0.06 NA 

∆metA 1.14 0.05 NA 

∆pheA 1.08 0.05 NA 

∆proC 1.04 0.06 NA 

∆thrC 0.96 0.05 NA 

∆trpB 0.97 0.03 NA 

∆tyrA 1.00 0.03 NA 

∆argH ∆ilvA 1.08 0.06 0.22 

∆argH ∆leuB 1.02 0.08 -0.08 

∆argH ∆lysA 1.00 0.05 0.08 

∆metA ∆argH 1.03 0.07 -0.05 

∆argH ∆pheA 0.95 0.03 -0.07 

∆proC ∆argH 1.06 0.07 0.06 

∆argH ∆thrC 1.05 0.05 0.12 

∆argH ∆trpB 1.10 0.10 0.17 

∆argH ∆tyrA 0.95 0.04 -0.00 

∆ilvA ∆hisD 1.11 0.05 0.34 

∆leuB ∆hisD 1.02 0.03 0.20 

∆lysA ∆hisD 0.81 0.07 -0.00 

∆metA ∆hisD 0.89 0.07 -0.08 

∆hisD ∆pheA 1.12 0.03 0.20 

∆hisD ∆proC 0.76 0.06 -0.12 

∆hisD ∆thrC 0.98 0.06 0.16 

∆hisD ∆trpB 0.96 0.04 0.13 

∆hisD ∆tyrA 0.89 0.05 0.03 

∆ilvA ∆leuB 1.13 0.04 0.21 

∆ilvA ∆lysA 0.94 0.08 0.08 

∆ilvA ∆metA 0.93 0.03 -0.09 

∆ilvA ∆pheA 0.99 0.05 0.01 

∆ilvA ∆proC 1.02 0.05 0.07 

∆ilvA ∆thrC 0.94 0.06 0.06 

∆trpB ∆ilvA 0.85 0.04 -0.02 

∆ilvA ∆tyrA 1.04 0.11 0.13 

∆leuB ∆lysA 1.01 0.05 0.03 

∆metA ∆leuB 0.92 0.07 -0.24 

∆pheA  ∆leuB 0.90 0.03 -0.20 

∆proC ∆leuB 0.94 0.08 -0.12 
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∆thrC ∆leuB 1.02 0.04 0.04 

∆leuB ∆trpB 0.98 0.03 -0.01 

∆lysA ∆metA 0.99 0.11 -0.09 

∆lysA ∆pheA 1.10 0.07 0.06 

∆lysA ∆proC 1.07 0.07 0.07 

∆thrC ∆lysA 1.31 0.13 0.39 

∆lysA ∆trpB 1.15 0.04 0.22 

∆metA ∆pheA 1.17 0.07 -0.06 

∆proC ∆metA 1.18 0.05 -0.01 

∆metA ∆thrC 1.17 0.10 0.07 

∆metA ∆trpB 0.93 0.06 -0.18 

∆pheA ∆proC 1.07 0.18 -0.06 

∆pheA ∆thrC 0.98 0.08 -0.05 

∆pheA ∆trpB 1.02 0.10 -0.03 

∆pheA ∆tyrA 1.12 0.17 0.03 

∆proC ∆thrC 0.95 0.09 -0.05 

∆trpB ∆proC 1.02 0.04 0.00 

∆thrC ∆trpB 1.03 0.05 0.09 

∆thrC ∆tyrA 0.96 0.04 -0.00 

∆trpB ∆tyrA 1.15 0.13 0.18 

∆trpB ∆pheA ∆tyrA 0.97 0.02 -0.26 

∆lysA ∆metA ∆argH 1.00 0.04 -0.36 

∆lysA ∆metA ∆thrC 0.92 0.02 -0.05 

∆trpB ∆pheA ∆metA 0.96 0.08 0.04 

∆trpB ∆pheA ∆leuB 0.75 0.11 -0.07 

∆metA ∆thrC ∆argH 0.84 0.05 -0.34 

∆metA ∆thrC ∆hisD 1.17 0.14 0.08 

∆thrC ∆lysA ∆hisD 1.04 0.11 -0.29 

∆trpB ∆pheA ∆hisD 0.94 0.17 -0.07 

∆proC ∆thrC ∆ilvA 1.02 0.06 -0.18 

∆trpB ∆leuB ∆thrC 1.13 0.05 0.13 

∆metA ∆argH ∆hisD 1.07 0.06 -0.00 

∆proC ∆lysA ∆hisD 0.87 0.04 -1.66 

∆proC ∆lysA ∆tyrA 1.02 0.07 0.22 

∆ilvA ∆thrC ∆trpB 1.19 0.08 0.93 

∆trpB ∆pheA ∆thrC 1.24 0.06 0.25 
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Table S1. Final amino acid concentrations (µM) in the media used for the precultures 

of auxotrophs and for the growth kinetic assays. 

 

 

  

Amino acid 

Auxotroph 

precultures 
Growth kinetic assays 

  Lvl 1 Lvl 2 Lvl 3 Lvl 4 Lvl 5 Lvl 6 Lvl 7 Lvl 8 

His 15 0 2.5 3.75 5 6.25 7.5 8.75 10 

Tyr 30 0 5 7.5 10 12.5 15 17.5 20 

Phe 30 0 5 7.5 10 12.5 15 17.5 20 

Trp 150 0 25 37.5 50 62.5 75 87.5 100 

Leu 60 0 10 15 20 25 30 35 40 

Lys 60 0 10 15 20 25 30 35 40 

Ile 45 0 7.5 11.25 15 18.75 22.5 26.25 30 
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Table S2. Strains used in this study. 

Strain Genotype Phenotype Reference 

Escherichia coli 

BW25113 ara- 

F-, ΔaraD-araB567, 

ΔlacZ4787::rrnB-3, λ-, rph-1, 

ΔrhaD-rhaB568, hsdR514 

WT Baba et al. (2006) 

∆hisD  WT ara-, ∆hisD::kanR AT D’Souza et al. (2014) 

∆pheA  WT ara-, ∆pheA::kanR AT D’Souza et al. (2014) 

∆tyrA  WT ara-, ∆tyrA::kanR AT D’Souza et al. (2014) 

∆trpB  WT ara-, ∆trpB::kanR AT D’Souza et al. (2014) 

∆leuB  WT ara-, ∆leuB::kanR AT D’Souza et al. (2014) 

∆lysA  WT ara-, ∆lysA::kanR AT D’Souza et al. (2014) 

∆ilvA WT ara-, ∆ilvA::kanR AT D’Souza et al. (2014) 

∆hisD  WT ara-, ∆hisD AT, kanS This study 

∆pheA  WT ara-, ∆pheA AT, kanS This study 

∆trpB  WT ara-, ∆trpB AT, kanS This study 

∆leuB  WT ara-, ∆leuB AT, kanS This study 

∆lysA  WT ara-, ∆lysA AT, kanS This study 

∆ilvA WT ara-, ∆ilvA AT, kanS This study 

Abbreviations: ara- – inability to use arabinose as carbon source, WT – wild type, AT – 

auxotroph, kanS – kanamycine sensitive. 
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Table S3. Carbon sources considered for biosynthetic cost estimation. 

D-fructose, L-lactate, succinate, L-malate, α-ketoglutarate, D-galactose, maltose, D-

glucsoe, pyruvate, acetate, L-arabinose, N-acetyl-D-glucosamine, D-glucarate, L-

aspartate, D-alanine, threhalose, D-mannose, D-sorbitol, glycerol, L-fucose, D-

glucuronate, D-gluconate, glycerol 3-phosphate, D-xylose, D-mannitol, L-glutamate, D-

glucose 6-phosphate, D-malate, D-ribose, L-rhamnose, melibiose, thymidine, L-

asparagine, octadecenoate, fumarate, butyrate, phenylacetaldehyde, 5-dehydro-D-

gluconate, acetoacetate, adenosine, L-alanine, D-allose, D-fructose 6-phosphate, D-

galactarate, galactitol, D-galacturonate, D-glucosamine, deoxyadenosine, 

dihydroxyacetone, L-glutamine, inosine, (S)-Propane-1,2-diol, L-tartrate, lactose, 

maltotriose, N-acetyl-D-mannosamine, N-acetylneuraminate, propionate, uridine, D-

glucose 1-phosphate, and L-lyxose. 
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Figure S1. Biosynthetic cost estimations from this study are in line with previously 

reported estimations (Akashi and Gojobori 2002). 
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Figure S2. Maximum growth rates of auxotrophs under various carbon sources and amino acid concentrations relative to the maximum growth rate 
level of the wild type growing under the same carbon source and without amino acid supplementation (=1, dashed line). Error bars indicate the 95% 
confidence intervals. Filled circles denote the growth rates of the auxotrophs which are significantly lower than the WT strain growth rate (FDR-
corrected Welch two sample t-tests, P < 0.05, n = 6), empty circles indicate no significant difference. 
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Figure S3. Maximum growth rates of the E. coli wild type strain under various carbon sources and amino acid concentrations relative to the maximum 
growth rate level of the wild type growing under the same carbon source and without amino acid supplementation (=1, dashed line). Error bars indicate 
the 95% confidence intervals. Arrows indicate significant correlation (up- or down arrows) or no significant correlation (horizontal arrows) of the two 
axes (FDR corrected linear mixed-model fit by maximizing the restricted log-likelihood, n=48). 
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