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Abstract

We present Stellaris, the information service of the community project
AstroGrid-D. Stellaris is the core component of the AstroGrid-D mid-
dleware that enables scientists to share their resources, provides access
to large datasets and integrates instruments such as robotic telescopes.
Besides the many diverse types of resources, the information service
also supports a wide range of use cases each using a specific schema
for the metadata. In addition, Stellaris addresses the distributed and
dynamic nature of collaborations in the astronomers’ community. Stel-
laris satisfies these requirements by adopting RDF and SPARQL for
storing and querying metadata. Our paper focuses on the requirements
of the community, presents the architecture of the information service
in detail and discusses experiences with the prototype already in use
by partners within the project.

1 Introduction

AstroGrid-D is developing middleware and procedures for enabling astro-
physics and astronomy institutes to share resources including compute clusters
and workstations, storage capacity, network capacity and robotic telescopes.
The scientists have a diverse initial set of use cases including simulations, data
reduction and analysis and observations with robotic telescopes. The core com-
ponent of the middleware is the information service which facilitates storage and
discovery of metadata produced by AstroGrid-D users, resource providers and
middleware components.

Scientists and software developers using grid technology often need to inter-
face with a fragmented set of tools for managing and querying metadata [12, 7].
For example, a data management service like the Storage Resource Broker (SRB)
provides information about the location of files, while a resource directory such
as Globus MDS maintains information about compute and storage resources.
A unified interface to access and a standard model to represent metadata will
impact science beyond grid computing, because it provides an easier way to
integrate with external services.

Besides unifying access to metadata, our information service also aims at
supporting scientists in large scale collaborations by letting them annotate their
compute activities with metadata. Thus, they may ask questions such as: Was
dataset X already analyzed with program Y and parameter set Z¢ Where is the
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output data from August 12th last year? Why did my last grid job fail? Who
created the data producing the graph from the latest number of Science and where
can I find it?

Within AstroGrid-D, we distinguish between four different types of metadata:
(1) resource metadata describes properties of the shared resources, (2) activ-
ity state reflects the current and logged state of activities in the grid such as
jobs and file transfers, (3) application metadata describes the program and
its progress, and (4) scientific metadata, which includes information about
the provenance of datasets, studies, etc.

The following requirements were considered vital for an information service
supporting the AstroGrid-D users and middleware:

R1. A standard-based uniform interface compatible with existing tools,
R2. support for flexible and extensible metadata schemes,

R3. the integration of the above mentioned metadata types and

RA4. authentication and authorization for access control.

Additionally, it is important that the metadata can be transformed into formats
understandable by machines and readable by human beings.

In this paper, we present the AstroGrid-D information service, a metadata
storage and discovery service with a uniform interface and flexible information
model. One of the most important design choices is the use of the Resource De-
scription Framework (RDF) [10] for metadata representation and SPARQL [11]
for queries. Metadata vocabularies defined in RDF are easier to change than
in the relational model, since a change does not require an explicit update to
the database structure. Furthermore, it is straight-forward to add relations be-
tween metadata of different types, because the data model uses global identifiers
for addressing metadata entries. The implementation of Stellaris also benefits
from numerous tools and mechanisms to store, query, design and present RDF-
based metadata, that have been and are being developed by the semantic web
community.

The remainder of this paper is organized as follows. Section 2 describes the
architecture and provides details on the unified information model. Thereafter,
we briefly present early experiences from the deployment of a prototype imple-
mentation in Section 3 and conclude in Section 4.

2 Requirements and Approach

In the initial phase of the project, we collected requirements from 15 different
use cases and analyzed the general characteristics of our grid environment. The
main requirements identified after this phase are discussed in this section.

An early design decision was to provide a unified interface (R1) for meta-
data management and query. This decision was motivated by trying to avoid
interface fragmentation over several metadata services, to avoid re-implementing
software for different metadata systems and to ease the integration of the differ-
ent metadata types in AstroGrid-D. However, a unified interface also assumes a
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common metadata representation format and query language.

The second requirement comes from two observations. First, the use of meta-
data and how it will be implemented is not fully specified in many of the use
cases. Second, we expect that there will be more use cases developed during the
project life-time. Thus, we need a flexible information model (R2) that al-
lows users to define and update schemas without making changes to the structure
of the database. This type of flexibility is difficult to achieve with an RDBMS,
where each schema update results in an expensive change of the relevant tables.

Metadata from the different metadata classes defined in the introduction,
and from different schemas may reference each other. For example, let a schema
describe files by a URI representing a location, a logical name and an owner.
A schema for jobs could include an execution site, input/output files (using a
logical filename from the file schema), an owner (from the user schema) and a
job identifier. Additionally, instances of these schemas may be partitioned over
several metadata stores. Therefore, we need a query language that in addition
to normal query functionality, such as range and point queries, can integrate
metadata (R3) from multiple data sources and different schemas.

Data integration between different sources of data is usually difficult for two
reasons. First, data is structured differently, e.g. an address can for example
be represented as a string or split up into a tuple. Second, the semantics or
meaning of schemas may differ, an address can be a postal address or an IP-
address. While both aspects are hard to achieve without explicit conversions, we
avoid this as long as possible by combining AstroGrid-D specific schemas with
established vocabularies (Dublin Core, RT Mlﬁ, GLUE Schema@7 etc.).

Central to our approach is the use of a data model for semi-structured [1] data
called RDF [10]. Semi-structured data is not unstructured like raw data, but it
is also not rigidly defined as the data contained in a relational database. Typical
characteristics of semi-structured data, is that the vocabulary for structuring
data is large and dynamic. Another difference is that the data in an entry may be
partial, i.e. not contain all terms defined in the schema. These three properties,
partial data entries, large vocabularies and frequent schema changes make an
information model assuming semi-structured data a perfect fit for AstroGrid-
D. Moreover, the use of a standard RDF syntax, RDF/XML [2], simplifies the
import of data and allows exported data to be used by existing tools.

SPARQL [11] is a query language developed for RDF. In addition to basic
query language features like point and range queries, it was designed to write
queries using more than one vocabulary and to query multiple sources conve-
niently. These properties are vital in AstroGrid-D since we need to integrate
data from multiple sources using different vocabularies.

The fourth requirement is security (R4). For much of the metadata it is
sufficient to restrict write access to the AstroGrid-D Virtual Organization (VO)
and to allow public read access. Some of the use cases have more fine-grained
requirements on write/read permission patterns for specific users. For example,

IRemote Telescope Markup Language
2http:/ /forge.gridforum.org/sf/projects/glue-wg
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Q@prefix file: <http://www.gac-grid.de/schema/files#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rtml: <http://www.rtml.org/v3.la#>

<http://storage.gac-grid.de/test/eaglenebula.fits>
rdf:type <file:DataObject>;
file:owner "Telescope user";
file:location <http://telescopes.aip.de/pictures/eaglenebula.fits>;
file:filesize "259342";
rtml:Telescope <rtml://de.aip.Robotel/STELLA> .

Figure 1: A sample data object description in N3 of a picture taken by a robotic
telescope.

in a simulation scenario, a user owning metadata produced by her application
may allow public access to see the location of the results and to retrieve the
parameters of how the simulation data was generated. But, the current status of
the simulation and possible failure information should only be accessible by the
operator or a smaller group of users. Authentication and authorization of users
is enabled by using X.509 certificates, which is already required for AstroGrid-D
users to access other services. In order to accomodate for usage patterns similar
to the simulation scenario, we will support user-managed Access Control Lists
(ACLs) for the metadata belonging to their application.

3 Metadata Representation and Extraction

The main idea behind the RDF data model is to make statements about
resources. A statement is divided into three parts; the resource itself, referred
to as subject, a predicate, describing a uni-directional relation to the object. The
(subject, predicate, object)-tuple is often called an RDF-triple. The subject and
predicate are represented with URIs, while an object can be a literal (value) or
a URI. A URI can represent both network accessible documents or any type of
abstract idea. Moreover, since a URI is a globally unique identifier and the object
is also allowed to be a URI, it is possible to join two statements by combining
the two subjects or a subject with an object. Combining multiple statements
together forms a uni-directional graph, referred to as an RDF-Graph.

Different RDF graphs stored in Stellaris are uniquely identified by a URI.
This concept is called named graphs [4], or contexts. Since the name of a graph
is a URI, it is possible to make statements about the graph itself. Contexts are
used within Stellaris to organize create a tree structure for the stored metadata.
Figure[l shows an example with serialized RDF statements, using Notation 3 [3].
The example describes an image, accessible via the URI defined in the subject.
The image has different predicates such as rdf:type, file:owner, file:filesize and
rtml:Telescope. Note how predicates from different RDF-vocabularies are mixed
within the description.
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PREFIX file: <http://www.gac-grid.de/schema/files#> .
PREFIX rtml: <http://www.rtml.org/v3.la#> .

SELECT 7location 7owner 7telescope

FROM <http://telescopes.aip.de/context/robotic_telescopes>

FROM NAMED <http://stellaris.astrogrid.net/context/files>

WHERE {

<http://storage.gac-grid.org/test/eaglenebula.fits> file:location 7location;
file:owner 7owner;

rtml:telescope 7telescope .

}

Figure 2: A sample SPARQL query extracting information about a data object.

The SPARQL query language [11], used to query RDF graphs, is syntactically
similar to SQL, but diverges in expressiveness to better fit the RDF data model.
The base of a query is defined as a conjunction of triple patterns with bound and
unbound variables. The WHERE-clause in Figure[2 contains three triple pat-
terns which matches the file location(s), a file owner and a telescope. The query is
translated to Return the file location, the owner and the telescope which generated
the file represented by the URI <http://storage.gac-grid.org/test/eaglenebula.fits>.
The example also shows how RDF-data from different sources are integrated,
using FROM, referencing a remote graph, and FROM NAMED, referencing a
graph stored in a local RDF-store.

4 Architecture

The Information Service framework has three components (see Fig. [3): the
RDF storage instance (left-hand side), the consumers (in the middle) and the
producers of metadata (right-hand side). A single storage mimics the func-
tionality of an RDF-database. This means that it stores RDF persistently
(or in-memory depending on setup), provides a management interface and a
query interface for fine-grained data extraction. The interface to the storage
reflects these responsibilities as it is divided into a query part, implementing the
SPARQL query protocol [5], and a part for metadata management, providing
the methods create, retrieve, update and delete. A consumer is a client such
as a service or an application that uses metadata extracted from the storage.
Producers are either creating new metadata or aggregate existing information.
Legacy information providers, which output metadata in a non-RDF format,
may also be used if the information is translated into RDF. For XML-formats
this can be achieved by using GRDDL [6].
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Figure 3: The Information Service framework.

4.1 The RDF-Storage Instance

This section details the functionality of an RDF-storage instance. We focus
on the design of the external interface, the context- and collection-concept, the
internal implementation and security. Since, future versions of Stellaris will be
distributed, some of the implications for a distributed information service are
also discussed.

Contexts and Collections. A set of RDF-triples are combined into an RDF-
graph, the RDF-graph has a name which we call context [4]. A set of con-
texts are aggregated into a collection. We represent a context with a URI, e.g.
http://stellaris.astrogrid.net/files/AABBCC, and the collection which a
context belongs to as the URI up to the last slash of the path-part of the URI,
e.g. http://stellaris.astrogrid.net/files/. The path represents a hierar-
chy of collections, however, operations are only performed on direct children of
a collection since recursive operations implies a large performance penalty when
traversing the hierarchy in a federated setup. Either a context or a collection
can be compared to a table in an RDBMS, depending on how the application
developer designs its application.

External Interface. The storage interface has the following methods: create
is used to insert RDF data at a given context, update either adds or changes
triples stored at a context, retrieve gets the metadata stored under a given
context, delete removes a context and all RDF-triples stored under that context
and query takes a SPARQL query as input and returns the matching RDF
metadata in the standard XML or JSON? SPARQL result format. In order to
change fine-granular data stored under a context, update is able to operate on

Shttp://www.json.org
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Figure 4: Overview of the internals of a single storage instance.

individual RDF-triples stored at a context. This is necessary when updating
dynamic information such as current memory usage at a cluster. There is also a
corresponding remove function which takes a set of RDF-statements and deletes
them from a given context. The interface is implemented in HTTP [8], with
the HTTP verbs GET (retrieve), POST (update), PUT (create) and DELETE
operating on the URL representing a context. Mapping this interface to XML-
RPC/SOAP or other RPC-based protocols would be straight-forward.

Implementation. Figure[4 shows the components of the current implemen-
tation of Stellaris. The implementation is based on Python using the RDFLib-
libmrﬁZ and a Berkeley DB-backend for persistence. The HTTP/WSGI-server
uses a thread-pool to handle incoming requests and prepare the responses. A
request is first handled by the Security component, which authenticates and au-
thorizes connecting clients. The authorization of users is based on either a static
list, such as a gridmap-file, or dynamic information retrieved from a VOMRS
service. An accepted request is dispatched to the Context Management mod-
ule, which provides an internal interface for create/retrieve/update/delete and
query. This module then forwards the request to the Synchronized View module,
which ensures that concurrent requests are not conflicting. Finally, the Event
View receives the request and forwards it to storage management or the query
engine. The Introspection and System modules subscribe to the Event View to
maintain metadata about contexts, collections and garbage collection. Events
based on the type of operation outlined in the interface section. An event is

4http://rdflib.net
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produced when a request successfully applies an operation to the storage man-
agement component. The components for Replication and Federation are still
under development. The Replication module will be used to increase reliability
for a single deployment. While the Federation component distributes metadata
over several storage locations and supports distributed queries.

Since the RDFLib-library does not yet provide a transaction interface for
handling updates including more than one triple, we added support for this
in the Synchronized View module. In order to provide isolation of concurrent
requests, a single-writer/multiple-reader serialization was implemented. Locking
is on the granularity of a single context. Additionally, transactions operating on
multiple contexts are not supported. Thus, the serialization is deadlock-free.
Furthermore, to improve read performance, we cache the data from a context
currently being written, enabling concurrent read operations during a write.

Security. In the initial versions, security will not be the main focus since re-
source metadata such as that retrieved from MDS or the grid activity is not seen
as sensitive information. The current approach is to use X.509 certificates for
authentication and a VO service such as the VOMRS§7 used within AstroGrid-D
to authorize users. Reading metadata stored at a context or extracted from a
query is public, while writing requires proper authorization. This allows us to
restrict write permission to the group of users representing the AstroGrid-D VO.
Stronger security requirements such as ACLs have been identified as necessary
for some use cases and will be implemented when necessary. However, it should
be noted that the enhanced security from using ACLs will have a negative im-
pact on the query performance since the results must be filtered to comply with
the user’s access rights.

5 Deployment

Within AstroGrid-D there are a number of early adopters using the proto-
type of Stellaris. These early users match well with the four classes of metadata
outlined in the introduction. First, we have two information producers (IPs) ag-
gregating hardware resource metadata. The first IP is using the GLUE schema
instances provided by Globus MDS to add metadata about active AstroGrid-D
compute clusters and workstations to Stellaris. Figure[5|shows the different com-
ponents part of a demo displaying the AstroGrid-D grid resources on a Google
Map@. The XML-based data is mapped to RDF using a generic translator writ-
ten in XSLT. The second IP uploads metadata on robotic telescopes derived
from the RTML schema. Since RTML instances are in XML, this IP uses the
XML to RDF-translator as well.

From the next metadata class, grid activity, three different IPs were de-
veloped. The data stream management uses Stellaris to register the different
data stream content producers and the components available for a data-stream

Shttp://www.uscms.org/SoftwareComputing/Grid/VO/
Shttp://www.google.com/apis/maps/
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processing task. The second grid activity IP collects information on the state
of the basic Globus grid services available on the contributed resources within
AstroGrid-D. Currently, it is possible to check the status of WS-GRAM, Globus
Toolkit 2.x GRAM, GSISCP and GSISSH. The third grid activity IP is a wrap-
per script used for monitoring of a job submission. It reports job state, job id,
job name, X.509 DN of the owner etc. Another demo application, accompanying
the grid resource map, shows a timeline containing the history of old grid jobs
and the state of current jobs. The demo is based on the SIMILE Timelind” and
retrieves the up-to-date information from a Stellaris instance.

Finally, an IP for the Cactus use case [9] was developed and is currently
used in production by researchers using the Cactus framework. The IP stores
metadata related to integration tests of Cactus including the machine where
the tests were run, the result status for each test and test suite, configuration
options, etc. While the Cactus metadata management uses its own instance of
Stellaris, the other IPs are using a common AstroGrid-D instance. Both of these
early instances have been showing uptime of several months under different load.

6 Conclusions

We choose RDF and SPARQL as foundation for our information service to
meet the diverse and demanding requirements of the scientific use cases in the
AstroGrid-D project. A prototype is already in use by several partners within
the project. Although, the approach is tailored for the specific requirements of
the AstroGrid-D community, we believe that it is generic enough to meet the
requirements of other communities and that Stellaris is suitable for the D-Grid
Integration (DGI) project’s software stack.

Thttp://simile.mit.edu/timeline/
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