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Subjective judgment in NMR structure determination

e derivation of conformational restraints
= NOE classification, calibration, distance bounds
= parameters of Karplus curve

= determination of alignment tensor
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= crossvalidation
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* derivation of conformational restraints

* choice of restraint potential

* choice of weighting factors

* structure calculation

* selection of representative structures
= gelection criterion: energy based?

= restraint violation?



Subjective judgment in NMR structure determination

* derivation of conformational restraints
* choice of restraint potential
* choice of weighting factors

e structure calculation

* selection of representative structures

structures depend on subjective decisions rather
than just the data




Goals

* reduce subjective judgment
e quantify the uncertainty that's inherent in NMR structure determination
* calculate “objective” NMR structures

* make statements about reliability



A simple example

* a single conformational degree of freedom (¢ angle)
* data: NOEs for HN-HA distance d(¢)
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Probability as a measure of uncertainty
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Describing data with probabilities
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Matching ¢

overlap between data histogram and model defines Prob(¢)
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Matching ¢ and o simultaneously
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Inferential Structure Determination (ISD)

e quantify uncertainties by probabilities
* describe NMR data probabilistically
* express background knowledge by prior probabilities

e consistently combine the probabilities using probability calculus (Bayes'
theorem)

* analyse the joint posterior probability of all unknowns (coordinates + model
parameters + errors)

Science, 2005; Phys Rev E, 2005



Drawing random samples from probabilities

* in real-world problems probabilities are too complex for visual or
analytical analysis

* idea of sampling: pick a set of representatives




Drawing random samples from probabilities

* in real-world problems probabilities are too complex for visual or
analytical analysis

* idea of sampling: pick a set of representatives

-
- s » - = ™
. »
M - - C. .y " -
el .. ‘. L ] . * , . ‘.
% a "“ . X - - .: .
)
f - %1 = -""..t' " - * " * -:-' *oae :.}' w3 *
» .
" ..a.*:‘ " ‘. ':. f". ., . . . ..‘ - * - t. z
- - y# -
Reg e W a tp g T R NN )
. Y A . A " %
a *oae “'-t | * L - L] . K] ‘
.
YOS - ‘ . e T o2t
. 5 W n
a » - " . .
L * - -
- L - »
. L]
» [ ] r % , =
4‘ L ’ : . :;' |“ ": * ? .' - :'. 5.‘ &'. -y ..:‘. G.‘
.
S M PR Xy IR I CRTR £ Bg T
s * oy o » woy ool I AR A O
g ey L ‘: .‘: | 4 J: Y l""“?i s . " o [ “
i . L'




Drawing random samples from probabilities

* in real-world problems probabilities are too complex for visual or
analytical analysis

* idea of sampling: pick a set of representatives




Gibbs sampling

fix coordinates, update additional parameters

fix additional parameters, update coordinates




Gibbs sampling
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“Temperature”

Generation of structure ensembles

exchange —

A chain (g = 1.0)

g chain (A = Amin)

“high temp”



Optimization algorithms are not for sampling

* optimization algorithms are often used to “sample” the protein
conformation space

* but they are designed to locate (global) optima

 multi-start simulated annealing already fails for example

Prob(o)




Prior probability of protein conformations

Physical knowledge:

* covalent forces (bond lengths, angles)

* noncovalent forces (van der Waals, electrostatic)

* solvent (hydrophobic forces, entropic effects) Peptide

P arametl’

Prob(structure) o< exp{—/Ephys(structure) }
Prior = Boltzmann ensemble



Probabilistic modelling of NMR data

Principle: imagine a process that could have generated your data

This typically comprises
* a forward model (eg. ISPA, Karplus curve)

e an error model (eg. Gaussian distribution)

“nuisance” parameters:
* model parameters (eg. A, B, C in Karplus curve)

* error parameters (eg. width o of the Gaussian)



Modelling NOEs

forward model: ISPA

* NOE =scale/ distance6
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®* NOE = scale / distance6

Modelling NOEs

* [og(NOE) = log(scale) — 6 log(distance)
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Modelling NOEs

forward model; ISPA

* NOE =scale / distance6

* [og(NOE) = log(scale) — 6 log(distance)
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Modelling NOEs

OE
log(NOE)

forward model; ISPA =

* NOE =scale/ distance6

* log(NOE) = log(scale) - 6 log(distance) stance og(distance)

error model: log-normal

* error = log(NOE) - log(scale) + 6 log(distance)
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Modelling NOEs

OE
log(NOE)

forward model: ISPA =

* NOE =scale/ dis;tance6

e log(NOE) = log(scale) - 6 log(distance) stance og(distance)

error model: log-normal

* error = log(NOE) - log(scale) + 6 log(distance)

/ log-normal model
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Modelling NOEs

c s
forward model: ISPA = 5
* NOE = scale / distance”
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error model: log-normal 3
* error = log(NOE) - log(scale) + 6 log(distance) - Y
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Modelling NOEs

c S
forward model: ISPA = 5
* NOE = scale / distance”
* log(NOE) = log(scale) - 6 log(distance) st _ og(distance)
error model: log-normal 3
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Error bars for NMR structures

Idea: calculate average and variance from random samples
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Idea: calculate average and variance from random samples




Error bars for NMR structures

SH3, 154 distances

Science, 2005



Error bars for NMR structures

TUDOR, 1875 distances

Phys Rev E, 2005; JACS 2005



Adaptive weighting of data

Standard approach: E g = Weg, E

Choice of weight is critical:
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Bayes vs. crossvalidation
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Bayesian error as figure of merit

2 NMR structures of Josephin




Bayesian error as figure of merit
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Bayesian error as figure of merit
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Bayesian error as figure of merit
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Bayesian error as figure of merit

independent exp. evidence
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Summary

* uncertainties in NMR structure determination must be treated probabilistically
* structure calculation by posterior sampling
* ensemble of sampled structures is statistically meaningful

* model parameters can be estimated (eg. NOE scale, Karplus parameters,
alignment tensor)

* error parameters can be estimated (effectively: adaptive weighting of the data)

* estimated errors are useful figures of merit and could replace free R values
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