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1 Introduction

In the 20th century, the biggest discovery in cosmology was the realization that our universe
is expanding. No other finding compelled physicists to such a revision in their thinking about
the cosmos: the universe, it was then realized, is an evolving entity. The observed expansion of
the universe entailed the idea that, going back in time, the universe emerged from a big bang
singularity, at which time and space were supposed to begin. According to the singularity
theorems of Penrose and Hawking [1], such a singularity is unavoidable in the context of
general relativity, as long as certain assumptions are met. In particular, in a flat universe,
a big bang singularity is unavoidable as long as the null energy condition is satisfied. This
remains true even in inflationary cosmologies: a theorem by Borde, Guth and Vilenkin [2]
shows that inflation does not remove the big bang singularity. This is problematical since
the predictions of inflation are known to be highly sensitive to the physical conditions at the
onset of an inflationary stage.

The big bang singularity can also be seen as a manifestation of the breakdown of classical
general relativity coupled to standard matter sources. For several decades now the hope
has been entertained that a quantum theory of gravity will resolve this singularity; perhaps
linking the expanding phase of the universe to a prior contracting phase [3–5], perhaps joining
it onto a previous fully quantum regime [6], or demonstrating the emergence of space and
time from a non-geometric phase [7–9]. Unfortunately, despite many advances, there does
not exist a fully understood quantum resolution of the big bang at present.

However, it is clear that such a resolution will eventually be required. A completely
different approach to this problem has been presented within the context of ekpyrotic [10–13]
and cyclic [14, 15] cosmologies. These cosmologies envisage a classical contracting universe
prior to the big bang. In their initial formulation, within the context of heterotic M the-
ory [16–18], the transition region between contraction and subsequent expansion was not
fully elucidated at small scales due to poorly understood string physics at high energy. That
is, although offering a philosophical change in point of view, there remained a potential
singularity at the moment of the big bang. However, this was resolved in New Ekpyrotic
Cosmology [19–22]. These theories allow for a completely non-singular bounce within the
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context of classical effective field theory by introducing matter violating the null energy con-
dition — thus evading the above singularity theorems. The original models accomplished
this via a real scalar field with specific higher-derivative self-interactions, the so-called ghost
condensate [23].

These considerations motivate a more general study of classically non-singular bounces,
where even at the classical level the evolution through a bounce remains under control.
Such classical bounces can be described in an effective field theory framework. In order to
obtain a reliable non-singular bounce in a flat universe, one must suppose the existence of
a matter component that can violate the null energy condition without however leading to
dangerous instabilities. Examples of such matter components include scalar fields with ghost
condensation [23] and Galileon Lagrangians [24], and we will focus on a model of this type
in the present paper. A subset of the present authors recently showed that such models can
also be embedded in supergravity [25]. This construction provided an explicit demonstration
that supersymmetry and violations of the null energy condition are compatible, and provides
the motivation for the present work.

In the present paper, we are interested in the question of cosmological perturbations
of such non-singular bounce spacetimes. Specifically, we would like to address the question
of what happens to a set of curvature perturbations of various wavelengths going into the
bounce: will they emerge in the expanding phase, or are there catastrophic instabilities?
Do the perturbations get amplified or suppressed? Does their spectrum get modified by the
bounce dynamics? Since cosmological perturbations provide our main source of information
about the very early universe, the answers to these questions may help to determine whether
our universe underwent a bounce in our past. Indeed, we briefly discussed the evolution
of cosmological perturbations through a non-singular bounce in [25]. We showed that in
commonly used gauges, such as the constant scalar field gauge [26], the equation evolving
perturbations through the bounce, as well as the definition of the gauge itself, becomes
undefined at the bounce when the Hubble parameter H goes to zero. This seemed to preclude
a well-defined solution. However, we pointed out that were one to work in a gauge — such
as harmonic gauge [27] — that is well-defined through the bounce, a consistent calculation
of the evolution of perturbations should be possible. In this paper, we will show that this is
indeed the case. Furthermore we prove, by directly studying the gauge invariant curvature
perturbations R, that the physical perturbations can be computed in any gauge — as long
as appropriate care is taken with boundary conditions at the bounce.

What we find is that curvature perturbations on super-horizon scales (generated either
via the entropic mechanism [19, 21, 28–34], or via a preceding contracting matter phase [35,
36]) remain essentially constant as they go through the bounce. At first sight this may appear
surprising, since in the model that we are considering the speed of sound becomes imaginary
in the vicinity of the bounce, signalling a gradient instability. However, the duration of
the bounce is too short for long wavelength modes to be affected by it. Moreover, we can
show analytically that at a time close to the bounce the curvature perturbations Rk (of all
wavelengths) must be momentarily constant. That is, there is a time close to the bounce when
Ṙk = 0. There is, however, some wavelength-dependence in the total amount of amplification
across the bounce. Specifically, even though large-scale modes remain constant to high
accuracy, as the wavelength is reduced and becomes comparable to the horizon size at the
onset of the bounce, we find a small amplification. For even smaller wavelengths, our present
classical description is inappropriate, as one should describe sub-horizon fluctuations using
quantum field theory on our classical background spacetime. We will leave this interesting
question for upcoming work.
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2 The model

A non-singular bounce can only occur in a flat universe if the null energy condition (NEC)
is violated. Such a violation was long thought to always be accompanied by the appear-
ance of ghosts, i.e. kinetic (time-derivative) terms with the wrong sign. Classically, such
a theory would then be unstable, as wild fluctuations would correspond to a decrease in
energy. Quantum-mechanically, theories with ghosts are non-sensical, as one cannot even
define a vacuum for such theories. Thus, the lesson is that ghosts must be avoided at all
costs. Interestingly, it came to be realized over the last few years that certain theories with
specific higher-derivative terms can allow one to violate the NEC without, however, leading
to perturbative ghost instabilities. Examples of such theories are the ghost condensate [23]
and Galileons [37]. In this paper, we will investigate a specific bounce model that is built
precisely using these theories. This model was constructed — within the context of N = 1
supergravity — in [25], where the details of the construction are provided (see also [38–41]).
In fact, our model is closely related to a bounce model constructed by Cai, Easson and
Brandenberger in [42]. For other directly related works see [32, 43–45].

Our starting Lagrangian is of the form [25]

L =
√
−ḡ
(
M2
P

2
R̄+ P̄ (X̄, φ̄) + ḡ(φ̄)X̄ �φ̄

)
, (2.1)

X̄ ≡ −1

2
ḡµν∂µφ̄ ∂ν φ̄ , (2.2)

where MP denotes the reduced Planck mass. We are also using the definitions

P̄ (X̄, φ̄) = K̄(φ̄)X̄ + T̄ (φ̄)X̄2 , (2.3)

K̄(φ̄) = 1− 2(
1 + 2κ̄φ̄2

)2 , (2.4)

T̄ (φ̄) =
tb(

1 + 2κ̄φ̄2
)2 , (2.5)

ḡ(φ̄) =
gb(

1 + 2κ̄φ̄2
)2 . (2.6)

Here κ̄ (of mass dimension −2) parameterises the width of the bounce in scalar field space,
while the dimensional constants tb (of mass dimension −4) and gb (of mass dimension −3)
set the scales of the ghost condensate and Galileon terms respectively. Note that P̄ (X̄, φ̄)
in [25, 38] contains a potential energy V (φ̄). This is important in discussing the physics prior
to and following the bounce — but does not contribute significantly during the bounce itself.
Hence, we can ignore it. In the present paper, we are interested in bounces where the ghost
condensate dominates over the Galileon term. For this reason, it is useful to re-scale the
fields according to

ḡµν = tbM
2
P gµν , (2.7)

φ̄ = MPφ. (2.8)

This re-scaling has the effect of setting the scale of the ghost condensate to unity. The
Lagrangian now reads

1

tbM
4
P

L =
√
−g
(
R

2
+ P (X,φ) + g(φ)X �φ

)
, (2.9)
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where X̄ = X/tb and the kinetic functions have simplified to

P (X,φ) = K(φ)X + T (φ)X2 , (2.10)

K(φ) = 1− 2

(1 + 2κφ2)2
, (2.11)

T (φ) =
1

(1 + 2κφ2)2
, (2.12)

g(φ) =
gb

tbMP

1

(1 + 2κφ2)2
, (2.13)

with κ = κ̄M2
P . Thus we can perform our numerical analysis using the Lagrangian (2.9),

while it remains simple to transform our results to any ghost condensate scale tb via the
formulae (2.7)–(2.8).

For the background, we will assume a flat Friedmann-Lemaitre universe. In the “phys-
ical” time coordinate tp, this is given by

ds2 = −dt2p + a2(tp)δijdx
idxj . (2.14)

However, in anticipation of our perturbative calculation we will transform to a “harmonic”
time t, which is related to the physical time by

dtp = a(t)3 dt . (2.15)

It follows that the Friedman-Lemaitre metric becomes

ds2 = −a6(t) dt2 + a2(t)δijdx
idxj . (2.16)

We note that, with this coordinate choice, the metric satisfies

Γµ = gρσΓµρσ = 0 . (2.17)

This is a useful property when we calculate metric and scalar perturbations later in the
paper — and which the metric (2.14) expressed in physical time did not satisfy. For any
given metric, coordinates satisfying (2.17) are called harmonic coordinates [46, 47]. Harmonic
coordinates are not unique — if xµ are harmonic, then so are yµ=xµ + ξµ(x) as long as

−(ξt)′′ + a4∇2ξt = 0 , (2.18)

−ξ′′ + a4∇2ξ = 0 . (2.19)

However, the specific harmonic coordinates associated with (2.16) are “natural”, in the sense
that (2.16) easily matches ekpyrotic boundary conditions at the beginning of the bounce
phase. We emphasize that although our calculations are most transparent in harmonic time
t — and many of our results are expressed in this variable — the physical interpretation of
dynamical quantities, such as the time scale over which the bounce occurs, is most readily
understood in the physical time tp. We will make the conversion to physical time when
necessary.

In the background

ds2 = −a6(t) dt2 + a2(t)δijdx
idxj , (2.20)

φ = φ(t) (2.21)
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the equations of motion become

3H2 = −a6P + P,Xφ
′2 − 3gHφ

′3

a6
+

1

2
g,φ

φ′4

a6
(2.22)

−2H′ + 3H2 = a6P + g
φ′2

a6
(
φ′′ − 3Hφ′

)
+

1

2
g,φ

φ′4

a6
(2.23)

0 = P,XXφ
′2 (φ′′ − 3Hφ′

)
+ a6P,Xφφ

′2 + a6P,Xφ
′′ − a12P,φ

− 3gφ′
[
H
(
2φ′′ − 6Hφ′

)
+H′φ′

]
+ 2g,φφ

′2 (φ′′ − 3Hφ′
)

+
1

2
g,φφφ

′4 , (2.24)

where ′ = d
dt and H = a′

a . Again, physical quantities, such as the Hubble length just prior to

and after the bounce, are best expressed in terms of . = d
dtp

and H = ȧ
a

(
= H

a3

)
.

Note that we are only modeling the time around the bounce here. However, our analysis
should be understood as providing a module that can be incorporated in a more complete
cosmological model. We are assuming that the field starts off away from φ = 0, in a con-
tracting phase of the universe. Away from φ = 0 (more precisely, for

(
1 + 2κφ2

)2 � 1),
we have the approximate relations K ≈ 1, T ≈ 0, g ≈ 0, i.e. we have a standard kinetic
term with negligible higher-derivative corrections. As the field moves toward φ = 0, two
things happen: its velocity increases due to blue shifting, and the higher-derivative terms
start becoming important. At some point K passes through zero (the dynamics is, however,
non-singular at that moment due to the presence of the higher-derivative terms) and we are
entering a ghost condensate phase. Moreover, the Galileon term contributes to the violation
of the NEC and helps to induce a bounce. Near φ = 0, we have the approximate relations
K ≈ −1, T ≈ 1, g ≈ gb/(tbMP ), and the (smooth) bounce occurs close to this region of
field space. We are mostly interested in the case where the Galileon term is comparatively
small, i.e. gb � tbMP . In this case, the scale of the bounce is set by the scale of the ghost
condensate: at the bounce X ∼ 1, X̄ ∼ t−1b . This scale t−1b can be freely adjusted, but must
evidently lie above the scale of nucleosynthesis and below the Planck scale in order to pro-
vide a viable model. After the bounce, the universe starts expanding, while the scalar field
velocity diminishes.

An sample solution is shown in figure 1. The plots present the evolution of the scale
factor and the (absolute value of the) comoving Hubble length across the bounce, for the
set of values κ = 1/4, gb/(tbMP ) = 1/100. The initial conditions are a = 1, φ = 17/2,
φ′ = −10−5(= φ̇). The inset shows a magnification of the scale factor around the time of the
bounce, and confirms that the bounce occurs in a smooth and non-singular manner. Figure 6
shows the corresponding graphs of the Hubble parameter and its rate of change, as functions
of physical time tp. The bounce is fast in the sense that it occurs on a time-scale of O(1)

as measured in units of the ghost condensate length/time scale t
1/2
b MP , while the horizon

size (1/H) just before and after the bounce phase is of O(10) in the same units. If, for
example, we set the ghost condensate scale two orders of magnitude below the Planck scale
(tb =

(
10−2

)4
), i.e. at the grand unified scale, then this means that the horizon size at the

onset of the bounce is of O(105) Planck lengths, while the bounce lasts about O(104) Planck
times. Thus, for such an example the classical approximation is entirely justified.

Note that near the bounce the comoving horizon grows and becomes infinite at the
moment of the bounce, since the Hubble rate is passing through zero. Thus, all perturbation
modes are inside of the cosmological horizon near the bounce. This fact raises the interesting
question as to how the curvature perturbations evolve across the bounce.
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Figure 1. Scale factor and comoving Hubble length for the bounce solution with parameter values
κ = 1/4, gb/(tbMP ) = 1/100, and with initial conditions a = 1, φ = 17/2, φ′ = −10−5.

3 Linear perturbations in harmonic gauge

3.1 Singularity of the equation of motion for the curvature perturbation

The (gauge-invariant) co-moving curvature perturbation R satisfies the closed equation [26,
48–50]

d2R
dτ2

+
2

z

dz

dτ

dR
dτ

+ c2sk
2R = 0 , (3.1)

where dτ ≡ a2dt is conformal time. The coefficients appearing in (3.1) are given by

z2 =
1

2

a2φ′2P(
H+ 1

2g(φ)φ
′3

a6

)2 , (3.2)

P = P,X − 6g(φ)Hφ
′

a6
+

3

2
g2(φ)

φ′4

a12
+ 2g,φ

φ′2

a6
+ P,XX

φ′2

a6
, (3.3)

c2s =
1

P

(
P,X + 2g(φ)Hφ

′

a6
− 1

2
g2(φ)

φ′4

a12
− 2g(φ)

φ′′

a6

)
. (3.4)

The quantities c2s and z2 are plotted in figure 2. For completeness, we note that z2 appears
as the coefficient of the kinetic term of R in the perturbed action of our model [25], and thus
its positivity is synonymous with an absence of ghosts. Note that z2 blows up in the vicinity

of the bounce, as the denominator of (3.2) passes through zero when H = −1
2g(φ)φ

′3

a6
. This

implies that at this moment the equation for R becomes singular. We will discuss this —
ultimately harmless — singularity of the equation of motion for the curvature perturbation
in more detail in section 4.3. For now, the lesson we draw from this observation is that it
would be desirable to find a better, non-singular and completely reliable way to describe the
evolution of perturbations across the bounce.

Figure 2 also shows the evolution of the speed of sound squared c2s of the curvature
perturbations. An interesting feature is that near the bounce the speed of sound becomes
imaginary, signalling a gradient instability. The presence of this instability may lead one to
speculate that, during the bounce, perturbations will be strongly (perhaps catastrophically)
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Figure 2. Evolution of the speed of sound squared and of z2 in the non-singular bounce background.
The positivity of z2 demonstrates the absence of perturbative ghost fluctuations, while the brief period
over which c2s becomes negative indicates the presence of a gradient instability.

amplified. In fact, a large amplification has been claimed in [42] in a bounce model essentially
identical to the one we are considering here (and where the singular equation forR was used to
study the evolution of the perturbations). A counter-argument is that the bounce occurs over
a very brief time period, and that it is hard to imagine how perturbations with a wavelength
longer than the scale of the bounce can be much affected by the gradient instability.

In order to resolve these issues unambiguously, we will perform our calculations in
harmonic gauge where, as we will demonstrate, the evolution of the perturbations is entirely
non-singular. We would like to highlight that harmonic gauge was also used recently in a
paper by Xue et al. [27] in the context of a simpler bounce model (which, however, contains
ghosts).

3.2 Harmonic gauge

As discussed previously, our background classical fields are given in a specific harmonic
gauge by (2.20), (2.21). Starting in that gauge, we now write the generic linearized scalar
perturbations of our background fields as

ds2 = −a6(1 + 2A)dt2 + 2a4B,i dt dxi + a2(t)
[

(1− 2ψ) δij + 2E,ij

]
dxidxj , (3.5)

φ = φ(t) + δφ(t, x) , (3.6)

where, for the sake of clarity, we will denote metric and scalar field perturbations in boldface.
Is this new metric still in a harmonic gauge? Varying Γµ with respect to these perturbations,
while leaving the coordinates unchanged, we find that

δΓµ = − 1

a6
cµ , (3.7)

ct = A′ + 3ψ′ −∇2
(
E′ − a2B

)
, (3.8)

ci =
[ (
a2B

)′
+ a4

(
A−ψ −∇2E

) ]
,i
. (3.9)
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Hence, to remain in a harmonic gauge in these coordinates — that is, to satisfy (2.17) —
one must set δΓµ = 0. Therefore, the perturbation functions must satisfy

0 = A′ + 3ψ′ + k2
(
E′ − a2B

)
, (3.10)

0 =
(
a2B

)′
+ a4

(
A−ψ + k2E

)
. (3.11)

Finally, recall that under coordinate transformations with parameters ξµ = (ξt, ξ,i) satisfying
the constraints (2.18) and (2.19), the unperturbed metric continues to be harmonic. Under
the same gauge changes, we find that the perturbations transform as

A→ A− ξt′ − 3Hξt , (3.12)

B→ B + a2ξt − 1

a2
ξ′ , (3.13)

ψ → ψ +H ξt , (3.14)

E→ E− ξ . (3.15)

Be that as it may, the conditions (3.10), (3.11) continue to be satisfied. Thus, one can use
this residual harmonic gauge freedom to fix the initial values of the perturbation functions
arbitrarily, and we will do so in the next section. Solutions to the harmonic wave equa-
tions (2.18)–(2.19) exist for the whole bouncing background, implying that the harmonic
gauge is well-defined throughout the bouncing phase. Notice also how in the variation δΓµ

the differential operators which act on the components of ξµ are non-singular at the bounce.
Hence, the gauge constraints (3.10), (3.11) can be imposed without problems.

In the appendix, we provide a detailed derivation of the linearized Einstein and scalar
field equations in harmonic gauge. This analysis shows that, after a number of simplifications,
one is left with the following set of perturbation equations (where the first two equations are
the gauge constraints):

0 = A′ + 3ψ′ + k2
(
E′ − a2B

)
(3.16)

0 =
(
a2B

)′
+ a4

(
A−ψ + k2E

)
(3.17)

0 =

(
H′ − 1

2
P,XX

φ′4

a6
+ 3gHφ

′3

a6
+

1

2

gφ′2φ′′

a6
− 1

2
g,φ

φ′4

a6

)
A− k2

(
a2H+

1

2
g
φ′3

a4

)
B

+ 3

(
H+

1

2
g
φ′3

a6

)
ψ′ + k2a4ψ + k2

(
H+

1

2
g
φ′3

a6

)
E′

+
1

2

(
P,Xφ

′ + P,XX
φ′3

a6
− 9gHφ

′2

a6
+ 2g,φ

φ′3

a6

)
δφ′

− 1

2

(
a6P,φ − P,Xφφ′2 + k2g

φ′2

a2
+ 3g,φH

φ′3

a6
− 1

2
g,φφ

φ′4

a6

)
δφ , (3.18)

0 =

(
H+

1

2
g
φ′3

a6

)
A +ψ′ − 1

2
g
φ′2

a6
δφ′ − 1

2

φ′

a6
(
a6P,X − 3gHφ′ + g,φφ

′2) δφ , (3.19)

0 =
1

a4
E′′ + k2E . (3.20)

Note that we write the perturbation equations in Fourier space, with k being the comoving
wavenumber. We do not need to consider the linearized scalar field equation, as it can be
derived from the equations above (as discussed in the appendix).
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Figure 3. Determinant of the matrix A appearing in (3.21). The right panel shows a magnification
around the time of the bounce. As is evident, the matrix A is regular and invertible throughout,
demonstrating that our system of perturbation equations is non-singular.

Notice the most crucial aspect of these equations: all coefficients are non-singular in a
bounce spacetime. In particular, there are no 1/H factors present. In fact, since this was
the main motivation for using harmonic gauge in the first place, we should be more rigorous
and explicitly show that the system of equations (3.16)–(3.20) is entirely non-singular. This
can be accomplished by re-writing it in the form

A(t)F ′(t) +B(t)F (t) = 0 , (3.21)

where F ≡ (A,B,ψ,E,E′, δφ) and A, B are time-dependent matrices given by the back-
ground. A supplementary first order equation for E′ obviously has to be included in the
system. A direct inspection of (3.16)–(3.20) shows that the individual matrix elements in
A(t) and B(t) are well-behaved as long as the background itself is well-behaved, which we im-
plicitly assume. Possible divergences can then only arise if the matrix A fails to be invertible.
We can make sure that this does not happen by numerically evaluating the determinant of
A, see figure 3. The figure explicitly shows that the determinant is non-zero throughout, and
this simple result implies that the evolution of the perturbation variables across the bounce
is regular.

4 Evolving through a non-singular bounce

Having derived the linearized equations of motion in harmonic gauge, we now proceed to
solve these numerically.

4.1 Initial conditions for the perturbations

The main application that we have in mind in the present work are bouncing models of the
universe in which nearly scale-invariant curvature perturbations are generated during the
contracting phase preceding the bounce. Several mechanisms are known which can achieve
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this, for example the entropic mechanism (see [33, 34] for the most appealing models) or a
contracting matter phase (see e.g. [51, 52]).1 For this reason, we will choose as our initial
conditions a set of classical, scale-invariant curvature perturbations. The gauge-invariant
comoving curvature perturbation is defined as

R ≡ ψ +
H
φ′
δφ . (4.1)

We have the following expectation values for super-horizon modes (see [55] for a detailed
treatment of the quantum-to-classical transition of these perturbations)

〈R2〉 ∼ k−3 , (4.2)

〈R′2〉 ∼ k . (4.3)

Hence, our initial conditions for classical mode functions are R ∼ k−3/2, R′ ∼ k1/2. Initial
conditions for the perturbations variables A, B, ψ, E and δφ can be obtained by completely
fixing a gauge. Indeed, the gauge conditions (3.16), (3.17) are preserved by infinitesimal
diffeomorphisms generated by ξµ satisfying the harmonic constraints (see (2.18), (2.19))

(ξt)′′ + a4k2ξt = 0 , (4.4)

ξ′′ + a4k2ξ = 0 . (4.5)

The general solution of these equations can be specified by assigning arbitrary values of
ξt and ξ, together with their first time derivative, at the instant t0 where we specify the
boundary conditions for the perturbation equations. By analyzing the gauge transforma-
tions (3.12)–(3.15), it is easy to see that the values, for example, of A, B, ψ and E can be
set to any arbitrary value at t = t0. The value of δφ(t0) is then obtained from the bound-
ary condition for R, while E′(t0) can be obtained from R′(t0) by using the perturbation
equations (3.16)–(3.20).

As an example, we can set for each Fourier mode

A(t0) = B(t0) = ψ(t0) = E(t0) = 0 . (4.6)

At this reference time, where we will also take a = 1 to simplify the variable changes, the
linearized equations (3.16)–(3.20) reduce to:

0
t=t0= A′ + 3ψ′ + k2E′ , (4.7)

0
t=t0= B′ , (4.8)

0
t=t0= 3

(
H+

1

2
g(φ)φ′3

)
ψ′ + k2

(
H+

1

2
g(φ)φ′3

)
E′

+
1

2

(
P,Xφ

′ + P,XXφ
′3 − 9g(φ)Hφ′2 + 2g,φφ

′3) δφ′ , (4.9)

0
t=t0= ψ′ − 1

2
g(φ)φ′2δφ′ − 1

2
φ′
(
P,X − 3g(φ)Hφ′ + g,φφ

′2) δφ , (4.10)

0
t=t0= E′′ . (4.11)

1The entropic mechanism does not amplify gravitational waves, while a contracting matter phase does
(typically with roughly the same amplitude as the scalar perturbations). Entropic models fit the Planck
satellite data well [53], but would be ruled out if the claimed detection of primordial gravitational waves
reported by the BICEP2 collaboration [54] receives independent confirmation.
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So we still need to specify the values of δφ and E′. Using the definition of R and the
equations above we get the intermediate results

δφ′
t=t0=

φ′

H+ 1
2g(φ)φ′3

{
R′ −

[(
H′

H
− φ′′

φ′

)
+

1

2

φ′2

H
(
PX − 3g(φ)Hφ′ + g,φφ

′2)]R} , (4.12)

ψ′
t=t0= R′ −

(
H′

H
− φ′′

φ′

)
R− H

φ′
δφ′ . (4.13)

One can then obtain the value of E′ at t = t0 from (4.9). The initial conditions are completed
by specifying

δφ0 =
φ′0
H0
R0 . (4.14)

4.2 Numerical results for the evolution of curvature perturbations

We are finally in a position to calculate the evolution of super-horizon curvature fluctuations
in our non-singular bounce spacetime. Let us briefly recall the clash of the two intuitive
expectations. On one hand, one would expect long-wavelength modes to be unaffected by
a bounce occurring on much smaller scales. On the other hand, at the bounce all modes
re-enter the horizon and a gradient instability is present, which may lead one to speculate
that all modes might grow significantly across the bounce. We can expand slightly on this
heuristic remark by estimating the naively expected growth due to the gradient instability.
Using eq. (3.1), we would estimate the growth as

Rpost-bounce ∼ exp

(
k

∫
c2s<0
|cs|dτ

)
Rpre-bounce ∼ ek/k?Rpre-bounce . (4.15)

For the background considered here, numerical integration gives k? ' 0.05.
The numerical evolution of the curvature perturbations is shown in figure 4 for wave

numbers k in the range 10−2 − 10−8. The long-wavelength modes k = 10−6, 10−7, 10−8 are
everywhere super-horizon in the approach to the bounce, and their classical description is
fully appropriate. As is evident from the figure, these modes remain constant with very
high precision across the bounce. Thus, the intuition that the bounce is too short for such
long-wavelength modes to be affected has proven correct. Despite the fact that these modes
briefly enter the horizon around the time of the bounce, their amplitude remains essentially
unchanged (magnification would reveal a tiny and utterly negligible enhancement of the
amplitude across the bounce). This constitutes our main finding: non-singular ghost con-
densate/Galileon bounces preserve both the amplitude and spectrum of large-scale curvature
perturbations across the bounce, and hence, if such perturbations are generated during the
contracting phase, they will go through unmodified into the expanding phase of the universe.

It is, however, also of interest to study the behavior of shorter-wavelength modes. For
k = 10−3, 10−4, 10−5 the right-hand panel of figure 4 shows that they leave the horizon just
before the bounce phase. Thus, around that time a classical description is fairly appropriate.
For k = 10−2, a classical description should not be taken seriously. However, we include this
mode nonetheless since its short wavelength renders it susceptible to the gradient instabil-
ity according to the naive estimate above. These short-wavelength modes expose a general
trend: in the approach to the bounce, the mode functions oscillate with a decreasing oscil-
lation period and a growing amplitude. However, near the bounce, where all modes re-enter
the horizon and where one might consequently expect either further oscillations or, due to
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Figure 4. The left-hand panel presents the evolution of the comoving curvature perturbation for
various wavelengths. Long-wavelength modes are preserved essentially unchanged across the bounce,
while short, initially oscillating modes, flatten out near the bounce. The right-hand panel shows both
the horizon size and the physical wavelengths a/k of the various perturbation modes (on a logarithmic
scale) as functions of harmonic time.

the gradient instability, a strong growth, neither occurs. In fact, the curvature perturba-
tions become nearly constant. We will describe and explain this interesting behavior in the
next section.

Our results can be compared with the analysis of Cai et al. [42] (see also [52]). There,
the authors studied an essentially identical model for the bounce,2 but found that even long-
wavelength modes get amplified considerably — by as much as a (wavelength-independent)
factor of 108 according to figure 10 of [42]. This is in contrast to our findings, which indicate
that long-wavelength modes remain essentially unchanged. It is conceivable that the discrep-
ancy is due to the fact that the authors of [42] numerically solve the singular equation (3.1)
for R. We will elaborate on this singularity momentarily. Before doing so, however, let us
also compare our results with those of Xue et al. [27], who performed a non-perturbative
numerical analysis of a bounce model with two scalar fields, with one of the scalars having a
wrong-sign kinetic term. This field leads to a ghost, but classically one can still solve for the
evolution across the bounce. Even though one cannot directly compare our bounce model to
the one considered by Xue et al., it is interesting to note that in [27] it was also found that
curvature perturbations only get amplified by a small amount across the bounce.3

As a check of our numerical investigation, we have verified that the result for the gauge-
invariant variable R is unchanged if different initial values for A, B, ψ and E are used
(keeping in mind that one can set the initial values of A, B, ψ and E to any desired values
using the residual gauge freedom of harmonic gauge discussed in section 3.2) — see figure 5.

2The differences between the two models are that: 1. Cai et al. consider higher-derivative terms with
constant coefficients, while our higher-derivative terms are only turned on near the bounce. 2. Cai et al. have
added a potential, which however does not play an important role near the bounce. In the regime of interest,
i.e. near the bounce, both models are virtually identical.

3Other works of interest related to the question of the propagation of perturbations through a non-singular
bounce include [56–60].
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Figure 5. Evolution of the perturbation variables in harmonic gauge with k = 10−4. The two
colors represent the alternative gauge conditions A(t0) = B(t0) = ψ(t0) = E(t0) = 0 (blue) and
A(t0) = 107, B(t0) = 1010, ψ(t0) = 103, E(t0) = 103 (red). The profile of R(t) (right bottom
panel) coincides in the two gauges, confirming the gauge invariance of (3.16)–(3.20). The detail in
the same plot shows that R evolves regularly across the bounce and, in particular, R′ vanishes when

H+ 1
2g

φ′3

a6 = 0 as discussed in section 4.3.

This also constitutes an explicit check of the gauge invariance of (3.16)–(3.20). Note from
figure 5 that the individual metric perturbation functions have strongly gauge-dependent
behavior, and that their individual evolution tends to be drastically different from that of
the comoving curvature perturbation.

We have solved the perturbation equations using both Mathematica and C++ as pro-
gramming languages. In the latter case, we have implemented the fourth-order Runge-Kutta-
Fehlberg method with a fifth-order error estimator that controls the adaptive stepsize. The
mutual agreement up to high accuracy of these two independent approaches makes us confi-
dent in the reliability of our results.

4.3 Apparent singularities in solving for the curvature perturbation directly

Across the bounce, the gauge choice corresponding to constant mean curvature time slices
does not produce well-behaved equations for linear perturbations. This happens because the
mean curvature is non-monotonic in time, and constant-curvature slices are not necessarily
spacelike in the presence of inhomogeneities. Similar issues occur for many standard gauge
choices [27], and for this reason many gauge choices lead to linearized equations of motion
that become singular close to/at the bounce. By contrast, as we have seen, harmonic gauge
remains well-defined across the bounce. Nevertheless, it is informative to study the behavior
of the equation of motion for R in a little more detail. As already discussed above, in
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conformal time it is given by

d2R
dτ2

+
2

z

dz

dτ

dR
dτ

+ c2sk
2R = 0 , (4.16)

where

z2 =
1

2

a2φ′2P(
H+ 1

2g(φ)φ
′3

a6

)2 , (4.17)

P = P,X − 6g(φ)Hφ
′

a6
+

3

2
g2(φ)

φ′4

a12
+ 2g,φ

φ′2

a6
+ P,XX

φ′2

a6
, (4.18)

c2s =
1

P

(
P,X + 2g(φ)Hφ

′

a6
− 1

2
g2(φ)

φ′4

a12
− 2g(φ)

φ′′

a6

)
. (4.19)

The quadratic action for the perturbations takes the simple form

S2 =

∫
dt
z2

a2

(
1

2
R′2 − 1

2
c2sk

2a4R2

)
. (4.20)

Close to the bounce, there is an apparent singularity as the denominator of z2 goes
through zero. This occurs at the time t = ts (or τ = τs in conformal time) when

H+
1

2
g
φ′3

a6
= 0 ↔ t = ts . (4.21)

In our numerical example, the time ts is essentially identical to the time when H = 0, due to
the small numerical coefficient of the Galileon term — see figure 6. At this “singular time”,
there are two apparent singularities:

• in the equation of motion (4.16), the coefficient of the dR/dτ term diverges. This makes
the perturbation equation singular except if dR/dτ vanishes when z2 diverges.

• In the action (4.20), even supposing that the combination z2R′2 remains finite at t = ts,
the contribution from z2R2 is divergent and non-integrable.

In fact, a closer analysis reveals that both of these divergences are a manifestation of the
ill-defined nature of R as a genuine degree of freedom when t = ts.

First, we show that R′ = 0 at t = ts. Inserting (4.21) in (3.19) we obtain

ψ′ +
H
φ′
δφ′ − 1

2

φ′

a6
(
a6P,X − 3gHφ′ + g,φφ

′2) δφ = 0 , (t = ts) (4.22)

and hence

R′ = ψ′ +
H
φ′
δφ′ +

(
H′

φ′
− Hφ

′′

φ′2

)
δφ

=
1

φ′

(
H′ − Hφ

′′

φ′
+

1

2
P,Xφ

′2 − 3

2
gHφ

′3

a6
+

1

2
g,φ

φ′4

a6

)
δφ , (t = ts) . (4.23)

Summing the two background equations (2.22) and (2.23) one gets

H′ + 1

2
g
φ′3

a6
φ′′

φ′
= −1

2
P,Xφ

′2 + 3H
(
H+ g

φ′3

a6

)
− 1

2
g,φ

φ′4

a6
. (4.24)
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Figure 6. The left panel shows the evolution of the rate of change of the Hubble parameter Ḣ ≡
(da/dtp)/a in physical time — thus, positive Ḣ corresponds to a violation of the NEC, with the origin
of the vertical axis being positioned at the moment of the bounce H = 0. Note that the bounce is
short — its duration is only a couple of time units, with the scale being given by the scale of the
ghost condensate; for a ghost condensate occurring at the GUT scale (e.g. tb = 1/(10−2)4 = 108), this

would correspond to a bounce lasting O
(
t
1/2
b MP

)
= O(104) Planck times. The right panel depicts

H (blue, left curve) and H̃ ≡ H + 1
2gφ̇

3 (pink, right curve), again as functions of physical time.
The moment at which the right curve crosses the horizontal axis corresponds to the singular time ts
defined in eq. (4.21). Note that this time is almost coincident with the moment of the bounce, and
certainly well within the region of NEC violation.

Using (4.21) simplifies this expression at the singular time to

H′ − Hφ
′′

φ′
= −1

2
P,Xφ

′2 +
3

2
gHφ

′3

a6
− 1

2
g,φ

φ′4

a6
, (t = ts) . (4.25)

Hence, the bracket in (4.23) vanishes and so does R′. Let us highlight this result:

R′ = 0 , ∀k , (t = ts) . (4.26)

Thus, we have now discovered a proof that the flattening out of the perturbation modes
near the bounce, observed in the numerical evaluation above, must necessarily occur for all
modes precisely in order to avoid a singular solution of eq. (4.16). Note that this result is
independent of whether or not a gradient instability is present. One can also see this result
by directly considering the general solution (now in conformal time) of (4.16) near τ = τs.
First, note that near the singular time one has

z′

z
∼ − 1

(τ − τs)
, (4.27)

while cs approaches some finite constant c̄s. Equation (4.16) can be re-written as

d

dτ

(
R
dR
dτ

)
=

(
0 1

−c2sk2 −2
z
dz
dτ

)(
R
dR
dτ

)
. (4.28)
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So the system is singular at τ = τs. The general solution of (4.16) near τ = τs is given by

R = α

(
1− 1

2
c̄2sk

2(τ − τs)2 + . . .

)
+ β(τ − τs)3 , (4.29)

where α, β are constants. Thus, once again, we find that R′ = 0 at τ = τs. The singularity
in the equation for R forces this relation to hold. This ensures that, although the equation
is singular, its solution is not.

The result above shows that the combination z2R′2 remains finite as t → ts. So,
what remains to be done is to explain the origin of the divergence of the term z2R2 in the
action (4.20). As we pointed out above, the basic perturbation variables A, B, ψ, E and δφ
evolve smoothly across the bounce. Therefore, since their coefficients in the unconstrained,
non-gauge fixed quadratic action have no divergence, the latter should be perfectly finite
when expressed in the original variables. In order to understand the origin of the divergence,
one must reconsider the derivation of (4.20) in the δφ = 0, E = 0 gauge, which is well-defined
across the bounce (see (3.15)). In this gauge, R ≡ ψ and (3.19) imply that(

H+
1

2
g
φ′3

a6

)
A +R′ = 0 . (4.30)

This constraint equation can be used to replace A in the quadratic action by its expression
in terms of R′ and H̃, where we define

H̃ ≡ H+
1

2
g
φ′3

a6
. (4.31)

A term proportional to R2 is obtained when integrating by parts a term of the form

S2 ∼
∫
dtAψ ∼ −

∫
dt
RR′

H̃
. (4.32)

Notice that this is perfectly finite, since R′ and H̃ vanish simultaneously and at the same
rate. However, when we integrate by parts we obtain

S2 ∼
1

2

∫
dt
H̃′

H̃2
R2 + bulk term . (4.33)

The bulk term is now divergent in the same way as the term we considered initially. However,
this divergence is only the counterpart of the divergent boundary term of the integration by
parts. Analogous potential divergences occur repeatedly in the derivation of the quadratic
action for the comoving curvature perturbation. However, if one carefully keeps all boundary
terms — with the subtlety that the “boundary” here occurs right in the middle of the
dynamical evolution — divergences are avoided.

The discussion in the present section suggests that one can choose any gauge that one
likes to calculate the transfer of perturbations across a bounce, as long as one is careful in
dealing with singularities. However, picking a gauge which is entirely non-singular, such as
the harmonic gauge employed in this paper, is likely to make the calculation much simpler
and clearer.
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5 Discussion

Our results imply that in ekpyrotic/cyclic models of the universe, where the perturbations of
interest are much larger than the horizon size at the onset of the bounce, the perturbations
generated during an ekpyrotic contraction phase carry over unchanged into the expanding
phase. Thus, if nearly scale-invariant curvature perturbations are produced (e.g. via the
entropic mechanism [33, 34]), then they will re-enter the horizon during the expanding phase
with the same amplitude and spectrum that they acquired during contraction. Our results
thus explicitly demonstrate that there exist well-motivated models of non-singular bounces
which allow one to trace cosmological perturbations unambiguously all the way from their
generation during a contracting phase up to the present time.

Our results also have implications for the matter bounce scenario [52]. In this scenario,
during a phase of pressure-free contraction (matter dominated contraction) scale-invariant
scalar and tensor perturbations are generated with comparable amplitudes. Based on our
current results, it seems reasonable to speculate that long-wavelength gravitational waves
also get transferred unchanged through the bounce. In this case, the amplitude of the grav-
itational wave modes emerging in the expanding phase is typically too large compared to
the scalar fluctuations, since a tensor-to-scalar ratio of r & 10 is typically obtained. It was
hoped that the bounce could amplify the scalar perturbations relative to the tensors [52].
However, as we have demonstrated, this is not the case, at least in bounce models of the
ghost condensate/Galileon type. Thus, an interesting question for future research is whether
the scalar fluctuations can be boosted relative to the tensors by some other mechanism.

In our analysis, we discovered a number of interesting aspects in the behavior of short-
wavelength modes, i.e. of modes whose wavelength is comparable or even smaller than the
horizon size at the onset of the bounce. The classical treatment of the present paper is not
fully adequate, however, for such short modes. It would clearly be interesting to perform a
quantum-field-theoretic calculation of the evolution of such short modes in a classical non-
singular bounce spacetime. In particular, one might imagine a scenario where a bounce
is followed by a period of inflation, in which case there may be observable consequences
(see e.g. [61, 62]). We hope to report on such an investigation in the future.
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A Derivation of the linearized equations of motion in harmonic gauge

We consider the following model for the bounce:

L =
√
−g
(
R

2
+ P (X,φ) + g(φ)X �φ

)
, (A.1)

X ≡ −1

2
gµν∂µφ∂νφ . (A.2)
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The Einstein and scalar field equations read (see e.g. [26])

Gµν = Tµν = TPµν + T gµν , (A.3)

EP + Eg = 0 , (A.4)

where

TPµν = P gµν + P,X∂µφ∂νφ , (A.5)

T gµν = −gµν
[
g(φ)∇µφ∇µX − 2g,φX

2
]

+ ∂µφ∂νφ[g(φ)�φ+ 2g,φX]

+ g(φ)∂µφ∂νX + g(φ)∂νφ∂µX , (A.6)

and

EP = −P,XX∇µφ∇νφ∇µ∇νφ− 2XP,Xφ + P,X �φ+ P,φ , (A.7)

Eg = g(φ)
(

(�φ)2 −∇µ∇νφ∇µ∇νφ−Rµν∇µφ∇νφ
)

− 2g,φ∇µφ∇νφ∇µ∇νφ− 2g,φφX
2 . (A.8)

In harmonic coordinates, the metric element and scalar field ansatz we are using are given by

ds2 = −a6(1 + 2A)dt2 + 2a4B,i dtdxi + a2(t)
[

(1− 2ψ) δij + 2E,ij

]
dxidxj , (A.9)

φ = φ(t) + δφ(t, x) . (A.10)

Accordingly, we find the following variations of the components of the Einstein tensor:

δGtt =
2

a6
{

3H
(
ψ′ +HA

)
−∇2

[
a4ψ +H

(
E′ − a2B

)]}
, (A.11)

δGti = − 2

a6
{
ψ′ +HA

}
,i
, (A.12)

δGij = δij

{
2H
a6

A′ +
1

a6
[
4H′ − 6H2 + a4∇2

]
A +

1

a4
∇2B′ + 2

H
a4
∇2B (A.13)

+
2

a6
ψ′′ − 1

a2
∇2ψ − 1

a6
∇2E′′

}
+
δik

a2

{
−A− 1

a2
B′ − 2

H
a2

B +ψ +
1

a4
E′′
}
,kj

,

δR = −6H
a6

A′ +
2

a6
[
−6H′ + 6H2 − a4∇2

]
A− 2

a4
∇2B′ − 6H

a4
∇2B

− 6

a6
ψ′′ − 6H

a6
ψ′ +

4

a2
∇2ψ +

2

a6
∇2E′′ +

2H
a6
∇2E′ , (A.14)

while the perturbed stress-energy tensor is given by

(
δTP

)t
t

=

(
P,Xφ

′2

a6
+ P,XX

φ′4

a12

)
A− 1

a6

(
P,Xφ

′ + P,XX
φ′3

a6

)
δφ′

+
1

a6
(
a6P,φ − P,Xφφ′2

)
δφ , (A.15)(

δTP
)t
i

= −
P,Xφ

′

a6
δφ,i , (A.16)(

δTP
)i
t

=
P,Xφ

′2

a4
δikB,k +

P,Xφ
′

a2
δikδφ,k , (A.17)
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(
δTP

)i
j

= δij

{
−
P,Xφ

′2

a6
A +

P,Xφ
′

a6
δφ′ + P,φδφ

}
. (A.18)

(δT g)tt = −2
φ′3

a12
(
6g(φ)H− g,φφ′

)
A− g(φ)φ′3∇2

a10
B− 3

g(φ)φ′3

a12
ψ′ +

g(φ)φ′3∇2

a12
E′

+
φ′

a12
[
9g(φ)Hφ′ − 2g,φφ

′2] δφ′
+

φ′

a12

[
−g(φ)a4φ′∇2 + 3g,φHφ′2 −

1

2
g,φφφ

′3
]
δφ , (A.19)

(δT g)ti =

{
g(φ)φ′3

a12
A− 1

a12
g(φ)φ′2δφ′ − φ′

a12
[
−3g(φ)Hφ′ + g,φφ

′2] δφ}
,i

, (A.20)

(δT g)it = δik
{
−g(φ)φ′3

a8
A +

φ′2

a10
[
g(φ)

(
φ′′ − 6Hφ′

)
+ g,φφ

′2]B
+

1

a8
g(φ)φ′2δφ′ +

φ′

a8
[
−3g(φ)Hφ′ + g,φφ

′2] δφ}
,k

, (A.21)

(δT g)ij = δij

{
− 1

a12
g(φ)φ′3A′ − φ′2

a12
[
g(φ)

(
−12Hφ′ + 4φ′′

)
+ 2g,φφ

′2]A
+

1

a12
g(φ)φ′2δφ′′ +

φ′

a12

[
g(φ)

(
−9Hφ′ + 2φ′′

)
+ 2g,φφ

′2
]
δφ′

+
φ′

a12

[
g,φφ

′ (−3Hφ′ + φ′′
)

+
1

2
g,φφφ

′3
]
δφ

}
. (A.22)

The linearized scalar field equation follows from the linearized Einstein equations. For com-
pleteness we derive it here:

δE = δEP + δEg , (A.23)

with

δEP =

{
1

a6
P,Xφ

′ +
1

a12
P,XXφ

′3
}
A′ +

{
2

a6
P,Xφ

′′ + P,Xφ
φ′2

a6
+ P,XX

φ′2

a12
[
5φ′′ − 12Hφ′

]
+P,XXφ

φ′4

a12
+ P,XXX

φ′4

a18
[
φ′′ − 3Hφ′

]}
A + P,X

φ′∇2

a4
B + 3P,X

φ′

a6
ψ′ − P,X

φ′∇2

a6
E′

+

{
− 1

a6
P,X −

1

a12
P,XXφ

′2
}
δφ′′ +

{
− 1

a6
P,Xφφ

′ − P,XX
φ′

a12
(
3φ′′ − 9Hφ′

)
− 1

a12
P,XXφφ

′3 − P,XXX
φ′3

a18
(
φ′′ − 3Hφ′

)}
δφ′

+

{
1

a2
P,X∇2 + P,φφ −

P,Xφ
a6

φ′′ − P,Xφφ
φ′2

a6
− P,XXφ

φ′2

a12
[
φ′′ − 3Hφ′

]}
δφ , (A.24)

δEg =
1

a12

{
− 9g(φ)Hφ′2+2g,φφ

′3
}
A′+

1

a12

{
g(φ)φ′

[
−24Hφ′′+72H2φ′−12H′φ′−a4φ′∇2

]
+ 2g,φφ

′2 [4φ′′ − 12Hφ′
]

+ 2g,φφφ
′4
}
A

− 1

a10
g(φ)φ′2∇2B′−g(φ)

φ′

a10
[
2φ′′−Hφ′

]
∇2B− 3

a12
φ′2ψ′′−3g(φ)

φ′

a12
[
2φ′′−3Hφ′

]
ψ′

+
1

a12
g(φ)φ′2∇2E′′ + g(φ)

φ′

a12
[
2φ′′ − 3φ′H

]
∇2E′

+
1

a12

{
6g(φ)Hφ′ − 2g,φφ

′2
}
δφ′′
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+
1

a12

{
2g(φ)

(
3Hφ′′ − 18H2φ′ + 3φ′H′

)
− g,φφ′(4φ′′ − 18Hφ′)− 2g,φφφ

′3
}
δφ′

+
1

a12

{
2g(φ)

[
−a4

(
φ′′ −Hφ′

)
∇2
]
− g,φφ′

[
−6Hφ′′ + 18H2φ′ − 3H′φ′

]
− 2g,φφφ

′2 [φ′′ − 3Hφ′
]
− 1

2
g,φφφφ

′4
}
δφ . (A.25)

Using the results above, one can obtain the linearized field equations:

0 =
a6

2

(
δGt

t − δTt
t

)
:

0 =

(
3H2 − 1

2
P,Xφ

′2 − 1

2
P,XX

φ′4

a6
+ 6g(φ)Hφ

′3

a6
− g,φ

φ′4

a6

)
A− k2

(
a2H+

1

2
g(φ)

φ′3

a4

)
B

+ 3

(
H+

1

2
g(φ)

φ′3

a6

)
ψ′ + k2a4ψ + k2

(
H+

1

2
g(φ)

φ′3

a6

)
E′

+
1

2

(
P,Xφ

′ + P,XX
φ′3

a6
− 9g(φ)Hφ

′2

a6
+ 2g,φ

φ′3

a6

)
δφ′

− 1

2

(
a6P,φ − P,Xφφ′2 + k2g(φ)

φ′2

a2
+ 3g,φH

φ′3

a6
− 1

2
g,φφ

φ′4

a6

)
δφ , (A.26)

0 =−a6

2

(
δGt

i − δTt
i

)
:

0 =

(
H+

1

2
g(φ)

φ′3

a6

)
A+ψ′− 1

2
g(φ)

φ′2

a6
δφ′− 1

2

φ′

a6
(
a6P,X − 3g(φ)Hφ′ + g,φφ

′2) δφ , (A.27)

0 =a6
(
δGi

j − δTi
j

)T
:

0 =

(
2H+g(φ)

φ′3

a6

)
A′+

[
4H′−6H2−k2a4+P,Xφ

′2+
φ′2

a6
(
g(φ)(−12Hφ′+4φ′′)+2g,φφ

′2)]A
− k2a2B′ − 2k2a2HB + 2ψ′′ + k2a4ψ + k2E′′ − g(φ)

φ′2

a6
δφ′′

−
(
P,Xφ

′ + g(φ)
φ′

a6
(
−9Hφ′ + 2φ′′

)
+ 2g,φ

φ′3

a6

)
δφ′

−
(
a6P,φ + g,φ

φ′2

a6
(
−3Hφ′ + φ′′

)
+

1

2
g,φφ

φ′4

a6

)
δφ . (A.28)

0 =a2
(
δGi

j − δTi
j

)k
:

0 = −A− 1

a2
B′ − 2

H
a2

B +ψ +
1

a4
E′′ . (A.29)

These equations may be simplified. First, (A.29) reduces (A.28) to

0 =

(
2H+ g(φ)

φ′3

a6

)
A′ +

[
4H′ − 6H2 + P,Xφ

′2 +
φ′2

a6
(
g(φ)(−12Hφ′ + 4φ′′) + 2g,φφ

′2)]A
+ 2ψ′′ − g(φ)

φ′2

a6
δφ′′ −

(
P,Xφ

′ + g(φ)
φ′

a6
(
−9Hφ′ + 2φ′′

)
+ 2g,φ

φ′3

a6

)
δφ′

−
(
a6P,φ + g,φ

φ′2

a6
(
−3Hφ′ + φ′′

)
+

1

2
g,φφ

φ′4

a6

)
δφ . (A.30)
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Next we combine (2.22) and (2.23) to get

−H′ + 3H2 =
1

2
P,Xφ

′2 − 3
gHφ′3

a6
+

1

2

g,φφ
′4

a6
+

1

2

gφ′2φ′′

a6
. (A.31)

We can insert (A.31) into (A.30) and obtain

0 =

(
2H+ g(φ)

φ′3

a6

)
A′ +

[
2H′ + φ′2

a6
(
g(φ)(−6Hφ′ + 3φ′′) + g,φφ

′2) ]A
+ 2ψ′′ − g(φ)

φ′2

a6
δφ′′ −

(
P,Xφ

′ + g(φ)
φ′

a6
(
−9Hφ′ + 2φ′′

)
+ 2g,φ

φ′3

a6

)
δφ′

−
(
a6P,φ + g,φ

φ′2

a6
(
−3Hφ′ + φ′′

)
+

1

2
g,φφ

φ′4

a6

)
δφ . (A.32)

If we now take the derivative of (A.27) and replace in this derivative expression the
background equation (2.24), we directly obtain (A.32), hence this equation is redundant.
In (A.26), we can also use (A.31) to eliminate the H2 term. The gauge conditions (3.16)
and (3.17) become dynamical equations for A and B. Eqn (3.16) can be used to reduce (A.29).
Then we are left with the set of equations (3.16)–(3.20) that are used in the main part of
the text. These equations are sufficient to determine the evolution of perturbations in the
harmonic gauge.

For completeness, we note that the linearized scalar field equation (which is not inde-
pendent, as it can be derived from the linearized Einstein equations) can be simplified by
using (3.20) to replace the E′′ term, (3.16) to replace the gHφ′2ψ′ term and then (3.17).
Then we obtain

0 =
(
P,XXφ

′3−12g(φ)Hφ′2+2g,φφ
′3)A′ + [2a6P,Xφ′′ + P,Xφa

6φ′2 + P,XXφ
′2 (5φ′′ − 12Hφ′

)
+ P,XXφφ

′4 + P,XXX
φ′4

a6
(
φ′′ − 3Hφ′

)
+ g(φ)φ′(−24Hφ′′ + 72H2φ′ − 12H′φ′)

+ 8g,φφ
′2 (φ′′ − 3Hφ′

)
+ 2g,φφφ

′4
]
A + gk2a4φ′2ψ + 2g(φ)k2a2φ′φ′′B− 3g(φ)φ′2ψ′′

− 6g(φ)φ′φ′′ψ′ − 2g(φ)k2φ′φ′′E′ +
(
−a6P,X − P,XXφ′2 + 6g(φ)Hφ′ − 2g,φφ

′2) δφ′′
+
[
− a6P,Xφφ′ − P,XXφ′

(
3φ′′ − 9Hφ′

)
− P,XXφφ′3 − P,XXX

φ′3

a6
(
φ′′ − 3Hφ′

)
+ 2g(φ)

(
3Hφ′′ − 18H2φ′ + 3φ′H′

)
− g,φφ′(4φ′′ − 18Hφ′)− 2g,φφφ

′3
]
δφ′

+
[
− a10k2P,X + a12P,φφ − a6P,Xφφ′′ − a6P,Xφφφ′2 − P,XXφφ′2(φ′′ − 3Hφ′)

+ 2k2a4g(φ)(φ′′ −Hφ′)− g,φφ′(−6Hφ′′ + 18H2φ′ − 3H′φ′)

− 2g,φφφ
′2(φ′′ − 3Hφ′)− 1

2
g,φφφφ

′4
]
δφ . (A.33)
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