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Abstract

In this thesis we have extended the methods for microscopic charge-transport simulations
for organic semiconductors, where weak intermolecular interactions lead to spatially lo-
calized charge carriers, and the charge transport occurs as an activated hopping process
between diabatic states. In addition to weak electronic couplings between these states,
different electrostatic environments in the organic material lead to a broadening of the
density of states for the charge energies which limits carrier mobilities.

The contributions to the method development include (i) the derivation of a bimolecular
charge-transfer rate, (ii) the efficient evaluation of intermolecular (outer-sphere) reorganiza-
tion energies, (iii) the investigation of effects of conformational disorder on intramolecular
reorganization energies or internal site energies and (iv) the inclusion of self-consistent
polarization interactions for calculation of charge energies.

These methods were applied to study charge transport in amorphous phases of small
molecules used in the emission layer of organic light emitting diodes (OLED). When bulky
substituents are attached to an aromatic core in order to adjust energy levels or prevent
crystallization, a small amount of delocalization of the frontier orbital to the substituents
can increase electronic couplings between neighboring molecules. This leads to improved
charge-transfer rates and, hence, larger charge-mobility. We therefore suggest using the
mesomeric effect (as opposed to the inductive effect) when attaching substituents to aro-
matic cores, which is necessary for example in deep blue OLEDs, where the energy levels
of a host molecule have to be adjusted to those of the emitter. Furthermore, the energy
landscape for charges in an amorphous phase cannot be predicted by mesoscopic models
because they approximate the realistic morphology by a lattice and represent molecular
charge distributions in a multipole expansion. The microscopic approach shows that a
polarization-induced stabilization of a molecule in its charged and neutral states can lead
to large shifts, broadening, and traps in the distribution of charge energies. These results
are especially important for multi-component systems (the emission layer of an OLED
or the donor-acceptor interface of an organic solar cell), if the change in polarizability
upon charging (or excitation in case of energy transport) is different for the components.
Thus, the polarizability change upon charging or excitation should be added to the set of
molecular parameters essential for understanding charge and energy transport in organic
semiconductors.

We also studied charge transport in self-assembled systems, where intermolecular pack-
ing motives induced by side chains can increase electronic couplings between molecules.
This leads to larger charge mobility, which is essential for devices such as organic field effect
transistors. However, it is not sufficient to match the average local molecular order induced
by the side chains with maxima of the electronic couplings. It is also important to make
the corresponding distributions, e.g. of the pitch angle between consecutive molecules, as
narrow as possible compared to the window determined by the closest minima of the elec-
tronic couplings. The immediate implication for compound design is that the side chains
should assist the self-assembling process not only via “soft” entropic interactions, but also
via stronger specific interactions, such as hydrogen bonding.
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Chapter 1

Introduction

After the discovery of electrical charge-carrier transport in conjugated polymers in 1977
by Heeger, MacDiarmid, and Shirakawa [1], who were awarded the Nobel Prize in chem-
istry 2000, the field of organic electronics has significantly expanded which was a result
of combined efforts of several scientific communities. Synthetic chemists have identi-
fied classes of promising compounds, ranging from small conjugated molecules to self-
assembling oligomers and conjugated polymers and developed new synthetic routes, im-
proving both stability and processability of the materials [2–8]. At the same time, material
processing, such as doping, annealing, use of a secondary solvent and composition tuning,
has been adjusted to the demands of the field [9–14]. Furthermore, device efficiencies could
be increased, e.g. by optimizing light in- and out-coupling and introducing tandem con-
cepts [15, 16]. The power-conversion efficiency of organic solar cells, for example, increased
by one order of magnitude between its first demonstration in 1986 [17] to above 10%
achieved in 2012 by the company Heliatek using vacuum-deposited small molecules [18].

The fundamental difference between organic semiconductors and their inorganic coun-
terparts lies in the nature of the bonding. While materials such as Si or GaAs are covalently
bonded, organic molecules interact via much weaker Coulomb and Van der Waals forces.
As a consequence, the electronic states available for charge carriers are spatially localized
on the molecules which is in contrast to the situation in traditional inorganic semicon-
ductors where the electronic states are delocalized (but since the valence and conduction
band are energetically separated, the conductivity is low compared to conductors). Due
to the localization, sufficient electronic coupling between and in the organic molecules is
necessary to allow for charge transport. This can be achieved in compounds that consist
of π-systems formed by the pz orbitals of sp2-hybridized C-atoms (that can be combined,
e.g. with electron donating S-atoms) allowing for overlap of the frontier orbitals at van der
Waals distances.

In organic semiconductors, charge transport can be described as a thermally activated
hopping process triggered by nuclear motion that occurs between initial and final diabatic
states. These states correspond to the charge being localized on the donor in the initial
state (while the acceptor is neutral), and vice versa for the final state. In other words, the
time for the electronic wave function to move from donor to acceptor, τel = h̄/J , that can
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2 CHAPTER 1. INTRODUCTION

be estimated from the electronic coupling J and the reduced Planck’s constant h̄, is much
larger compared to the time for nuclear motion of the promoting mode τnuc = 2π/ωvib [19].
The criterion for this nonadiabatic electron transport, τel ≫ τnuc, is fulfilled for most
organic semiconductors since the promoting mode is typically given by C-C stretching
modes with vibrational energy h̄ωvib = 0.2 eV [20], while electronic couplings between the
localized states are of the order of J < 0.01 eV in the amorphous phase. Therefore, the
charge transport rate can be obtained from first order perturbation theory with respect to
J using Fermi’s golden rule, where the unperturbed states are given by the diabatic states.
An exception to this situation can occur in highly ordered molecular crystals, where strong
electronic couplings of up to J = 0.2 eV can be achieved and the picture of diabatic states
is not valid anymore.

Another important aspect of charge transport in organic semiconductors arises from the
fact that different electrostatic environments of individual molecules lead to a broadening
of the density of states for the charge energies. These site energies can be approximated
by a Gaussian distribution characterized by the width σ̄ (energetic disorder) of typically
0.1 eV [21, 22]. The energetic disorder limits the charge-carrier mobility µ and also leads
to a field dependence so that in organic semiconductors µ ∼ exp{− [σ̄/(kBT )]2 + β

√
F},

where kBT is the thermal energy, F is the applied electric field and β is known as the Poole-
Frenkel slope [23]. This is in contrast to band-like charge transport that occurs in inorganic
semiconductors (J = 10 eV), where the mobility is independent of the electric field and
decreases with temperature due to phonon scattering following a power law µ ∼ T−n

with n = 1...3. However, at room temperature band transport in inorganic semiconductors
allows for high mobilities, e.g. in the crystalline phase µ = 103 cm2/(Vs) and in amorphous
hydrogenated Si µ = 1 cm2/(Vs). In contrast to this, the weak electronic coupling and
the large energetic disorder in organic semiconductors lead to considerably lower charge-
carrier mobility in amorphous phases where µ < 10−4 cm2/(Vs), while values up to µ =
10 cm2/(Vs) have been achieved in organic molecular crystals [24].

Also the band gap in organic semiconductors is rather large (typically Eg = 2.5 eV
while in Si Eg = 1.1 eV) which results in very low intrinsic charge-carrier density n ∼
exp [−Eg/(2kBT )]. The carrier density can be increased by (electro-)chemical doping,
injection from (metallic) electrodes, photo-generation or by field-effect doping. In com-
bination with the low mobility, the low carrier density leads to weak electrical currents
j = enµF for experimentally accessible electric fields (e is the elementary charge).

The advantage of organic compounds lies in the variety of materials ranging from small
conjugated molecules to long polymers. This results in different optical and mechanical
properties, such as chemically tunable emission and absorption (typically in the visible
range of the spectrum), flexibility (polymers) and low melting point (amorphous phases),
but also allows for different processing techniques. On the one hand, molecules with
sufficiently low molecular weight can be vapor-deposited from the gas phase or grown
in single crystals. On the other hand, materials with larger molecular weight, such as
polymers or aromatic molecules with long side-chains, can be processed from solution.
Typical techniques are spin-coating followed by evaporation of the solvent and scalable
inkjet printing methods.
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Possible applications of organic materials range from low-cost printed organic field
effect transistors (OFET) to transparent light-weight organic photovoltaic cells (OPVC)
and organic light emitting diodes (OLED) for use in large area light sources and flexible and
efficient displays with high color quality. OFETs are three-terminal devices in which a gate
voltage applied across a thin dielectric controls the charge carrier density and thereby also
the electrical current flowing in an organic semiconducting channel between source and
drain contact [25]. The current performance of OFETs is limited by insufficient carrier
mobilities, allowing only low switching frequencies [26].

In OPVC incoming light is converted into electrical energy, with the main problem
being the large exciton binding energy that originates from a low dielectric constant and
the strong localization of the excitons on single molecules. Charge separation can be
facilitated at a suitable donor-acceptor interface [27], but a high charge-carrier mobility
is essential to allow for efficient transport of charges to the electrodes while minimizing
recombination losses.

In OLEDs, the reverse process takes place and electrical energy is converted into light.
Here, one of the main open issues is the insufficient stability [28] of OLEDs based on deep
blue emitters [29, 30]. Several life-time limiting processes can occur during its operation:
if the injection of electrons and holes into the emission layer is unbalanced or if their mo-
bilities differ by several orders of magnitude, their recombination takes place in a narrow
emission zone and molecules become exposed to high energetic stress which leads to their
degradation. Also crystallization has to be prevented which would otherwise lead to for-
mation of strong current filaments along pathways with strongest electronic coupling and
molecules become exposed to high electric stress. In addition, all types of organic devices
have to be protected by encapsulation against penetration of water or oxygen, which could
act as energetic traps for charge-carriers. Thus, improving the performance of OFETs,
OPVC and OLEDs is tightly linked to understanding of elementary charge-transfer and
-transport processes occurring in these devices.

Computer simulations and modeling contributed substantially to the understanding of
the basic physical processes in organic semiconductors [20, 31–33]. In particular, lattice
models have been successful in rationalizing the influence of finite charge-carrier concentra-
tion [34, 35], explicit Coulomb interactions [36] and the shape of the density of states [37, 38]
on charge transport. The drawback of these mesoscopic lattice models is that they must
be parametrized on experimental data and thus do not provide a direct link to underlying
chemical structures. Therefore, they cannot aid compound screening, which is becom-
ing more and more important in view of the large number of organic compounds with
semiconducting properties [39].

The goal of this thesis lies in the development and application of an alternative, mi-
croscopic description of charge transport, the main ingredients of which are illustrated in
fig. 1.1. To begin with, every molecule has its own unique environment created by its
neighbors, with local electric fields leading to level shifts, broadening, and spatial correla-
tions of charge energies. Accounting for such effects requires the knowledge of the material
morphology at an atomic resolution which is obtained by refining force fields that are used
in molecular dynamics simulations. Furthermore, typical time scales of dynamic processes,
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Figure 1.1. Essential ingredients of microscopic charge-transport simulations in organic semi-
conductors shown for the Alq3 molecule. (a) Atomistic force fields are refined using electronic
structure techniques. (b) Classical Molecular dynamics simulations allow to predict the mor-
phology at an atomistic level of resolution. (c) Electronic coupling elements between localized
states are evaluated using quantum-chemical approaches. (d) Site energies due to electrostatics
and polarization are computed using polarizable force field. (e) A directed graph is constructed
from charge-transfer rates. (f) Solution of the corresponding master equation allows to visualize
microscopic charge currents.

such as charge and energy transfer, span several orders of magnitude. Hence, treatment
of the charge motion cannot be achieved with numerical methods using a fixed time step.
Instead, a description based on transition rates between localized states, supplemented
by charge-transfer theories, is employed. All the ingredients entering the rate expression
such as site energies of the localized states and electronic coupling elements between them
are calculated using quantum-chemical approaches, classical simulation methods, or their
combination. With the rates at hand, one can study charge transport by solving the corre-
sponding differential master equation, e.g. by using the kinetic Monte Carlo method which
is capable of simulating charge dynamics of non-steady-state systems. Analyzing charge
dynamics thus provides understanding of microscopic processes and helps to formulate
chemical design rules.

This thesis is structured as follows: in ch. 2 we describe the workflow of microscopic
charge-transport simulations and explain basic concepts behind each method. As an il-
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lustration, we study charge transport in an amorphous phase of small molecules which is
used as the electron-transporting layer and as the matrix material for the emission layer
of a blue OLED. We then apply this microscopic approach in ch. 3 to investigate charge
transport in unimolecular and multi-component amorphous phases of small molecules in
order to understand physical processes occurring in organic devices based on these systems
such as OLEDs and OPVCs. Here, we address the question of how to design a charge-
transport efficient host molecule for the emission layer of a deep blue OLED. By analyzing
the electronic structure of the frontier orbitals, we show that small delocalization effects
lead to large electronic coupling elements and hence improved mobility. In the second part
we study charge transport in a host-guest system typically used in the emission layer of a
deep blue OLED. We explicitly show that lattice models cannot predict charge transport
in these systems because of simplifications used to account for polarization effects in calcu-
lation of charge energies. The microscopic approach shows, that the energy landscape for
charge transport is very different if these polarization effects are considered on an atomistic
scale. In ch. 4 we then discuss one-dimensional charge transport in self-assembled systems
which are used for example as molecular wires in OFETs. There, we address the question
of how intermolecular packing motives induced by the side chains attached to discotic aro-
matic cores can increase the charge mobility. We conclude the thesis with a summary and
an outlook in ch. 5 describing the challenges for the field.
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Chapter 2

Microscopic charge-transport
simulations

Compound design of organic semiconductors requires in-depth understanding of elementary
processes occurring in these materials [40]. In particular, linking the chemical structure to
charge dynamics is a non-trivial task, since several factors determine macroscopic quantities
such as the charge-carrier mobility: the molecular electronic structure, the relative positions
and orientations of neighboring molecules, and spatial inhomogeneities in the morphology,
which limit charge carrier pathways on a macroscopic scale [41].

Furthermore, the choice of the model Hamiltonian depends on the specific situation [42],
e.g. for perfectly ordered defect-free crystals at low temperatures the Drude model based
on band theory [43] or its extensions which account for local electron-phonon coupling [44–
46] are often used. At ambient conditions, however, the thermal fluctuations of the transfer
integral (electronic coupling) are of the same order of magnitude as its average value and
charge transport should be treated as diffusion limited by thermal disorder. This can be
achieved using semi-classical dynamics based on a Hamiltonian with interacting electronic
and nuclear degrees of freedom [33, 47, 48]. If nuclear dynamics is much slower than
the dynamics of charge carriers and electronic coupling is weak, charge transport can
be described by a Hamiltonian with static disorder, based on simple assumptions on the
electronic density of states and on the hopping rates between localized states.

The latter approach is by now routinely used to study charge transport in amorphous
and partially disordered organic semiconductors [31, 49–62] and will also be followed in this
thesis. Its key ingredients are material morphology and charge transfer (hopping) rates.
The rates depend not only on the molecular electronic structure but are also sensitive
to the relative positions and orientations of molecules. Hence, in order to evaluate the
rates, the material morphology must be known at an atomistic resolution. This can be
achieved by performing molecular dynamics simulations and thus relies on the force-field
development for new compounds. If the required time- and length-scales exceed the range
available to atomistic molecular dynamics, coarse-graining techniques can be used [63].
These techniques need to be capable of back-mapping the coarse-grained representation to
an atomistic resolution.

7
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Figure 2.1. Workflow for microscopic simulations of charge transport. Ground state geometries,
partial charges, and a refined force field are used to simulate atomistically-resolved morphologies
(sec. 2.2). After partitioning on conjugated segments and rigid fragments (sec 2.3) a list of pairs
of molecules (neighborlist) is constructed. For all pairs Marcus type hopping rates (sec. 2.4)
are calculated based on transfer integrals (sec. 2.5), reorganization (sec 2.6) and site energies
(sec. 2.7). Eventually, a directed graph is generated and the corresponding master equation is
solved using the kinetic Monte Carlo method (sec. 2.8).

Altogether, the task of charge transport characterization is rather tedious and time-
consuming to perform, even for a single compound. This is why we have introduced a
software package votca-ctp (see www.votca.org [64]) which implements a set of techniques
for charge-transport simulations, as well as provides a flexible modular platform for their
further development. The aim of this chapter is to introduce the fundamental concepts of
microscopic charge-transport simulations.

2.1 Workflow for charge-transport simulations

The workflow for microscopic charge-transport simulations is depicted in fig. 2.1. The first
step is the generation of an atomistic morphology (sec. 2.2) that is partitioned on rigid
fragments and conjugated segments representing diabatic states (sec. 2.3). The coordi-
nates of the conjugated segments are used to construct a list of pairs (neighborlist), which
reduces the number of charge-transfer rates that have to be calculated. After choosing an
expression for the charge transfer rate (sec. 2.4), the involved transport parameters such as
transfer integrals (sec. 2.5), reorganization energies (sec. 2.6), and site energies (sec. 2.7)
are computed. The neighborlist and charge transfer rates define a directed graph and the
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corresponding master equation is solved using the kinetic Monte Carlo method (sec. 2.8).
This allows to explicitly monitor the charge dynamics in the system as well as to calculate
time- or ensemble averages of occupation probabilities, charge fluxes, and field-dependent
mobilities (sec. 2.9).

My personal contributions to the method development lie in the derivation and com-
parison of rate expressions, the evaluation of inter-molecular reorganization energies, the
introduction of conformational disorder in intramolecular reorganization energies and site
energies and the inclusion of self-consistent polarization interactions for site energies.

In this chapter, each method is illustrated by studying charge transport in amorphous
2,8-bis(triphenylsilyl)dibenzofurane (BTDF) whose structure is shown in fig. 2.2. This
material is used as a matrix material doped with a triplet emitter in the emission layer
of a blue organic light emitting diode. A more detailed study of charge transport in pure
BTDF and in the mixture with an emitter is presented in ch. 3.

2.2 Material morphology

There is no generic recipe on how to predict a large-scale atomistically-resolved morphol-
ogy of an organic semiconductor. The required methods are system-specific: for ultra-pure
crystals, for example, density-functional methods can be used provided the crystal struc-
ture is known from experiment. For partially disordered organic semiconductors, however,
system sizes much larger than a unit cell are required. Classical molecular dynamics [65]
or Monte Carlo techniques [52] are then the methods of choice. Self-assembling materials,
such as soluble oligomers, discotic liquid crystals (that we will discuss in ch. 4), block
copolymers, partially crystalline polymers, etc., are the most complicated to study. The
morphology of such systems often has several characteristic length scales and can be ki-
netically arrested in a thermodynamically non-equilibrium state. For such systems, the
time- and length-scales of atomistic simulations might be insufficient to equilibrate or sam-
ple desired morphologies. In this case, systematic coarse-graining can be used to enhance
sampling [63]. Note that the coarse-grained representation must reflect the structure of
the atomistic system and allow for back-mapping to the atomistic resolution.

In molecular dynamics, Newton’s equations of motion, mi
d2r⃗i

dt2
= F⃗i, are integrated for

atoms i that are represented by point masses, mi. These interact via forces, F⃗i = −∇⃗Vi,
deduced from empirical potentials Vi that are prescribed by a force field. Force fields are
parametrized for a limited set of compounds and their refinement is often required for
new molecules. In particular, special attention shall be paid to torsion potentials between
successive repeat units of conjugated polymers or between functional groups and the π-
conjugated system. First-principles methods can be used to characterize the missing terms
of the potential energy surface. The parametrization must take into account existing force
field contributions, e.g. due to non-bonded interactions and coupled degrees of freedom
should be obtained by using a multidimensional fit. Note that force field validation is as
important as its refinement. For instance, X-ray scattering and solid-state NMR provide
information about averaged molecular arrangements to which simulation results can be
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Figure 2.2. Chemical structure and atom labels of 2,8-bis(triphenylsilyl)dibenzofurane (BTDF),
which is used as the matrix material in the emission layer of blue OLEDs. Unknown degrees of
freedom are labeled α, β, γ, δ and require definition of atom-types Ca1 to Cc4.

compared. In case of an amorphous morphology, thermodynamic quantities, e.g. density
or glass transition temperature can be compared to experiments.

Since we make use of density functional theory not only force field refinement but also
for computation of electronic coupling elements, we first introduce the basic concepts ot
this electronic structure method.

As an example for force field refinement, we then describe the OPLS force field for
BTDF, whose chemical structure is shown in fig. 2.2 together with the degrees of freedom
with unknown potential energy surfaces. After force field re-parametrization we will de-
scribe the procedure used to generate an amorphous mesophase of BTDF, which is used
as the electron transporting layer in an OLED.

2.2.1 Density functional theory

According to the fundamental theorems of density functional theory (DFT), the energy of
the electronic ground state E[n] of a many-electron system can exactly be determined as a
functional of the electron density n(r⃗). Expressing this density in terms of single-particle
wave functions, n(r⃗) =

∑N
i |ϕi(r⃗)|2, with N being the number of electrons, allows to derive

a set of effective non-interacting single-particle equations (Kohn-Sham) equations. This
can be done by means of a variation of E[n] with respect to the density under the condition
that the single-particle functions are orthonormal. The resulting single-particle potential
comprises the external potential, e.g. the potential of the nuclei, the Coulomb potential of
the electron density (Hartree potential), and the exchange-correlation (XC) potential that
contains all quantum many-body interactions of electrons. While this representation is
formally exact, the exact expression of the exchange-correlation energy functional and the
derived potential is unknown except for the case of the free electron gas. Local and semi-
local functionals approximate the XC terms via a parametrization of the free electron gas
result for the local density and its gradient. A common problem of the available functionals
is the fact that the self-interaction of the electrons in the Hartree term is (unlike in Hartree-
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Fock theory) not compensated by the exchange-correlation energy or potential. As a
consequence of this self-interaction error, the effective potential acting on a single electron
is too repulsive and in particular lacks the correct long-range Coulomb behavior, leading
to typical errors such as a over-delocalization of electrons and an overestimation of total
energies. A general quantification of this error is not possible since it sensitively depends
on the characteristics of the electron density, e.g., the error is stronger the more localized
a charge is. Note that the analysis of fundamental aspects of DFT and concomitant
development of improved self-interaction-free exchange-correlation functionals is a research
field on its own.

So called hybrid functionals mix fractions of exact Hartree-Fock exchange and semi-
local exchange-correlation to reduce the spurious self-interaction. While the error is not
eliminated, these hybrids are found to perform well for organic molecules. Specifically, in
our calculations we have used the B3LYP functional, parametrized on a set of atomization
energies, ionization potentials, proton affinities, and total atomic energies, for the force
field refinement.

In addition to these intrinsic problems of using approximate functionals, another source
of error can be attributed to the practical implementation of DFT. Since the effective
potential depends on the electron density n(r⃗), the latter has to be found selfconsistently
via the solution of the single-particle Kohn-Sham equations. Therein, the single-particle
functions are expanded in a set of appropriate basis functions, the so-called basis set,
i.e. ϕi(r⃗) =

∑
j cijηj(r⃗). Typically, this basis set consists of atom-centered Gaussian

functions of different symmetry (with angular momentum of l = s, p, d, . . . ) and different
spatial localization defined by a decay constant. The more complete this basis set is,
the more accurate is the obtained result as a consequence of the variational principle. In
practice, in our calculation we have used the 6-311g(p,d) basis set, in which each angular
momentum channel of the core electrons (e.g. 1s for carbon; 1s, 2s, and 2px,y,z for silicon)
is represented by a linear combination of 6 primitive Gaussian functions (also referred to
as one 6-fold contracted function). Each valence electron channel is described by three
basis functions (the first being a 3-fold contracted function, while the other two are just
primitive Gaussians). Such a basis set is also called split valence triple zeta basis (TZV).
Additional polarization functions of higher higher angular momentum l = p, d) are added
to this set of functions. It has to be made sure that (relative) energies are converged within
numerical accuracy with respect to the choice of the basis set.

2.2.2 The force field

In classical molecular dynamics, the quantum picture of overlapping electron clouds is
transformed into a system of point masses centered at the atoms which interact via effective
potentials. Functional forms and parameters for these potentials are summarized in force
fields that have to be found by adapting their results to information from quantum chem-
ical calculations, thermodynamic and spectroscopic experimental data or measurement of
transport properties. The interactions between atoms can be separated into bonded and
non-bonded contributions depending on chemical connectivity. The term bonded refers to
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interactions between atoms that are covalently bonded (or linked to one another by one
or two bonds) so that these interactions have to be described quantum chemically through
effective potentials. The term non-bonded refers to interactions between atoms that are
separated by more than a few bonds which allows to model these interactions classically by
electrostatic and Lennard-Jones interactions. In the OPLS force field, non-bonded inter-
actions are taken into account between atoms that are separated by more than two bonds
and in case of exactly three bonds they are reduced by the factor 1/2 in order to prevent
intramolecular strain.

Non-bonded interactions

In order to include electrostatic interactions by a classical Coulomb sum, the molecular
charge distribution is represented by atomistic electrostatic partial charges (ESP). To find
these partial charges, the molecular geometry is optimized to find their positions using
quantum chemical methods.

The ESP charges are then obtained by fitting the resulting electrostatic potential to
the potential arising from the electron density using the Merz-Kollman method [66, 67].
For BTDF the ESP charges are then symmetrized in order to have six identical phenyl
rings and a C2v symmetric core without changing the molecular dipole moment of 0.8 D
which is directed from the negatively charged oxygen to the center of the furan core.

Apart from electrostatic interactions, the repulsive interaction arising for very short
distances between atoms (Pauli repulsion due to overlapping electron orbitals) and the at-
tractive dispersion force due to induced dipoles is modeled by the Lennard-Jones potential.
For atom-types a and b separated by a distance rab this interaction is given by

V (rab) = 4ϵab

[(
σab

rab

)12

−
(
σab

rab

)6
]
. (2.1)

Lennard-Jones parameters ϵa, σa for atoms of BTDF are taken from the OPLS [68] force
field, parameters for silicon and constituents of furane are taken from [69, 70] and Lorentz-
Bertelot combination rules, ϵab = (ϵaϵb)

1/2 and σab = 1
2
(σa + σb), are used to describe

interactions of different atom-types.

Bonded interactions

Most bonded interactions are taken from the OPLS [68] force field. Two angular potentials
(α, β) and two dihedral potentials (γ, δ), introduced in fig. 2.2, are not parametrized in
this force field. Their parametrization was performed by doing first principles scans of
the corresponding degrees of freedom and then matching the first-principle and force-field
potential energy surfaces. We have used density-functional theory (DFT) with the B3LYP
hybrid functional and the 6-311g(p,d) basis set for the first-principle calculations. Note
that the parametrization takes into account the existing force field contributions, e.g. due
to non-bonded interactions [71, 72]. If q is the degree of freedom of interest, constrained
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Figure 2.3. Force-field scans for the degrees of freedom introduced in fig. 2.2. First-principles
scans, UDFT, and final and initial force field scans, UFF, are shown and at room temperature
2.479kJ mol−1 = kB300◦K. The resulting force field parameters are given in tab. 2.1.
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angle atom labels θ0 (deg) k (kJ mol−1 rad−2)
α C-Si-C 109.5 415
β C-C-Si 120 236
γ Ca1-Cc1-Cb1-Si 0 305
γ Ca2-Cc2-Cb2-Si 0 305
γ Ca3-Cc3-Cb3-Si 0 305

angle atom labels C1 C2 C3

δ Cb1-Ca1-Si-Ca2 0.13 -0.04 0.13
δ Cb2-Ca2-Si-Ca3 0.13 -0.04 0.13
δ Cb3-Ca3-Si-Ca4 0.13 -0.04 0.13
δ Cb4-Ca4-Si-Ca1 0.13 -0.04 0.13

Table 2.1. Parameters for bonded interactions from scans of the potential energy surfaces. Atom
labeling is shown in fig. 2.2. Angles α, β, γ have a quadratical form as shown in eq. 2.2 while
the coupled angles δ are parametrized according to eq. 2.3. Coefficients Cn are given in kJ mol−1

(2.479kJmol−1 = kB300◦K).

geometry optimizations are performed using both first-principles and the force-field levels,
yielding the total energies UDFT(q) and U initial

FF (q), respectively. The missing force field terms
are then fitted to this difference using a prescribed functional form. Finally, the constrained
geometry optimizations are repeated on the force field level including the obtained potential
and Ufinal

FF (q) is compared to the first-principles scan.
The potentials corresponding to the angles α, β and the dihedral angle γ are fitted

using a quadratic form

V (θ) =
1

2
k(θ − θ0)

2 for θ = α, β, γ , (2.2)

where we have fixed the equilibrium angles to (α0, β0, γ0) = (109.5◦, 120◦, 0◦) for symmetry
reasons (the same potentials are applied at the four phenyl rings attached to the Si-atom).
For the potential corresponding to the dihedral angle δ we used a periodic functional form

V (δ) =
3∑

n=1

Cn cos(3nδ) . (2.3)

Here, a multidimensional fit is performed for all eight dihedrals δ since they are not in-
dependent. All fits are shown in fig. 2.3 and the resulting parameters are summarized in
tab. 2.1.

2.2.3 Molecular dynamics

With the force field at hand, we can generate amorphous mesophases for BTDF. First,
512 BTDF molecules are randomly arranged in a simulation box using the PACKMOL



2.2. MATERIAL MORPHOLOGY 15

500

520

540

560

580

600

250 300 350 400 450 500 550

V
(n

m
3
)

T (K)

89

91

93

340 360 380

d
(n

m
)

MD
Fit T < Tg

Fit T > Tg

exp

(b)(a)

Figure 2.4. (a) Periodic simulation box containing 100 BTDF molecules. (b) Simulation of
the glass transition in a system of 512 molecules where each data point is taken from a 2 ns MD
simulation. Inset shows experimental thickness-temperature dependence for heating and cooling.
An estimate for the glass transition temperature is indicated by the arrows.

package [73]. We then anneal the system in an NPT ensemble for 2 ns at 700 K (above the
glass transition), until the equilibrium density of a liquid phase of BTDF is reached and
molecules become spatially and orientationally uncorrelated, i.e. molecules have moved
more than their diameter and the orientational correlation function has decayed to zero.
The system is then quenched to room temperature in a time interval of 1 ns and equi-
librated for another 0.5 ns before we start the final production with duration of 0.5 ns.
This production run is used for the analysis of conformational disorder (see sec. 2.2.4).
Charge-transport simulations are based on the morphology from one snapshot of the pro-
duction run. All simulations are performed using the GROMACS package with a time
step of 0.002 ps with constrained bonds using stochastic velocity rescaling for temperature
coupling [74] (with a time constant of τT = 0.07 ps), Berendsen pressure coupling [75] (ref-
erence pressure 1 Bar, time constant of τP = 2 ps, and compressibility 4.5 × 10−5 Bar−1),
and the grid-based particle mesh Ewald technique for electrostatic interactions [76]. While
double precision accuracy is necessary for the energy minimization for the potential energy
scans of isolated molecules (represented in fig. 2.3.b), single precision accuracy is sufficient
to prevent instabilities of the morphologies (such as temperature shifts in the NVT ensem-
ble). Note that the error in the observables we use to characterize the morphologies (glass
transition temperature and density) due to single precision is small.

The glass transition temperature is estimated from the density-temperature depen-
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experiment simulation
Tg (K) 371 385

ρ (g/cm3) 1.16 1.13

Table 2.2. BTDF glass transition temperature and density at room temperature.

dence, which is shown in fig. 2.4. Experimental and simulated glass transition tempera-
tures and densities at room temperature are in good agreement with each other as shown
in tab. 2.2.

Larger boxes can be generated using the same protocol or can be constructed by con-
necting periodic images of equilibrated smaller boxes at 700 K and then continuing the
annealing process at this temperature for 1 ns. Statistically independent morphologies
necessary for error-estimates of charge transport simulations can be obtained by quench-
ing different snapshots (with sufficiently long time intervals) from the 700 K trajectory to
room temperature.

2.2.4 Conformational disorder

Due to ”soft” dihedral potentials with energetic barriers comparable to kBT (see, e.g.,
dihedral angle δ in fig. 2.2) molecules in the amorphous morphology can have different
conformations. To show that these conformations are frozen on the timescale of charge
transport ( tct ∼ ps, see high rates in fig. 2.8c that dominate charge dynamics) as well as
to identify the soft degrees of freedom, we calculate the time-distribution of the dihedral
angles αi, βi, γi, and δi for every BTDF molecule i = 1, . . . , 4096 during the teq = 0.5 ns
production run at room temperature. Since the distributions are approximately Gaussian,
we further characterize them by a mean µi and a variance σi for each molecule.

Ensemble-distributions (for all molecules i) are then constructed from the means µi

and variances σi as shown in fig. 2.5. As one can see, the dihedral angles α, β, and γ have
practically identical (narrow) mean and variance with distributions, indicating that their
ensemble and time distributions are similar. The ensemble distribution of the mean values
of the dihedral angle δ is, however, very broad. This implies that, in a single snapshot,
there are molecules with all possible values of this dihedral angle. At the same time, the
ensemble distribution of variances is rather narrow, which tells us that a variation around
a particular mean value with time is restricted. In other words, each molecule has its own
conformation (determined by the eight dihedral angles δ) which practically does not change
during the equilibration run. Note that in fig. 2.5d only the two dihedrals δ connecting the
triphenylsilyl to the dibenzofurane core are considered, the remaining other six dihedrals
δ are also frozen in time but they are evenly distributed. Since fluctuations of the eight
individual dihedral angles δ are small on the time scale tMD, they can be assumed to be
frozen on the much faster time scale of charge transport between molecules.
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Figure 2.5. Ensemble distributions constructed from 4096 mean values of the angles intro-
duced in fig. 2.2 obtained by time-averages over 4096 BTDF molecules. Insets show ensemble-
distributions of variances of the corresponding time-distributions. Time distributions are accu-
mulated during a production run of 0.5 ns. The eight dihedral angles δ are the only soft degree
of freedom since in one snapshot molecules can have all possible values of this dihedral angle (see
text for more details). Here we show only distributions of one of the dihedrals δ indicated in red
in the inset of (d) since the other dihedrals δ are homogeneously distributed.
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Figure 2.6. The concept of conjugated segments and rigid fragments. Dashed lines indicate con-
jugated segments while colors denote rigid fragments. (a) Hexabenzocoronene: the π-conjugated
system is both a rigid fragment and a conjugated segment. (b) Bis(triphenylsilyl)dibenzofurane
(BTDF): The dibenzofurane core and each of the phenyl rings is a rigid fragments while the
whole molecule is a conjugated segment. (c) Polythiophene: each repeat unit is a rigid fragment.
A conjugated segment consists of one or more rigid fragments. One molecule can have several
conjugated segments.

2.3 Conjugated segments and rigid fragments

With the morphology at hand, the next step is the construction of the effective electronic
Hamiltonian of the system. In a static disorder approximation, this is equivalent to parti-
tioning the system on hopping sites, or conjugated segments that represent diabatic states
and calculating charge transfer rates between them. Physically intuitive arguments can be
used for the partitioning, which reflects the localization of the wave function of a charge.
For most organic semiconductors, the molecular architecture includes relatively rigid, pla-
nar π-conjugated systems, which we will refer to as rigid fragments. A conjugated segment
can contain one or more of such rigid fragments, which are linked by bonded degrees of
freedom. The dynamics of these degrees of freedom evolves on time scales much slower
than the frequency of the internal promoting mode. In some cases, e.g. glasses, it can be
‘frozen’ due to non-bonded interactions with the surrounding molecules.

To illustrate the concept of conjugated segments and rigid fragments, three representa-
tive molecular architectures are shown in fig. 2.6. The first one is a typical discotic liquid
crystal, hexabenzocoronene. It consists of a conjugated core to which side chains are at-
tached to aid self-assembly and solution processing. In this case the orbitals localized on
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side chains do not participate in charge transport and the conjugated π-system is both, a
rigid fragment and a conjugated segment.

In BTDF the individual phenyl rings and the dibenzofurane cores are relatively rigid,
while energies of the order of kBT are sufficient to reorient them with respect to each other.
Thus the phenyl rings and the core are the seven rigid fragments of the BTDF molecule
which is one conjugated segment since the charge delocalizes over the entire molecule.

In the case of a conjugated polymer, one molecule can consist of several conjugated
segments, while each backbone repeat unit is a rigid fragment. Since the conjugation along
the backbone can be broken due to large out-of-plane twists between two repeat units, an
empirical criterion, based on the dihedral angle, can be used to partition the backbone on
conjugated segments [59]. However, such intuitive partitioning is, to some extent, arbitrary
and shall be validated by other methods [77–79].

After partitioning, an additional step is often required to remove bond length fluctu-
ations introduced by molecular dynamics simulations, since they are already integrated
out in the derivation of the rate expression. This is achieved by substituting respective
molecular fragments with rigid, planar π-systems optimized using first-principles methods.
Centers of mass and gyration tensors are used to align rigid fragments, though a custom
definition of local axes is also possible. Such a procedure also minimizes discrepancies
between the first-principles-based ground state geometries of conjugated segments as com-
pared to their geometries in the snapshot of the MD simulation. We have quantified the
effect of this substitution on transfer integrals in the amorphous phase of the Alq3 molecule
by comparing distributions of the integrals obtained from geometries of the MD snapshot
to distributions obtained with the substituted rigid fragments but have found that both
lead to the same mobility (within the error bars of the charge transport simulation).

Finally, a list of neighboring conjugated segments is constructed. Two segments are
added to this list if the distance between centers of mass of any of their rigid fragments
is below a certain cutoff. This allows neighbors to be selected on a criterion of minimum
distance of approach rather than center of mass distance, which is useful for molecules
with anisotropic shapes. The cutoff for the neighborlist has to be sufficiently large to
converge macroscopic charge transport properties. In case of BTDF a neighborlist cutoff
of rnb = 0.7nm between the seven rigid fragments introduced in fig. 2.6b leads to 30.000
pairs in a cubic simulation box of 4096 molecules with box-length of L = 16nm and is
sufficient to converge the mobility as discussed in sec. 2.9.4. We will therefore use this
neighborlist for the remainder of this chapter.

2.4 Charge-transfer rates

Typical time scales of charge transfer in disordered organic semiconductors span several
orders of magnitude as shown in fig. 2.8.c for charge transport in amorphous mesophases
of BTDF. Hence, treatment of charge kinetics cannot be achieved with numerical meth-
ods using a fixed time step. Instead, a description based on charge-transfer rates between
localized states has to be employed. In an amorphous morphology, electronic couplings be-
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tween neighboring molecules are weak and hence charges are localized on entire molecules.
Intermolecular charge transfer (i.e. for electron transport M−

i +Mj →Mi +M−
j ) then oc-

curs between molecules i and j which form the charge-transfer complex. In this section we
discuss different rate-expressions that can be used for the description of charge transport
in organic semiconductors.

2.4.1 Miller-Abrahams rate

Rate-expressions for charge transfer can be postulated based on intuitive physical consid-
erations, as it is done for example in the Gaussian disorder models (GDM) [21, 34, 37, 80],
where the hopping sites are distributed on a discrete lattice. In these models, Miller-
Abrahams rates [81] describing phonon-assisted tunneling are used

ωij = ν0

{
exp

(
−2γijrij +

∆Eij

kBT

)
: ∆Eij = Ei − Ej ≥ 0

exp (−2γijrij) : ∆Eij = Ei − Ej ≤ 0

)
. (2.4)

Here ωij is the rate for the charge to be transferred from state i to state j, ν0 is a material
specific rate constant, rij is the distance between localized states and γij is an inverse
localization radius describing the decay of transfer integrals (electronic coupling elements)
Jij with the separation according to J2

ij = exp(−2γijrij). Furthermore, kB is Boltzmann’s
constant, T the temperature, and ∆Eij is the site-energy difference (driving force), so that
a hop uphill ∆Eij > 0 (endothermic hopping) is energetically unfavorable.

The GDM can be used to understand the qualitative influence of parameters such as the
width of the site-energy distribution (diagonal disorder) or disorder in electronic coupling
elements (off-diagonal disorder) on the mobility. In order to do this, charge transport is
simulated for one carrier on the discrete lattice with site-energies randomly drawn from
a Gaussian distribution of width σ̄. Transfer integrals are described by two site-specific
contributions γij = γi + γj each varying randomly according to a Gaussian distribution of
width σ̄γ so that the variance of the transfer integrals is Σ =

√
2σ̄γ . This allows to extract

an empirical relation for the mobility [21] given by

µ(F, T ) = µ0 exp

[
−
(

2σ̄

3kBT

)2

+ C

{(
σ̄

kBT

)2

− Σ2

}
√
F

]
(2.5)

where µ0 and C are constants and F is the electric field. Comparing the mobility as a
function of electric field and temperature for various combinations of the parameters ν0, σ̄,Σ
to experimental data allows to estimate the diagonal and off-diagonal disorder in organic
semiconductors. Although eq. 2.4 includes some of the key parameters such as transfer
integrals and site-energy differences, the main disadvantage of the Miller-Abrahams rate
lies in the fact that experimental data is necessary for its parametrization, and therefore
it cannot be used to predict mobilities.
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2.4.2 Charge-transfer theories

Alternatively, charge-transfer theories can be used to evaluate rates from quantum-chemical
calculations [20, 32, 51, 82–84]. In spite of being significantly more computationally de-
manding, they allow to link the chemical and electronic structure, as well as the morphol-
ogy, to charge dynamics and, in principle, provide a route for predicting charge transport
without experimental input. In the following subsections, we will compare different rate
expressions that fulfill this criterion and pay special attention to their applicability for
charge transport in disordered organic semiconductors.

Marcus rate

The simplest rate expression is the high temperature limit of classical charge-transfer the-
ory [85, 86], where the transfer rate for a charge to hop from a state i to a state j reads

ωij =
2π

h̄

J2
ij√

4πλijkBT
exp

[
−(∆Eij − λij)

2

4λijkBT

]
. (2.6)

As in eq. 2.4 rate parameters are ∆Eij, the site-energy difference and Jij, the electronic
coupling element. An additional parameter in the Marcus theory is the reorganization
energy λij that accounts for relaxation of nuclear coordinates after charge transfer. It
has two contributions λij = λint

ij + λout
ij from degrees of freedom inside the charge-transfer

complex consisting of states i and j (internal, or intramolecular reorganization of donor
and acceptor) and from outside (outer-sphere reorganization), both terms are described
in sec. 2.6.

The first assumption in eq. 2.6 is that charge transport occurs between initial and
final diabatic states [19]. These states correspond to the charge being localized on the
donor molecule in the initial state (while the acceptor is neutral), and vice versa for the
final state. In other words, the time for the electronic wave function to move from donor
to acceptor, τel = h̄/J is much larger compared to the time for nuclear motion of the
promoting mode τnuc = 2π/ωvib, where typically ωvib = 0.2eV. In this case Fermi’s golden
rule can be applied and the rate is found from a first order perturbation of the diabatic
states with respect to the electronic coupling, which explains the prefactor J2

ij in eq. 2.6.
In case of BTDF typically J < 1 meV so that the condition of non-adiabaticity is certainly
fulfilled. Note that we have indicated the diabatic states with solid lines in fig. 2.7a, while
the adiabatic states (where the charge would be delocalized in case of strong electronic
coupling) are dashed red.

The second assumption in the derivation of eq. 2.6 lies in the fact that all promot-
ing modes are harmonic and can be treated classically. Thermal averaging over these
classical modes of nuclear motion with mass weighted coordinate q and vibrational en-
ergy 1

2
ω2q2 leads to the remaining part of the prefactor and the Boltzmann term so

that ωij ∼ J2 exp[−Eact/(kBT )] with activation energy Eact. The latter depends on site-
energy difference and reorganization energy and corresponds to the energy difference from
the groundstate of the initial diabatic state to the crossing point with the final diabatic
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Figure 2.7. (a) Potential energy surfaces of the charge-transfer complex in a dimer represen-
tation (transfer is from initially charged molecule i to molecule j). In the initial state (black),
|I00⟩, both molecules are in their vibrational ground states. In the final state (green), |Fl′m′⟩,
the neutral molecule i is in vibrational state l′, while the charged molecule j is in vibrational
state m′. Initial and final states are coupled to a classical harmonic outer-sphere normal mode
with mass weighted average coordinate q and reorganization energy λout

ij . Together with the
energy offset ∆Eij

l′m′ between initial and final state it results in the activation energy Eact. For
small couplings VI00Fl′m′ the ET reaction occurs between diabatic states where the charge is ini-
tially(finally) localized on molecule i(j) (solid curves) as opposed to delocalized adiabatic states
(dotted red). (b) PES of molecule i as a function of the averaged normal internal mode qi. l and
l′ enumerate vibrational modes of the initial charged and the final neutral states. (c) Same as
(b) for initially neutral molecule j. ∆Ui (∆Uj) is the internal energy difference while λcn

i (λnc
j )

is the intramolecular reorganization energy for discharging molecule i (charging molecule j).

state since we have performed first order perturbation theory. If only the harmonic outer

sphere mode is treated classically, Eact =
(∆Eij−λout

ij )
2

4λout
ij

can be deduced from fig. 2.7a, with

λout
ij = 1

2
ω2

out |q2
I − q2

F |. If modes of donor and acceptor are also treated classically, their
internal site-energy differences, e.g. due to molecular (dis)charging energies, and their
intramolecular reorganization energies can be added to those of the environment when
computing Eact [19] (see fig. 2.7b, c for definition of these intramolecluar contributions).

While the outer-sphere mode (corresponding to slow reorientation of the molecules sur-
rounding the charge-transfer complex) can indeed be treated classically, this is not true
for the intramolecular promoting modes, which roughly correspond to C-C bond stretch-
ing [82] so that their vibrational energy is h̄ωint ≈ 0.2 eV ≫ kBT and they should be
treated quantum-mechanically at ambient conditions. Furthermore, the weak interactions
between the molecules imply that each molecule has its own, practically independent, set
of quantum-mechanical degrees of freedom so that also just adding the intramolecular ener-
gies of molecules i and j is problematic. To overcome these limitations, we have developed
a more rigorous rate equation as presented in the next section. Note that the derivation
becomes rather technical, so that the fast reader should directly go to the next subsection,
where we discuss a special case of the bimolecular rate known as the Levich-Jortner rate
and to the subsection thereafter, where we compare the three rates of this section.
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Bimolecular electron-transfer rate

During a bimolecular electron-transfer reaction the electron moves between two molecules
with decoupled nuclear degrees of freedom. Therefore, one needs separate sets of coordi-
nates for the donor and acceptor. If the independent vibrational modes of molecule i and j
are harmonic, are treated classically, and the charging (λnc

i ) and discharging reorganization
energies (λcn

i ) of the same molecule are identical (λnc
i = λcn

i , λ
nc
j = λcn

j see sec. 2.6), one still
obtains the Marcus-type rate expression (eq. 2.6) with the intramolecular reorganization
energy λint

ij = λcn
i + λnc

j which is the sum of the reorganization energies of discharging the
donor and charging the acceptor [19]. Similarly, the classical treatment of the outer-sphere
mode allows to add its reorganization energy to the intramolecular contribution.

If the high-frequency intramolecular vibrational modes of molecules i and j are treated
quantum-mechanically but in a common set of vibrational coordinates and an outer-
sphere low-frequency (classical) vibrational coordinate is also considered, a mixed quantum-
classical multi-channel generalization of the Marcus formula, the Levich-Jortner rate [19],
is available as a special case of the derivation and is presented later (eq. 2.15).

Following Ref. [82] we assume that all intramolecular modes of a donor i can be aver-
aged into a single mode with mass weighted coordinate qi and energy h̄ωn

i (h̄ωc
i ) for the

molecule in a neutral (charged) state (for readability, we omit the superscript ωint for these
intramolecular modes). Similar assumptions are made for the acceptor j. In addition, we
allow for an averaged classical outer-sphere mode with mass weighted coordinate q and
energy h̄ωout

ij ≪ kBT . This mode is common to both molecules and plays the role of the
reaction coordinate for electron transfer. In a more general case the curvature of the po-
tential energy surface (PES) of this mode might change depending on whether molecule i
or j is charged, i.e. ωout

ij ̸= ωout
ji and thus λout

ij ̸= λout
ji . If the difference is large one has to

combine our derivation with the argument of Ref. [87].
In amorphous organic semiconductors the electronic coupling is usually small compared

to both the energy of the classical vibrational mode and intermolecular reorganization en-
ergies. In this case the initial, |Ilm⟩, and final, |Fl′m′⟩, states of the ET reaction are diabatic
(non-interacting) dimer states which depend on the vibrational states with quantum num-
bers l, l′ for molecule i and m,m′ for molecule j respectively. The potential energy surfaces
(PES) corresponding to these states are shown in fig. 2.7a as a function of the common
outer-sphere reaction coordinate q. The PES for intramolecular degrees of freedom for
molecules i and j are shown in fig. 2.7b and c, respectively.

For the contributions of the classical outer-sphere mode to initial and final states we
introduce Hamilton functions

HI,F (q) =
1

2

[
ωout (q − qI,F )

]2
, (2.7)

where the equilibrium position in the initial (final) state qI (qF ) corresponds to the arrange-
ment of all nuclear coordinates of molecules surrounding the ET complex when molecule i
(j) is charged. The outer-sphere reorganization energy, defined as λout

ij = 1
2
[ωout|qI − qF |]2,

is shown in fig. 2.7a. It can be computed from the initial and final electric displacement
fields of the charge-transfer complex as explained in sec. 2.6.
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The complete Hamiltonian of the ET complex can now be written as

Hij =
∞∑

l,m=0

(
HI(q) + Eij

lm

)
|Ilm⟩⟨Ilm| +

∞∑
l′,m′=0

(
HF (q) + Eji

m′l′

)
|Fl′m′⟩⟨Fl′m′|

+
∑

l,m,l′,m′

VIlmFl′m′ |Ilm⟩⟨Fl′m′ | + h.c ,

Eij
lm = U cC

i + UnN
j + Eel

i + Eext
i + h̄

[
ωc

i

(
l +

1

2

)
+ ωn

j

(
m+

1

2

)]
,

Eji
m′l′ = U cC

j + UnN
i + Eel

j + Eext
j + h̄

[
ωc

j

(
m′ +

1

2

)
+ ωn

i

(
l′ +

1

2

)]
.

(2.8)

Here, a manifold of initial states, |Ilm⟩, with quantum numbers l (m) for intramolecular
vibrations in molecule i (j) and energy Eij

lm, is coupled to a classical phonon bath HI(q).
Transitions to the manifold of final states |Fl′m′⟩ where the charge has hopped from i to j
are possible due to a coupling VIlmFl′m′ . The initial, Eij

lm, and final, Eji
m′l′ , energies contain

internal energies UnN
i and U cC

i (UnN
j and U cC

j ) of molecule i (molecule j) in the neutral
and charged ground states, the contributions of electrostatic interactions, Eel

i and Eel
j , the

external electric field, Eext
i and Eext

j , and finally respective oscillator energies.
Within the Born-Oppenheimer approximation, a separation in terms of electronic and

nuclear degrees of freedom gives

|Ilm⟩ = |ϕc
i⟩|χc

il⟩|ϕn
j ⟩|χn

jm⟩ ,
|Fl′m′⟩ = |ϕn

i ⟩|χn
il′⟩|ϕc

j⟩|χc
jm′⟩ ,

(2.9)

where ϕn
i (ϕc

i) corresponds to the electronic part of the wave function, while χn
il (χc

il)
represents an l-th phonon mode of the neutral (charged) molecule i.

The coupling element VIlmFl′m′ in eq. 2.8 can then be factorized in an electronic and
nuclear parts

VIlmFl′m′ = Jij⟨χc
il|χn

il′⟩⟨χn
jm|χc

jm′⟩ . (2.10)

The calculation of the electronic part Jij is explained in more detail in sec. 2.5. Franck-
Condon overlap integrals ⟨χc

il|χn
il′⟩ (⟨χn

jm|χc
jm′⟩) describe couplings of vibrational modes l, l′

(m,m′) of the charged and neutral configurations of molecule i (j). Exemplary modes are
shown in fig. 2.7b,c.

Since kBT ≪ h̄ωc
i , h̄ω

n
j one can restrict the initial state to the vibrational ground-states

l = m = 0 while allowing tunneling to all vibrationally excited states l′ for molecule i and
m′ for molecule j. In other words, a single initial state |I00⟩ couples to a manifold of final
states |Fl′,m′⟩. This assumes that ET is sufficiently slow compared to the relaxation of the
intramolecular degrees of freedom, so that there is enough time for a complex to relax to
its vibrational ground state between two consecutive ETs.

The energy difference driving the reaction from the ground state to channel l′m′ there-
fore is

∆Eij
l′m′ = Eij

00 − Eji
m′l′ = ∆Eij − h̄(ωn

i l
′ + ωc

jm
′) ,



2.4. CHARGE-TRANSFER RATES 25

where ∆Eij = ∆Eext
ij + ∆Eel

ij + ∆Eint
ij as explained in sec. 2.7.

Assuming that |VI00Fl′m′ | ≪ λout
ij , h̄ω

out and using Fermi’s golden rule with VI00Fl′m′ as a
perturbation to the initial diabatic state, we obtain a multi-channel rate equation

ωij =
∞∑

l′,m′=0

2π

h̄
|VI00Fl′m′ |2

∫
dqfI(q)δ(∆E

ij
l′m′ +HI(q) −HF (q)) , (2.11)

where the thermal averaging over the classical outer-sphere mode is performed by intro-
ducing a canonical distribution function fI(q) = Z−1 exp(−HI(q)/kBT ), with the partition
function Z =

∫
dq exp(−HI(q)/kBT ). Energy conservation pins the transition to the cross-

ing point of the diabatic PES (see fig. 2.7a) resulting in

ωij =
2π

h̄

|Jij|2√
4πλout

ij kBT

∞∑
l′,m′=0

|⟨χc
i0|χn

il′⟩|2|⟨χn
j0|χc

jm′⟩|2

× exp

{
−
[
∆Eij − h̄(l′ωn

i +m′ωc
j) − λout

ij

]2
4λout

ij kBT

}
. (2.12)

Eq. 2.12 is the quantum-classical expression for the bimolecular ET rate with two inde-
pendent, high-frequency vibrational modes and one classical common outer-sphere mode.
This rate expression is the main result of this section and indicates that the rate has to be
computed by summing over all transitions from the initial diabatic groundstate to excited
final states characterized by vibrational quanta l′ and m′ of donor and acceptor. As we
have used Fermi’s golden rule, the transition rate for each of these channels is proportional
to the squared coupling element between initial and final state including an electronic term
Jij and nuclear Franck-Condon factors of donor and acceptor. Thermal averaging over the
classical outer sphere mode of the environment leads to the Boltzmann term where the
activation energy Eact is depicted in fig. 2.7a. It includes the effect of different initial and
final site energies ∆Eij (for example due to different electrostatic environments of donor
and acceptor), the vibrational energies in the final donor and acceptor state (the initial
state is assumed to be the groundstate) and the relaxation of the environment given by
the reorganization energy λout

ij .
If the curvatures of intramolecular PES of charged and neutral states of a molecule are

different, that is ωc
i ̸= ωn

i , the corresponding reorganization energies, λcn
i = 1

2
[ωn

i (qn
i − qc

i )]
2

and λnc
i = 1

2
[ωc

i (q
n
i − qc

i )]
2, will also differ. In this case the Franck-Condon (FC) factors for

discharging of molecule i that was initially in the vibrational ground state l = 0 are given
by [88]

|⟨χc
i0|χn

il′⟩|2 =
2

2l′l′!

√
ωc

iω
n
i exp (−|si|)

(ωc
i + ωn

i )

 l′∑
k=0

k even

(
l′

k

)(
2ωc

i

ωc
i + ωn

i

)k/2
k!

(k/2)!
Hl′−k

(
si√
2Scn

i

)
2

,

(2.13)
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where Hn(x) is a Hermite polynomial, si =
2
√

λnc
i λcn

i

h̄(ωc
i +ωn

i )
, and Scn

i = λcn
i /h̄ω

c
i . The FC factors

for charging of molecule j can be obtained by substituting (si, S
cn
i , ω

c
i ) with (−sj, S

nc
j , ω

n
j ).

In order to evaluate the FC factors, the internal reorganization energy λcn
i can be computed

from the intramolecular PES as explained in sec. 2.6.

Levich-Jortner rate

If identical curvatures in charged and neutral state are assumed, i.e. ωc
i = ωn

i = ωi, which
implies λnc

i = λcn
i = λi, the Franck-Condon factor simplifies to

|⟨χi0|χil′⟩|2 =
1

l′!

(
λi

h̄ωi

)l′

exp

(
− λi

h̄ωi

)
. (2.14)

If this is true for both donor and acceptor molecules, eq. 2.12 becomes identical to the
quantum-classical Levich-Jortner rate expression [19] with λint

ij = λi + λj and

ωij =
2π

h̄

|Jij|2√
4πλout

ij kBT

∞∑
N=0

1

N !

(
λint

ij

h̄ωint

)N

exp

(
−
λint

ij

h̄ωint

)

× exp

{
−
[
∆Eij − h̄Nωint − λout

ij

]2
4λout

ij kBT

}
. (2.15)

Comparison of rate expressions

To conclude the section, we compare the classical Marcus rate, eq. 2.6, the quantum-
classical Jortner rate, eq. 2.15, and the multi-channel bimolecular rate, eq. 2.12 for electron
transport in BTDF.

Figure 2.8 shows that the main difference between the quantum-classical and classical
rates is the tail of smaller rates for large negative ∆E (endothermal hopping) and higher
rates for large positive ∆E (exothermal hopping). Note that the Marcus rate is symmetric
with respect to energy so that for too high energy differences (too strong exothermal
hopping with ∆E > λ) the rate decreases again, which is called the Marcus inverted
region. This decrease is weaker if the internal degrees of freedom are treated quantum-
mechanically since higher vibrational states are always accessible as indicated in fig. 2.7.
Note that the inverted region is absent in the Miller-Abrahams rate (eq. 2.4). One can see
that the bimolecular and the Jortner rates are similar (fig. 2.8a,b) and that distributions
of Marcus and Jortner rates in fig. 2.8c are practically on top of each other (except for
very small rates) and hence will lead to similar charge dynamics.

In general, our observation is that for a situation with (i) intramolecular reorganization
energy similar to the outer-sphere one (λint

ij ∼ λout
ij ), (ii) reorganization energies similar to

the frequency of the promoting mode λ ∼ h̄ω ≈ 0.2 eV and (iii) driving force ∆Eij small
compared to the intramolecular reorganization energy, and the classical Marcus rate eq. 2.6
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Figure 2.8. (a) Hopping rates for constant J = 1 meV calculated at room temperature using
the classical Marcus rate eq. 2.6, quantum-classical Levich-Jortner rate eq. 2.15 and bimolecular
multichannel rate eq. 2.12. Constant outer-sphere reorganization energy λout

ij = 0.05 eV, and
internal reorganization energies for transport in pure BTDF so λcn

i = λcn
j = 0.08 eV while λnc

i =
λnc

j = 0.11 eV. For the Marcus rate λij = λcn
i + λcn

j + λout
ij while for the Jortner rate λint =

λcn
i + λnc

j plays a different role than λout
ij . Intramolecular vibrations have averaged frequency

h̄ωint
i = h̄ωint

j = 0.2 eV for the Jortner rate, while h̄ωn
i = 0.2 eV and h̄ωc

j = h̄ωn
i (λnc

j /λ
cn
j )1/2

for the bimolecular rate. (b) The same but for λout
ij = 0.1 eV. (c) Histogram of rates at a field

of 107 Vm−1 for the Marcus and Jortner rates as computed from a morphology of 4096 BTDF
molecules including transfer integrals (see sec. 2.5), conformational and electrostatic disorder
(see sec. 2.7) and using λout

ij < 0.7 eV evaluated from the dielectric displacement with a Pekar
factor of cp = 0.05 (see sec. 2.6) and constant λint = 0.19 eV. Only a small difference can be seen
in the tail of small rates.

and semi-classical (eq. 2.15 and eq. 2.12) expressions lead to quantitatively similar rates.
However, for systems with large ∆Eij, e.g. when computing escape rates from traps,
eq. 2.12 or eq. 2.15 should be used. In this case a rather accurate estimate of the outer-
sphere reorganization energy is required [89].

In case of BTDF a small static dipole moment (see sec. 2.7) leads to small site-energy
differences ∆E so that the three rate expressions yield similar results for moderate electric
fields. This is also true in a more complicated situation of a host-guest system treated
in sec. 3.3, where BTDF is doped with small amounts of an emitter molecule. Finally,
in case of the system studied in ch. 4 energetic disorder can be neglected due to strong
nematic order. Therefore, the classical Marcus rate expression is used for the remainder
of this thesis. From now on, our task is to compute all the ingredients entering eq. 2.6 as
accurately as possible. This implies the use of electronic structure techniques for single
molecular properties (internal reorganization energies or conformational energetic disorder)
and pair properties (transfer integrals), while classical simulation methods are needed for
long-range electrostatic interactions for site energies as outlined in the following sections
of this chapter. With the rates at hand, one can then study charge transport by solving
the differential (master) equation, e.g. by using the kinetic Monte Carlo method which is
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capable of simulating charge dynamics of non-steady-state systems. The full workflow for
the transport simulation has been illustrated in fig. 2.1.

2.5 Transfer integrals

In order to evaluate the charge transfer rate (eq. 2.6) for all conjugated segments in the
neighborlist with atomistic coordinates obtained from the realistic morphology introduced
in sec. 2.3, we need to compute electronic transfer integrals Jij. They are defined as

Jij =
⟨
ϕi
∣∣∣Ĥ∣∣∣ϕj

⟩
, (2.16)

where ϕi and ϕj are diabatic states of a dimer consisting of conjugated segments i and j, i.e
for ϕi the charge is fully localized on conjugated segment i while segment j is neutral and
for ϕj the charge has been transferred to segment j (in case of BTDF the charge is fully
localized on a molecule so that the segments i and j correspond to neighboring molecules).
Ĥ = Ĥi+Ĥj+Ĥij is the electronic Hamiltonian of the formed dimer. Within the frozen-core
approximation, a typical choice for the diabatic wavefunctions |ϕi⟩ in case of hole transport
consists of the highest occupied molecular orbital (HOMO) of molecule i (which is extended
to a dimer state by setting all coefficients for basis functions localized on molecule j to zero),
and the lowest unoccupied molecular orbital (LUMO) in the case of electron transfer (with
similar extension), while Ĥ is an effective single-particle Hamiltonian, e.g. Fock operator
or, in case of density-functional theory (DFT), Kohn-Sham operator of the dimer. As
such, Jij is a measure of the strength of the electronic coupling of the frontier orbitals
of monomers mediated by the dimer interactions. Intrinsically, the transfer integral is
very sensitive to the molecular arrangement, i.e. the distance and the mutual orientation
of the molecules participating in charge transport. Since this arrangement can also be
significantly influenced by static and/or dynamic disorder [33, 54, 57, 58, 86], it is essential
to calculate Jij explicitly for each hopping pair within a realistic morphology. Considering
that the number of dimers for which eq. 2.16 has to be evaluated is proportional to the
number of molecules times their coordination number, computationally efficient and at the
same time quantitatively reliable schemes are required.

In order to evaluate Jij, information about three objects is needed: the two monomer
wave functions and the dimer interaction Hamiltonian. An approximate method based
on Zerner’s Independent Neglect of Differential Overlap (ZINDO) has been described in
Ref. [84]. In the ZINDO approach, the overlap of the orbitals centered at different atoms are
neglected and two electron integrals are only considered if the first two orbitals are centered
at the same atom and the last two are also centered at the same atom (which does not have
to be the same atom as the first). These two-electron integrals can be different for orbitals
with different angular momentum and are parametrized with the help of spectroscopic
data. This semi-empirical method is substantially faster than first-principles approaches
in calculation of the transfer integral, since it avoids the self-consistent calculations on
each individual monomer and dimer. This allows to construct the matrix elements of the
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Figure 2.9. Distributions and correlation of transfer integrals for 4096 BTDF molecules for
30.000 pairs from the MD simulation calculated using ZINDO and DFT methods. (a) Transfer
integrals for electron transport and (b) for hole transport.

ZINDO Hamiltonian of the dimer from the weighted overlap of molecular orbitals of the
two monomers, i.e. Jij ∼ ⟨ϕi|ϕj⟩. Together with the introduction of rigid fragments, only
a single self-consistent calculation on one isolated conjugated segment is required. All
relevant molecular overlaps can then be constructed from the obtained molecular orbitals.
This Molecular Orbital Overlap (MOO) method has been applied successfully to study
charge transport, for instance, in discotic liquid crystals [54, 60, 61], polymers [59], or
partially disordered organic crystals [56–58].

While the use of the semi-empirical ZINDO method provides an efficient on-the-fly
technique to determine electronic coupling elements, it is not generally applicable to all
systems. For instance, its predictive capacity with regards to atomic composition and
localization behavior of orbitals within more complex structures is reduced. Moreover,
transition- or semi-metals are often not even parametrized. In this case, ab-initio based
approaches, e.g., DFT can remedy the situation [83, 90–94]. Within the dimer projection
method described in detail in Ref. [83], explicit quantum-chemical calculations are required
for every molecule and every hopping pair in the morphology. As a consequence, this
procedure is significantly more computationally demanding.

As an example, distributions of transfer integrals are calculated using ZINDO and
DFT obtained from the PBE functional and the TZVP basis [95] (similar to the triple zeta
basis set introduced in sec. 2.2.1). Results are shown in fig. 2.9 for the amorphous phase
of 4096 BTDF molecules for electrons (based on LUMO) and holes (based on HOMO).
Distributions deviate by roughly one order of magnitude for hole transport which might
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be due to the smaller basis set and the resulting stronger localization of orbitals in case
of ZINDO. Distributions of electrons show even stronger differences indicating that the
semi-empirical ZINDO formalism is unreliable in this case. Since we also want to compare
transfer integrals of the pure BTDF system to the electronic couplings in the emission layer
of an OLED, where BTDF is doped with a triplet emitter (containing the transition metal
Ir), DFT is used for computation of Jij in the remaining part of this thesis.

2.6 Reorganization energy

The reorganization energy λij takes into account the change in nuclear and dielectric de-
grees of freedom as the charge moves within the charge-transfer complex from donor i to
acceptor j. It has two contributions: intramolecular, λint

ij , which is due to reorganization
of nuclear coordinates of the molecules i and j inside the complex, and intermolecular
(outer-sphere), λout

ij , which is due to the relaxation of the environment. In what follows we
discuss how these contributions can be calculated.

2.6.1 Intramolecular reorganization energy

The rearrangement of the nuclear coordinates of the two molecules i and j forming the
charge-transfer complex after a charge transfer results in the dissipation of the internal
reorganization energy, λint

ij . It can be computed from four points on the potential energy
surface (PES) of both molecules in neutral and charged states, as indicated in fig. 2.10.
Adding the contributions due to discharging of molecule i and charging of molecule j (see
discussion in sec. 2.4) yields [82]

λint
ij = λcn

i + λnc
j = UnC

i − UnN
i + U cN

j − U cC
j . (2.17)

Here UnC
i is the internal energy of the neutral molecule i in the geometry of its charged

state (small n denotes the neutral charge state and capital C the geometry of the charged
molecule). Similarly, U cN

j is the energy of the charged molecule j in the geometry of its
neutral state. If the PES of neutral and charged states are different for the same molecule,
that is λcn

i ̸= λnc
i , reorganization energies of discharging molecule i and charging molecule

j cannot simply be added in eq. 2.6. If both modes are treated classically, the rate is an
integral over the charge detachment and attachment spectrum of molecules i and j [96].
For most systems, however, the reorganization energies for charging or discharging of the
same molecule do not deviate by more than a few percent, hence eq. 2.6, the Marcus
rate expression can safely be used. Note that the PES of the donor and acceptor are not
identical for chemically different compounds or for conformers of the same molecule. In
this case λcn

i ̸= λcn
j and λnc

i ̸= λnc
j . Thus λint

ij is a property of the charge-transfer complex,
and not of a single molecule, which is important for the discussion in sec. 3.3.3, where
reorganization energies in a host-guest system are evaluated.

In BTDF, the eight soft dihedrals δ introduced in fig. 2.2 can have all possible values in
the amorphous phase, as shown in fig. 2.5. Molecular conformations are then ‘frozen’ due to
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Figure 2.10. (a) Intramolecular reorganization energy: Potential energy surfaces of donor(left)
and acceptor(right) in charged and neutral states. After the change of the charge state (black to
orange circle) both molecules relax their nuclear coordinates (orange to red). If all vibrational
modes are treated classically, the total internal reorganization energy and the internal energy
difference of the charge transfer reaction are λint

ij = λcn
i + λnc

j and ∆Eint
ij = ∆Ui − ∆Uj , respec-

tively. (b) Histogram of intramolecular reorganization energy λij for electrons and holes from an
amorphous phase of 512 BTDF molecules taking into account different conformations that arise
in the bulk. If the molecules could fully relax λfree

e(h) = 0.16(0.34) eV as indicated by the arrows
which deviates from the mean of the distribution in the bulk.

non-bonded interactions as explained in sec. 2.2.4. In order to evaluate how reorganization
energies depend on molecluar conformations, the internal energies entering eq. 2.17 were
calculated after optimizing molecular geometries of all molecules whose coordinates were
taken from the small MD simulation with 512 neutral molecules in charged and neutral
states with the soft degrees of freedom δ constrained to their time-averaged mean values
in each molecule as presented in fig. 2.5. Due to the conformational disorder, the mean
of the distribution for λint

ij does not coincide with the value obtained in the gas phase.
Quantitatively, the shift of the mean of the reorganization energy in the bulk for holes
from the gas-phase value of 0.34 eV to 0.27 eV by ∆λ = 0.07 eV will decrease the Marcus

rates by a factor of c = exp
[

∆λ
4kBT

]
∼ 2 for small energy differences ∆E, while the effect of

the broadening of the distribution of λint
ij on mobility is even smaller.

2.6.2 Outer-sphere reorganization energy

During the charge transfer reaction, also the molecules outside the charge-transfer com-
plex reorient and polarize in order to adjust for changes in electric field, resulting in the
outer-sphere contribution to the reorganization energy. λout

ij is particularly important if
charge transfer occurs in a polarizable environment. Assuming that charge transfer is
much slower than electronic polarization but much faster than nuclear rearrangement of
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Figure 2.11. (a) Outer sphere reorganization energy for electrons divided by the Pekar factor cp
for 125 selected BTDF charge-transfer complexes with different cutoff radius changing the number
of molecules surrounding the complex that are taken into account: a cutoff of 5 nm is sufficient
for convergence in a cubic box containing 4096 molecules with L = 16 nm. (b) Histogram of outer
sphere reorganization energy from the neighborlist divided by the Pekar factor cp as function of
the distance rij between BTDF molecules in the charge-transfer complex. A fit to eq. 2.20 is
also shown yielding R = 0.7 nm in agreement with the radius of gyration Rg = 0.6 nm.

the environment, λout
ij can be estimated from the electric displacement fields created by the

charge-transfer complex [19]

λout
ij =

cp
2ϵ0

∫
V out

dV
[
D⃗I(r⃗) − D⃗F (r⃗)

]2
, (2.18)

where ϵ0 is the the permittivity of free space, D⃗I,F (r⃗) are the electric displacement fields
created by the charge-transfer complex in the initial (charge on molecule i) and final (charge
transferred to molecule j) states, V out is the volume outside the complex, and

cp =
1

ϵopt

− 1

ϵs
(2.19)

is the Pekar factor, which is determined by the low (static ϵs) and high (optical ϵopt)
frequency dielectric permittivities. This factor takes into account the fact that the po-
larization field has a high and a low frequency part. While the high frequency part is
determined only by electronic contributions, the low frequency part is determined by elec-
trons and the reorientation of the heavier nuclei. Since we are interested only in the slow
relaxation of the nuclear coordinates of the environment, the electronic contribution to
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the low frequency Polarization field has to be eliminated which is done by introducing the
Pekar factor [19].

Eq. 2.18 can be simplified by assuming spherically symmetric charge distributions on
molecules i and j with total charge e. Integration over the volume V out outside of the
two spheres of radii Ri and Rj centered on molecules i and j leads to the classical Marcus
expression for the outer-sphere reorganization energy [19]

λout
ij =

cpe
2

4πϵ0

(
1

2Ri

+
1

2Rj

− 1

rij

)
, (2.20)

where rij is the molecular separation in the charge-transfer complex. While eq. 2.20 cap-
tures the main physics, e.g. predicts smaller outer-sphere reorganization energies (higher
rates) for molecules at smaller separations, it often cannot provide quantitative estimates,
since charge distributions are rarely spherically symmetric.

Alternatively, the displacement fields can be constructed using the atomic partial
charges. The difference of the displacement fields at the position of an atom bk outside the
charge-transfer complex (molecule k ̸= i, j) can be expressed as

D⃗I(r⃗bk
) − D⃗F (r⃗bk

) =
∑
ai

qc
ai
− qn

ai

4π

(r⃗bk
− r⃗ai

)

|r⃗bk
− r⃗ai

|3
+
∑
aj

qn
aj
− qc

aj

4π

(r⃗bk
− r⃗aj

)

|r⃗bk
− r⃗aj

|3
, (2.21)

where qn
ai

(qc
ai

) is the partial charge of atom a of the neutral (charged) molecule i in vacuum.
The partial charges of neutral and charged molecules are obtained by fitting their values to
reproduce the electrostatic potential of a single molecule (charged or neutral) in vacuum.
Assuming a uniform density of atoms, the integration in eq. 2.18 can be rewritten as a
density-weighted sum over all atoms excluding those of the charge-transfer complex.

Using eq. 2.21, λout
ij /cp was calculated for all pairs from the neighborlist of a system of

4096 BTDF molecules with a neighborlist cutoff of 0.7 nm for the seven fragments using
ESP charges of charged and neutral molecules (see sec. 2.2). The resulting distribution
of λout

ij /cp is shown in fig. 2.11, together with a fit to eq. 2.20. The fit yields R = 0.7 nm
which is comparable to the radius of gyration of BTDF Rg = 0.6nm. Note that the fit
predicts negative λout

ij for a few pairs where the molecules in the charge-transfer complex
are very close (rij < R) which would lead to ill-defined Levich-Jortner rates, eq. 2.15.

The remaining unknown needed to calculate λout
ij is the Pekar factor cp defined in

eq. 2.19. In polar solvents ϵs ≫ ϵopt ∼ 1 and cp is of the order of 1 resulting in very high
outer-sphere reorganization energies. In most organic semiconductors, however, molecular
orientations are fixed and therefore the low frequency dielectric permittivity is of the same
order of magnitude as ϵopt. Hence, cp is small and its value is very sensitive to differences
in the permittivities.

For BTDF, ϵs = 2.82 ± 0.3 is the experimentally measured dielectric constant at low
frequencies (104 Hz), while at optical frequencies (3.75 × 1014 Hz, below electronic absorp-
tion) ϵopt = 2.75± 0.1. Thus cp = 0.01± 0.04 yielding outer-sphere reorganization energies
of λout

ij < 0.07 eV, which are small compared to λint
ij . Similar results have been reported for

other organic semiconductors and different methods for computing λout
ij [89, 97, 98].
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2.7 Site-energy difference

A charge-transfer reaction between molecules i and j is driven by the site-energy difference,
∆Eij = Ei−Ej. It can be computed from the individual site energies Ei which are defined
as the difference of the energy of the entire system when molecule i is charged or neutral.
Since the transfer rate depends exponentially on the driving force ∆Eij (see eq. 2.6) it is
important to compute site-energy distributions as accurately as possible. The total site-
energy difference has contributions due to externally applied electric field, electrostatic
interactions including polarization effects, and internal energy differences. In what follows
we discuss how to estimate these contributions by making use of first-principles calculations
and polarizable force-fields.

2.7.1 Externally applied electric field

The contribution to the site-energy difference due to an external electric field F⃗ is given
by ∆Eext

ij = qF⃗ · r⃗ij, where q = ±e is the charge and r⃗ij = r⃗i − r⃗j is a vector connecting
molecules i and j. For typical distances between small molecules, which are of the order of
1 nm, and moderate fields of F < 108 V/m this term is always smaller than 0.1 eV. Note
that as we treat the external field as a perturbation to the energetic landscape we can
obtain the charge carrier mobility as µ = ⟨v⟩/F where ⟨v⟩ is the projection of the mean
carrier velocity on the field. In the limit F → 0 the zero-field mobility is then identical to
the diffusive mobility according to the Einstein relation as discussed in sec. 2.9.3.

2.7.2 Electrostatic energy

Variations of the local electric field inside the organic semiconductor can result in large
electrostatic contributions to the site energies. A typical example is an amorphous phase
of small molecules where one of the molecules is charged and the surrounding neutral
molecules carry a static dipole moment: For randomly oriented static dipoles of strength
d on a regular lattice with spacing a the individual site energies due to charge-dipole
interactions are approximately Gaussian distributed [99] with zero mean (due to angular
averaging) and a width σ̄ (energetic disorder) given by

p(Eel) =
1

σ̄
√

2π
exp

[
−
(
Eel

√
2σ̄

)2
]
, σ̄ =

2.35ed

4πϵ0ϵsa2
(2.22)

where ϵ0 is the permittivity of free space and ϵs is the relative dielectric constant which
accounts for possible screening due to polarization of the material. Small energetic disorder
facilitates high mobility, since the energetic landscape the charge travels in is rather smooth.
Quantitatively, the mobility increases exponentially with lower disorder

µ ∼ exp

[
−
(

2σ̄

3kBT

)2
]

(2.23)
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as shown in the Gaussian disorder model [37]. This relation is often used to extract the
value of the energetic disorder σ̄ from experimental data by plotting logµ(T 2) obtained
by measuring the mobility at different temperatures.

Since our approach allows to access all atomistic coordinates in the morphology, we can
use atomic partial charges of charged and neutral molecules, as introduced in sec. 2.6.2
to evaluate the energetic disorder and the electrostatic contribution to the site energies
∆Eel

ij = Eel
i − Eel

j from a Coulomb sum [54] of the individual sites which are defined as

Eel
i = Ecrg

i − Eneu
i =

1

4πϵ0

∑
ai

∑
bk

k ̸=i

(
qcrg
ai

− qneu
ai

)
qneu
bk

ϵsraibk

, (2.24)

where Ecrg
i and Eneut

i are the intermolecular energies when molecule i is charged or neutral
and raibk

= |r⃗ai
− r⃗bk

| is the distance between atoms ai and bk. The first sum extends
over all atoms of molecule i, for which the site energy is calculated. The second sum
reflects interactions with all atoms of neutral molecules k ̸= i. Hence, we assumed that
the influence of conformational changes on partial charges and changes of the molecular
geometry upon charging are small.

In evaluating eq. 2.24 we can include interactions of the charged molecule i with all
neutral molecules by using periodic boundary conditions and the nearest image convention.
Alternatively, we can use a spherical cutoff rel in order to include only a certain amount of
molecules interacting with the charge to speed up calculations. The influence of this cutoff
on site-energy distributions is discussed in sec. 2.9.4.

As an example we have computed individual electrostatic site energies using eq. 2.24
for a box of 4096 BTDF molecules using the nearest image convention. We have first
neglected polarization effects by setting ϵs = 1. As energy differences are important for
the charge-transfer rate, we also evaluate the distributions of the site-energy differences
from the neighborlist introduced at the end of sec. 2.2. Both distributions are displayed for
electrons and holes in fig. 2.12.a. As expected from the lattice model [99], the distributions
are Gaussian and the energetic disorder is rather small σ̄ ∼ 0.11 eV because of the small
static dipole moment d = 0.8 D in BTDF.

Note however, that the mean for the individual energies does not vanish as predicted by
the lattice model and also energetic disorder is twice as large as σ̄ = 0.06eV obtained from
eq. 2.22 with a lattice spacing of a = 1 nm which can be estimated from the density. This
indicates that the assumptions made in the lattice model such as non-overlapping charge
distributions and identical intermolecular distances break down already at the static level.

Another remarkable fact about the electrostatic site-energy distribution are spatial
correlations between the energies that arise due to similar electrostatic environments of
neighboring molecules. While an uncorrelated Gaussian distribution of width σ̄ for indi-
vidual energies would lead to a width of σ =

√
2σ̄ for the energy-differences, fig. 2.12.a

shows that the distribution for the differences from the neighborlist is only slightly broader
than the distribution for the individual energies (σnb ≈ σ̄) indicating a spatial correlation,
whose influence on transport is discussed in sec. 2.7.5.
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Figure 2.12. Electrostatic site energies for 4096 BTDF molecules. (a) Distributions of static
(ϵs = 1) energies (dashed) in the nearest image convention and energy differences from the neigh-
borlist. The mean µ and width σ of the Gaussian distributions are given in brackets for electrons
and holes. (b) Including polarization (Thole model with rel = 4 nm) leads to stabilization of indi-
vidual site energies and narrowing of the distributions due to screening. Electrons are stabilized
more than holes due to higher change in polarizability upon charging (see ch. 3).

2.7.3 Polarization effects

The simplest way of taking into account the influence of polarization is to use a relative
dielectric constant ϵs in the Coulomb sum, eq. 2.24. Bulk values of ϵs = 2 − 5 for typical
organic semiconductors uniformly reduce all site energies but are not capable of describing
polarization effects on an atomistic scale. The contribution to Eel

i from the first coordi-
nation shell is then underestimated due to over-screening and, as a result, the site-energy
differences become artificially small.

Alternatively, one can use an effective screening derived as a function of the bulk di-
electric constant from lattice simulations [100], or introduce a phenomenological distance-
dependent screening function to replace the constant ϵs in eq. 2.24 by [53]

ϵ(raibk
) = ϵs − (ϵs − 1)

(
1 + κraibk

+
1

2
κ2r2

aibk

)
exp−κraibk

, (2.25)

where raibk
is the distance between atoms a and b of molecules i and k, κ is the inverse

screening length and ϵ s the bulk dielectric constant. For a monovalent ion in water, for
example, ϵs = 80 and κ = 3 nm−1 [101]. This screening function ensures that neighbor-
ing atoms interact via an unscreened Coulomb potential (ϵ ∼ 1) and the electrostatic
interaction between atoms at large separations is screened by ϵs.



2.7. SITE-ENERGY DIFFERENCE 37

While phenomenological distance-dependent screening is computationally efficient, it
cannot be used for inhomogeneous systems or systems with anisotropic molecular polar-
izabilities. Moreover, ϵs and κ are not known for newly synthesized compounds. Finally,
using an effective distance dependent screening will always lead to a reduction of the
site-energy disorder, which is not necessarily the case e.g. due to changes in molecular
polarizabilities upon charging as discussed in ch. 3.

A more general approach relies on charge-transfer between atoms [102] or self-consistent
methods to obtain polarization fields [103]. In this thesis we use a polarizable force-field
based on the Thole model [104] since parametrization for new compounds is simple. In
this model, every atom is assigned an isotropic polarizability which allows to induce atom-
istic dipoles in response to an electric field originating from the electrostatic environment.
These induced dipoles are allowed to interact so that the polarization contribution has
to be refined iteratively. In order to prevent a polarization catastrophe that can occur
by cooperative (head to tail) interaction of induced point dipoles in the direction of their
connection, the induced interactions are damped by smearing out the corresponding charge
distributions. The polarizabilities and damping constant can be found by comparison to
ab-initio calculations or to experimental data [105].

The iterative procedure for the calculation of induced dipoles has been implemented in
the TINKER package [106] and works as follows: first, the electric fields, F⃗

(0)
ai , at all atoms

a in all molecules i are evaluated as created by all atomic partial charges (ϵs = 1, nearest

image convention or cutoff) and induced dipole moments on all atoms, µ⃗
(0)
ai = αai

F⃗
(0)
ai

are computed from the fields and the atomic polarizabilities αai
. During this first step,

intramolecular interactions are excluded. The induced dipole moments are then iteratively

refined by the recursive relation µ⃗
(k+1)
ai = µ⃗

(k)
ai + αai

F⃗ ′(k)

ai
, where the field F⃗ ′(k)

ai
is created

on atom a in molecule i only by the induced dipoles of all other atoms but now including
intramolecular contributions which allows for anisotropic molecular polarizabilities. This
recursive relation x(k+1) = f

(
x(k)
)

can be solved by successive over-relaxation x(k+1) =

(1 − ω)x(k) + ωf
(
x(k)
)

with a damping constant ω which yields [107]

µ⃗(k+1)
ai

= (1 − ω)µ⃗(k)
ai

+ ω
(
µ⃗(k)

ai
+ αai

F⃗ ′(k)

ai

)
. (2.26)

The procedure is repeated until
∑

ai
|µ⃗(k+1)

ai − µ⃗
(k)
ai | < 10−4 D which converges energies

to meV. We have found fastest convergence for neutral (cationic/anionic) systems using
ω = 0.5 (0.35/0.2).

As for eq. 2.24, the site energy of molecule i is evaluated as the total intermolecular
energy of the system when molecule i is charged and the total energy of the system in
the neutral state has to be subtracted. Note however that the induced dipole moments on
the surrounding molecules are different depending on which molecule is charged, so that
in addition to all interactions between the charged molecule i and all others k ̸= i that are
counted in eq. 2.24, now also interactions between the surrounding molecules have to be
taken into account. Therefore computational time for evaluating one site energy Eel

i grows
quadratically with the number of involved molecules.
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neutral anion cation fa fc

1
3
Trα̂ (Å

3
) 91.1 210.2 154.8 3.4 2.1

α1 : α2 : α3 (DFT) 1:1.0:1.3 1:1.1:3.7 1:1.3:3.0
α1 : α2 : α3 (THO) 1:1.0:1.2 1:1.1:1.4 1:1.2:1.3

Table 2.3. Polarizabilities for BTDF. Given are orientational averages of the polarizability as a
third of the trace of the polarizability tensor α̂ obtained by DFT. Isotropic scaling factors f(a,c)

for anions and cations are introduced to increase atomistic polarizabilities in the Thole model
to match the orientational average exactly to the value obtained by DFT. Anisotropies of α̂
from DFT and the Thole model are analyzed in terms of the ratio of the three eigenvalues with
respect to the smallest value α1, which shows that isotropic scaling in the Thole model leads to
underestimation of the anisotropy in the charged states.

Due to the large number of interactions in the self-consistent loop, these calculations
become time-consuming for large systems. Therefore, for big simulation boxes (i.e. 4096
BTDF molecules) we introduced a cutoff radius of rel = 4 nm in order to compute the
polarized site energies in the Thole model. This cutoff corresponds to a sphere containing
250 molecules.

For homogeneous systems and isotropic molecular polarizabilities one can avoid this
problem by performing self-consistent calculations for small systems, parametrizing the
distance dependent screening function, eq. 2.25, and then using it to study much larger
systems. To this end, the bulk dielectric constant can be obtained from the Clausius-
Mosotti relation [108]

ϵs = 1 +
12παN/V

3 − 4παN/V
(2.27)

where α is the molecular polarizability volume, and N/V is the the number density. In

case of BTDF ϵs = 2.6 according to eq. 2.27 with N/V = 1 nm−1 and α = 91.1 Å
3

which
agrees well with the experimental value of ϵs = 2.82± 0.3 from capacitance measurements.
Using this value of ϵs, the parameter κ in eq. 2.25 can then be then fitted to reproduce the
distribution of site-energy differences for molecules from the neighbor list.

While this combined approach was successful yielding κ = 1.3nm−1 for the Alq3

molecule which has approximately spherical van der Waals surface [64], it fails in case
of BTDF due to a large difference in polarizabilities of charged and neutral states (see
sec. 3.3) and the anisotropic molecular shape that leads to an anisotropic polarizability
tensor and strongly intercalating molecules.

In order to compare polarized site energies to the static case discussed in the previ-
ous section for the BTDF system we therefore have to invoke the Thole model. We use

element-specific atomic polarizabilities αH, C, Si, O = (0.7, 1.9, 1.9, 1.2) Å
3

which yield per-
fect agreement with respect to ab initio methods (DFT with B3LYP functional and TZVP
basis set) for the trace and anisotropy of polarizability tensors in neutral BTDF molecules
as indicated in tab. 2.3. Furthermore a damping factor of a = 0.39 for interactions with
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(a) (b)

Figure 2.13. Polarization response of 100 BTDF molecules to a charged molecule in the center
of the simulation box as computed using the Thole model. (a) A negatively charged molecule
induces dipole moments on the surrounding molecules (black circles are centers of mass). These
induced dipole moments are stronger (red) close to the charge and point towards it. (b) If the
central molecule is positively charged, the molecular dipole moments point away from it.

induced moments is used to prevent a polarization catastrophe [106]. Since polarizabilities
depend on the actual charge state of the molecules, we have scaled the atomic polarizabili-
ties in case of anions(cations) by fa(c) = 3.4 (2.1) as to reproduce the trace of the molecular
polarizability tensor obtained by ab initio methods for the charged states. Note that the
Thole model underestimates the anisotropy of the polarizability tensor of the charged states
as can be seen in tab. 2.3, which could, in principle, be cured by introducing non-isotropic
atomistic polarizabilities or different scaling factors f for the atomistic polarizabilities.

The effect of placing a charged molecule in a polarizable environment is visualized in
fig. 2.13. The charge on molecule i induces atomic dipoles µ⃗ak

on all surrounding neutral
molecules, k ̸= i, which are computed from the Thole model. These moments add up to
molecular dipole moments µ⃗k =

∑
ak
µ⃗ak

depicted in the figure. Although, on average, the

induced dipoles are stronger if they are close to the charge (µk ∼ r−2
ik ) and are aligned with

the (radial) electric field, the amorphous morphology and the anisotropic polarizability
in combination with interactions between all induced dipoles, result in strong disorder in
these dipole moments, which again indicates that polarization effects cannot be treated at
a macroscopical level (see also sec. 3.3).

In a next step, we have computed polarized individual site energies from the Thole
model and the corresponding site-energy differences from the neighborlist for a system of
4096 BTDF molecules, as shown in fig. 2.12.b. A comparison to the static case (fig. 2.12.a)
shows that polarization stabilizes both anions and cations, e.g. mean energies of anions
(relevant for electron transport) are reduced from 0.11 eV in the static case to −0.72 eV
when polarization effects are included. Furthermore, very small effective screening can be
observed that slightly reduces the width of all distributions, e.g. for electron transport the
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disorder for individual energies is reduced from σ̄ = 0.11 eV to 0.10 eV. This screening
is substantially weaker as it would be predicted by using the static dielectric constant
ϵs = 2.6 in eq. 2.24, since in the special case of BTDF a change in polarizability upon
charging induces additional disorder (see sec. 3.3).

Note that we have also checked that the site energies from morphologies of two inde-
pendent MD snapshots are uncorrelated and that the mean and variance of site energies in
these snapshots are practically identical for simulation boxes containing 4096 molecules.

2.7.4 Internal energy difference

The contribution to the site-energy difference due to different internal energies (see fig. 2.10)
can be written as

∆Eint
ij = ∆Ui − ∆Uj =

(
U cC

i − UnN
i

)
−
(
U cC

j − UnN
j

)
, (2.28)

where U
cC(nN)
i is the total energy of molecule i in the charged (neutral) state and geometry.

∆Ui corresponds to the adiabatic ionization potential (or electron affinity) of molecule i.
For one-component systems and negligible conformational changes ∆Eint

ij = 0. For multi-
component systems, such as the emission layer of an OLED, the ionization potential of
the matrix material BTDF and the emitter differs by roughly 1.5 eV (see sec. 3.3) so that
∆Eint

ij has to be taken into account to describe the site-energy distributions of matrix and
emitter.

Also in pure BTDF, significant conformational changes (see sec. 2.2) lead to a distribu-
tion of ∆Eint

ij . Since the single site values, ∆Ui, are spatially not correlated, it is sufficient
to compute the distribution for a small box and then randomly generate internal energies
for larger boxes from this distribution. For 512 molecules we find a Gaussian distribution
with a variance of σint

e(h) ∼ 0.04 (0.05) eV for ∆Eint
ij in case of electron (hole) transport. The

influence of the internal energy disorder on the total disorder in the system σ̄tot is small
compared to the electrostatic contribution because the variances of the two uncorrelated
Gaussian variables add, σ̄2

tot = σ̄2
int+σ̄

2
el. Charge carrier mobility, for example, is reduced by

less than half an order of magnitude if internal disorder is added to the disorder originating
from electrostatic contributions.

2.7.5 Spatial correlations of energetic disorder

Long-range (electrostatic) interactions often result in spatially correlated disorder [99]
which affects the onset of the mobility-field dependence [23, 53, 109].

To quantify the degree of correlation, one can calculate the spatial correlation function
of Ei and Ej at a distance rij

C(rij) =
⟨(Ei − ⟨E⟩) (Ej − ⟨E⟩)⟩

⟨(Ei − ⟨E⟩)2⟩
, (2.29)

where ⟨E⟩ is the average site energy. C(rij) is zero if Ei and Ej are uncorrelated and 1 if
they are fully correlated. For a system of randomly oriented point dipoles on a lattice with
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spacing a with energetic disorder of σ̄ and vanishing mean of the individual site-energies,
the correlation function decays with the inverse distance for intermolecluar separations
accoring to [110]

C(rij)⟩ ∼
σ̄2a

rij

. (2.30)

Using these (three dimensional) correlations in a one-dimensional transport model yields
an analytic expression for the mobility [23]

µ = µ0 exp

[
−
(

σ̄

kBT

)2

+ 2
σ̄

kBT

√
eaF/kBT

]
, (2.31)

where µ0 is the zero-field mobility, e is the elementary charge and F the applied electric
field.

The linear dependence of the logarithm of the mobility with the square root of the
applied electric field is known as the Poole-Frenkel behavior and can ben be seen in many
experiments for charge transport in small organic molecules and polymers. Note that
our approach of computing electrostatic and polarization interactions from the realistic
morphology includes spatial correlations of the site-energies by construction. In order to
investigate the effect of correlations on the mobility, we have used the organic semiconduc-
tor Alq3 as a test-system, since its strong static dipole moment leads to pronounced spatial
correlations. In this system, we have first performed charge-transport simulations using
site-energies obtained as described in sec. 2.7.2 and sec. 2.7.3 and in a second simulation,
we have destroyed the spatial correlations by randomly re-distributing these energies to the
molecules in the simulation box. While in the first case, a clear Poole-Frenkel dependence
develops, the mobility is practically field independent in the second case [64].

Furthermore, spatial correlations in site-energies can lead to current filaments because
the energetic landscape of a charge carrier can be envisioned as mountains separated by
wide and deep-lying valleys. Only these valleys are well sampled by the charge carriers as
shown in fig. 1.1 for hole transport in a simulation box of 4096 Alq3 molecules. These cur-
rent filaments can have a negative impact on device stability due to material degradation.
Note that in BTDF, energetic disorder is not as strong as in Alq3 and spatial correlations
are less pronounced because its dipole moment is small.

2.8 Solving the master equation

Having determined the list of conjugated segments (hopping sites) and charge transfer
rates between them, the next task is to solve the master equation which describes the time
evolution of the system

∂Pα

∂t
=
∑

β

PβΩβα −
∑

β

PαΩαβ, (2.32)

where Pα is the probability of the system to be in a state α at time t and Ωαβ is the
transition rate from state α to state β. A state α is specified by a set of site occupations,
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{αi}, where αi = 1(0) for an occupied (unoccupied) site i, and the matrix Ω̂ can be
constructed from rates ωij.

In particular, for a system with only one charge carrier, each state is uniquely charac-
terized by the index i of the site the carrier occupies. In other words, only states of type
i ≡ {0, . . . , 0, αi = 1, 0, . . . , 0} are possible, and the corresponding probabilities Pi and the
transition rates Ωij are identical to site occupation probabilities pi and the transfer rates
ωij (as introduced in sec. 2.4), respectively. Eq. 2.32 can then be rewritten as

∂pi

∂t
=
∑

j

pjωji −
∑

j

piωij, (2.33)

and can be solved using linear algebra. While being efficient for stationary, low charge
carrier density cases (one charge carrier per simulation box), this approach can become
unstable for systems with high energetic disorder, where rates vary by several orders of
magnitude.

In more general cases, such as multiple charge carriers, expressing the state picture
(eq. 2.32) in terms of site occupations is required because of extremely large total num-
ber of states. For multiple charge carriers, the master equation can still be rewritten in
terms of occupation probabilities [64] by assuming only site-blocking charge-charge inter-
actions and by using a mean-field approximation [111]. The analogue of eq. 2.33 becomes,
however, non-linear and requires special solvers. If, in addition, several different types of
carriers, such as holes, electrons, and excitons are present in the system, as well as their
creation/annihilation processes take place, it is practically impossible to link state and site
occupation probabilities and the corresponding rates.

Instead, the solution of eq. 2.32 can be obtained by using kinetic Monte Carlo (KMC)
methods. KMC explicitly simulates the dynamics of charge carriers by constructing a
Markov chain in state space and can find both stationary and transient solutions of the
master equation. The main advantage of KMC is that only states with a direct link to
the current state need to be considered at each step. Since these can be constructed solely
from current site occupations, extensions to multiple charge carriers (without the mean-
field approximation), site-occupation dependent rates (needed for the explicit treatment
of Coulomb interactions), and different types of interacting particles and processes, are
straightforward.

Note that in this thesis we have always simulated charge transport for one carrier in the
periodic simulation box. The influence of charge carrier density on macroscopic quantities
such as the charge carrier mobility are weak in all systems considered in this thesis due to
small energetic disorder [112].

In this case, the KMC simulation starts by randomly choosing a site i where the charge
is injected and its total escape rate from this site is computed as

ωi =
∑

j

ωij, (2.34)

where the sum extends over all neighbors j of site i from the neighbor list. Then, a par-
ticular neighbor k is selected according to the variable step size method with a probability
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of ωik/ωi, which is done by choosing the biggest k for which

ω−1
i

k∑
j=jmin

ωij ≤ r1. (2.35)

where the rates ωijmin
, ..., ωik, ..., ωijmax do not have to be sorted and r1 ∈ (0, 1] is the first

random number. Then the charge is moved to the chosen site k and the time is advanced
by τi taking into account the total escape time out of site i according to

τi = −ω−1
i ln r2 , (2.36)

where r2 ∈ (0, 1] is the second random number. The cycle then repeats until the total
KMC simulation time tKMC has been reached.

2.9 Macroscopic observables

Spatial distributions of charge and current densities can provide a better insight in the
microscopic mechanisms of charge transport. If O is an observable which has a value Oα in
a state α, its ensemble average at time t is a sum over all states weighted by the probability
Pα to be in a state α at time t

⟨O⟩ =
∑

α

OαPα. (2.37)

If O does not explicitly depend on time, the time evolution of ⟨O⟩ can be calculated as

d ⟨O⟩
dt

=
∑
α,β

[PβΩβα − PαΩαβ]Oα =
∑
α,β

PβΩβα [Oα −Oβ] . (2.38)

If averages are obtained from KMC trajectories, Pα = sα/s, where sα is the number of
Markov chains ending in the state α after time t, and s is the total number of chains.

Alternatively, one can calculate time averages by analyzing a single Markov chain. If
the total occupation time of the state α is τα then

O =
1

τ

∑
α

Oατα , (2.39)

where τ =
∑

α τα is the total time used for time averaging.
For ergodic systems and sufficient sampling times, ensemble and time averages should

give identical results. In many cases, the averaging procedure reflects a specific experi-
mental technique. For example, an ensemble average over several KMC trajectories with
different starting conditions corresponds to averaging over injected charge carriers in a
time-of-flight experiment. In what follows, we focus on the single charge carrier (low con-
centration of charges) case.
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2.9.1 Charge density

For a specific type of particle, the microscopic charge density of a site i is proportional to
the occupation probability of the site, pi

ρi = epi/Vi , (2.40)

where, for an irregular lattice, the effective volume Vi can be obtained from a Voronoi
tessellation of space. For reasonably uniform lattices (uniform site densities) this volume
is almost independent of the site and a constant volume per site, Vi = V/N , can be
assumed. In the macroscopic limit, the charge density can be calculated using a smoothing
kernel function, i.e. a distance-weighted average over multiple sites. Site occupations pi

can be obtained from eq. 2.37 or eq. 2.39 by using the occupation of site i in state α as an
observable.

If the system is in thermodynamic equilibrium, that is without sources or sinks and
without circular currents (and therefore no net flux) a condition, known as detailed balance,
holds

pjωji = piωij . (2.41)

It can be used to test whether the system is ergodic or not by correlating log pi and the site
energy Ei. For exmaple in one-component systems λij = λji and the ratio of forward and
backward rates are determined solely by the energetic disorder, ωji/ωij = exp(−∆Eij/kBT )
(see eq. 2.6).

2.9.2 Current

If the position of the charge, r⃗, is an observable, the time evolution of its average ⟨r⃗⟩ gives
the total current in the system

j⃗ = e ⟨v⃗⟩ = e
d ⟨r⃗⟩
dt

= e
∑
i,j

pjωji(r⃗i − r⃗j). (2.42)

Symmetrizing this expression we obtain

j⃗ =
1

2
e
∑
i,j

(pjωji − piωij) r⃗ij, (2.43)

where r⃗ij = r⃗i − r⃗j. Symmetrization ensures equal flux splitting between neighboring
sites and absence of local average fluxes in equilibrium. It allows to define a local current
through site i as

j⃗i =
1

2
e
∑

j

(pjωji − piωij) r⃗ij. (2.44)

A large value of the local current indicates that the site contributes considerably to the
total current. A collection of such sites thus represents most favorable charge pathways.
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2.9.3 Mobility and diffusion constant

For a single particle, e.g. a charge or an exciton, a zero-field mobility can be determined by
studying particle diffusion in the absence of external fields. Using the particle displacement
squared, (∆r⃗i)

2, as an observable we obtain

2dDγδ =
d ⟨∆ri,γ∆ri,δ⟩

dt
=
∑
i,j
i ̸=j

pjωji (∆ri,γ∆ri,δ − ∆rj,γ∆rj,δ) =
∑
i,j
i ̸=j

pjωji (ri,γri,δ − rj,γrj,δ) .

(2.45)
Here r⃗i is the coordinate of the site i, Dγδ is the diffusion tensor, γ, δ = x, y, z, and d = 3
is the system dimension. Using the Einstein relation,

Dγδ = kBTµγδ , (2.46)

one can, in principle, obtain the zero-field mobility tensor µγδ. Eq. 2.45, however, does
not take into account the use of periodic boundary conditions when simulating charge
dynamics. In this case, the simulated occupation probabilities can be compared to the
solution of the Smoluchowski equation with periodic boundary conditions [64].

Alternatively, one can directly analyze time-evolution of the KMC trajectory and obtain
the diffusion tensor from a linear fit to the mean square displacement, ∆ri,γ∆ri,δ = 2dDγδt.

The charge carrier mobility tensor, µ̂, for any value of the external field can be deter-
mined either from the average charge velocity defined in eq. 2.42

⟨v⃗⟩ =
∑
i,j

pjωji(r⃗i − r⃗j) = µ̂F⃗ , (2.47)

or directly from the KMC trajectory. In the latter case the velocity is calculated from the
unwrapped (if periodic boundary conditions are used) charge displacement vector divided

by the total simulation time. Projecting this velocity on the direction of the field F⃗ yields
the charge carrier mobility in this particular direction. In order to improve statistics,
mobilities can be averaged over several KMC trajectories from different injection points
and MD snapshots.

2.9.4 Convergence of mobility

In the previous part of this chapter we have introduced several computational parame-
ters that influence the accuracy and efficiency of charge-transport simulations including a
cutoff radius rnb for the neighborlist construction, a cutoff rel for polarized electrostatic
interactions and the KMC simulation time tKMC.

In this section we investigate the convergence of the charge-carrier mobility with respect
to these parameters and also discuss finite-size effects that have to be considered when
extrapolating to experimental system sizes (typically layer thicknesses are at least 100 nm).
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Figure 2.14. Cutoff dependence of individual electrostatic energies for electron transport in
system with L = 16nm containing 4096 BTDF molecules. (a) Static (ϵs = 1) contributions deter-
mined with a cutoff rel are compared to energies from the full box (nearest image convention).
Root mean square deviation ∆ shows slow convergence, which leads to slow convergence of the
transport energy E∞ = −σ̄2/kBT shown in the inset. (b) Same as (a) but now including polar-
ization interactions using the Thole model which leads to faster convergence due to screening.
Instead of the full box, energies are compared to a simulation with rmax = 4 nm.

Cutoff dependence of electrostatic energies

Introducing a cutoff rel for calculation of electrostatic site energies can be necessary for
large system sizes to speed up calculations. It restricts the number of neutral molecules
surrounding the molecule whose site energy is to be computed. The first criterion for
convergence of electrostatic interactions including polarization is the site-energy differences
from the neighborlist, where rel = 2 nm is sufficient due to the spatial correlations. In
KMC simulations, where the charge carrier is randomly injected at the beginning of the
simulations, the equilibrium transport energy [113] also has to be reached. It is defined in
terms of inverse temperature β = (kBT )−1 as

Eequ =

∫ +∞
−∞ p(E)E exp (−βE) dE∫ +∞
−∞ p(E) exp (−βE) dE

, (2.48)

and represents the energy a charge carrier relaxes to after it has been randomly injected
into a site-energy distribution p(E). In case of a Gaussian distribution of individual (un-
correlated) site energies with zero mean and width σ̄ the transport energy is Eequ = −βσ̄2.
Therefore, using a cutoff radius rel, which does allow to converge the site-energy differences
of the neighborlist, but is too small to converge electrostatic interactions for the individual
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Figure 2.15. Convergence of mobility in system of 4096 BTDF molecules. (a) Poole-Frenkel
plots for electron transport for different rel used for polarized site-energy calculations show that
although site-energy differences (σnb) are converged at rel = 2 nm, unconverged transport energy
Eequ leads to slight overestimation of mobility for small electric fields. (b) A neighborlist cutoff
of rnb = 0.7 nm between centers of mass of rigid fragments yielding 30.000 pairs is sufficient to
converge mobilities. All mobilities in a and b are averaged over ten KMC runs with different
injection points and six directions of the field. In case of b, averages are obtained from two
independent MD snapshots while only one snapshot is used for a. Errors for the mean of the
mobility are taken from a bootstrap analysis with 10.000 data sets. Conformational disorder has
been neglected in a and b.

site energies leads to underestimation of σ̄ which leads to overestimation of Eequ and higher
mobilities.

To investigate the convergence of the individual site energies we first analyze the un-
screened electrostatic contributions (eq. 2.24 with ϵs = 1) which are shown for different
cutoff radii in fig. 2.14.a with respect to the energies evaluated using the whole box contain-
ing 4096 BTDF molecules (nearest image convention). Due to the long-range nature of the
charge-dipole interaction, which is proportional to r−2, the convergence of the individual
energies is slow, which leads to slow convergence of Eequ as shown in the inset of fig. 2.14.a.

Next we include polarization effects using the Thole model described in sec. 2.7.3.
As evaluation of the polarization contributions for a box of N = 4096 BTDF molecules
becomes computationally prohibitive due to N2 interactions in the self-consistency loop, we
compare the individual site energies using different cutoff radii to energies obtained using
rel = 4 nm. Figure 2.14.b shows that energies systematically shift to lower values with
increasing cutoff radius since more polarizable material is available to stabilize the charge.
Note that since the interaction of the charge with the induced dipole is proportional to
r−4, this shift does not increase much for rel > 3.5 nm. As compared to the static case, the
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convergence of individual site-energy distributions is much faster which, in turn, speeds up
the convergence of Eequ as shown in the inset of fig. 2.14.b. This speed-up is due to the
fact that at long distances the screening reduces the charge-dipole interactions.

In order to investigate the dependence of mobility on the cutoff radius, we have per-
formed KMC simulations with one charge carrier in the box of 4096 BTDF molecules using
the polarized site energies from the Thole model obtained with different rel. As shown in
fig. 2.15.a, the mobility converges rather fast indicating that rel = 3 nm is sufficient for
simulations at moderate electric fields, while a slight overestimation of mobilities (with
respect to rel = 4 nm) can still be seen in case of small electric fields and is due to not
completely converged σ̄ and Eequ.

Cutoff dependence of the neighborlist

The list of neighbors for computation of hopping rates is based on a cutoff distance between
centers of mass between rigid fragments as introduced in fig. 2.6. In case of BTDF the
phenyl groups and the dibenzofurane cores constitute seven rigid fragments. The depen-
dence of the simulated electron and hole mobilities on this cutoff is shown in fig. 2.15.b
indicating that a value of rnb = 0.7 nm is sufficient for convergence. The neighborlist
then contains about 30.000 pairs for which transfer integrals are evaluated using the PBE
functional, the TZVP basis set, and the dimer projection method [83, 92].

KMC simulation time dependence

We have also checked the convergence of mobility with respect to the total KMC simula-
tion time tKMC.As can be seen from fig. 2.16.a, too short KMC simulation times lead to
higher mobilities since the charge carrier that has been randomly injected in the density
of states has not relaxed to the transport energy Eequ, which is in the tail of the density
of states. Due to relatively small energetic disorder in BTDF, this equilibration is fast so
that mobility is converged after tKMC >= 10−5 s for electrons and tKMC > 10−4 s for holes,
which corresponds to crossing the simulation box a few thousand times.

System size effects

Predictions of charge-carrier mobilities in partially disordered semiconductors rely on
charge transport simulations in systems which are only several nanometers thick. As a
result of too small system sizes, the simulated mobility in materials with large energetic
disorder decreases with increasing system size and the transport is said to be disper-
sive [114, 115]. If the system size is large enough, charge transport is non-dispersive
meaning that mobility does not depend on the system size.

In order to understand the concept of dispersive mobility, let us consider a Gaussian
distribution of site energies p(E), from which i = 1...N site energies Ei are drawn that
represent the site energies of N molecules in the simulation box. Even in infinitely large
systems (obtained from periodic boundary conditions), only N different site energies are
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Figure 2.16. (a) Dependence of mobility µ on the duration tKMC of the KMC simulation for
4096 BTDF molecules for holes (h) and electrons (e) at small and high values of the external field
F . (b) Temperature dependence of mobility. Simulations are performed for holes in the interval
from 10.000K to 290K. The extrapolation of the fit (red) obtained for points above Tc = 600K
(black arrow) confirms that charge transport is non-dispersive up to room temperature (green).
All mobilities in (a) and (b) are averaged over ten injection points and six directions of the field
and two independent MD snapshots. Error bars are taken from a bootstrap analysis with 10.000
data sets. Conformational disorder has been neglected in a and b.

accessible since all periodic images of a molecule have the same energy. In this case, there
are only a few (depending on N) states with very low lying energy, and the charge carrier
relaxes to a system size dependent transport energy Eequ

N , which is higher compared to
Eequ resulting from a system with an infinite amount of different site energies (where the
low lying energies in p(E), that have the largest weight due to the Boltzmann factor, are
perfectly sampled)

Eequ
N =

∑N
i Ei exp (−βEi)∑N

i exp (−βEi)
> Eequ =

∫ +∞
−∞ p(E)E exp (−βE) dE∫ +∞
−∞ p(E) exp (−βE) dE

. (2.49)

The system-size dependent transport energy can result in a mobility decrease with increas-
ing system size N until enough sites are available and transport becomes non-dispersive.
Within an uncorrelated Gaussian disorder model, the critical temperature Tc, at which the
transition from the dispersive to the non-dispersive regime occurs, can be estimated as [55]

(σ̄/kBTc)
2 = −5.7 + 1.05 ln(N) . (2.50)

Here σ̄ is the width of the Gaussian-distributed individual site energies, N is the number
of sites visited during the KMC run, and the natural logarithm is used.
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In case of hole transport in BTDF, where σ̄ ≈ 0.1 eV, it is estimated that the non-
dispersive regime sets in for temperatures above Tc = 600 K for the biggest simulation
boxes we considered (N = 4096 molecules). This implies that when KMC simulations are
performed at room temperature, the mobility might still be dispersive. Since computation
of transfer integrals and site energies is very time consuming for larger system sizes, we
can obtain the non-dispersive mobility by exploiting the fact that the relevant parameter
in eq. 2.50 is σ̄/(kBT ) and using temperature-based extrapolation [55].

In this approach, one needs to perform KMC simulations at temperatures above Tc but
using the morphology and transport parameters (Ei, Jij, λij) obtained at room tempera-
ture. Non-dispersive mobilities calculated at these elevated temperatures can then be used
in combination with an analytical result for the temperature dependence [109, 116, 117] to
extrapolate mobilities to a desired temperature below Tc. We have used the following tem-
perature dependence with the parameters m, a, b derived in a one-dimensional model [55]

µ(T ) =
m

T 3/2
exp

[
−
( a
T

)2

− b

T

]
. (2.51)

For BTDF, the non-dispersive mobilities for T > Tc = 600K are shown in fig. 2.16.b
together with a fit of these data points using eq. 2.51. We also show the simulated data
point at room temperature and find that it agrees well with the result of the extrapolation.
This indicates that the room-temperature mobility simulated for N = 4096 is already
converged with respect to the system size.



Chapter 3

Charge transport in amorphous
systems

Organic semiconductors are used as building blocks of various electronic devices such as low
cost organic field effect transistors (OFET), lightweight organic photovoltaic cells (OPVC)
and flexible organic light emitting diodes (OLED). In contrast to OFET that still suffer
from low switching frequencies and OPVC where the power conversion is low, OLEDs based
on vacuum-deposited small molecules have already entered the market of flat panel displays
and lighting applications [118, 119]. In spite of successful commercialization, the field still
faces a number of problems such as the insufficient stability [28] especially for OLEDs
based on deep blue emitters [29, 30] with wavelength of λ < 460nm. In an OLED, several
life-time limiting processes can occur during its operation: if the injection of electrons and
holes into the emission layer is unbalanced or if their mobilities differ by several orders of
magnitude, their recombination takes place in a narrow emission zone at the interface of
the emission layer with one of the injection layers. Molecules in this zone are then exposed
to high (energetic) stress which can lead to a chemical reaction and device degradation.
The morphology of the emission layer also needs to be amorphous in order to prevent the
formation of current filaments, which would occur in a crystal structure and would again
result in high (electric) stress on certain molecules.

In this chapter we perform microscopic simulations of charge dynamics in (multi-
component) amorphous phases of organic materials using the methods introduced in ch. 2.

After explaining the multi-layer structure of an OLED and introducing the basic phys-
ical processes occurring in its emission layer (sec. 3.1), we analyze charge transport in pure
2,8-bis(triphenylsilyl)dibenzofurane (BTDF), which has already been introduced in the pre-
vious chapter. The amorphous phase of this molecule is used as the electron-transporting
layer and as the matrix material for the emission layer of a blue OLED. In sec. 3.2 we dis-
cuss the effect of substituents attached to the aromatic dibenzofurane core. By analyzing
the electronic structure of BTDF we show that small delocalization effects lead to large
electronic coupling elements between neighboring molecules and hence improved mobility.
In sec. 3.3, we analyze a host-guest system composed of BTDF doped with a blue triplet
emitter [30] forming the emission layer of the OLED. There, we concentrate on the effect of
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Figure 3.1. Materials used in the emission layer of organic light emitting diodes. (a) Chemical
structure of host molecule BTDF consisting of a dibenzofurane core and triphenylsilyl substituents
that can rotate due to soft dihedrals δ (red). (b) Isosurfaces of the LUMO using a value of ±0.007
a.u. allowing to visualize small fractions of orbital density delocalized from the core over the Si-
atom to the substituents. (c) Chemical structure of guest molecule acting as deep blue triplet
emitter and (d) representation of its meridional isomer used in our simulations.

polarization on the relative site energies of host and guest molecules and consequences for
charge transport. Chemical structures for the host and the emitter tris[(1,2-dibenzofurane-
4-ylene)(3-methyl-1/1-imidazole-1-yl-2(3/1)-ylidene)]Ir(III) are shown in fig. 3.1.

Although the focus here is on OLEDs in which films of small molecules are used, our
findings are also applicable to other devices such as OFET or OPVC.

3.1 Basic physical processes in OLEDs

A prototypical OLED is a multi-layer structure which is shown in fig. 3.2.a. Every layer
bears a certain task: electrons are injected from a metallic cathode, holes are injected on
the opposite side of the OLED from a transparent anode, typically made of indium tin
oxide (ITO). Transport layers (which may be doped) allow for energy alignment of the
organic semiconductors and the electrodes and provide a balanced charge transport into
an emission layer (EML). Additional blocking layers are used to confine charge carriers to
the EML facilitating their efficient radiative recombination.

The EML itself consists of a charge-transporting organic semiconductor and an emitter.
The main processes occurring in the EML are shown in fig. 3.2.b. Holes and electrons
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Figure 3.2. (a) Multi-layered structure of a phosphorescent OLED with an electron-conducting
host and a hole-conducting emitter. (b) Relative alignment of hole (HT) and electron (ET)
transport levels of emitter and host and their broadening σ̄ (right) and energy levels of singlets
(S) and triplets (T ) of the emitter emission spectrum and the host excitation spectrum (left).
The following processes are shown : (1) Hole transfer from emitter to host is avoided by a large
barrier, ∆h. (2) Electron transfer to the neutral emitter is prevented by the barrier ∆e. In order
to ensure exciton formation on the emitter, ∆h ≫ ECoul > ∆e, where ECoul is the Coulomb
attraction between the hole on the emitter and the electron on the neighboring host. (3) Transfer
of the exciton from the emitter to the host is avoided by the barrier ∆t for triplet excitons. (4)
Carrier recombination results in emission of blue light.

have to be injected from either side into the emission layer. In case of a large band-gap
emitter, its small electron affinity makes injection of electrons from the cathode to the
emitter difficult. Therefore, the host is used as the electron transporting material, and the
corresponding electron-transport level (ET) has to be below that of the emitter resulting
in an energy barrier ∆e between host and guest. On the other hand, injection of holes then
occurs into the emitter molecule where the corresponding transport level (HT) can more
easily be energetically aligned with the Fermi level of the anode.

There are two ways of forming an exciton in the EML. First, electrons and holes can
form excitons on a host molecule with a subsequent energy transfer of the exciton to the
emitter. Alternatively, hole transport can be restricted to emitter molecules by introducing
a large energy barrier ∆h. In this case, a hole on the emitter can attract a charge of the
opposite sign from the host and a neutral exciton will be formed directly on the emitter.
This direct charge transfer to the emitter leads to more efficient OLEDs than the excitation
by energy transfer from the host since, due to different spectral overlap, it is difficult to
realize at the same time efficient Förster and Dexter energy transfers of singlet excitons
(spin S = 0) and triplet excitons (S = 1), respectively [120–123].

The balance between forming excitons on the host or on the emitter is determined by
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the respective energy level alignment of the emitter and the host, and can therefore be
rationally designed. In order to ensure exciton formation on the emitter, the Coulomb
attraction between the hole on the emitter and the electron on the neighboring host (typ-
ically ECoul ≈ 0.5 eV) should be capable of overcoming the transport barrier ∆e ≈ 0.3 eV
for electrons. For holes ∆h > 1.5 eV so that excitons are only formed on the emitter. In
addition, a large energy barrier for the (triplet) excitons, ∆t, prevents their transfer from
the emitter to the host and the re-absorption of the emitted light by the host which is
out-coupled through the transparent anode.

In order to be able to convert all excitons that are created in the EML to light, phos-
phorescent organo-metallic emitters are used. Excitons are formed on the emitter with a
ratio of 1:3 between singlets and triplets according to their multiplicity 2S + 1. In fluo-
rescent emitters, triplets decay non-radiatively so that the internal conversion efficiency
of excitons is limited to 25%. On the other hand, phosphorescent emitters that allow for
inter-system crossing due to large spin-orbit coupling, can convert singlets to triplets so
that all excitons are converted into light independent of their spin state. This process is
known as triplet harvesting [121] and allows for internal conversion efficiencies up to 100%.

Note that in order to avoid triplet quenching and triplet-triplet annihilation, the charge-
transporting material, as the majority component (host), is doped only with a small amount
(5 − 20% w/w) of the emitter (guest). This is necessary because the internal quantum
efficiency decreases upon increase of the concentration of the triplet emitter since two
triplets can form a double excitation which can result in material degradation or decay
non-radiatively or with undesirable wavelength. A uniform light emission requires a ho-
mogeneous distribution of emitter molecules in the matrix. Hence, host and guest must be
compatible in order to prevent phase-separation. Aggregation is especially pronounced at
high emitter concentrations and leads to a red-shift of the emission and a decrease of the
luminescence quantum yield.

After having understood the working principle of the OLED and the requirements for
the involved materials, we now first address the rational design of the host molecule that
is to be used in combination with a deep blue emitter, and then investigate the emission
layer in sec. 3.3 focusing always on charge transport.

3.2 Design of charge-transport efficient host molecules

The large band gap of deep blue emitters and the resulting high triplet energy dramatically
reduces the number of promising compatible host materials since an even higher triplet
energy is necessary for the host to ensure trapping of the exciton on the emitter and to
prevent the reabsorption of the emitted light [124, 125]. Such a high triplet energy often
implies small electron affinity for the host which can result in material degradation when
the material is transporting electrons. Also carrier injection into the host then becomes
difficult since it requires overcoming large energy barriers between transport layers and
the host. This problem can partially be solved by doping the transport layer which leads
to band-bending and energy level alignment of host with the electron-transporting layer
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and/or cathode.
Among possible charge transporting units with sufficient stability for electron transport

and a high triplet energy are dibenzofuranes or N-phenylcarbazoles [126]. Substituents
must be attached to these materials for various reasons. First, they are necessary to pre-
vent crystallization [127]. The amorphous morphology of the EML is important for both
efficiency and lifetime of an OLED, since crystallinity favors transport along the π-stacking
direction which leads to inhomogeneous charge transport in current filaments resulting in
inhomogeneous emission. To avoid crystallization, side groups must be sufficiently flexible
and bulky. For example, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) crystallizes
because its substituents are too small. Second, large substituents suppress emitter aggrega-
tion, and therefore facilitate a uniform light emission while at the same time reducing shifts
in the wavelength and non-radiative losses. Hence, host and guest must be compatible in
order to prevent phase separation, which, in our case, is achieved by using the dibenzo-
furane core as a building block of both host and guest molecules, as shown in fig. 3.1.
Aggregation is especially pronounced at high guest concentrations and can lead to a red
shift of the emission wavelength due to strong interactions between the π−systems of the
emitters which leads to a splitting of HOMO and LUMO and a lower bandgap. Third, sub-
stituents can be used to optimize the molecular weight of the host for vacuum deposition
where, as a rule of thumb, molecular weights below 1000 u are suitable since the thermal
energy that the substrate is transferring to the molecules at a given temperature has to be
sufficient to overcome the absorption energy. Note that large molecules often have a large
number of internal degrees of freedom so that the thermal energy of the substrate is not
fully converted into kinetic energy and the evaporation is more difficult.

The main role of the substituents, however, is to adjust the relative positions of electron
and hole transporting levels as well as singlet and triplet excited states of the host to those
of the emitter which are shown in fig. 3.2.b. In case of dibenzofurane for example, the high
triplet energy implies a high electron transporting level, which has to be adjusted below
the level of the emitter by attaching substituents in order to ensure electron transport by
the host. Synthetically, level adjustment can be achieved by inductive effects [128], when
strongly electronegative substituents (e.g. trifluoromethyl) are used. An alternative ap-
proach is to exploit the mesomeric effect [128], when the frontier orbital densities delocalize
(by using e.g. triphenylsilyl substituents). In case of the BTDF host molecule shown in
fig. 3.1.a, two triphenylsilyl groups are attached to an aromatic core, which lowers the
electron transport level of the host below the one of the emitter while keeping its triplet
energy above the emitter. In addition they are sufficiently bulky to prevent crystallization.
However, apart from a suitable level alignment, processability, amorphous structure and
stability, an adequate charge carrier mobility of the host is required in order to prevent
ohmic losses.

Due to its complexity, the effect of the attached substituents on charge carrier mobility
has rarely been addressed. It is obvious that bulky substituents can lead to large spatial
separations of π-conjugated systems of neighboring molecules. Since electronic couplings
decrease exponentially with intermolecular separations, one might expect very poor charge
carrier mobility of the host. The aim of this section is to show that the use of the mesomeric
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effect can remedy the situation by delocalizing the frontier orbitals over the substituents.
To do this, we perform charge-transport simulations to quantify the influence of transport
parameters such as reorganization energy and site-energy disorder in sec. 3.2.1 and analyze
the influence of the mesomeric effect on transfer integrals in sec. 3.2.2. In order to formulate
design rules for charge-transport efficient host materials in sec. 3.2.4 we have to compare
our findings to experimental data from admittance spectroscopy in sec. 3.2.3, because the
widely used time-of-flight (TOF) technique cannot be applied in case of BTDF which we
now explain. In TOF, the organic semiconductor is sandwiched between two electrodes
and charges are photo-excited in the organic material using a laser pulse. Let us assume
that hole mobilities are to be measured. Then the anode (positive electrode) has to be
transparent, and due to the absorption of the organic material, charges are generated near
the anode. The negative charges are then directly extracted which leads to a large current
signal directly after the excitation. Under the influence of an applied field F the holes
are drifting towards the cathode (negative electrode) and the current is time-independent
until the holes have reached the cathode. Therefore the current starts to decay for times
larger than the transit time τ . The hole mobility can then be extracted from the transit
time and the sample thickness L according to µ = τ/(FL). Note that in order to be
able to accurately determine τ , the sample thickness has to be large enough to be in the
non-dispersive regime (see sec. 2.9.4). Otherwise the finite penetration depth of the laser
beam leads to different mobilities for charges depending on where in the sample they are
generated since the mobility for each charge depends on the distance it travels before
extraction.

In case of BTDF layer thicknesses of d > 1µm would be necessary, while in OLEDs
films with d < 200 nm are typically used. Furthermore, in case of BTDF, doped interlayers
are necessary to adjust the transport levels of the organic material to that of the electrodes
to allow for efficient extraction of the charges, and these interlayers absorb at the exci-
tation wavelength of the large band gap organic material which makes photo-excitation
impossible.

In contrast to TOF, admittance spectroscopy is independent of light absorption and
can be used to extract the mobility of thin organic films sandwiched between electrodes.
This is done by applying a small ac voltage in addition to a dc voltage and investigating
the capacitance of the device in the frequency domain to find the transit time as explained
in sec. 3.2.3.

3.2.1 Charge-transport simulations

To relate charge carrier mobility to the chemical structure the methodology introduced
in ch. 2 is applied to the BTDF system. First, atomistic molecular dynamics (MD) is
used to simulate material morphology and then charge-transfer rates between neighboring
molecules i and j are evaluated from reorganization energies, site energies and transfer
integrals using the high-temperature limit of Marcus theory (eq. 2.6), as explained in ch. 2.
The rates and molecular centers of mass are used in kinetic Monte Carlo (KMC) simulations
to solve the master equation for a charge drift-diffusing in a box with periodic boundary
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conditions in an applied electric field F . The charge carrier mobility is then determined
as µ = ⟨v⟩/F , where ⟨v⟩ is the averaged projection of the carrier velocity on the direction
of the field. Simulated mobilities are averaged over two independent MD snapshots, ten
injection points, and six different spatial directions of the field. We have discussed the
convergence of the mobility with respect to different simulation parameters such as cut-off
radius for a neighborlist, cut-off radius for electrostatic interactions including polarization,
KMC simulation time and box size in sec. 2.9.4.

Morphology

An amorphous morphology of 4096 BTDF molecules is obtained by first annealing the
system at 700 K, well above the glass transition temperature, Tg = 380 K, followed by fast
quenching to room temperature, as explained in sec. 2.2. This leads to a representative
system with a density that agrees reasonably well with experiment as shown in sec. 2.2
although partial crystallization or non-equilibrium effects can not be investigated since this
would require much larger time scales. The final length of the cubic box is L = 16 nm.
To determine charge hopping rates in this morphology, a neighborlist based on the closest
approach of centers of mass between phenyl rings or dibenzofurane cores is constructed
using a cutoff of 0.7 nm. The parameters entering the rate expression are then calculated
for each molecular pair from the neighborlist.

Since BTDF has soft degrees of freedom, such as dihedrals δ in fig. 3.1.b, molecules
in the amorphous phase have different conformations as indicated in the inset of fig. 3.3a.
These conformations are frozen on the time scale of charge transport, as shown in sec. 2.2.
Reorganization energies λij and internal (conformational) energy differences ∆Eint

ij are
therefore computed from potential energy surfaces of 512 molecules with geometries taken
from the MD simulation making use of density functional theory (DFT).

Reorganization energy

We find a small variance of the reorganization energy due to conformational changes.
Since such a small variation does not affect the mobility we use the mean values of
λBTDF

e(h) = 0.19(0.27) eV for electrons (holes). As the bare dibenzofurane has λDBF
e = 0.27 eV,

attaching the triphenylsilyl groups increases electron hopping rates roughly by a factor of√
λDBF

e

λBTDF
e

exp
(
−λBTDF

e −λDBF
e

4kBT

)
∼ 3 (see also eq. 4.6), which can be explained in terms of

delocalization effects [82]. The reorganization energy for holes is similar in BTDF and the
bare dibenzofurane. Note that the mean ⟨λe(h)⟩ from the distribution of reorganization
energies deviates from the value obtained in molecular geometries that can freely relax,
λfree

e(h) = 0.16(0.34) eV.

Site-energy distributions

The distributions of conformational energy differences, ∆Eint
e(h), are of Gaussian type with

a moderate variance of σint
e(h) = 0.04(0.05) eV and are uncorrelated in space, which allows
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Figure 3.3. (a) Distributions of differences in electrostatic energies including polarization,
∆Eel

e(h) (from a neighborlist), internal (conformational) energies, ∆Eint
e(h) and reorganization en-

ergies, λe(h) for electrons (holes). Mean and variance σ given in eV. Inset shows the distribution
of the dihedral angle δ introduced in fig. 3.1.c. (b) Distributions of the logarithm of the transfer
integral J for electron and hole transport constructed from diabatic states based on dibenzofurane
(DBF) core or using the whole molecule (BTDF). The same neighborlist and morphology of 4096
BTDF molecules was used for all distributions. Inset: radial distribution functions g(r) of the
centers of mass of the DBF core (DBF) and of phenyl rings of the triphenylsilyl groups (PHE).

us to draw them from such a distribution in the larger box of 4096 molecules. Simulations
are then additionally averaged over two realizations of this disorder.

Electrostatic contributions to site-energy differences are calculated using partial charges
for charged and neutral molecules in the ground state obtained from DFT. Polarization
contributions are taken into account self-consistently using the Thole model [104, 106]
with a cutoff of 3.5 nm between molecular centers of mass (see sec. 2.7). This results
in polarized electrostatic site-energy differences from the neighborlist, ∆Eel

e(h), that are

Gaussian distributed with a variance of σel
e(h) = 0.12(0.11) eV. This is a rather small

energetic disorder which is due to small variations of atomic partial charges (local dipole
moments) and the small total dipole moment of BTDF. The bare dibenzofurane has a
total dipole moment of d = 0.7 D, while adding the triphenylsilyl groups slightly increases
it to d = 0.8 D with a conformational disorder in an amorphous morphology of σd =
0.1 D. Since the energetic disorder is proportional to the dipole moment (see eq. 2.22), the
attachment of the substituents does not lead to a significant increase of energetic disorder.
All distributions are shown in fig. 3.3.a.
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3.2.2 Mesomeric delocalization effects

The remaining ingredient entering the rate expression is the transfer integral J , which
relies on the definition of diabatic states of a pair of molecules. The latter are usually
constructed from representative orbitals of the π-conjugated parts, since the effect of at-
tached substituents on the diabatic states is rather small (e.g. in case of alkyl or glycole
side-chains [51, 61, 129]). Following this approach, the diabatic states are evaluated by
substituting triphenylsilyl by a hydrogen (without modifying the rest of the morphology).
Consequently, reorganization energies of the dibenzofurane core (λDBF) are used and trans-
fer integrals are then calculated on DFT level with the PBE functional and a TZVP basis
set using the dimer projection method [83, 92]. The distribution of the logarithm of trans-
fer integrals J for pairs of the neighbor list is very broad and is peaked at small values
as shown in fig. 3.3.b. This can be rationalized in terms of morphology, as the transfer
integral depends exponentially on the intermolecular separation. The distance between the
dibenzofurane cores is large because of the attached bulky substituents, as illustrated by
the radial distribution function for centers of mass of dibenzofurane cores, shown in the
inset of fig. 3.3b. The onset of this function is at ca. 0.5 nm and has a peak g(r) > 1
at a separation larger than 1 nm, which eventually leads to the broad distribution of J .
The small number of high transfer integrals due to a few close-lying cores is apparently
not sufficient to form a percolation network of high rates necessary for efficient charge
transport. As a consequence, simulations predict low mobilities at experimentally relevant
electric fields, µe(h) < 4 · 10−7(3 · 10−8) cm2/Vs, which would lead to ohmic losses and poor
device performance.

The above made assumptions on the nature of the diabatic states seem logical but are
ultimately invalid. Indeed, if the diabatic states are constructed using the frontier orbitals
of the entire BTDF molecule, the distributions of transfer integrals become significantly less
broad and are peaked at much larger values as shown in fig. 3.3.b. As a result, predicted
mobilities are much higher, µe(h) ∼ 5 · 10−4(10−5) cm2/Vs, which is in agreement with
experiments performed by admittance spectroscopy (AS).

3.2.3 Comparison to admittance spectroscopy measurements

Admittance spectroscopy (AS) of organic semiconductors allows to characterize electrical
properties such as the charge carrier mobility. The theoretical background is based on
a simplified system consisting of two electrodes connected by a semiconducting channel
formed by the organic layer. A dc voltage is applied across the sample and a small ac
signal at frequency ω is superimposed. In the space-charge limited current regime [130],
the average transit time for charge carriers in the organic film, τ , can be extracted from the
maximum of the frequency-dependent negative differential susceptance, −∆B = ω(C−C0),
where ω = 2πf is the angular frequency of the ac oscillations, C0 is the capacitance of
the organic layer at 0 V and C its frequency-dependent analogue [131]. The transit time
τ allows to evaluate the mobility as a function of the applied voltage according to [130]

µexp = ⟨vexp⟩
F exp , where the mean velocity is given by ⟨vexp⟩ ∼ L/τ and L is the thickness
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Figure 3.4. (a) Simulated electron (black) and hole (red) mobility µ as function of applied field
F , with diabatic states based on the whole BTDF molecule (solid) or the DBF core (dashed),
respectively. Mobilities are averaged over ten injection points, two MD snapshots, six spatial
directions of the field and two realizations of conformational disorder. Error bars are computed
from a bootstrap analysis with data sets of 10000 data points. In the scenario where only diben-
zofurane cores are taken into account bad connectivity due to small electronic coupling (especially
for holes) makes the solution of the master equation difficult which leads to large errorbars in
mobility. Experimental data is obtained from admittance spectroscopy at room temperature on
films of thickness d. (b) Transfer integrals (and consequently mobilities) are boosted by overlap
of the delocalized frontier orbitals (here LUMO) on the substituents of neighboring molecules
(green).

of the organic film. The field is given by F exp = (V − Vb)/L, where V is the applied dc
voltage and Vb is the built-in voltage due to different Fermi levels of the organic material
and the electrodes.

Note that the relative dielectric constant ϵr is included in the model used to compute
⟨vexp⟩, while screening of the applied field is not accounted for in simulations. There,

the applied electric field F leads to an un-screened site-energy difference of qF⃗ r⃗ij for a
charge q hopping between molecules separated by r⃗ij, which allows to match the mobility
computed in linear response of the field to the diffusive mobility from the Einstein relation
eq. 2.46. Therefore, in order to compare experimental data to simulations the dielectric
constant ϵr = 2.8 (from capacitance measurements) was used to obtain the rescaled field-
axis F = Fexp/ϵr and mobilities µ = µexpϵr from the experimental data points.

Both experimental and simulated mobilities for electrons and holes are shown in fig. 3.4.a.
Note that while microscopic charge-transport simulations yield excellent results when com-
paring relative mobilities, e.g. comparing electrons vs holes in the same compound or
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LUMO HOMO
DBF TPS DBF TPS

HF 83% 17% 97% 3%
PBE 89% 11% 96% 4%

B3LYP 89% 11% 96% 4%
GWA 90% 10% 95% 5%

Table 3.1. Mulliken population analysis for the localization of the frontier orbitals (LUMO and
HOMO) on the dibenzofurane core (DBF) and the triphenylsilyl substituents (TPS). Different
quantum chemical methods are employed including Hartree-Fock (HF), density functional theory
with the PBE functional or B3LYP functional and the GW-approximation [133] all showing that
the main part of the orbitals is localized on the dibenzofurane core.

electrons in one compound vs electrons in a similar compound, they usually tend to over-
estimate the absolute value of mobility as compared to experiment [55, 56, 61, 132].

In BTDF the agreement of experiment and simulations using orbitals from the full
BTDF molecule with respect to absolute values of mobilities is reasonably good given
the various assumptions made in the charge-transport simulations. These include the
creation of the morphology by fast quenching, the choice of the diabatic states (frozen
core approximation), the high-temperature limit of the Marcus rate, the strong distance
dependence of transfer integrals and the fact that we only have one charge carrier in the
simulation box. The relative electron/hole mobilities, however, agree very well between
experiment and theory. Simulated electron mobilities are higher compared to holes due to
stronger delocalization leading to λe < λh and J2

e ≫ J2
h, while σe ≈ σh as summarized in

fig. 3.3.

3.2.4 Rules for the host design

We now discuss the discrepancy between the theoretical approach taking into account
contributions to the orbitals on the substituents or neglecting them. The reason for the
much higher mobility in the first approach is the mesomeric effect, which delocalizes the
frontier orbitals over the silicon atom to the substituents, as shown in fig. 3.1.b. A Mulliken
population analysis [134] indicates that a tiny fraction of only 10(4) % of LUMO(HOMO)
populates the substituents as shown for different quantum-chemical methods in tab. 3.1.

Although such small delocalization can be easily overlooked on a single molecule level,
the effect on electronic couplings is much more pronounced since the substituents are in a
closer contact than the cores. This is illustrated in the inset of fig. 3.3.b, where the radial
distribution function for centers of mass of phenyl rings is shown. Smaller separations of
the phenyl rings boost electronic couplings exponentially, as illustrated in fig. 3.4.b, and
therefore dramatically increase charge carrier mobilities.

The charge transfer rate also depends on site-energy differences. It is therefore essential
to minimize variations of local dipole moments that would otherwise lead to spatially
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correlated energetic disorder [23, 110]. Here the mesomeric effect is also beneficial, since it
practically does not change the charge distribution of the conjugated core.

One might argue that the mesomeric effect leads to an additional internal (conforma-
tional) disorder of site enegies and reorganization energies due to soft molecular degrees of
freedom frozen in an amorphous morphology. This disorder is, however, small compared
to the electrostatic disorder, is uncorrelated in space, and has a minor effect on charge
transport [64].

To summarize, we suggest using the mesomeric effect to adjust the energy levels via
side group attachments to conjugated cores. It substantially improves electronic couplings
in the host by delocalizing the frontier orbitals and does not lead to significant additional
energetic disorder.

3.3 Can lattice models predict the energetic land-

scape?

Advancements in organic electronics, especially in improving efficiencies and lifetimes of
organic light emitting diodes (OLEDs) [119] and solar cells [135], have been stimulated by
the synthesis of new materials, optimization of their processing, and a deeper understanding
of elementary processes in organic semiconductors. Computer simulations and modeling
contributed substantially to this progress [20, 31–33], in particular, lattice models have
been successful in rationalizing the influence of finite carrier concentration [34, 35], explicit
Coulomb interactions [36], the shape of the density of states [37, 38], site energy spatial
correlations [23], and positional disorder [136] on charge and exciton transport dynamics
in amorphous materials.

The drawback of lattice models is that they must be parametrized on experimental
data and thus do not provide a direct link to underlying chemical structures. Therefore,
they cannot aid compound screening, which is becoming more and more important in
view of the large number of organic compounds with semiconducting properties [39]. One
can, in principle, simulate realistic atomistic morphologies and perform off-lattice Monte
Carlo simulations with rates calculated using first principles as explained in ch. 2. This
approach is, however, computationally demanding and is limited in accessible system sizes
and simulation times [55, 83].

It is therefore tempting to parameterize a lattice model based on calculated electronic
properties of single molecules, i.e. to predict site energies from charge distributions, polar-
izabilities, ionization potentials for internal energies, van der Waals surfaces, etc. While
the success of lattice models teaches us that this is possible qualitatively, the question is
whether one can quantitatively account for a local environment of every molecule, without
knowing the details of the (amorphous) material morphology?

To answer this question, we evaluate shifts of the charge-transport levels and the ener-
getic disorder by combining polarizable continuum and lattice models in sec. 3.3.1, where
we also incorporate the effect of the polarizability change on the carrier site. In order to
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validate the predictions of these mesoscopic models, we then compute site energies using
the microscopic approach based on an explicit atomistic morphology in sec. 3.3.2. We
finally compare effects of the energy landscape obtained from these two approaches on
charge transport in sec. 3.3.3. As a test system, we use a prototypical host-guest mixture
of the emission layer of a blue phosphorescent OLED with the materials introduced in
fig. 3.1. Note that we use the terms site-energy distribution and density of states (DOS)
as synonyms for the distribution of states for one excess charge (electron or hole) in the
system, while the more specific term, density of occupied states (DOOS) can also be found
in the literature.

3.3.1 Density of states from mesoscopic models

In this section, contributions to the energy landscape of the host-guest system are evaluated
under the assumption that the details of the morphology are not known. Therefore, con-
tinuum and lattice models have to be employed allowing only for a mesoscopic description
of electrostatic interactions including polarization.

Intramolecular contributions

In order to evaluate the free energy of a system with a charge localized on a specific
molecule, we first split it according to intra- and intermolecular contributions. The in-
tramolecular part is given by the gas-phase electron affinity (EA) or ionization potential
(IP) for electrons and holes, respectively. It is relevant for multi-component systems, since
only site-energy differences enter the hopping rate. For the host-guest pair of interest we
have computed EAs and IPs using DFT from the energy difference of the charged and neu-
tral molecules allowing for geometry relaxation in both states (see eq. 2.28). The results
in tab. 3.2 suggest that the host molecule is responsible for electron transport due to lower
lying EA, while holes are transported by the emitter.

Polarizable Continuum Model

To partially account for the environment, one can use the dielectric continuum models
(PCM) [137] to describe polarization effects. There, a molecule is placed into a cavity
(defined by its van der Waals surface) embedded in a homogeneous dielectric and the
corresponding Poisson equations inside the cavity and on its surface have to be solved. Since
the individual nature of the environment is neglected, the PCM leads only to a shift of the
gas-phase levels without broadening. In our case, host and guest have a similar stabilization
of the gas-phase EAs and IPs, as presented in tab. 3.2. The energy barrier preventing hole
transport from the emitter to the host ∆h = IPhost − IPemi ≈ 1.5 eV, and the barrier
preventing electron transport from host to the neutral emitter ∆e = EAemi − EAhost ≈
0.4 eV remain much higher than the thermal energy kBT = 0.025 eV.
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Table 3.2. IPs and EAs calculated from the gas phase and in the PCM with different dielectric
constant ϵr for host and guest and the respective energy difference ∆ for hole and electron
transport.

IP EA
host emitter ∆h host emitter ∆e

B3LYP/TZVP (gas phase) 7.25 5.68 1.57 -0.30 0.08 0.38
B3LYP/TZVP (pcm ϵr = 3.5) 6.55 5.12 1.42 -1.20 -0.81 0.39
B3LYP/TZVP (pcm ϵr = 2.6) 6.68 5.22 1.46 -1.03 -0.65 0.38
B3LYP/TZVP (pcm ϵr = 1.5) 6.98 5.46 1.52 -0.63 -0.26 0.37

Lattice models

To account for individual molecular environments in the amorphous phase that lead to
the DOS broadening (energetic disorder), we employ lattice models. The lattice is con-
structed by placing randomly oriented molecules on grid points of a three-dimensional
regular lattice, mimicking an amorphous morphology. Molecular electrostatic potentials
are then expanded in multipoles and the electrostatic contribution to the DOS is calculated
by summing over interactions of these multipoles yielding a distribution of site energies
with zero mean ⟨Eel⟩ = 0 due to rotational symmetry. This model also leads to spatially
correlated site energies as neighboring molecules share the same environment, and is often
referred to as a correlated disorder model [23, 138].

To account for screening, each site can additionally be assigned an isotropic (molecular)
polarizability α. This reduces the broadening and leads to a shift of the DOS due to the
stabilization of the charge. Within this model [136], the shift of the gas-phase levels due to
the interaction of the charge with induced dipole moments on the surrounding lattice sites
is Epol = −1

2
αe2

∑
j ̸=0 r

−4
0j , where e is the elementary charge and r0j the distance between

the charge and the dipole on lattice site j resulting in stabilization energies up to 1 eV.
Note, however, that the PCM incorporates a full quantum-mechanical description of the

charged molecule taking into account all moments of the charge distribution. It can also be
applied to large and irregularly formed molecules, while lattice models based on a multipole
expansion of the charge distribution are limited to small, quasi-spherical molecules. This is
why we believe that, in lack of a realistic morphology, the PCM provides a better estimate
of the shift, so that we use IP and EA from the PCM and employ the lattice model only
to compute the level broadening as presented in the remaining part of this section.

In line with the central limit theorem, the contribution to the DOS due to interactions
of multipole moments of a charged site (l′) and the surrounding neutral molecules (l) can
be approximated by a Gaussian distribution of individual site energies characterized by
the width

σ̄l′l =
κl′l ∆ql′ql

√
c

al′+l+1ϵeffl′ (α)
,

l′ = 0, 1 . . .
l = 1, 2 . . .

(3.1)

Here, ∆ql′ is the rotationally averaged change of the multipole moment of the carrier site
upon charging, and ql is the rotationally averaged moment of the surrounding molecules
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Table 3.3. Single molecule parameters for electron transport in the host-guest system. Given
are changes in multipole moment l′ on the carrier site (∆ql′) and multipole moments l for sur-
rounding neutral molecules (ql). Dipole moments are calculated with respect to the center of
charge. Quadrupole obtained from eigenvalues Qk of the traceless tensor as Q = (2

3

∑
k Q

2
k)

1/2.
Polarizability volume for charged (α′) and neutral molecules (α) are defined as α = 1

3Tr α̂, their
difference is the change in polarizability upon charging ∆α.

carrier site host guest neutral host guest
∆q0: |q′ − q| [e] 1 1 q1: d [D] 0.8 5.4

∆q1: |d⃗′ − d⃗| [D] 9.8 5.4 q2: Q [DÅ] 5.6 39.7
∆α: (α′ − α) [Å3] 119 219 α: α [Å3] 91 107

as defined in tab. 3.3. Since the surrounding molecules are neutral, the lowest interaction
is the charge (∆ql′=0 = e) dipole (ql=1 = d) interaction with broadening σ̄01 ∼ ed/a2,
where a is the lattice spacing. Furthermore, κl′l is a constant of order one which accounts
for the topology of the lattice. For a simple cubic lattice [139]: κ01 = 2.35, κ02 = 0.87,
κ11 = 2.36. For an fcc lattice, these constants are practically the same as for the cubic
lattice, e.g. the difference is smaller than 5% for κ01. Screening is included via an effective
dielectric constant ϵeffl′ > 1 that can be parameterized as a function of the polarizability
of the surrounding neutral molecules (α) by self-consistent simulations on a lattice [100].
Estimations based on the polarizability of the host (which mainly forms the environment for
both host and emitter) yield ϵeff0(1) ∼ 1.5(1.0) < ϵr = 2.6 for charge (exciton) transport [140].
Finally, c accounts for a possible fractional filling of the lattice, where for very small fillings
of the lattice, the distribution can deviate from a Gaussian [141].

Using the ab initio molecular parameters obtained from DFT with the B3LYP func-
tional and the def2-TZVP basis from tab. 3.3 in combination with filling factors of cg(h) =
0.1(0.9) for guest (host), and a lattice spacing of a = 1 nm obtained from the density, the
energetic disorder is

σ̄ ∼

[ ∑
m=g,h

σ̄2
01(cm, q

m
1 )

]1/2

= 0.09 eV , (3.2)

since the variances σ̄2
01(cm, q

m
1 = dm) for interactions with the charge and the dipoles of

surrounding host (m = h) and guest (m = g) are uncorrelated. The disorder is mainly
dominated by σ̄01 since the interaction between charge and dipole [141] leads to stronger
broadening compared to the charge-quadrupole [139] or dipole-dipole [140, 142] interactions
(σ̄01 > σ̄02 and σ̄01 > σ̄11). Note that, in the lattice model, the broadening is identical for
the DOS of the host and the guest (σ̄h = σ̄g = σ̄), since always ∆q0 = e and both molecules
are embedded in the same surrounding. In contrast to this, a different broadening for host
and guest is likely for exciton transport, where eq. 3.1 can also be used but σ̄0l = 0 because
the carrier is uncharged. Then, ∆q1 = |d⃗∗ − d⃗| is the first contribution to the DOS and

contains the excited state dipole d⃗∗ which can be different for host and guest.
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Figure 3.5. DOS for electrons localized on host (red) or emitter (blue) at an emitter concentra-
tion of c = 0.1. Shown are gas phase levels (gas) and their stabilization by PCM and broadening
by a lattice model (pcm+lattice). For the microscopic model based on the realistic morphology
of 4000 molecules at the same emitter concentration we compute the DOS without polarization
(coulomb), with the same polarizabilities of the neutral and charged molecules (polarization),
and including the polarizability change upon charging (all). Distributions are averaged over four
snapshots.

The host and guest DOS, based on the PCM levels and broadening given by eq. 3.1, are
shown in the left-hand side of fig. 3.5 (pcm+lattice) together with the gas-phase energies
(gas). The DOS with broadening form the lattice and shift from the PCM constitute the
best guess for the energy landscape of the host-guest system assuming that the details of
the underlying morphology are not known which only allows for a mesoscopic description
of electrostatic interactions including polarization.

Polarizability change upon charging

We have so far recapitulated the results of various lattice models, estimated all static
contributions to the DOS and have taken into account the polarizability of the environment
using the PCM model for site-energy shifts and effective dielectric screening ϵeff for the
broadening. An important polarization contribution is, however, still missing, which is due
to the interaction of electric fields created by the surrounding neutral molecules with the
resulting induced dipole moment on the charged site. To account for this on a lattice level,
we assume that the carrier site is a point-particle at (0, 0, 0) with a polarizability tensor
α̂ (α̂′) in a neutral (charged) state and is surrounded by randomly oriented static dipoles
of strength d pinned to the lattice sites. For one randomly oriented dipole at (0, 0, a), the

components of the electric field f⃗ at (0, 0, 0) are uniformly distributed with zero means
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and variances ⟨f2
x,y⟩ = d2

3a6 , ⟨f2
z ⟩ = 4d2

3a6 , which can easily be computed from the field

f⃗ = 3
(r⃗ · d⃗)r⃗
r5

− d⃗

r3
, (3.3)

that is created in the origin by a dipole d⃗ separated by a distance r⃗. Note that this field is
created by a neutral molecule so that it will only weakly be screened (ϵeffl=1 ∼ 1 [140]), which
is why we can safely neglect the polarizability of the surrounding sites in our derivation.

If we want to take into account that all surrounding lattice sites carry dipole moments,
we have to sum up their contributions to find the distribution of the total electric field at
the origin F⃗ . Since summing over all dipoles is equivalent to a sum of independent uniform
distributions, the central limit theorem implies that the three components γ = x, y, z of
the total field at the origin are all (approximately) Gaussian-distributed with vanishing
mean ⟨Fγ⟩ = 0 and variance

⟨F 2
γ ⟩ = σ2

Fγ
≈ (4 + 1 + 16/81 + 1/16 + . . . )

d2

a6
≈ 5.3

d2

a6
, (3.4)

where each term in the sum corresponds to a shell on a (cubic) lattice. In case of a neutral

site, this field induces a dipole of strength d⃗ind = F⃗ α̂, so that the energy of the neutral
site is −1

2
F⃗ α̂F⃗ , where the factor 1

2
takes into account the energy needed to distort the

molecular charge distribution. When the site is charged, the energy becomes −1
2
F⃗ α̂′F⃗ ,

which usually differs from the neutral case because the molecular polarizability in the
charged state is stronger due to delocalization effects. Since the site energy is defined as
the difference between charged and neutral states, the interaction of the total field created
by randomly oriented molecules with the induced moment on the site leads to a contribution
of −1

2
∆αF 2, with change in polarizability ∆α = 1

3
Tr(α̂′ − α̂) since the orientations of α̂

and F⃗ are independent. If we neglect the correlations between the field components of the
same dipole, then the squared components of the total field F 2

x,y,z are three independent
normal random variables, and their sum corresponds to a χ2

3 distributed variable ξ with

χ2
3(ξ) =

√
ξ exp

[
−ξ

2

]
, ξ =

F 2
x + F 2

y + F 2
z

σ2
Fγ

=
F 2

σ2
Fγ

, (3.5)

where the field is scaled by the variance introduced in eq. 3.4 making ξ dimensionless. This
variable has a mean of ⟨ξ⟩ = 3 a variance of σ2

ξ = ⟨ξ2⟩ − 32 = 6, and an exponential tail
at large ξ, which brings us to the main results of this subsection: the mean corresponds
to a stabilization of the transport level by 3

2
∆ασ2

Fγ
, the variance to its broadening by

√
6

2
|∆α|σ2

Fγ
, and the exponential tail results in low energy sites that can act as traps.

The χ2
3 distribution of a pure host system, with the ab initio parameters taken from

tab. 3.3, is shown in fig. 3.6.a. It is compared to a numerically evaluated DOS on a cubic
lattice filled with randomly oriented dipoles including all correlations. The agreement is
good, justifying the derivation. At the same time, the results predict that the contribution
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Figure 3.6. Histogram of the interaction energy between electric field F⃗ of randomly oriented
static dipoles d⃗ with the induced dipole on a site with polarizability change ∆α for a cubic lattice
(a = 1nm) as indicated in the left inset. (a) Pure host system: χ2

3 is an analytical result, while
numerical simulations are performed using 3375 lattice sites averaged over 600 realizations. (b)
Numerical estimation for the same interaction for the induced dipole on host or guest (∆αh <
∆αg) in the mixture with cg = 0.1 evaluated on a lattice. While both main figures imply that
the effect of ∆α is of the order of meV, the inset in (b) shows that the same contribution is large
when computed microscopically from the Thole model based on a realistic morphology of 4000
molecules (cg = 0.1) and charge distributions represented by atomistic partial charges.

to the DOS due to the polarizability change can be entirely neglected, since the absolute
energy values involved are of the order of meV. This is also true for DOS of host and guest
in the mixture as evaluated numerically in a lattice, where we have exchanged a fraction
of cg = 0.1 host dipoles by the larger dipoles of the guest, with results presented in the
main part of fig. 3.6.b.

3.3.2 Density of states from microscopic models

To verify the predictions of the mesoscopic models introduced above, we now calculate the
DOS in the host-guest mixture using a realistic morphology at an atomistic resolution. In
order to look at the effects of different electrostatic and polarization contributions to the
DOS we turn certain interactions on and off in the microscopic model and always compare
the resulting DOS to the mesoscopic result shown in fig. 3.5.
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Morphology of the mixture

We prepare the morphology in the host-guest system using molecular dynamics simula-
tions. The force field development for the host molecule has been described in sec. 2.2,
and we perform similar steps to obtain the force field of the emitter. For the non-bonded
interactions we use atomistic partial charges computed from DFT. Lennard-Jones param-
eters (see eq. 2.1) are taken from the OPLS force field with the exception of Ir, where we
use parameters from a universal force field [143].

For bonded interactions, the unknown potentials are parametrized starting with the
strongest improper dihedral ϕ which keeps the carbene and dibenzofuran units of one
ligand in the same plane. Then, including this potential, the three angular potentials θ1,2,3

connecting the three ligands are scanned. After this, we add the softer dihedrals ψ1,2,3

defining the orientation of the ligands with respect to each other. All seven potentials are
parameterized using a quadratic form V (θ) = 1

2
k(θ − θ0)

2. Finally a Ryckaert-Bellemans

potential V (β) =
∑5

n=1(cos β)n is used for the angle β describing the rotation of the methyl
group, where we use a multidimensional fit for the three H-atoms. The definitions of the
potentials are shown together with the scans of the potential energy surfaces in fig. 3.7,
while the force constants are summarized in tab. 3.4.

Amorphous morphologies of the host-guest system consisting of a total of N = 4000
molecules containing a small fraction of 0, 120, 240, 400, 520 emitter molecules are obtained
using the following protocol. First a random morphology is generated at low density us-
ing the PACKMOL package. Then, the system is equilibrated at 1000 K and the system
becomes independent of the initial configuration, e.g. molecules have moved more than
their diameter and the rotational correlation function has decayed. The equilibration is
performed in the NPT ensemble (Berendsen pressure coupling with a time constant of
τP = 2ps) using stochastic dynamics (SD) with strong coupling, which allows to increase
the density of the system while at the same time avoiding instabilities. In SD, a friction
term (we have used strong coupling ζ−1 = 0.07ps) and a fluctuating force A⃗i(t) (approx-
imated by Gaussian white noise with zero mean for all times and a correlation function
of ⟨Aiα(t)Ajβ(t + ∆t)⟩ = 2miζkBTδ(∆t)δijδαβ for two atoms i and j and components
α, β = x, y, z are added to Newton’s equations of motion resulting in a Langevin equation

mi
d2r⃗i

dt2
= F⃗i −miζ

dr⃗i

dt
+ A⃗i , (3.6)

which is integrated using a time-step of 0.002 ps while constraining bonds. After annealing,
the system is cooled down to 700 K during 4ns where it is equilibrated for another 1ns. Then
it is quenched to 300 K using MD to integrate Newton’s equations of motion, mi

d2r⃗i

dt2
= F⃗i, as

explained in sec. 2.2.3. All these steps were repeated for four different initial configurations
yielding statistically independent final morphologies necessary to improve statistics of site
energy distributions for small emitter concentrations. The length of the final cubic box is
L = 16 nm for all emitter concentrations.

This protocol results in perfectly homogeneous morphologies, which might not cor-
respond to the situation in the experiment, where emitter molecules with large dipole
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(a) (b) (c)

Figure 3.7. Force-field scans for the unknown degrees of freedom in the emitter. First-principles
scans, UDFT, and final and initial force field scans, UFF, are shown. Column (a) Shows labeling
with atoms CI(a,b,c) connected to the imidazole unit of ligands a,b,c and CF(a,b,c) connected
to dibenzofuran unit. Below is the scan for the improper dihedral ϕ keeping the imidazole and
dibenzofuran units of one ligand in the same plane. Below that is the scan for the rotational
angle of the methyl group β. Column (b) shows scans for angles θ between the three ligands.
Column (c) shows scans for rotations of the ligands with respect to each other defined by the
proper dihedral ψ. Resulting force-field parameters are given in tab. 3.4.
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angle atom labels θ0 (deg) k (kJ mol−1 rad−2)
ϕ NF-C-CIx-CFI, (x=a,b,c) 0 420

θ1 CFa Ir CIb 90 411
θ2 CFb Ir CIc 96 321
θ3 CFc Ir CIa 93 367

ψ1 C CFa Ir CFb -89 53
ψ2 C CFb Ir CFa -82 64
ψ3 C CFc Ir CFa -5 80

angle atom labels C5 (kJ mol−1)
β C NM CM Hx, (x=1,2,3) -1.12

Table 3.4. Force-field parameters for bonded interactions from PES scans of the emitter as shown
in fig. 3.7. All potentials of the angles ϕ, θ, ψ have a quadratical form, while for β (rotating the
methyl group) we use a periodic Ryckaert-Bellemans potential, where all coefficients Cn ≈ 0
except for n = 5.

moments can aggregate and form an interconnected pathway. However, this is only rel-
evant for studying hole transport which occurs via the minority component due to large
∆h. Here, we concentrate on electron transport, where the assumption of a homogeneous
morphology is not critical. In the remaining part of this section we use a morphology with
an emitter concentration of c = 0.1 which corresponds to 400 emitter molecules and 3600
host molecules.

Site-energy distributions

The molecular charge distributions for charged and neutral states are approximated by
fitting atomistic partial charges to reproduce the electrostatic potential of ab initio calcu-
lations (DFT) in the gas phase. Polarization effects in the bulk are treated self-consistently
using the Thole model which we have parameterized on molecular polarizability tensors
from DFT as explained in sec. 2.7.3. For the emitter, additional atomistic polarziabilities of

αN, Ir = (1.6, 11.0)Å
3

are used to reproduce the polarizability of α = 106.7 Å
3

in the neutral
state. Atomistic polarizabilities are scaled by fc(a) = 1.93(9.02) for the cationic/anionic

emitter which reproduces α′ = αc(a) = 130.1(325.7) Å
3
. Therefore, the change in polariz-

ability ∆α for the anion (electron transport) is much larger for the emitter as compared
to the host molecule as shown in tab. 3.3.

For computation of the DOS of host and guest in the mixture, we first consider bare
Coulomb interactions in the nearest image convention using ϵr = 1 in eq. 2.24, and thereby
neglect polarization completely. The corresponding DOS, shown in fig. 3.5 (coulomb),
is shifted with respect to the gas-phase values, both for host and guest. This shift is
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not predicted by lattice models which can be explained by a break-down of the multipole
expansion at small intermolecular separations (intercalating charge distributions) and local
correlations in molecular orientations. Since both host and guest are equally shifted, there
is no effect on charge transport. The broadening of the levels is artificially strong because
the screening is not taken into account.

We now partially include molecular polarizability by assigning the polarizabilities of
the neutral state of host and guest also to their charged states. The resulting DOS is
shown in fig. 3.5 (polarization). The screening of the charge reduces the broadening and
the static shift and also leads to a strong stabilization similar to the PCM. Apart from an
irrelevant global shift, this DOS agrees quite well with the broadening and energy barrier
∆e predicted by the mesoscopic approach (pcm+lattice). This can be explained by the fact
that the main contribution to the DOS (the charge-dipole interaction), is well captured by
the lattice model, while contributions due to the change in polarizability are small in the
lattice model and are neglected at this stage of the microscopic description (α′ = α).

Finally, we account for the polarizability change upon charging by increasing the atomic
polarizabilities in the anionic state of emitter and host to take into account the higher
polarizability in the charged state. We first evaluate only the interaction of the field from
the surrounding molecules with the resulting induced dipole on the carrier site, since this
contribution can be directly compared to the lattice model results presented in the main
part of fig. 3.6.b. For better comparison, we impose some of the assumptions of the lattice
model, i.e. while charge distributions on surrounding molecules are taken into account,
their polarizabilities are neglected. The central molecule has no charge distribution but
its change in polarizability tensor is accounted for. The results are shown in the inset of
fig. 3.6.b for both host and guest. One can see that the larger polarizability difference of
the guest as compared to the host (∆αg > ∆αh, see tab. 3.3) leads to a reduction of the
energy difference between guest and host levels, ∆e, by ∆p

e. There is also an additional
broadening of the DOS, σ̄p, with a tail of low-lying states (especially for the guest). All
three effects are in an excellent qualitative agreement with the lattice model, i.e., ∆p

e =
3
2
(∆αg − ∆αh)σ

2
Fγ

, and additional broadening is stronger for the guest than for the host

since σ̄p
h(g) =

√
6

2

∣∣∆αh(g)

∣∣ σ2
Fγ

. The quantitative difference is, however, striking: in the

microscopic model, the guest has a gas-phase level shift and broadening, ⟨Ep
g⟩ = −0.37 eV,

σ̄p
g = 0.15 eV which are an order of magnitude larger than predicted by the mesoscopic

model.

This discrepancy can be attributed to two factors. First, we have used a perfect lattice
in the mesoscopic model, while including positional disorder might be necessary to better
describe the amorphous phase. In order to do this, one could choose the positions of the
dipoles to slightly deviate from the lattice points r⃗i by introducing Gaussian distributed
random displacements u⃗i with zero mean and width σa. Then, the new positions of the
dipoles are constructed from r⃗new

i = r⃗i + u⃗i. In this model, the broadening of the DOS due
to electrostatic interactions increases with σa and the total rank of the interaction (l′ + l).
For example, the energetic disorder of the charge-dipole interaction (which scale as 1/a2)
increases for small σa to σ̄new

01 = σ̄01{1 + 0.17[(σa/a)(l
′ + l + 2)]2}1/2. Since l + l′ = 1, and
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typically σa/a < 0.3 in amorphous phases of small molecules [136], the effect of positional
disorder on the static contributions to the DOS can be neglected.

In contrast to this, the contribution to the DOS due to the change in polarizability on
the carrier site scales as 1/a6, as shown in eq. 3.4, and positional disorder plays a more
important role. Since the positional disorder σa is an intrinsic property of the real mor-
phology, it cannot be quantitatively predicted by lattice models and fitting to microscopic
simulations (or experimental data) are unavoidable to predict the energy landscape.

The second reason for the discrepancy between mesoscopic and microscopic approach
lies in the fact that only the lowest moment (a second rank tensor) is used to account for
molecular polarizability in the lattice, while the description of an inhomogeneous distri-
bution of the induced electrostatic potential requires higher order tensors [144]. In other
words it is unlikely that mesoscopic descriptions are capable of correctly predicting the
energy landscape in amorphous organic semiconductors, at least at this level of description
of molecular polarizability.

We finally would like to point out that, in case of hole transport, the shift between host

and guest is reversed since for the cations ∆αh = 63.7 Å
3
< ∆αg = 23.4 Å

3
, which results

in an increase of the barrier ∆h.

3.3.3 Consequences on charge transport in mixtures

In the last section of this chapter we discuss the implications of the altered DOS on
the OLED functionality. Before we concentrate on the site energies, where the change
in polarizability plays the most important role, we shortly discuss the other parameters
(transfer integrals and reorganization energies) entering the charge transfer rate.

Transfer integrals

In the mixture we have to distinguish between rates from host to host, from emitter to emit-
ter and between host and emitter. We have computed transfer integrals from DFT (PBE
functional and TZVP basis) taking into account frontier orbitals of the whole molecules
(see sec. 3.2.2). The resulting distributions of transfer integrals for 4000 molecular pairs at
an emitter concentration of c = 0.1 are presented (for electrons) in fig. 3.8.a. They show
that in the amorphous phase, transfer integrals are similar between all types of molecules
although intermolecular distances can differ as illustrated by the pair radial distribution
function shown in the inset.

Reorganization energy

Intramolecular reorganization energies λij for a pair of molecules i and j can be computed
from potential energy surfaces of charged and neutral molecules as explained in sec. 2.6.
In case of the host and guest considered here, we have for electron transport between two
host molecules λhh

e = 0.19 eV, while between guests λgg
e = 0.10 eV. For transport from

host to guest λhg
e = 0.16 eV and λgh

e = 0.14 eV in the reverse direction since charging and
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Figure 3.8. (a) Transfer integrals for electron transport in the mixture with emitter concentra-
tion c = 0.1 obtained for 4000 molecules. Inset shows radial distribution functions for centers of
mass. (b) Electron mobilities in a pure host system and in the mixture using the DOS from the
microscopic models excluding (∆α = 0) or including (∆α > 0) change in polarizability ∆α. As
the energetic disorder σ̄ grows, mobilities are reduced and the Poole-Frenkel slope is increased.
We show the disorder for the DOS of the host (σ̄h) if electrons are transported only by the host,
while the width of the combined (emitter+ host) DOS is used for ∆α > 0 as both contribute to
charge transport.

discharging energies are different for the two compounds. These values suggest that the
reorganization energy slightly favors transport of electrons between the emitter molecules.
For hole transport all reorganization energies are around λh ≈ 0.27eV.

Energy landscape and mobility

The final DOS obtained from the the microscopic model in the host-guest system, shown
in fig. 3.5 (all), is substantially different from the one predicted by combining the PCM
with a lattice model (pcm+lattice). One would expect, that the increased DOS width for
electrons and the exponential tail of low lying energies (acting as traps) due to ∆α > 0 in
the microscopic model will result in much lower electron mobility compared to the DOS
predicted by lattice model or by neglecting the change in polarizability in the microscopic
model by setting ∆α = 0 (polarization). In order to quantify the effect of ∆α on mobility
we have performed KMC simulations of one electron in the host-guest system using the
realistic morphology obtained from MD. First, we use the DOS obtained with ∆α = 0
and then include the change in polarizability by using the DOS with ∆α > 0. Mobilities,
shown in in fig. 3.8.b, are compared to values in the pure host material. As expected,
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Figure 3.9. (a) Histogram of electron currents for 4000 molecules at an emitter concentration
of c = 0.1 show that in case of ∆α = 0 electrons are transported mainly by the host, but if
∆α > 0 is considered, emitter molecules contribute almost equally to charge transport. (b) DOS
broadening for host and emitter and the transport barrier ∆e between them as a function of the
emitter concentration evaluated with ∆α > 0 and averaged over four MD snapshots. For ∆α = 0
the barrier is much larger ∆e ≈ 0.4 eV.

the mobility decreases by two orders of magnitude and a steeper Poole-Frenkel slope can
be observed if ∆α > 0. Both effects can be explained by stronger energetic disorder (see
eq. 2.31).

Electron current on host and emitter

Now we address the question of which molecules are participating in electron transport.
In the mesoscopic lattice model one would expect, that electrons are transported only by
the host because of the energy barrier ∆e ≈ 0.4 eV ≫ kBT , that originates from a large
energy difference of the EA of host and guest (see tab. 3.2). Note that the site energies
are spatially correlated (see sec. 2.7.5), so that the small overlap of the DOS of host and
guest will not lead to charge-transfer of electrons from the host to the guest. Also the
microscopic model where the change in polarizability is neglected (∆α = 0) predicts that
electrons are transported only by the host.

In contrast to this, the DOS of host and guest strongly overlap if the change in polariz-
ability is accounted for in the microscopic model, as shown in fig. 3.5. In order to analyze
whether this overlap leads to the participation of the host molecules to electron transport,
we evaluate a local electron current j⃗i through molecules i, as introduced in eq. 2.44. The
distributions of this current on host and guest molecules is presented in fig. 3.9.a. where
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we have used the DOS from the microscopic model with ∆α = 0 (equivalent to the lattice
model) and ∆α > 0. As expected, the electron current through the emitter is negligible in
case of ∆α = 0, but both host and guest contribute equally to the current if the change in
polarizability is included.

Dependence of the DOS on emitter concentration

Finally we also investigate the broadening of the DOS and the barrier for electron trans-
port between host and guest, ∆e, (including internal energies from EA and electrostatic
interactions with ∆α > 0) as a function of the emitter concentration. As expected from
eq. 3.2, the energetic disorder σ̄ for host and guest increases for stronger concentrations of
the emitter which is due to its large dipole moment (see tab. 3.3). Additionally the energy
barrier (for which ∆e ≈ 0.4 in case of ∆α = 0) decreases since the average static dipole
moment increases (as expected from eq. 3.4).

3.3.4 Summary of polarization effects

To summarize, we have shown that a polarization-induced stabilization of a molecule in its
charged and neutral state can lead to shifts, broadening, and traps in the distribution of site
energies in an amorphous phase. This effect cannot correctly be described in mesoscopic
models, and is especially important in multi-component systems, where the change in
polarizability is different for the components, e.g for the emission layer of OLEDs or for
donor-acceptor mixtures used in OPVC. Note that similar results are expected to occur
for the energy landscape of exciton transport due to a change in polarizability between
the ground states and excited states of a molecule. Thus, the polarizability change upon
charging or excitation should be added to the set of molecular parameters essential for
understanding charge and energy transport in organic semiconductors.



Chapter 4

Charge transport in self-assembled
systems

Materials for organic electronics can be classified in two major categories, related to their
processing conditions. On the one hand, small molecules with low molecular weight can be
grown in single crystals or can be vapor-deposited from the gas phase which allows a very
controlled but rather slow thin film growth and facilitates the fabrication of complicated
layered structures. These are needed for example in high-quality organic light emitting
diodes (OLED) that are nowadays used in displays or television screens. On the other
hand, materials with larger molecular weight, such as polymers or aromatic molecules with
long side-chains, can be processed from solution. Typical techniques include spin-coating on
suitable substrates followed by evaporation of the solvent, or inkjet-like printing methods.
The scalability of these techniques eventually allows for cheap mass-production of organic
solar cells or radio frequency identification tags consisting of organic field effect transistors
(OFET).

One of the main disadvantages of organic materials compared to traditional semicon-
ductors lies in their low charge carrier mobility which has a negative impact on efficiencies
of solar cells and limits switching frequencies of OFETs. In this respect, additional self-
assembling abilities of organic materials can be of great advantage to increase the mobility.

Discotic liquid crystals represent a subset of soluble, self-organizing compounds dis-
playing columnar molecular arrangement. While side chains attached to an aromatic core
make these materials soluble, the overlap of the π-orbitals of the cores from neighboring
molecules allows for efficient charge-transport along these columns. In these molecular
wires, local charge-carrier mobilities up to 1 cm2V−1s−1 can be achieved by systematically
varying the substituents and the processing conditions [145].

Perylenediimide (PDI) derivatives form a particularly interesting class of discotics, since
compounds based on these derivatives are some of the best and most frequently used n-type
semiconductors [146, 147], even though their electron and hole mobilities are rather simi-
lar [148]. Mobilities up to 0.6 cm2V−1s−1 have been reported for thin PDI films [149] and
they have already been applied in different areas of organic electronics, such as all-organic
solar cells and OFETs [150, 151]. They can self-assemble in structures with different pack-

77
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ing motives, which result in different charge-carrier mobilities [152]. The self-organization
can be controlled by introducing hydrogen bonding [153], metal-ion coordination, [154] or
by changing the geometry of the side groups [155].

Since high charge-carrier mobility is essential for the majority of applications, for ex-
ample high switching frequencies in organic thin film transistors used in back-planes of
displays, significant efforts have been directed at its improvement, for example by vary-
ing the chemical structure [156]. It has been concluded, however, that optimizing the
electronic structure alone is not sufficient, since the material morphology, which heavily
depends on both chemical structure and processing, can alter charge mobility by orders of
magnitude [157]. This suggests that the following steps are required for compound design:
synthesis of a new compound, optimization of processing conditions, morphology charac-
terization, and finally measurements of the mobility. By iterating this procedure for a
set of compounds, one might be able to formulate empirical rules, or structure-processing-
property relationships. In practice, however, finding such relationships has been so far very
difficult. It is often not obvious whether the improvement comes from a better electronic
structure or a superior morphology, since both are affected by changes in the chemical
structure.

A particularly difficult problem is to characterize partially disordered material mor-
phologies with a high level of detail. Routinely employed experimental techniques are wide-
angle X-ray scattering (WAXS) and solid-state nuclear magnetic resonance (NMR) [158,
159]. Both methods provide averages over the molecular ensemble and, as such, do not
contain full information about the distributions of molecular positions and orientations.
At the same time, charge dynamics of partially ordered semiconductors is sensitive to the
molecular arrangement on all length scales. Indeed, transfer integrals and charge hopping
rates strongly depend on the chemical composition and local molecular ordering, while the
global charge-carrier pathway is determined by the large scale morphology and presence of
defects, which are limiting charge transport in one-dimensional systems.

In this situation, modeling becomes a necessity: it assists in identifying correct molec-
ular packing motives [145, 160, 161], quantifies the degree of local disorder, and links both
of these to the charge carrier mobility.

In this chapter, we investigate the role of the side chains in supra-molecular (in this
case helical) packing motives of discotics and study effects of these packing motives on
charge transport. In particular, we compare supra-molecular arrangement of two PDI
derivatives, with alkyl (C8,7–PDI) and tri-ethylene-glycol (TEG–PDI) side chains as shown
in fig. 4.1.a,b. To do this, we first analyze the experimental results from solid-state NMR
and WAXS and correlate the deduced molecular arrangement with the results of molecular
dynamics (MD) simulations. Analyzing the MD snapshots we relate packing of side chains
to the supra-molecular helical arrangement of molecules in a column. Finally, we calculate
electronic couplings between conjugated cores of neighboring molecules and use the high-
temperature non-adiabatic limit of Marcus theory (eq. 2.6) to calculate the charge hopping
rates between them. Charge carrier mobility for electrons and holes is then obtained by
solving a linearized master equation for occupation probabilities (eq. 2.33). Simulation
results are compared to pulse-radiolysis time-resolved microwave conductivity (PR-TRMC)
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Figure 4.1. Chemical structure of (a) C8,7–PDI with the alkyl side chain and (b) TEG–PDI with
the tri-ethylene-glycol (TEG) side chain. (c) Sketch of the two PDI derivatives: side chains are
displayed using united atom representation except for the branching C-atom. The orientation of
the conjugated core defines the coordinate systems given by vectors v (connects the two N-atoms
in the molecular plane), u (normal to the molecular plane), and w = u × v. Angles θ and ϕ
are polar and azimuthal angles of the end-to-end vector d in this coordinate system. Ellipsoids
depict tensors of gyration for each pair of side chains. Labels for different H atoms (left) are used
for dynamical order parameters in Table 4.1.

mobility measurements and finally, structure-mobility relationships are formulated.

4.1 Molecular ordering from experiment

A combination of WAXS and advanced solid-state NMR experiments probing the local
molecular conformations averaged over the whole sample have been used to analyze the self-
assembled packing motives for the two PDI derivatives. Due to the strong π-π interaction
of the PDI cores, the molecules pack in columns with normal vectors u⃗ of the cores parallel
to the column. Interactions of the side chains lead to a helical pitch angle α between
the long axes v⃗ of consecutive elongated cores in the column (see fig. 4.1.c for definitions
of the vectors). Experimental results indicate that C8,7–PDI molecules are stacked with
a small pitch angle of about 20 − 45◦ [159, 162]. This information was derived from
the observation of a strong inter-molecular contact between the branching protons of the
attached side chains for successive C8,7–PDI molecules and the distance between these
protons. Moreover, solid state NMR results suggest that this proton is hydrogen bonded
and thereby coordinated to the carbonyles on either side of the PDI core, as indicated
in fig. 4.1.c. Such an intra-molecular hydrogen bond is quite unusual since it involves a



80 CHAPTER 4. CHARGE TRANSPORT IN SELF-ASSEMBLED SYSTEMS

CH group and a carbonyle. It is, however, expected to be important with respect to how
the attached side chains pack and organize between the columns [163, 164]. Finally, the
C8,7–PDI core was observed to be rather rigid as identified from a site-specific dynamical
order parameter S ≈ 1 (see eq. 4.1) indicating that the columnar packing of C8,7–PDI is
rather stable [162].

Replacing the alkyl side chains with TEG at the branching point has a dramatic effect on
both the thermotropic behavior and the columnar packing of the PDI molecules. Transition
temperatures at 326 K and 403 K can be identified in TEG–PDI, corresponding to the phase
transitions from crystalline (Cr) to liquid crystalline (LC) and from LC to the isotropic
phase, respectively. In the LC phase TEG–PDI molecules are packed with a pitch angle of
90◦ [165].

When cooling TEG–PDI from the LC phase to the Cr phase the main packing motif
remains helical with a pitch angle of 90◦ [165], but two other motives at smaller angles also
emerge, resulting in a broad distribution of pitch angles centered around 90◦ for TEG–PDI.
This immediately raises two questions. How can such a complex packing be understood?
And what is the role of the attached TEG side chains? To answer these questions a
deeper understanding of the morphology of the TEG–PDI system in its crystalline state is
required, which can be provided by performing MD simulations at room temperature.

Before going into detail about the different morphologies and packing motives we com-
pare dynamical order parameters for C8,7–PDI and TEG–PDI obtained experimentally
from solid-state NMR [159, 165] with those based on MD simulations. The dynamical or-
der parameter S is related to the flexibility of a moiety of interest. From the MD-trajectory
it can be computed as

S =

⟨
1

N

N∑
i=1

(
3

2

(
M⃗i · m⃗i

)2

− 1

2

)⟩
, M⃗i = ⟨m⃗i⟩ , (4.1)

where < · · · > denotes time average, N is the number of molecules in the system and m⃗i is
the vector along the C−Hx group of interest with Hx = (Hi,Ho,Hb) as shown in fig. 4.1.a.

Calculated dynamical order parameters are summarized together with the NMR results
in tab. 4.1. For C8,7–PDI a value of S = 0.91 (T = 300 K) is calculated for the inner-
most core protons of the PDI core. This is in good agreement with the dynamical order
parameter of S ≈ 0.9 determined from solid-state NMR experiments [159] and shows that
the columnar system based on C8,7–PDI is quite stable, even on the short time scales of
the MD simulations, which are of the order of nanoseconds.

Experimentally determined order parameters of TEG–PDI are on the order of S ≈ 0.5
in both the LC and Cr phase (see tab. 4.1). The reduction by about a factor of 2 from
a completely rigid case can be explained by the presence of cooperative motion and local
fluctuations of the columnar-packed molecules in the LC and Cr phases, respectively. From
the MD trajectory of TEG–PDI, values in the range of S ≈ 0.8 − 0.9 are obtained for the
PDI core part of TEG–PDI (see tab. 4.1). The discrepancy from the experimental values
detected during the solid-state NMR experiments (milliseconds) mainly reflect that the
different kinds of motion occurring in the two thermodynamic phases of TEG–PDI are
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Table 4.1. Dynamic order parameters S for the different core C-H moieties determined from
MD simulations (see Eq. 4.1) and 2D rotor-encoded solid-state NMR and the corresponding
orientational order parameter Q from MD (see Eq. 4.2). Experimental uncertainties are ±0.1.
Results of previous work, which was not performed in the course of this thesis are indicated in
brackets.

Method PDI T , K S(CHo) S(CHi) S(CHb) Q
NMR [159] C8,7–PDI 300 0.9 ∼1 0.9
NMR [165] TEG–PDI 303 0.46 0.43 0.48
NMR [165] TEG–PDI 373 0.48 0.48 0.52
MD [162] C8,7–PDI 300 0.91 0.86 0.96 0.90
MD TEG–PDI 300 0.93 0.88 0.98 0.95
MD TEG–PDI 400 0.89 0.84 0.96 0.94

on time scales longer than what is sampled in the MD simulations (nanoseconds). Thus,
the MD simulations performed for TEG–PDI should be considered as a static snapshot of
the morphology. This snapshot, however, can still be used to determine the charge carrier
mobility of the TEG–PDI-system, since charge transfer occurs on a much faster time scale
(picoseconds) in the molecular wire due to strong electronic coupling and low energetic
disorder.

In addition to the dynamical order parameter we have computed an orientational order
parameter Q as the largest eigenvalue of the tensor

Qαβ =

⟨
1

N

N∑
i=1

(
3

2
u(i)

α u
(i)
β − 1

2
δαβ

)⟩
. (4.2)

where α, β = x, y, z. Here, Q = 1 implies perfect alignment of the unit vectors u⃗ (see
fig. 4.1.c) and Q = 0 corresponds to an isotropic angular distribution. Both derivatives
show strong nematic order as can be seen in tab. 4.1.

4.2 Molecular ordering from simulations

Apart from analyzing rigidity and nematic ordering, MD simulations can also be used to
link the side-chain packing to the molecular arrangement within columns. All systems
under consideration consisted of 960 PDI molecules stacked in 16 columns of 60 molecules
each. Force-field parameters and simulation details can be found in the Supporting Infor-
mation of ref. [145, 162].

Initial configurations were prepared using an orthorhombic unit cell with a = 22 Å,
b = 17 Å, and c = 3.5 Å for C8,7–PDI and a hexagonal lattice with a = b = 23 Å, c = 3.4 Å
for TEG–PDI [162, 165]. Systems were equilibrated at 300 K for 40 ns using the GROMACS
package [166]. Different initial pitch angles were used which all converge to an average pitch
angle of 40◦ in C8,7–PDI, and 90◦ for TEG–PDI respectively.

We have used these MD simulations as a starting point for our investigation of the
molecular packing motives. First, histograms of the pitch angle α between neighboring
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Figure 4.2. Molecular packing motives (see fig. 4.1 for definitions). Histograms of (a) the helical
pitch angle α and (b) of the intermolecular distance ∆z and length d of the four side chains. The
narrower distribution of d for C8,7–PDI, which has less atoms shows that alkyl side chains are
more rigidly stretched out and TEG side chains are more flexible. (c),(d) Orientation of the end-
to-end distance d for alkyl and TEG side chains with respect to the core. The hydrogen bond
near the branching C-atom defines the direction of the stiff alkyl side chain to point out of the
molecular plane θ ≈ 55◦ (red vertical line) while the more flexible TEG side chains can average out
the direction given by the hydrogen bond and rest in the molecular plane θ ≈ 90◦. (e) For three
C8,7–PDI molecules in a column, side chains (blue arrows) are sticking out of the molecular plane
(grey disc) leading to a pitch angle of 40◦ (red arrows display the vector v⃗ connecting N atoms
in the core). Distributions of angles θ, ϕ for orientation of side chains from (c) are indicated on
unit spheres centered at the two N atoms (red indicates highest probability). (f) For TEG–PDI,
side chains rest in the molecular plane leading to larger pitch angles of 90◦.
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molecules are shown in fig. 4.2.a. A narrow distribution with a maximum around 40◦

is found for C8,7–PDI while for TEG–PDI the distribution is much broader and is cen-
tered around 90◦. This agrees with the NMR results of 20◦ − 45◦ for C8,7–PDI and 90◦

for TEG–PDI as was mentioned in the last section. Furthermore, the broad pitch angle
distribution for TEG–PDI shows indications of the same packing motives as revealed by
solid-state NMR in the Cr phase, where the width of the distribution was estimated to
be as large as σα ≈ 40◦ [165], which is in excellent agreement with simulation results.
Intermolecular distances have a narrow distribution for both compounds with a maximum
around ∆z = 3.6 Å, as shown in fig. 4.2.b.

To understand the difference in molecular packing of the two PDI derivatives we an-
alyzed conformations of their side chains. This was done with the help of the end-to-end
vector d⃗ connecting the branching C-atom and the end of the side chain, as illustrated in
fig. 4.1.c. The distributions of the length of this vector, d, are shown in fig. 4.2.b. The
narrower distribution for alkyl side chains suggests that they are more rigid and stretched
out as compared to the TEG side chains. This is confirmed by a similar mean value
d̄ = 7.6 Å for C8,7–PDI and 7.7 Å for TEG–PDI when keeping in mind that the alkyl side
chain has less atoms than the TEG side chain. The eigenvalues of the tensors of gyration
of the two combined branches of side chains, shown in fig. 4.1.c, indicate that side chains
are more stretched out in C8,7–PDI (having a ratio of eigenvalues of 43:6:1) as compared

to a more flexible glycol chain in TEG–PDI (17:3:1). The orientation of the vector d⃗ is
characterized using two-dimensional histograms of spherical coordinates ϕ, θ (see fig. 4.1.c)
shown in fig. 4.2.c,d. In case of C8,7–PDI, the distribution is centered around θ = 55◦ and
180◦ − 55◦ = 125◦ indicating that, on average, the alkyl chains stick out of the molecular
plane of the core by ±35◦. In contrast, the distribution for TEG side chains is centered
around θ = 90◦ indicating that the TEG chain reside in the molecular plane,

The observed conformational differences can be linked to the chemical structure as
explained below. Simulation results in accordance to the NMR data [159] suggest that
a hydrogen bond is formed between the H-atom attached to the branching C-atom of
the side chain and the O-atom of the core (indicated in red in fig. 4.1.c). Due to the
tetrahedral structure around the branching sp3-hybridized C-atom in both derivatives, the
first C-atoms after the branching C-atom in the upper and lower side chains will stick out
of the molecular plane defined by the core. The direction given by the bond between the
branching and first C-atom is maintained for the following bonds in the alkyl chain because
of its rigid nature induced by the excluded volume of the H-atoms.

The TEG chains, on the other hand, contain less H-atoms and are more flexible. As
a result, the direction imposed by the first C-atoms can be averaged out by the following
bonds in the side chain that therefore can reside in the molecular plane.

Summarizing the MD results, one can conclude that the pitch angle of α = 90◦ for
TEG–PDI is a consequence of a steric repulsion of the bulky spherical TEG side chains
belonging to molecules that are direct neighbors. For C8,7–PDI the more rigid alkyl side
chains stick out of the molecular plane because of the hydrogen bond formation. Due to
their larger extension, steric repulsion exists, not only between the side chains of direct
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neighbors but also the next-to-nearest neighbors. Therefore the pitch angle is reduced
to α = 40◦, which ensures the best side chain packing. The packing is illustrated for
three consecutive PDI cores in fig. 4.2.f,g for C8,7–PDI and TEG–PDI respectively. The
pitch angle α is represented by red arrows connecting N-atoms in the core. The four side
chains are shown as blue arrows with length d̄, pointing to directions obtained from the 2D
histograms of θ, ϕ on the unit sphere, which is attached to the the N-atoms of the core.

4.3 Charge-carrier mobility

With the atomistic morphologies at hand, we can now calculate hole and electron mobilities
along the columns. To do this, charge hopping rates for neighboring molecules i and j are
evaluated using the high-temperature limit of Marcus theory as introduced in eq. 2.6.
Since we are looking at a highly ordered system, we have neglected effects of energetic
disorder due to electrostatic interactions and conformations (sec. 2.7) so that only the
electric field F applied along the column determines energy differences. As we only allow
for one-dimensional transport we have

ωij =
2π

h̄

J2
ij√

4πλkBT
exp

[
−(eF∆zij − λ)2

4λkBT

]
, (4.3)

where e is the elementary charge, ∆zij is the distance between centers of mass of con-
secutive molecules in the column, λ is the reorganization energy (dominated by internal
contributions, see sec. 2.6) and Jij are electronic coupling elements (see sec. 2.5). In con-
trast to BTDF, where the mesomeric effect leads to delocalization of electron density due
to d-orbitals in the Si-atom connecting the conjugated core to the phenyl rings (see ch. 3),
the side chains in PDI can safely be neglected when evaluating reorganization energies
and transfer integrals. This leads to identical reorganization energies of C8,7–PDI and
TEG–PDI that are analyzed in the next subsection.

4.3.1 Reorganization energy

The first parameter entering the rate equation is the reorganization energy. Values of
λh = 0.14 eV for holes and λe = 0.24 eV for electrons indicate higher rates and mobilities for
holes in both derivatives. The effect of reorganization energy on the relative electron/hole
mobility can be quantified in linear response ∆E = eF∆z → 0 if we assume constant
transfer integrals and stacking distance. Then eq. 4.3 can be expanded to first order in
∆E yielding identical rates for both derivatives along (ω+) and against (ω−) the direction
of the field along the column

ω± =
2π

h̄

J2

√
4πλkBT

exp

(
− λ

4kBT

)[
1 ± ∆E

2kBT

]
. (4.4)
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If we only allow for hopping between neighbors, the mobility is given by the difference in
upward and downward rates (see sec. 2.9.2)

µ =
⟨v⟩
F

=
(ω+ − ω−) ∆z

F
=

2π

h̄

J2

√
4πλkBT

exp

(
− λ

4kBT

)
e(∆z)2

kBT
. (4.5)

Using this expression we can quantify the relative hole and electron mobilities by the ratio

µh

µe

=
J2

h

J2
e

×
√
λe

λh

exp

(
−λh − λe

4kBT

)
=:

J2
h

J2
e

× Cλ , (4.6)

which defines a constant which in our case is Cλ ≈ 4, indicating that hole transport should
be four times faster than electron transport in both derivatives only due to the difference
in reorganization energies.

4.3.2 Transfer integrals

We now look at distributions of transfer integrals and their effect on charge carrier mobility
in columnar systems. In one-dimensional, ordered systems, the overlap of frontier orbitals
contributing to the transfer integral is very sensitive to relative orientations and distances
of neighbors. The distribution of the center of mass distances between neighbors in a
column, shown in fig. 4.2.b, is rather narrow and peaked around ∆z = 3.6 Å. This value is
in agreement with the WAXS data [162, 165]. Hence, the variation of transfer integrals will
be mostly due to the change in relative orientations of neighboring molecules. Due to the
strong nematic order (Q ≈ 1), the relative orientation is determined mostly by the twist
angle α between consecutive cores. The dependence of the transfer integrals for electrons
and holes based on the overlap of the LUMO and HOMO on this angle α in a dimer where
centers of mass are separated by ∆z = 3.6 Å is shown in fig. 4.3.a. The widths of the
distributions of the angle α as obtained from MD simulations are also shown in red and
black arrows for C8,7–PDI and TEG–PDI. One might anticipate that average electronic
coupling for electrons in the column is much smaller than that for holes, since the minima
of the J2

LUMO are close to the maxima of the angle distributions of C8,7–PDI at 40◦ and
TEG–PDI at 90◦.

In order to verify this hypothesis from the dimer calculation, we have evaluated transfer
integrals from all dimers in 1000 snapshots of the MD simulations. Diabatic states (see
sec. 2.3) were constructed by replacing the slightly deformed PDI-cores from MD snapshots
by geometry optimized rigid copies, while retaining their orientations as explained in ch. 2.
Geometry optimization for the PDI-core was performed using the B3LYP hybrid func-
tional and a 6-311G(p,d) basis set. Then integrals were computed using the semi-empirical
molecular orbital overlap method [84] based on HOMO and LUMO orbitals of a neutral
PDI-core (frozen orbital approximation), which has been shown to yield similar results to
density functional theory at a fraction of computational cost. As expected from the dimer
calculation, J2

e < J2
h for both derivatives, as shown in fig. 4.3.b.
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Figure 4.3. (a) Transfer integrals for holes (HOMO) and electrons (LUMO) for two isolated
molecules at a distance of ∆z = 3.6 Å as a function of the relative pitch angle α. The widths of
the distributions of pitch angles from MD are indicated using black and red arrows for C8,7–PDI
and TEG–PDI, respectively. Minima of J2

LUMO occur near maxima of these distributions at
α = 40◦ (C8,7–PDI) and α = 90◦ (TEG–PDI) indicating lower transfer integrals for electrons
in both derivatives. (b) Distribution of transfer integrals for holes and electrons in the two PDI
derivatives obtained from all pairs in 16 columns having 60 molecules each evaluated over 1000
snapshots of the MD simulation. Orbital overlap favors hole transport in C8,7–PDI and makes
electron transport in both derivatives less efficient.

4.3.3 The master equation for one-dimensional systems

Having computed integrals, reorganization energy and rates using eq. 4.3, charge carrier
mobilities along each column (N = 60 molecules) are obtained by solving a stationary,
linearized master equation for one carrier hopping along this column

0 =
∂pi

∂t
=
∑

j

pjωji −
∑

j

piωij ∀i = 1, ..., N and
∑

i

pi = 1 , (4.7)

where ωij is the rate for charge transfer from molecule i to the molecule j and the occupation
probability pi to find the charge on molecule i is normalized to 1.

The solution of these N equations can be found by linear algebra when recasting eq. 4.7
in terms of a matrix Rij and including the normalization constraint using a Kronecker delta
equal to 1 only in the last (N th) line and zero elsewhere leading to

δiN =
∑

j

Rijpj ∀i = 1, ..., N . (4.8)

The matrix Rij is based on the hopping rates between neighbors ωij. One-dimensional
periodic boundary conditions are used to connect the first and last molecule in a column
so that Rij = 0 except for i = j ± 1 where we define Rij = ωij. In order to factorize pj

in eq. 4.7 we need to define diagonal elements Rii = −
∑

j ωij. Finally the normalization
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condition is included on the last (N th) line of eq. 4.8 by defining RNj = 1 ,∀j = 1, ..., N
which makes this equation identical to eq. 4.7. The occupation probabilities pi can now be
obtained by inverting the matrix equation so that p⃗ = R̂−1e⃗, where e⃗ is a N -dimensional
unit vector with ei = δiN .

The mobility in the column is computed from the applied field F and the mean velocity
⟨v⟩ constructed from the occupation probabilities pi. Due to periodic boundary conditions
and time independent probabilities, the probability flux is constant in the column. This
means that the mean velocity in the column of length L =

∑
i ∆zi,i+1 (including ∆zN,1)

can be obtained from the probability flux between any two connected molecules which is
fully determined by probabilities on these two molecules and the rates between them so
that

⟨v⟩ = (ω1NpN − ωN1p1)L, µ =
⟨v⟩
F

. (4.9)

We have used this approach to compute mobilities individually for all columns in the
MD simulation. 1000 MD snapshots during the 40 ns simulation were analyzed to obtain
better statistics. The distributions of mobilities are presented in fig. 4.4.a and show the
highest mobility for holes in C8,7–PDI, slightly lower hole mobilities in TEG–PDI and
equally low mobility for electrons in both derivatives. Note that due to the absence of
energetic disorder the mobility does not depend on the (small) applied electric field (see
sec. 2.7.5).

4.3.4 Charge mobility in one-dimensional systems

Since the transfer integral distributions are rather broad and transport is effectively one-
dimensional, the charge carrier is likely to encounter a very small transfer integral, i.e. a
defect while hopping along the column. In our case, this weak link will lead to a small
mobility especially in case of electron transport, where transfer integral distributions have
a prominent tail with low values as shown in fig. 4.3.b. Indeed, the averaged mobilities,
given in tab. 4.2, show that hole transport is ten time times more efficient than electron
transport. This is not only due to the difference in transfer integrals, but also due to the
difference in reorganization energy (see eq. 4.6). Note that the observation of higher hole
mobility is unexpected since PDI is typically known as an n-type semiconductor [146, 147].

The slightly smaller hole mobility in TEG–PDI compared to C8,7–PDI is due to the
very broad pitch angle distribution in TEG–PDI that covers the minimum of the HOMO-
HOMO overlap around 80◦ (see fig. 4.3). The narrower distribution for C8,7–PDI only
covers the minima of the HOMO-HOMO overlap with its tails. Broad distributions of
the pitch angle in TEG–PDI result in smaller hole transfer integrals for TEG–PDI as for
C8,7–PDI, which can be seen in fig. 4.3.b and, hence smaller hole mobility in TEG–PDI.

4.3.5 Comparison of mobility to experimental results

The sum of electron and hole mobilities can directly be compared to the mobility measured
by pulse-radiolysis time-resolved microwave conductivity (PR-TRMC).
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Figure 4.4. (a) Distributions of charge carrier mobilities for electrons and holes for C8,7–PDI
and TEG–PDI. Hole mobilities are larger than electron mobilities for both derivatives. While
electron mobilities are similar in C8,7–PDI and TEG–PDI, holes are slightly faster in C8,7–PDI.
(b) Combined electron and hole mobilities as a function of temperature measured by the PR-
TRMC technique show a similar trend with slightly higher mobility in TEG–PDI.

In order to perform PR-TRMC measurements powder samples of C8,7–PDI and TEG–PDI
are introduced into a Ka-band (28-38 GHz) microwave cell. A uniform, micromolar con-
centration of charge carriers is generated into the sample by a 10 nanosecond pulse of 3
MeV electrons from a Van de Graaff accelerator. The change in the conductivity of the
sample resulting from the formation of mobile charge carriers was monitored as a decrease
in the microwave power reflected by the sample cell. The one-dimensional, intracolumnar
charge carrier mobility was determined from the end-of-pulse conductivity per unit dose,
∆σeop

D
(measured in units of Sm2/J), using the relation

µ = 3
∆σeop

D

Ep

Wp

, (4.10)

where Ep is the average energy deposited per ionization event and Wp is the probability
that initially formed ion-pairs survive until the end of the pulse. Here Ep = 25 eV and
Wp = 0.513 (0.420) for C8,7–PDI (TEG–PDI). The random orientation of the ordered
columnar domains is taken into account by the prefactor 3. The measured mobility µ is
the sum of hole and electron mobilities, µ = µ+ +µ−, since the PR-TRMC technique does
not allow to distinguish the contribution of positive and negative charge carriers.

The temperature dependence of the experimentally measured charge carrier mobility
is shown in fig. 4.4.b. The absolute values of the mobility are around 0.15 cm2V−1s−1 and
0.09 cm2V−1s−1 at room temperature for the C8,7–PDI and TEG–PDI, respectively. By
increasing the temperature to 400K the mobility slightly decreases to 0.13 cm2V−1s−1 and
0.07 cm2V−1s−1, respectively, without showing any abrupt changes which could be related
to a phase transition.

Theoretical estimates of the mobility from tab. 4.2 are slightly smaller than found
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C8,7–PDI TEG–PDI
µh 0.087 (±0.03) 0.053 (±0.02)
µe 0.004 (±0.001) 0.004 (±0.001)
µe + µh 0.09 (±0.03) 0.06 (±0.02)
µPR−TRMC 0.15 0.09

Table 4.2. Simulated and experimental mobilities in units of cm2V−1s−1. Values for electron
and hole mobilities for both PDI derivatives are obtained by averaging over 16 columns in 1000
MD snapshots of a 40ns trajectory. We also show combined electron and hole mobilities which can
be directly compared to measured PR-TRMC mobilities with good relative agreement between
TEG–PDI and C8,7–PDI. The error of the mean from a bootstrap analysis consisting of 10.000
data sets is given in brackets.

in experiment, which is unusual compared to other compounds that have been studied
previously [55, 56, 61, 132]. This implies that the length of a column in the simulation (60
molecules) exceeds the distances sampled by the PR-TRMC technique, which normally
probes only 10-20 molecules [162]. As a result, PR-TRMC is relatively insensitive to
occasional stacking defects, while they are much more likely in simulations where the
columns are three times longer. The relative (combined) mobilities between the two PDI
derivatives is however in very good agreement with the experiment.

4.4 Summary for one-dimensional charge transport

To summarize we were able to link the value of the helical pitch angle to side chain con-
formations for two perylenediimide derivatives by comparing theory and experiment. The
alkyl side chains prefer a linearly stretched out conformation with the end-to-end vector
pointing out of the molecular plane defined by the core. As a result, not only the direct
neighbors, but also the next-to-nearest neighbors interact with each other which results in
a pitch angle of 40◦. The glycol side chains are more flexible and reside in the molecular
plane. This leads to a much broader distribution of the pitch angle centered around 90◦.

Since the transfer integral for electron transport (LUMO) has minima close to these
angles at 40◦ and 90◦, electron transport for both derivatives is less favorable as compared
to hole transport, where the minima (HOMO) occur at 25◦ and 75◦. This trend between
electrons and holes is even enhanced by a larger reorganization energy of electrons as
compared to holes.

Comparing hole transport in both derivatives we find that minima of transfer integrals
occur at pitch angles which are less probable in the case of C8,7–PDI as compared to
TEG–PDI. Computed mobilities, however, show only slightly higher hole mobilities in
C8,7–PDI than for TEG–PDI. We therefore conclude that, in order to obtain maximal
charge-carrier mobilities, it is not sufficient to match the average local molecular order
induced by the side chains with maxima of the transfer integrals. It is also important to
make the corresponding distributions (in this case of the helical pitch angle) as narrow
as possible compared to the window determined by the closest minima of the transfer
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integral. The immediate implication for compound design is that the side chains should
assist the self-assembling process not only via “soft” entropic interactions, but also via
stronger specific interactions, such as hydrogen bonding.

Another possibility to improve mobilities would be to allow for two-dimensional charge
transport by interconnecting the columns with high electronic couplings. In this case,
stacking defects within a column do not limit transport in the network because the charge
can take a detour along a different column.



Chapter 5

Conclusion and outlook

In this thesis we have extended the methods used for microscopic charge-transport simula-
tions in organic semiconductors and applied this approach to formulate structure-property
relations for amorphous host-guest systems and self-assembled discotic mesophases. The
contributions to the method development include:

1. The derivation of a bimolecular charge-transfer rate with two independent sets of nu-
clear coordinates of (quantum-mechanically treated) donor and acceptor molecules
in presence of a classical outer-sphere mode (representing the environment). Our ob-
servation is that for a situation with (i) intramolecular reorganization energy similar
to the outer-sphere one, (ii) reorganization energies of the order of the vibrational
energy of the promoting mode (typically a C-C stretching mode), and (iii) small site-
energy difference between initial and final state as compared to the intramolecular
reorganization energy, results of this bimolecular rate are comparable to the classi-
cal Marcus rate and the semi-classical Levich-Jortner expression [19]. However, for
systems with large site-energy differences, e.g. when computing escape rates from
traps, the bimolecular rate or the Levich-Jortner formalism should be used.

2. The derivation and implementation of a method that allows for efficient evaluation
of outer-sphere reorganization energies based on the classical dielectric response of
a polarizable environment. Here, donor and acceptor are represented using atomic
partial charges while the environment is characterized by atomic charges and the
Pekar factor. Our results show that, as expected from the Marcus expression [19], the
outer-sphere reorganization energy increases with increasing distance between donor
and acceptor. In contrast to the Marcus expression, the proposed method, however,
does not lead to unphysical negative values of reorganization energies for very small
molecular separations occurring in an amorphous phase. More importantly, we find
that the outer-sphere reorganization energy is slightly smaller than the intramolecular
one. This observation is confirmed by other approaches [89, 97, 98], which do not
rely on explicit knowledge of the Pekar factor, but are also significantly more time-
consuming.

91
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3. Investigation of the role of conformational disorder in calculations of intramolecular
reorganization energies and internal site energies. The corresponding broadening of
the distributions, however, is insignificant compared to the energetic disorder that
arises due to electrostatic interactions [64] in the systems under consideration here.
Therefore, effects of conformational changes on charge transport are small.

4. The inclusion of self-consistent polarization interactions for calculation of site ener-
gies. This is the most important development since an accurate prediction of the
energy-landscape is essential for charge-transport simulations in (disordered) amor-
phous phases [64] and in some cases also in crystalline phases, where fluctuations at
room-temperature can lead to significant energetic disorder [132].

From the point of view of applications of the developed methods, the following results
were obtained:

• When bulky substituents are attached to an aromatic core in order to adjust en-
ergy levels or prevent crystallization, a small amount of delocalization of the frontier
orbital to the substituents can increase electronic couplings between neighboring
molecules. This leads to improved charge-transfer rates and, hence, larger charge-
mobility. We therefore suggest using the mesomeric effect (as opposed to the in-
ductive effect) when attaching substituents to aromatic cores, which is necessary for
example in deep blue OLEDs, where the energy levels of a host molecule have to be
adjusted to those of the emitter.

• The energy landscape for charges in an amorphous phase cannot be predicted by
mesoscopic models because they approximate the realistic morphology by a lattice
and represent molecular charge distributions in a multipole expansion. The micro-
scopic approach shows that a polarization-induced stabilization of a molecule in its
charged and neutral states can lead to large shifts, broadening, and traps in the dis-
tribution of site energies. These results are especially important for multi-component
systems (the emission layer of an OLED or the donor-acceptor interface of an OPVC),
if the change in polarizability upon charging (or excitation in case of energy trans-
port) is different for the components. Thus, the polarizability change upon charging
or excitation should be added to the set of molecular parameters essential for under-
standing charge and energy transport in organic semiconductors.

• In case of one-dimensional charge transport in self-assembled systems, intermolecu-
lar packing motives induced by side chains can increase electronic couplings between
molecules. This leads to larger charge mobility, which is essential for devices such
as OFETs. However, it is not sufficient to match the average local molecular or-
der induced by the side chains with maxima of the electronic couplings. It is also
important to make the corresponding distributions, e.g. of the pitch angle between
consecutive molecules, as narrow as possible compared to the window determined by
the closest minima of the electronic couplings [19]. The immediate implication for
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compound design is that the side chains should assist the self-assembling process not
only via “soft” entropic interactions, but also via stronger specific interactions, such
as hydrogen bonding.

The current set of simulation methods provides a good understanding of microscopic
charge-transport processes occurring in organic semiconductors including prediction of
topological connectivity from electronic couplings, energetic landscape, charge mobilities,
site occupations and currents. However, there are still a number of challenges before in
silico design of devices based on organic semiconductors can be performed including:

1. Prediction of non-equilibrium and self-assembled morphologies. In amorphous phases
considered here, the different static dipole moments of guest(emitter) molecules and
host molecules lead to emitter aggregation during vacuum deposition of the OLED
emission layer. Including aggregation effects is especially important to predict charge
transport in the minority component of the emission layer. This cannot be achieved
by annealing the host-guest mixture above the glass transition and quenching it to
room temperature since this procedure completely randomizes positions and orienta-
tions of guest molecules in the host. An alternative is the simulation of the gradual
adsorption of molecules on a substrate, either by using Monte Carlo moves and treat-
ing molecules as rigid rotors [52] or by employing molecular dynamics and sublimating
molecules at high temperatures [65]. The drawback of the first method is that the
molecular conformations are always fixed, while the second method is limited to mi-
crosecond simulation times, which might be too short to fully relax positions and
orientations of adsorbed molecules [167].

2. Parametrization of polarizable force fields allowing for strongly anisotropic molecu-
lar polarizability tensors. This is needed for an accurate evaluation of the energy
landscape since in the Thole model, the anisotropy of the polarizabilities for charged
molecules is often underestimated. This deficiency can be cured by allowing for
anisotropic atomic polarizabilities and virtual polarizable sites. Alternatively, other
methods such as charge-equilibration can be employed [102].

3. Accurate and efficient evaluation of outer-sphere reorganization energies that do not
rely on the Pekar factor. Here, polarizable force fields are essential to improve the
prediction of the dielectric response of the environment from molecular dynamics
simulations [89, 98]. Outer-sphere reorganization energies are especially important
to predict de-trapping of charges in energetically deep lying states that are created
by impurities such as oxygen or water with a negative effect on device stability for
OLEDs, OPVC and OFETs.

4. Charge injection or extraction. Since organic materials are intrinsic insulators, charges
have to be photo-generated or injected at a metallic interface, where image-charge
effects occur. Furthermore, the build-up of space-charge at an ohmic contact due to
a low mobility has to be considered [168].
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5. Development of off-lattice KMC algorithms for multiple charge carriers. This is
essential to describe the influence of a realistic carrier density on mobility [112] which
is especially important for OFETs where densities are higher than in OLEDs or
OPVCs. While in lattice models the interaction between the charges can mainly be
taken into account by excluding double occupancy of sites [36], it is not clear whether
this is also true in off-lattice simulations based on a realistic morphology.

6. Efficient site-energy calculations for multiple charge carriers including polarization
effects. For KMC simulations with interacting charge carriers, site energies cannot
simply be computed once for all sites before the start of the KMC simulation, but
have to be evaluated on the fly after each KMC step, which makes efficient algorithms
necessary.

7. Processes involving excited states. Excited states are an important ingredient of
functionality in OLEDs and OPVC. An adaptation of the state-based description for
excitons is intrinsically challenging due to their diverse character including singlet
and triplet states, strongly-bound Frenkel excitations localized on single molecules,
charge-transfer excitons involving a donor-acceptor complex and long-range polaron
pairs. Analogues of diabatic states (energies, wavefunctions) have to be deter-
mined for all types of excitations using suitable first-principles descriptions. Accu-
rate quantum-chemical methods, such as coupled-cluster, configuration-interaction
are capable of this but come at high computational cost. Time-dependent density-
functional theory is less demanding but has problems describing long-range asymp-
totics of the electron-electron interaction potential [169], affecting charge-transfer
states in particular. Range-separated exchange-correlation kernels [170, 171] may be
used to overcome this deficiency but need compound-specific adjustments [172, 173].
Here, many-body Green’s functions theory using the GW approximation and the
Bethe-Salpeter equation [133, 174] is a feasible alternative as it allows for the calcu-
lation of energies and wavefunctions of excitepd states at a required accuracy, while
computational demands remain manageable. For singlet (triplet) exciton dynamics,
one can use Förster (Dexter) energy transfer rates or use a more general expression
based on the excitonic wave functions [175, 176]. Furthermore, the long-range na-
ture of the exchange interaction of singlet excitons will result in a different topology
of the directed graph used in KMC simulations (as compared to charge transport),
requiring large system sizes.

8. KMC simulations with electrons, holes, and excitons. For simulations in OLEDs and
OPVC processes such as recombination of electrons and holes to form excitons (and
their dissociation) or the conversion between Frenkel and charge-transfer excitons
have to be considered.



Bibliography

[1] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis,
S. C. Gau, and Alan G. MacDiarmid. Electrical conductivity in doped polyacetylene.
Phys. Rev. Lett., 39(17):1098–1101, 1977.
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