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SUMMARY

Ski7 is a cofactor of the cytoplasmic exosome in
budding yeast, functioning in both mRNA turnover
and non-stop decay (NSD), a surveillance pathway
that degrades faulty mRNAs lacking a stop codon.
The C-terminal region of Ski7 (Ski7C) shares overall
sequence similarity with the translational GTPase
(trGTPase) Hbs1, but whether Ski7 has retained
the properties of a trGTPase is unclear. Here, we
report the high-resolution structures of Ski7C bound
to either intact guanosine triphosphate (GTP) or gua-
nosine diphosphate-Pi. The individual domains of
Ski7C adopt the conformation characteristic of active
trGTPases. Furthermore, the nucleotide-binding site
of Ski7C shares similar features comparedwith active
trGTPases, notably the presence of a characteristic
monovalent cation. However, a suboptimal polar
residue at the putative catalytic site and an unusual
polar residue that interacts with the g-phosphate of
GTP distinguish Ski7 from other trGTPases, suggest-
ing it might function rather as a GTP-binding protein
than as a GTP-hydrolyzing enzyme.

INTRODUCTION

The decay of cytoplasmicmRNAs regulates the output of eukary-

otic gene expression in terms of both quantity and quality. In gen-

eral, mRNA turnover modulates the abundance of normal

transcripts in the cell and thereby the quantity of the proteins

they encode (reviewed in Garneau et al., 2007; Houseley

and Tollervey, 2009; Parker, 2012). In addition, eukaryotic cells

have evolved quality-control mechanisms that prompt the decay

of defective mRNAs. These surveillance pathways act at trans-

lating ribosomes and recognize different types of defects, for

example the absence of a stop codon (non-stop decay [NSD]),

the presence of a premature stop codon (nonsense-mediated

decay [NMD]) or the presence of features that cause abnormal

stalling of the translation machinery (no-go decay [NGD]) (re-

viewed in Inada, 2013; Kervestin and Jacobson, 2012; Klauer

and van Hoof, 2012; Lykke-Andersen and Bennett, 2014; Popp
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and Maquat, 2013; Schweingruber et al., 2013; Shoemaker and

Green, 2012). In both normal and aberrant situations, enzymatic

machineries eventually degrade the body of the mRNA either

from the 50 end (via Xrn1) or from the 30 end (via the exosome) (re-

viewed in Garneau et al., 2007; Houseley and Tollervey, 2009).

The exosome core complex is a ten-subunit assembly en-

dowed with processive 30–50 exoribonuclease activity (Mitchell

et al., 1997; reviewed in Januszyk and Lima, 2014; Makino

et al., 2013). In the cytoplasm, the exosome functions together

with the Ski complex, a 4-subunit protein complex centered

around an RNA helicase (Brown et al., 2000; Halbach et al.,

2013). In Saccharomyces cerevisiae, the interaction between

the exosome and the Ski complex is mediated by Ski7 (Araki

et al., 2001; van Hoof et al., 2000). While the exosome and the

Ski complexes are evolutionary conserved, Ski7 has long been

thought to be unique to Saccharomyces species. Recently, how-

ever, it has been shown that Lachancea kluyveri expresses a Ski7

protein by alternative splicing of the HBS1 gene (Atkinson et al.,

2008; Marshall et al., 2013), raising the possibility that Ski7 might

have a wider phylogenetic distribution than currently thought.

Ski7 is a multidomain protein. The N-terminal portion contains

the regions that mediate binding to the exosome and Ski com-

plexes (Arakiet al., 2001) and is required for all exosome-mediated

RNAdecaypathways, includinggeneralmRNAturnover (vanHoof

et al., 2002). TheC-terminal part contains aGTPasedomain and is

requiredspecifically in theNSDpathway (Frischmeyer et al., 2002;

van Hoof et al., 2000). Interestingly in this context, the closest

paralog of Ski7 is Hbs1, a translational GTPase (trGTPase)

also involved in aberrant translation termination (reviewed in

Hoshino, 2012). Hbs1 was originally implicated in NGD (Doma

and Parker, 2006) and has recently been shown to participate in

both NSD (Saito et al., 2013; Tsuboi et al., 2012) and the rescue

of ribosomes arrested at the 30 end of truncatedmRNAs or stalled

in the 30 UTR (Guydosh andGreen, 2014; Shoemaker et al., 2010).

Like all known GTPases, Hbs1 switches between an active

GTP-bound conformation and an inactive guanosine diphos-

phate (GDP)-bound conformation (reviewed in Wittinghofer and

Vetter, 2011). On its own, Hbs1 has negligible intrinsic GTPase

activity (Shoemaker et al., 2010). However, the GTP hydrolysis

reaction of Hbs1 is greatly stimulated by the presence of

Dom34 and the ribosome, which together fulfill the function of

a composite GTPase-activating protein (Shoemaker et al.,

2010). In this sense, the Hbs1-Dom34 complex is analogous to
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Table 1. X-Ray Data Collection and Refinement Statistics

Dataset Ski7C-GTP Ski7-GDP-Pi

Wavelength (Å) 1.000 1.000

Resolution range (Å) 45.58–2.251

(2.331–2.251)

73.72–2.181

(2.259–2.181)

Space group C 2 2 21 C 2 2 21

a, b, c (Å) 91.150, 123.106,

104.967

93.136, 120.617,

105.269

a, b, g (�) 90, 90, 90 90, 90, 90

Total reflections 188,256 (18,033) 205,103 (18,270)

Unique reflections 27,933 (2,656) 31,136 (2,983)

Multiplicity 6.7 (6.8) 6.6 (6.1)

Completeness (%) 98.47 (94.89) 99.71 (97.48)

Mean I/sigma (I) 13.36 (1.25) 15.98 (0.86)

CC1/2 0.998 (0.487) 0.999 (0.517)

Refinement

Rwork (%) 0.2047 0.2172

Rfree (%) 0.2387 0.2460

Protein residues 254–476, 490–636,

645–747

255–476, 492–636,

645–747

Ligands GTP, Mg2+, Na+,

triethylene glycol

GDP, Pi, Mg2+

Water 96 10

Stereochemistry

RMS (bonds) 0.003 0.003

RMS (angles) 0.76 0.70

Ramachandran favored (%) 98 97

Ramachandran outliers (%) 0 0

Values for the highest-resolution shell are given in parentheses.
the eRF1-eRF3 complex, which functions in translation termina-

tion at stop codons (reviewed in Zhou et al., 2012), and to the

EFTu-aminoacyl-tRNA complex, which functions in translation

elongation (reviewed in Voorhees and Ramakrishnan, 2013;

Rodnina, 2009).

The overall similarities between Ski7 and its paralog Hbs1 are

compelling. However, whether Ski7 is an active trGTPase is not

clear, particularly because residues that are invariant in the cat-

alytic site of canonical trGTPases are not conserved in Ski7.

Furthermore, there is no cofactor known to associate with Ski7

that could fulfill a similar function to Dom34 or eRF1. In this

work, we used structural approaches to shed light on the func-

tion of Ski7 and found that Ski7 can bind GTP and adopt the

conformation of active GTP-bound trGTPases.

RESULTS AND DISCUSSION

Structure Determination of the C-Terminal GTPase-Like
Region of Ski7
We engineered a C-terminal fragment of S. cerevisiae Ski7 that

encompasses the predicted GTPase-like region (residues 254–

747, thereby referred toasSki7C). Ski7Cwas incubatedwitheither

GTPorGDP for crystallization trials.Weobtained crystals ofSki7C
in the presence of GDP and magnesium ions using inorganic

phosphate as precipitating agent. We solved the structure with
a selenomethionine-based single-wavelength anomalous disper-

sionexperimentand refined it at 2.2-Å resolution toRfree of 24.6%,

Rwork of 21.7%, and good stereochemistry (Table 1). The refined

structure (referred to as Ski7C-GDP-Pi) includes most of the

Ski7C polypeptide chain (with the exception of short disordered

loop regions) and also includes GDP, a molecule of inorganic

phosphate (Pi) and an Mg2+ ion. Manganese was soaked into

thecrystal prior to data collection to substituteMg2+ and to unam-

biguously identify theposition of the divalent cation in the electron

density using anomalous scattering (Figure S1A).

Using the same crystallization conditions, we also obtained

crystals of Ski7C in the presence of GTP. The structure of

Ski7C-GTP was determined using the atomic coordinates of

the protein chain from the Ski7C-GDP-Pi structure. The refine-

ment showed the presence of well-defined electron density

for GTP and an Mg2+ ion, and weaker density, which was inter-

preted as a monovalent metal ion (Figures 1B and S2A). The final

model was refined to 2.3-Å resolution with Rfree of 23.9%, Rwork

of 20.5%, and good stereochemistry (Table 1). Except for a loop

approaching the sugar moiety of the nucleotide that is involved

in a crystal contact in the Ski7C-GDP-Pi crystal (Figures S1B

and S1D), the structure of Ski7C is essentially identical in the

Ski7C-GDP-Pi and Ski7C-GTP complexes, superposing with a

root-mean-square deviation of 0.53 Å over all atoms (Fig-

ure S1C). The description of Ski7C below thus refers to both

structures, unless otherwise specified.

The Ski7C Structure Reveals a Domain Arrangement
Typical of Active trGTPases
Ski7C is organized in three domains (Figure 1A). Domain I (resi-

dues 264–518) adopts the ab fold of GTP-binding domains (G

domains), with a central six-stranded b sheet surrounded by a

helices (Figure 1B). Domain II (residues 526–636) and domain

III (residues 645–747) each adopt the structure of a closed b bar-

rel (Figure 1B). The b barrels of Ski7C are positioned side by side,

with two antiparallel b strands (bA and bB) wedged in between.

The bA and bB strands are not adjacent in the sequence but

form a small b sheet that interacts on one side with the barrel

of domain II and on the other side with the barrel of domain III

(Figure 1B). As observed for other GTPases of this family,

domains II and III appear to form a single unit (Berchtold et al.,

1993; Kjeldgaard et al., 1993).

Domains II and III both interact with the G domain (Figure 1B).

The three domains interact intra-molecularly not only via their

globular folds but also via extended segments. First, an a helix

at the N terminus of the G domain (residues 254–264, a0) packs

against domain II and against the linker that connects the two

domains. Second, a loop connecting strands b4 and b5 of

domain II interacts with the side of the G domain. The trGTPases

Hbs1, eRF3, EFTu, and eIF5B share a similar sequel of globular

domains (Figure S2A). Several crystal structures of trGTPases

have been determined in complex with different GTP analogs

and with cofactors (Figure S2B) (Chen et al., 2010; Kobayashi

et al., 2010; Nissen et al., 1995; Preis et al., 2014). While the

structures of the individual G domains or domains II-III of

trGTPases superpose well, their relative orientation differs de-

pending on the nucleotide state.

We analyzed the domain orientation in the Ski7C structures

with respect to the conformations observed in canonical
Structure 23, 1336–1343, July 7, 2015 ª2015 The Authors 1337
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Figure 1. The Structure of the C-Terminal

Domain of Ski7 Bound to GTP

(A) Schematic representation of the domain

arrangement of S. cerevisiae Ski7. Colored rect-

angles highlight the C-terminal domain of Ski7

(Ski7C) visualized in the structure reported here,

with its three subdomains (G domain in cyan,

domain II in orange, and domain III in yellow). The

positions of the five conserved sequence motifs in

the GTP-binding domain (G domain or domain I)

are highlighted with gray bars. Regions of Ski7 that

bind the Ski2-Ski3-Ski8 complex and the exosome

complex are indicated.

(B) The overall structure of Ski7C bound to GTP

shown in two orientations, related by a 90� anti-

clockwise rotation around a vertical axis. The

structures are shown in cartoon representation

with the G domain in cyan, domain II in orange,

and domain III in yellow. GTP is shown in stick

representations and the ions as spheres (green

for Mg2+ and purple for Na+). Depicted in gray

are the N-terminal a helix a0 as well as the bA and

bB strands that are described in text. (See also

Figure S1).
trGTPases. In particular, we compared Ski7C with the crystal

structures of Thermus aquaticus EFTu, which have been deter-

mined in an active state bound to GMPPNP and tRNA (Nissen

et al., 1995) and in an inactive state bound to GDP (Polekhina

et al., 1996). In the EFTu structures, the G domain undergoes

a dramatic three-dimensional rigid-body motion relative to do-

mains II and III (Figure 2, right and central panel). Structural rear-

rangements in the so-called switch regions in response to the

presence or absence of the nucleotide g-phosphate propagate

with long-range effects, resulting in the reorganization of inter-

domain contacts. In Ski7C, domain G and domains II-III adopt

a very similar architecture to that observed in the active-state

snapshot of EFTu (Figure 2, left and central panels). When

comparing the additional interactions with extended segments,

EFTu lacks the equivalent of the N-terminal helix a0 of Ski7C
but features a similar loop that protrudes from domain II and

binds the G domain as well as the 30 end of the tRNA. We

conclude that the conformation of Ski7C in both the GTP-bound

and the GDP-Pi-bound structures parallels the active conforma-

tion of a canonical trGTPase.

In the active conformation, canonical trGTPases bind their co-

factors at a cleft between the G domain and the barrel domains.

Ski7C has a cleft at the corresponding position as the cofactor-

binding surface of known trGTPases, but the detailed shape

and electrostatic properties are distinct (Figure S2B). Thus,

Ski7 is unlikely to use the same cofactors. Indeed, neither

eRF1 nor Dom34 could augment the intrinsic GTPase activity

of Ski7 in an experimental setup that robustly induces Hbs1

GTPase activity (Figure 2B).

Ski7C Can Bind Either Intact or Cleaved GTP
Superposition of the Ski7C-GTP and Ski7C-GDP-Pi structures

shows that the guanosine moieties and the a- and b-phosphates

of the two nucleotides are identically placed in the nucleotide-

binding site (Figures S2B and S2C). The g-phosphate of the

GTP-bound structure and the inorganic phosphate of the GDP-
1338 Structure 23, 1336–1343, July 7, 2015 ª2015 The Authors
Pi-bound structure are adjacent to each other, but they do not

coincide. In Ski7C-GTP, the g-phosphate is connected cova-

lently to the b-phosphate (with the canonical phosphate-phos-

phate distance of 2.8 Å). In Ski7C-GDP-Pi, the inorganic phos-

phate is clearly separated from the b-phosphate of the GDP

(with a phosphate-phosphate distance of 4.2 Å) (Figures 3A,

3B, and S2A).

We compared the nucleotide-binding site in the G domain of

Ski7 with that of eIF5B, a trGTPase involved in subunit joining

and whose G domain structure has been characterized at high

resolution in several apo and nucleotide-bound states (Kuhle

and Ficner, 2014a, 2014b) (Figure 3A). G domains have five

consensus sequence motifs (G1–G5) (Bourne et al., 1991). Motif

G1 (also known as the P loop orWalker Amotif) interacts with the

a- and b-phosphates of the nucleotide. Motif G2 and motif G3

(also known as the Walker B motif) bind the g-phosphate of

GTP and correspond to the switch I and switch II regions. Motifs

G4 and G5 interact with the guanine base. The polypeptide

backbones of the P loop, G4, and G5 motifs have essentially

the same conformations in all nucleotide-bound eIF5B and

Ski7C structures (Figures 3A and 3B). In the case of switch I

and switch II, the polypeptide backbone in Ski7C-GTP and

Ski7C-GDP-Pi is very similar to that observed in eIF5B-GTP

and differs from eIF5B-GDP (Figure 3C). The analysis thus indi-

cates that both Ski7C structures resemble the conformation of

active GTP-bound trGTPases. In the case of the Ski7C-GDP-Pi

structure, the complex either mimics a putative post-hydrolysis

state (e.g. before release of the Pi product and conversion to

an inactive GDP-bound state) or engages the small molecules

supplied at high concentrations with the crystallization buffer

(i.e. GDP and inorganic phosphate) to mimic a GTP-bound state.

The Chemical Features of the Ski7 Nucleotide-Binding
Site
At the sequence level, the G motifs of Ski7 contain several un-

usual residues at positions that are highly conserved in Hbs1,



Figure 2. The Ski7C Has the Domain Architecture of an Active trGTPase

(A) The structures of Ski7C-GDP-Pi, of EFTu-GDPPNP-tRNA (PDB: 1TTT) (Nissen et al., 1995) and of EFTu-GDP (PDB: 1TUI) (Polekhina et al., 1996) are shown

after optimal superposition of domain II-III, in the same orientation and colors as in Figure 1B, right panel, RNA is shown in black.

(B) GTPase activity of Ski7 and Hbs1 in the absence and presence of co-factors and 80S ribosomes. Ski7 GTPase stimulation was not observed by Dom34, eRF1,

or 80S ribosomes (middle and right panel). Hbs1 GTPase activity and stimulation by Dom34 and ribosomes was included as a positive control (left panel).

The Hbs1/Dom34/80S curve fits to a single exponential, while the other curves show linear fits. Error bars are ±1 SD from the mean across three experiments.

(See also Figure S2).
eRF3, EFTu, and eIF5B (Figure 4). In most cases, residues that

differ from the conserved amino acids of trGTPases are never-

theless engaged in similar interactions (Figure 3A, compare right

and left panels). For example, a hydrophobic residue of the G5

motif (Leu469Ski7) packs against one side of the guanine base,

at a position usually engaged in hydrophobic stacking interac-

tions (Figure 3). In switch I, Ser333Ski7 coordinates the divalent

cation and contributes to binding of the g-phosphate, as does

Gly359Ski7. In switch I, Phe332Ski7 maintains the chemical prop-

erties of the so-called hydrophobic gate of trGTPases (Berchtold

et al., 1993; Kjeldgaard et al., 1993; Villa et al., 2009). Finally, in

the P loop, Asn277Ski7 is at the position of Asp533eIF5B. In the

eIF5B-GTP structure, Asp533eIF5B and the main-chain carbonyl

of Gly555eIF5B (from switch I) coordinate a monovalent cation
(either K+ or Na+) (Kuhle and Ficner, 2014b). The presence of a

monovalent cation is thought to be a universal structural feature

of active trGTPases (Kuhle and Ficner, 2014b), although it con-

tributes little to catalysis both on and off the ribosome (Maracci

et al., 2014; Åqvist and Kamerlin, 2015). In the Ski7-GTP

structure, the electron density is consistent with the presence

of a monovalent ion at the equivalent structural position, be-

tween Asn277Ski7 and the main-chain carbonyl of Gly331Ski7

(from switch I) (Figure 3A).

A distinguishing feature of Ski7 is the presence of Ser360Ski7

in switch II at the corresponding position of His598eIF5B. This

active site histidine residue is conserved in trGTPases, and

in the presence of the ribosome and an activating cofactor it

re-orients its side chain to stabilize or position the catalytic water
Structure 23, 1336–1343, July 7, 2015 ª2015 The Authors 1339
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Figure 3. The Active Site of Ski7C
(A) Zoom-in view of the GTP-binding site in the Ski7C-GTP structure (left panel) compared with that of the trGTPase eIF5B in the active GTP-bound structure (right

panel) (PDB: 4TMW) (Kuhle and Ficner, 2014b). The two molecules are shown in the same orientation after optimal superposition of their G domains. In Ski7 the

fivemotifs of G domains are colored in yellow (P loop, also known asG1motif), salmon (switch I, also known asG2motif), violet (switch 2, also known as G3motif),

green (G4), and teal (G5). The Ski7 active site shows the presence of the divalent and monovalent cations and waters at the corresponding structural positions

observed in eIF5B-GTP.

(B) Zoom-in view of the GTP-binding site in the Ski7C-GDP-Pi structure (left panel) compared in the same orientation as the molecules above.

(C) Zoom-in on the nucleotide-binding regions in the Ski7C-GDP-Pi structure (P loop, switch I and switch II), superposed with the corresponding regions of eIF5B

in the active state (bound to GTP, PDB: 4TMW [Kuhle and Ficner, 2014b], left side) and in the inactive state (bound to GDP, PDB: 4NCL [Kuhle and Ficner, 2014a],

right side). Proteins are in cartoon representation and the displayed nucleotide and ions are those bound by Ski7. The G motifs of Ski7C are colored highlighting

their similarity to the active conformation of eIF5B. (See also Figure S3).
(Figures 3A and 4) (Berchtold et al., 1993; Daviter et al., 2003;

Maracci et al., 2014; Villa et al., 2009). At the chemical level, it is

conceivable that the function of the side chain of Ser360Ski7might

be to stabilize a putative catalytic water (Holliday et al., 2009)

when re-oriented in the presence of the ribosome. Nevertheless,

the shorter side chain would probably be suboptimal for catal-

ysis. Another peculiarity of Ski7 is in the P loop, where Thr276Ski7

is at the position of Val532eIF5B and engages the hydroxyl group

in an unusual interaction with the nucleotide g-phosphate (Fig-

ure 3A, left panel, and 3B). Such interactionmight help to stabilize

the GTP-bound state of Ski7. Analysis of Ski7C by high-perfor-

mance liquid chromatography indeed indicated that the protein

co-purified from Escherichia coli with bound GTP while purified
1340 Structure 23, 1336–1343, July 7, 2015 ª2015 The Authors
Hbs1 did not carry any nucleotide (Figure S3A). Addition of

non-cleavable nucleotide analogs during alkaline phosphatase

treatment and a subsequent thermostability assay (Thermofluor)

showed a decrease in the melting temperature (Tm) of GMPCP-

bound Ski7C (44.0�C) in comparison with GMPPNP-bound

protein (47.6�C), indicating a preference for the GTP-bound state

(Figure S3B). Nucleotide-free protein showed an even lower Tm
of 42.8�C and precipitated at higher concentrations.

Conclusions
trGTPases have characteristic features. At the biochemical level,

they have low hydrolysis activity in isolation and require the ribo-

some and a specific cofactor for robust activity. At the structural



Figure 4. Structure-Based Sequence Alignment of the G Domain of Ski7C and trGTPases

The alignment includes S. cerevisiae (Sc) Ski7C G domain (residues 254–518) and the corresponding regions of Sc Hbs1, Sc eRF3, T. aquaticus (Ta) EFTu, and

Chaetomium thermophilum (Ct) eIF5B. The secondary structure elements of Ski7C are shown above the sequence, colored and labeled per domain. White letters

on red background share 100%of identity within the shown sequences and red letters share 80% identity. The five conserved sequencemotifs of G domains (G1–

G5) are highlighted in black boxes. The star indicates the position of the catalytical histidine in the trGTPases; triangles indicate the position of the monovalent

metal coordinating residues.
level, they have a characteristic domain composition, a charac-

teristic conformation in the active GTP-bound state, and a char-

acteristic active site with a monovalent cation in addition to the

universal divalent cation present in other GTPases. The work

we report here indicates that the C-terminal G domain of

S. cerevisiae Ski7 possesses the structural features of a canon-

ical trGTPase not only in terms of domain structure, as expected

from sequence analysis, but also in terms of conformation. Both

the GTP-bound and the GDP-Pi-bound complexes of Ski7C
adopt the conformation typical of trGTPases in the active GTP-

bound state and show an overall similar nucleotide-binding

pocket. The major differences are the presence of a different po-

lar residue at the putative catalytic center (a serine instead of a

histidine) and an additional polar residue near the g-phosphate
of GTP (a threonine instead of a valine). We envision two possible

scenarios of how Ski7C might function. In one scenario, Ski7

could be a trGTPase-like protein in the full sense despite the

possession of non-canonical active site residues. In this case,

it would be capable of GTP hydrolysis and of switching between

active and inactive conformations in the context of the ribosome

and of an appropriate cofactor. Such a cofactor would be ex-

pected to function analogously to Dom34 and eRF1 but in addi-

tionwould likely have to stabilize theGDP-bound form of the pro-

tein. Alternatively, in a second scenario, Ski7 could have evolved

as a GTP-binding protein, i.e. as a pseudo-trGTPase. Here, a

Ski7 cofactor would be expected to regulate the interaction

with the ribosome with an altogether different mechanism, which

does not rely on a conformational switch of the Ski7C domains.
Structure 23, 1336–1343, July 7, 2015 ª2015 The Authors 1341



Finally, Ski7 might even function without any cofactor. Although

the biochemical data available so far would favor the concept of

Ski7 as a stable GTP binder, only the identification of the cofac-

tors that might regulate the function of the Ski7C in NSDwill allow

for clarification of the mechanisms.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

Ski7C (254–747) was expressed as a fusion protein with an N-terminal thiore-

doxin polypeptide cleavable with Prescission Protease. The expression was

carried out in E. coli BL21 Gold pLyS cells (Stratagene) using Terrific Broth

and inducing with 0.1 mM isopropyl b-D-1-thiogalactopyranoside at 18�C
for 16 hr. Expression of selenomethionine-derivatized protein was carried

out in minimal medium upon addition of amino acids and 50 mg/l selenome-

thionine prior to induction. Ski7C was purified using a Nickel affinity step (His

FF, GE Healthcare) followed by cleavage of the tag with Prescission Protease,

purification on heparin resin (Heparin HP, GEHealthcare) and a final size exclu-

sion chromatography step (Superdex S200, GE Healthcare) using 20 mM

HEPES (pH 7.5), 100 mM NaCl.

Crystallization and Structure Determination

Ski7C was crystallized at a concentration of 7 mg/ml with 5 mM nucleotide

(GDP or GTP), 1 mM MgCl2, and 5 mM Tris(2-carboxyethyl)phosphine. Crys-

tals grew in 100 mM HEPES (pH 7.0), 700 mM NaH2PO4/K2HPO4, and 3%

ethylene glycol. The crystals were cryo-protected in the presence of 25%

ethylene glycol and flash-cooled in liquid nitrogen. In the case of the manga-

nese-containing crystals, 10 mM MnCl2 was included in the cryo-protectant.

All X-ray diffraction data were collected at 100 K at the Swiss Light Source

(SLS) synchrotron in Villigen, Switzerland. The single anomalous diffraction

experiment was performed by collecting a dataset at the peak wavelength of

the selenium K edge and another dataset was collected from the same crystal

at the manganese K edge. The data were processed and scaled with XDS

(Kabsch, 2010). The crystals belong to the space group C2221 containing

one molecule in the asymmetric unit. The data processing statistics are sum-

marized in Table 1. The structure was determined and refined with standard

crystallographic packages (detailed in the Supplemental Methods).
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Åqvist, J., and Kamerlin, S.C.L. (2015). The conformation of a catalytic loop is

central to GTPase activity on the ribosome. Biochemistry 54, 546–556.

Araki, Y., Takahashi, S., Kobayashi, T., Kajiho, H., Hoshino, S., and Katada, T.

(2001). Ski7p G protein interacts with the exosome and the Ski complex for

30-to-50 mRNA decay in yeast. EMBO J. 20, 4684–4693.

Atkinson, G.C., Baldauf, S.L., and Hauryliuk, V. (2008). Evolution of nonstop,

no-go and nonsense-mediated mRNA decay and their termination factor-

derived components. BMC Evol. Biol. 8, 290.

Berchtold, H., Reshetnikova, L., Reiser, C.O., Schirmer, N.K., Sprinzl, M., and

Hilgenfeld, R. (1993). Crystal structure of active elongation factor Tu reveals

major domain rearrangements. Nature 365, 126–132.

Bourne, H.R., Sanders, D.A., and McCormick, F. (1991). The GTPase super-

family: conserved structure and molecular mechanism. Nature 349, 117–127.

Brown, J.T., Bai, X., and Johnson, A.W. (2000). The yeast antiviral proteins

Ski2p, Ski3p, and Ski8p exist as a complex in vivo. RNA 6, 449–457.

Chen, L., Muhlrad, D., Hauryliuk, V., Cheng, Z., Lim, M.K., Shyp, V., Parker, R.,

and Song, H. (2010). Structure of the Dom34-Hbs1 complex and implications

for no-go decay. Nat. Struct. Mol. Biol. 17, 1233–1240.

Daviter, T., Wieden, H.-J., and Rodnina, M.V. (2003). Essential role of histidine

84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribo-

some. J. Mol. Biol. 332, 689–699.

Doma, M.K., and Parker, R. (2006). Endonucleolytic cleavage of eukaryotic

mRNAs with stalls in translation elongation. Nature 440, 561–564.

Frischmeyer, P.A., van Hoof, A., O’Donnell, K., Guerrerio, A.L., Parker, R., and

Dietz, H.C. (2002). An mRNA surveillance mechanism that eliminates tran-

scripts lacking termination codons. Science 295, 2258–2261.

Garneau, N.L.,Wilusz, J., andWilusz, C.J. (2007). The highways and byways of

mRNA decay. Nat. Rev. Mol. Cell Biol. 8, 113–126.

Guydosh, N.R., and Green, R. (2014). Dom34 rescues ribosomes in 30 untrans-
lated regions. Cell 156, 950–962.

Halbach, F., Reichelt, P., Rode, M., and Conti, E. (2013). The yeast ski com-

plex: crystal structure and RNA channeling to the exosome complex. Cell

154, 814–826.

Holliday, G.L., Mitchell, J.B.O., and Thornton, J.M. (2009). Understanding the

functional roles of amino acid residues in enzyme catalysis. J. Mol. Biol. 390,

560–577.

Hoshino, S.-I. (2012). Mechanism of the initiation of mRNA decay: role of eRF3

family G proteins. Wiley Interdiscip. Rev. RNA 3, 743–757.

Houseley, J., and Tollervey, D. (2009). The many pathways of RNA degrada-

tion. Cell 136, 763–776.

Inada, T. (2013). Quality control systems for aberrant mRNAs induced by aber-

rant translation elongation and termination. Biochim. Biophys. Acta 1829,

634–642.

Januszyk, K., and Lima, C.D. (2014). The eukaryotic RNA exosome. Curr. Opin.

Struct. Biol. 24, 132–140.

Kabsch, W. (2010). XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132.

Kervestin, S., and Jacobson, A. (2012). NMD: a multifaceted response to pre-

mature translational termination. Nat. Rev. Mol. Cell Biol. 13, 700–712.

Kjeldgaard, M., Nissen, P., Thirup, S., and Nyborg, J. (1993). The crystal struc-

ture of elongation factor EF-Tu from Thermus aquaticus in the GTP conforma-

tion. Structure 1, 35–50.

Klauer, A.A., and van Hoof, A. (2012). Degradation of mRNAs that lack a stop

codon: a decade of nonstop progress. Wiley Interdiscip. Rev. RNA 3, 649–660.

http://dx.doi.org/10.1016/j.str.2015.04.018
http://dx.doi.org/10.1016/j.str.2015.04.018
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref1
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref1
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref2
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref2
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref2
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref2
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref2
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref3
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref3
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref3
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref4
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref4
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref4
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref5
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref5
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref6
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref6
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref7
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref7
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref7
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref8
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref8
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref8
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref9
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref9
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref10
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref10
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref10
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref11
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref11
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref12
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref12
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref12
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref13
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref13
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref13
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref14
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref14
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref14
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref15
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref15
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref16
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref16
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref17
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref17
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref17
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref18
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref18
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref19
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref20
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref20
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref21
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref21
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref21
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref22
http://refhub.elsevier.com/S0969-2126(15)00177-X/sref22


Kobayashi, K., Kikuno, I., Kuroha, K., Saito, K., Ito, K., Ishitani, R., Inada, T.,

and Nureki, O. (2010). Structural basis for mRNA surveillance by archaeal

Pelota and GTP-bound EF1a complex. Proc. Natl. Acad. Sci. USA 107,

17575–17579.

Kuhle, B., and Ficner, R. (2014a). eIF5B employs a novel domain releasemech-

anism to catalyze ribosomal subunit joining. EMBO J. 33, 1177–1191.

Kuhle, B., and Ficner, R. (2014b). A monovalent cation acts as structural and

catalytic cofactor in translational GTPases. EMBO J. 33, 2547–2563.

Lykke-Andersen, J., and Bennett, E.J. (2014). Protecting the proteome: eu-

karyotic cotranslational quality control pathways. J. Cell Biol. 204, 467–476.

Makino, D.L., Halbach, F., and Conti, E. (2013). The RNA exosome and protea-

some: common principles of degradation control. Nat. Rev. Mol. Cell Biol. 14,

654–660.

Maracci, C., Peske, F., Dannies, E., Pohl, C., and Rodnina, M.V. (2014).

Ribosome-induced tuning of GTP hydrolysis by a translational GTPase.

Proc. Natl. Acad. Sci. USA 111, 14418–14423.

Marshall, A.N., Montealegre, M.C., Jiménez-López, C., Lorenz, M.C., and van
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