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We present an efficient method for the direct solution in the time domain of the equations of a novel
recently proposed non-Markovian quantum-classical approximation, valid well beyond the
applicability limits of both Redfield theory and Fermi’s Golden Rule formula. The method is based
on anab initio molecular dynamics description of the classical bath and is suitable for applications

to systems with a fairly large number of quantum levels. A simple model of the breathing sphere in

a Lennard-Jones fluid was used to compare the results of the quantum-classical and purely classical
treatments of vibrational energy relaxation. Z)03 American Institute of Physics.
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I. INTRODUCTION function representations to modeling VER processes of sol-
ute molecules in liquids or dense gases seems to be doubtful,

Nonequilibrium molecular dynamic®NEMD) methods : .
are widely used to simulate various phenomena in the con> the relaxed state of the molecfanonical equilibriun

densed state, ranging from macroscbpictransport phe- cannot be described by a wave function. On the other hand,

nomenato microscopic process&e (energy transfer, relax- to what extent an open quantum system interacting with ther-
ation processes, chemical reactipiéEMD techniques to a mal bath can be represented by an ensemble of pure states,

large extent rely on the validity of a classical description ofStill IS an entirely open question, especially at finite tempera-
the system under consideration. There are many situation&!'® Of the heat reservoir. o .
however, when quantum mechanical effects play an impor- N contrast, approaches resulting in master equations for
tant role and a classical description is not justified. Example&e reduced density matriRDM) of the quantum part of the
are electron/nuclear transfer reactiofisinneling and/or ~System allow to incorporate canonical equilibrium and prop-
highly nonadiabatic processesdissociation of molecules erly describe relaxation kinetics within certain applicability
(zero-point energy effectsor vibrational energy relaxation limits. A simple and widely used approach is the so-called
(VER). In the latter the spliting between energy levels oftenRedfield theory?~**which yields Markovian master equa-
is comparable to the mean energy of the heat reservoir sudiPn, i.e., it completely neglects memory effects. However, it
that the discreteness of the energy spectrum comes into pla, valid at sufficiently long timeg¢> 7., where 7. is the
challenging the validity of a classical description, especiallycharacteristic correlation time of the classical bath on the
in highly anharmonic systems. order of about 10 ps. Several non-Markovian thedfie$

A guantum-classical approximation, where a small subwere suggested to overcome the restrictions of Redfield
set of stateginternal states of reactants, reaction coordinatestheory. These, however, require the solution of integrodiffer-
etc) is treated quantum-mechanically, while the other de-ential equations, which presents considerable numerical
grees of freedom are modeled by classical mechanics, seerpeoblems, such that up to now these approaches were not
to be a reasonable alternative both to a fully classical deapplied to the realistic multilevel systems.
scription and to a quantum-mechanical or semiclassical treat- Up to now the time-dependent perturbation theory in
ment of the entire system, which scale unfavorably with in-form of Fermi’s Golden Rule is the most used appréacit
creasing number of degrees of freedom. to calculate the rate of VER in liquids/supercritical fluids.

There exist a variety of quantum-classical Despite its simplicity(the VER rate appears to be propor-
approaches* suitable for describing a reacting systems in-tional to the Fourier transform of the force—force correlation
teracting with a dissipative environment. They are, howeverfynction at the given transition frequengcyhis approach as-
not equivalent to each other since any quantum-classical agumes weak coupling and Markovian limits. Both conditions
proximation introduces its own more or less uncontrolledare quite restrictive, while the latter assumption proves to be

approximation, and hence should be applied with care. Ijyyestionable even for a heat reservoirs with a short correla-
particular, the quantum-classical approaches based on waygy, time see Sec. VI.

Recently, we suggested a non-Markovian quantum-
dElectronic mail: aneufel@gwdg.de classical approximatid (NQCA) capable of describing the
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evolution of open quantum system well beyond the applicads(t) . _ .
bility limits of Redfield theory. The approach utilizes the fast —5;~ = —I[H,U(t)]—lf [W(a),n(q,t)]daq, (©)]
decay of cross-correlations between quantum subsystem and
heat reservoir due to the energy dispersion of the degrees éf(q,t) A - N
freedom of the canonical bath. Despite the fact that this ap- g~ L 7(A:D]=1[W(@), oD ]+[U(q),o(t)]+
proach accounts for the arbitrary long memory of the sur-
rounding medium, the resulting NQCA at timds 7,
=h/(wkgT) is of differential form, and allows direct propa-
gation of the quantum subsystem RDM in time without ex-
plicit construction or diagonalization of Liouvillesupejop-
erators. At room temperaturg =8 fs, which is considerably
shorter than the correlation timeg of the classical bath. This
also implies that a classical description of the bath degrees &1ase space. Here,
freedom at times=<7#/(kgT) is not justified. . o .

In the present article we develop an efficient MD-based U(Q):ilz amP'W(q)P™,
method to solve the equations of our quantum-classical ap- "
proximation directly in the time domain. The resulting N ol -
NQCA-MD approach may be applied to fairly large quantum ~ Y(Q)= % bimP"W(q) P,
dynamical subsystem&DS) consisting of up to several ’
hundreds levels, using amb initio description of the bath Where
dynamics. The method is applied to VER of a one-

a|m:tan>'(

- A do(t)
Y(a),i[H,o(t) ]+ ——

* at

+Lgn(a,t),  (4)
.

where o(t) and »(q,t) are the reduced density matrix of
QDS and the auxiliary matrix, respectively, whifg, is lin-
ear functional operator defining motion of the system in

©)

dimensional harmonic oscillator (“breathing sphere”
modef?) in a Lennard-Jones fluid. Although the “breathing
sphere” model is somewhat oversimplified, it allows for a
detailed comparison between classic?NEMD) and  anqpn are the projector operators on the eigenstates of the
guantum-classicdNQCA-MD) treatments within the frame- QDS Hamiltonian,

work of the MD method. Note, that the method is not limited

to the calculation of rates, it directly calculates the kinetics of ~ P"=|n)(n|, H[n)=E,n), om=E,—En. (7)
VER, and is valid well beyond applicability limits of both
Redfield theory and Fermi's Golden Rule formula. More re-
alistic cases involving VER of diatomiémodeled by a
Morse potential to include anharmonicity effecend tri- o(t=0)=0y, 7(q,t=0)=[Y(q),00]+ , (8)

atomic (energy redistribution between normal modesol-

ecules in a Lennard-Jones fluid, will be considered in subsé’-"here nonzero |n_|t|al conditions fqr the auxmary_matrlx ac-
quent articles. count for correlations created during the short-tinhe ¢,)

evolution of the QDS, see Ref. 27 for more details.
The practical application of the quantum-classical ap-

proximation in form of Eqs{(3)—(7) to realistic multilevel
Il. QUANTUM-CLASSICAL APPROXIMATION QDSs is rather complicated. First, information about the lin-
ear functional operatof, defining the motion in phase space
is hardly available for nonmodel systems. Second, the solu-
tion of the partial differential equatiof¥) for the auxiliary
matrix requires additional grids over phase space coordi-
pates, which is prohibitively expensive for multilevel QDSs.
However, the use of MD methods to simulate bath dynamics
dilows to overcome these difficulties. In this case integration
over phase space coordinates is replaced by the MD average

®|m b . 1 1 6
or) PTE o) ©
Ccos E

The initial conditions for Eqs(3) and (4) are of the
form,

To write equations in a more compact form we et
=kg=1, that is both interaction matrix elements and tem-
perature are measured in rad/s. In these units=kK/#
=1.31x 10" rad/s, and 1 cm'=1.88x 10 rad/s.

A quantum-classical approximation, as suggested in Re
27, requires the matrix elements of the system—bath couplin

W(q) to satisfy the condition,

W, of the form,
| |k(q)| <1, (1) N
7T do(t) A 1 N
| g~ A= lim G X W), md )],
where q denotes a generalized set of phase space coordi- N—oo N k=1
nates. At timeg> 7, where 9
1 dp(t) . .

o @ —ar = IR 7O]=iW(a ), o(t)]
is a characteristic lifetime of the system—bath cross- +[U(au(t)),o(t)]4
correlations caused by the energy dispersion of the bath de- do(t)
grees of freedom, the QCA is reduced to the following set of +| Y(ae(),i[H,o(t) ]+ (10

differential equation$’ dt |,
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where N in practice is a large number of MD trajectories Thus, Egs.(3), (4) and(9), (10) differ only with respect to
sufficient to explore the phase space, while the system—bathe recipe used to determine the classical correlation func-
interaction parametrically depends on time along a givertion.

MD trajectory. The proof of this statement is given below for The total number of MD trajectories needed to get accu-
the high temperature limitT{—o), which is chosen as for- rate results depends on the specific system, but normally var-
mulas appear in a more compact form. Its generalization tées from several hundreds to thousands. The simultaneous

finite temperatures presents no difficulties. solution of the large number of differential equations is very
The formal solution of Eq(10) takes the fornf T— oo, demanding with respect to the capacity of computer memory
0(q)—>0, \?(q)—>0] and inconvenient from a practical point of view. In addition,
o A increasing the number of MD trajectories to improve the so-
ﬂk(t):_if e MW7), o (1) ]eHEdr, lution would require a complete recalculation of the time
0 evolution.
(11 In the classical nonequilibrium MD approach the solu-
which, upon substitution into the right-hand side of g,  tions are found along single MD trajectories with subsequent
yields averaging of the results. In other words, in NEMD averaging
do(t) L over an ensemble of MD trajectories is performed after
o . . t o —ifi(t—» propagation in time. However, the NQCA-MD approach,
dt :_'[H’U(t)]_,\l,"j]mﬁgl fO[W(qk(t)),e e given by Eqgs.(9) and (10), requires simultaneous solution
R along all MD trajectories involved in the calculation. Never-

X[W(a(7)),a(r) 1€t ]dr. (12)  theless, in practice, the number of simultaneously used MD

) S trajectories can be reduced as follows. First, we introduce the
Then, assuming for the sake of simplicity bilinear QDS—bathy|tion of Eqs(9) and(10) for a finite number 1) of MD

coupling, trajectories. For simplicity we restrict ourselves again to the
\7V(q)=\78(q), (13) hlgh temperature limit gnd transform the resulting .equatlons
into equivalent integrodifferential form. The result is almost
we get identical to Eq.(12), but contains partially averagddver
X given subset of MD trajectorig/RDMs on both sides, i.e.,
do(t) A t.
LUl 2RO .
dt 0 daw(t) o 1 LA —if(t-7)
) . g~ iHowm®]- 5 2 | [Wak(t).e
X[V,o(7)]e" M At—7)dr, (14 k=1Jo
where J(t— 7) is determined via the MD recipe to calculate X [W(a(7),om(7)]e" D ]dr. (19

the classical correlation function, ) . )
One may add more trajectories to the average employing the

N
1 formula,
Jt=m)=lim T >, B(ai(t)B(aK(7)). (15
N—o N _ MO'M(t)+L(TL(t) 20
Here the translational invariance of the correlation function om+L(D)= M+L ’ (20

is provided by the equilibrium state of the bath. . )
On the other hand, the formal solution of E@) is where the solutions are properly weighted. The average of
readily found using the two-dimensional probability density Ed- (19) over all MD trajectoriesby adding more partial

#(9,9’:t) of the generalized set of coordinatesat timet averages using E@20)] gives proper results only, if one can
givenq’ at timet=0, which satisfy neglect the correlation between, and the subset of MD

trajectories in the integrand on the right-hand side of Eq.
(19). Although it is clear, that increasing the number of MD
trajectories in the partial average reduces undesirable corre-
(16)  lations (making them negligibly small wheM —x), it is
Then the solution of Eq(4) in the high temperature limit difficult to saya priori how many trajectoriessay N=10,
takes the form, 50, or 100 will sufficiently reduce correlations between par-
tially averaged RDMs and the subset of MD trajectories to
ﬂ(q,t):_iftf gp(q,q’;t—r)e’”;(rr) treat the remai_nir_19 correlation_s perturbativ_e(lyhich are
0 subsequently eliminated by adding more partial averages into
R . the result. This number depends on the specific system in-
X[W(q'),a(7)]e" " drdq'. (17)  vestigated and can be estimated by comparing calculations
Substituting Eq(17) into the right-hand side of Eq3), and with different numbers of MD trajectories going into partial
using bilinear QDS—bath couplingl3), we get Eq.(14)  2Verages. . 333 .
where the classical correlation function is defined as It |s.known that quantum correctllo?w? (o the clasglcal .
correlation functions may be very important, especially in
. , , the high frequency region. In principle, our NQCA-MD ap-
Jt= T):f f B(Q)e(q.a";t=7)B(q")dadq’. (18 proach allows to incorporate this effect. In that case the true

d
(E—aq) ¢(9.9:)=0, ¢(q,9";0)=45(q—q").
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MD trajectories should be replaced by the generic ones to
reproduce the desiredcorrected correlation function by

recipe(15), see Ref. 35 for details. ©2) | 1/)2>4
1
O
11l. BREAKDOWN OF THE EXTERNAL g
FIELD APPROACH b
A widely used approach to describe the dynamics of g
open quantum systems is based upon modeling the system— f 3
bath coupling in terms of a stochastically fluctuating external | 1) | ¥q)

field that induces transitions within the QDS. However, as evels of a four-level . < of
we show below, this method gives rise to relaxation pro_FIG. 1. Energy levels of a four-level system in the basis of direct proQuct

. . E{)ates of QDS |1 ) and bath states ¢, ,)). Dotted arrows show transi-
cesses t_hat are fundamentaHY_ d|ﬁerent_ f_rom those obtaineghns petween states of the QDS, dashed arrows, between bath states, while
by invoking QDS—bath interactions explicitly on a molecular solid arrows show cross transitions between QDS and bath states.

basis.
To demonstrate this qualitative difference, first we con-NTC andts . . In that case one may replanét — 7) by n(t)

sider- a §impJe two-level sy.stem, characteri;eAd t?y a QD‘?’n Eq. (27), and replace the upper limit of integral by infinity
HamiltonianH and an off-diagonal perturbatiod, in the {5 get

presence of a phase relaxation process with a characteristic

. . . . V2r
time 7, due to interaction with the external subsystem, h(t)=—Kn(t), K= 1+:)—2:-2’ Kre<1, (28)
. 1[—wy O} . 1[0 Vg oo .
H= 5 o , V= slv. o/ (21 where the last condition is introduced for self-consistency to
(&) 0

ensure a small change of the population difference on the
The corresponding equations of motion for the elements ofime scale ofr.. Thus, a rate description does not imply the

the density matrix are absence of corresponding off-diagonal density matrix ele-
ments, they are inavoidably created during transitions be-

N(t)=iVo(ot) = o2(t)), 22 veen energy levels.
o1t) =lwoo(t) +i1Von(t) /12— o y(t)/ 7, (23) We now turn to a four-level system as shown in Fig. 1,
] ) ) where both QDS and bath have only 2 levels. As a basis we
021(t) = —iweo21(t) —iIVon(t)/2— opy(t)/ 7, (24 use the direct product of states of the QD&,(»)) and of the
where bath (¢ 5)) and indicate different types of transitions. Dot-
_ ted arrows show transitions inside the QiBe state of the
n(t)=0o1(t) —ozo1) 25 pathis not changéddashed ones show transitions inside the

is the population difference. It is readily seen from EQR2)  bath(no changes in QDS statevhile solid arrows indicate

to (24) that transitions between the states of the system artsansitions at the expense of QDS—bath interactiovisen

caused by the corresponding off-diagonal elements whiclboth the states of the QDS and the bath are changed the

coherently couple the two states. Indeed, whep(t) latter process that is responsible for the relaxation of energy

— 051(t) =0, the time derivative of the population difference levels in the quantum-classical approximation developed

is zero. Similarly, increasing the relaxation rate of the off-here.

diagonal elements decreases rate of transitions and vice As we demonstrated above, the corresponding off-

versa. diagonal elements are always created during transitions, and
The situation looks different in a phenomenological rateare shown below in the total density matgxusing the same

description, which results in a closed set of equations fotine types as in Fig. 1,

energy levels populations. Although the off-diagonal ele-

ments of the density matrix do not appear in this approach, it o 01k 01

is implicitly assumed that they are negligibly small. To illus- ... .

trate this we write the solution of E¢23) as _ 9_21 29
iVg [t 1031 Q33 034
o(t)= 70 Oe(iwo—llrc)Tn(t—T)dT, (26) [QEZ] 00 O

which, upon substitution into Eq22), yields a closed non- ) _ )
Markovian equation for the population difference,,(t) is ~ On the other hand, the corresponding reduced density matrix
given by complex conjugate of E¢6)], of the QDS, obtained by taking partial trace over bath states

. is of the form,
h(t)=—VSJ e ""ccoq wyr)n(t— 7)dr. (27)
0 T T T e s

A rate description is only valid in the Markovian limit, which O= poeet g v (30
is attained if one assumes small changesn@f-7) at-  inA il
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This means, that off-diagonal elements involving transitions 1 1 1 1 N
due to QDS—bath and bath—bath interactions do not appear H= Eﬂx2+ E,unger Emu'r'er Emvz P?
in the reduced density matrix of the QDS. I=2

Our quantum-classical approximation is in agreement N N-1 N
with these results. Indeed, the QDS—bath interaction Hamil- +2 dulry )+ 2 by(ry). (33)

LA . : . =2 i=2 j=i+1
tonian W(q) creates off-diagonal elements in the auxiliary
matrix #, but not in the QDS density matrix, see Eqs(3), Here the first line represents the Hamiltonian for the vibra-
(4) or Egs.(9), (10). There is no coherently driven bath in- tional coordinate of the breathing sphere, wharend w,
duced transition between QDS states. The situation is qualare the reduced mass and the angular frequency, correspond-
tatively different if QDS—bath interactions are modeled by aingly. The second line contains the total kinetic energy of
time-dependent QDS Hamiltonian in the framework of asolute and solvent particles, with massesmf (solute and
Liouville or Schralinger equation. In that case the transitionsm, . The solute—solvent interactions are collected in the last
are induced directly by the fluctuating field between theline of Eq. (33).
states of the QDS, and, therefore, off-diagonal eleme@uts Coupling between the solute vibrational mode and the
herencg between the states of the QDS appear, which iexternal degrees of freedom is provided by the force,
unphysical for the relaxation process under consideration. N

The e>§te.rnal field approach can, howe\_/er, provide a cor- F(q)= E f(ry ), (34)
rect description of the populations dynamics due to QDS- j=2
bath interactions in cases where off-diagonal elements in th
reduced density matrix are initially small and not efficiently
created during relaxation. If this is not the cdgstial co-

\?/hereq denotes the generalized set of coordinates of bath
particles, and

herent state and/or non-Markovian relaxation, for instance Apy(r4j,X)

the external field approach fails to describe relaxation kinet- f(ryy,x)=- T ax

ics properly. For example, an initially coherent state of the

QDS, in reality, does not directly affect the rate of cross _ 12 2( o )12_( o ﬂ
transitions between QDS and bath, but strongly accelerates rj—XI2| "\ rq;—x/2 ry—x2) |
them within the external field approach. (35)

The MD calculations were carried out using 500 particles
IV. MOLECULAR DYNAMICS SIMULATIONS (including one representing the breathing sphateconstant

We now consider the VER of a breathing Sphere in avolume and energy in a cubic simulation box with periodic
Lennard-JonesLJ) fluid, i.e., our model involves a single boundary conditions. Potentials were truncated at half the
vibrating solute particle which interacts with the solvent par-box length and replaced by “shifted-force-potentialé®® of
ticles through a spherically symmetric pair potential the form,

tial,

¢U(rij):4gv

¢u(r,q), wherex is vibrational coordinate, while is the dv(r)
solute—solvent distancé° (Some notations used in this VSF(r)=|V(r)—V(R,)— 5 (r—Ry) [6(R,—T),
section interfere with those used in the formulation of r r=R;
NQCA. However, the use of to denote particle diameter (36)
has a long tradition in the field of MD simulations of LJ {4 keep forces continuous at the cutoff distafce
fluids) . ] - The parameters chosen are chosen to mimick the vibra-
The solvent molecules interact via the familiar LJ poten-tiona| relaxation of iodine in argon at liquidlike density and
room temperature. The LJ-parameters of argon &rék
o \? [o,\® =1199 K and 0,=0.3405 nm, the argon massn,
(r_) - r_) : (3)  =39.95 g/mol. For the solute we takdk=187.5K, o
. ! =0.3617 nm,m,=253.8 g/mol, andu=m,/4. The vibra-
wheree, is the well depthg, is the effective diameter of the tional frequency of the solute moleculevg/(27c)
solvent particle, whiler;; is the distance between solvent =220 cmi! corresponds to the gas phase vibrational fre-
molecules. In turn, the solute—solvent interaction is definedquency of iodine. Temperature and density were adjusted to
as T=300 K and p=19.0 nm 3, which correspond toT*
o |12 o |6 =kT/e,=2.5 andp* =po>=0.75 in reduced LJ units.
du(x,rqj)=4e (r -—x/2) _(r -—xlz) , (32 Classical simulations of the VER of the breathing sphere
g 1 were performed on the basis of the nonequilibrium molecular
where e=\e,e,, o=(o,+0,)/2, and ¢, and o, are dynamics approach. For integration the leapfrog Verlet algo-
solute—solute well depth and diameter, respectively. rithm with a time step ofAt=2 fs was used. Initially, the
The amplitude of the breathing sphere oscillations is assystem was equilibrated as follows. Starting from a face cen-
sumed to be small compared with its equilibrium radiys tered cubic structure with initial velocities corresponding to
which allows to approximate describe the breathing spherd00 K, we rescaled the velocities after*1ime steps to
motion using a harmonic potential. Finally, the total Hamil- reach the desired temperature of 300 K. Subsequently, the
tonian of theN particle system is system was further equilibrated for 100 ps. Then, from the



J. Chem. Phys., Vol. 119, No. 5, 1 August 2003 Vibrational energy relaxation 2507

running equilibrium simulation a pool of 300 starting con- between the QDS and the bath is neglected, the time series of
figurations was generated by repeatedly storing configurahe force was generated by equilibrium MD simulations with
tions every 10 ps. For each starting configuration excitatiorthe oscillator coordinate held fixed at its equilibrium radius,
of the breathing sphere was achieved by increasing its kinetice., with x=0 in Eqg. (35. Note, however, that both
vibrational energy by 1100 cit (corresponding to 5 vibra- NQCA-MD and NEMD are non-Markovian approaches and
tional quanta The subsequent relaxation of the vibrational hence not equivalent to a rate description where relaxation
energy was monitored for 70 ps and averaged. rates are determined by the Fourier transforms of the equi-
librium correlation function at the transition frequencies. All
other simulation parameters were the same as for NEMD

V. QUANTUM-CLASSICAL SIMULATIONS simulations. see Sec. V.

The Hamiltonian of the QDS is given byi & 1)

1 d2 ,ua)oXZ
ﬂﬁ — (37) VI. RESULTS AND DISCUSSION

where w, and . are oscillator frequency and mass, respec- [N this section we compare the results of NQCA-MD

tively. It is a quantum mechanical analog of the first line of Simulations of the VER kinetics of a breathing sphere with
Eq. (33). The energy level&, (eigenvaluesand the corre- those from the pure'ly'classwal NEMD .S|mulat|on. Thg en-
sponding eigenfunctionsy),, are readily determined by €rgy of the solute within quantum-classical treatments is not

F=—

solving the stationary Schdinger equation, well defined, as an arbitrary constant multiplied by the unit
R operator may be added to the quantum Hamiltonian. It is
H| ) n=Eqnl ). (39 convenient to define the energy in such a way as to have the

equilibrium (relaxed energy of the QDS equal td (we

By introducing creation and annihilation &_) opera-
y d ) &) op continue withf=kg=1),

tors, defined by the standard relations,

_ QDS _ pQDS
) ol ip E(t)=E®Yt)—Eg>+T,
a.=\/—/| xF—|, (39 N N (45)
2 #®o QDS \ Ei /T \ E /T
the QDS Hamiltoniar(37) is rewritten as Eeq :Jz::l Eje ™ / ]2‘1 e
H=w(a,a_+1). (400  This definition is independent of a common shift of energy

. : levels. HereN, is the number of quantum states included.
q
The coupling between QDS and bath is effected by the Two types of initial conditions will be used for the

interaction potential, quantum-dynamical subsystefi; an eigenstatédelocalized

N statg and(ii) a coherent staténinimum uncertainty stajeof
q)(X):JZZ du(rj,X), (41)  the harmonic oscillator,
which can be expanded in the vicinity &0 to give 1al? —
P / J ly=el /ano \/ﬁm)- (46)

P (x,q)
‘D(XaQ):‘I’(O:Q)+ T

Here « is some complex parameter determining energy and
other characteristid@verage position and momentuof the
=®(q)+Folq)x+---. (420 coherent state, whilén) is the corresponding normalized

Thus, the QDS—bath coupling Hamiltonian takes the form, €igenstate of Hamiltonia40). The RDM of the coherent

. state is of the form,
W(q(t))=(a,+a-)B(q(t)),
_e‘\a\zan(a*)m

(43 _
[ 1 am - (47)
B(a(1) = /5, - Fola(t), ’ Jnimt

where the internal vibrational coordinate is treated quantumyve used, however, a slightly renormalized definition yield-

. . . o ing unit trace of the density matrix for the finite number of
mechanically, and expressed via creation/annihilation Operg: . ic functions considered here. i.e.. in our case we take
tors (40). Finally, the matrix elements of the QDS Hamil- T

x=0

tonian and of the QDS-bath coupling in the basis of a"(a*)™ Ng |a|?
eigenstates ofl are k,n=0,1,2,..), Tnm= o/ & (48

Hin=@o(N+ 3) k. A preliminary analysis of the bath dynamics shows, that
- — — (44 a LJ fluid has both high and slow frequency modes. The
Wien(4(1) = (Vn+ 18 n 1+ K+ 181 10)B(A(L)).- former are readily demonstrated by calculating the force cor-
Thus, for quantum-classical simulatio®QCA-MD) of  relation function at short times, shown in Fig.[%ia MD

the VER one needs the perturbing fofég(q(t)), see Egs. recipe (15), see also Eq.43)]. The existence of low-

(34), (35, and (43), as a function of time. Since feedback frequency modes is more easily shown by plotting the value
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FIG. 2. Force correlation function(t) as the function of time, see E(.5),

obtained after averaging over 1600 MD trajectories. FIG. 4. Comparison between pure classical NEMD simulations of vibra-

tional energy relaxation of breathing sphere in LJ fluid with the NQCA-MD
(500 trajectoriesresults.

t _ _ 1 (T
p0= [ ®(a(n)-Bids, B=1m 7 [ ‘B(atmar

T—w

We now compare results of purely classical NEMD
(49 simulations of vibrational energy relaxation with correspond-

_ ) — ing results from the NQCA-MD approach. We start from a
along several MD trajectories. Het® is an average force oherent state witla=5.5 to adjust the initial energy of the
acting on the breathing sphere, which in the limit of IargeQDS (0o(1/2+ a)) to the initial energy used in the NEMD
times does not depend on MD trajectory. If low-frequencygjy, jations. We used sets of 50 trajectories in NQCA-MD
modes are absent, the paramefe(t) should fluctuate ¢, hatial averages. Figure 4 illustrates the good agreement

around zero with an average period of about 1 ps. This IS etween the purely classical NEMD and the NQCA-MD
obviously not the case, see Fig. 3. treatments of the VER.

The high frequency modes of LJ solvept for the given For the breathing sphere in a LJ fluid there exists a non-
parameter values have rather short correlation time of abo%ro time averaged force. Usually it is eliminated by the

0.2 ps. Also the transition frequencies are equal to each othef, . oqhonding renormalization of the QDS Hamiltonian and
(equidistant energy spectrum of harmonic oscillator, whilej,e ops_path interaction in such a way that the latter has
the transitions are induced only between neighboring IezvelsZero time averaged value and is called “fluctuating force.”

andOlghave relatively high values: (220 ch-=4.136 Although the above procedure looks reasonable, it cannot be
X 10™ rad/s). This means that only the short-time dynamic§gsified within the frameworks of quantum-classical treat-

of the LJ fluid contributes to the relaxation process. HOW-pent indeed, our approach requires a potential renormaliza-
ever, for quantum subsystems involving small energy Spl't‘[ion of the form

tings, low-frequency solvent modes may play a decisive role A o A
and even lead to non-Markovian relaxation, as the correla- H—H+Try,(Wpy,), W—W-Tr,(Wpy,), (50)

tion times for low-frequency modes usually are longer. wherepy, is the density matrix of the canonical bath and the

trace is taken only over bath variables, see Ref. 27 for more
details. Otherwise the generalized non-Markovian master
equation would contain a long lasting source term due to the
initial correlations, which compensates the improper choice
of the memory kernel and causes subsequent approximations

20

10 A to be hardly possible.
§ However, the renormalizatiofb0) was introduced using
M a quantum-mechanical description of the bath degrees of
S 04 freedom. In that case one hé@s the basis diagonalizing the
< bath Hamiltonian¢£, its eigenvalues
70 Trb(pr)=Zib§ WeeeEalT, zb=§ e %/T (51)

— T 7T where Greek letters designate matrix elements between bath
0 0 20 30 40 50 60 states. Within the quantum-classical treatments one deals
t[ps] with some HamiltoniarW(q) with matrix elements in the

FIG. 3. Demonstration of low-frequency modes in the dynamics of LJ fluid. QDS subspace depending paramgtrically on the generalized
The parametep(t), see Eq(49), is plotted along several MD trajectories. Set of phase space coordinatgslt is frequently assumed,
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6
6 QDS-bath interaction: 5 initial quantum state:
— renormalized —— coherent state (@=5)
— full p — eigenstate (5-th level)
—~
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FIG. 5. Influence of the renormalization of the QDS—bath interaction on thq:lG 6. VER kinetics for the coherent initial state# 5, gray ling vs initial

relaxation kinetics produced by NQCA-MD. Gray line corresponds to theeigenstate(fifth eigenstate, black life NQCA-MD for both calculations
case when time average force is included into the QDS Hamiltoftien utilized the same set of 500 MD trajectories.

QDS—bath interaction contains only the fluctuating part, with zero time
average Black line shows the kinetics calculated with full QDS—bath in-
teraction.

(52). In the second cag®lack line the renormalization was
not used. The parametet defining the energy of the initial
oherent state was 5.5 in the latter case, but was reduced to
.2 in the former case to provide the same initial energy for
the QDSs(the renormalization of the QDS Hamiltonian
- - R AL slightly changes the initial energy There exists a pro-
Trb(W):f W(q)dg=lim— LW(Q(T))dT’ (52 nhounced difference between the results. In particular, fitting
o of the kinetics by a single exponential decay of the form,
where the last definition corresponds to the MD recipe, —t/r
where integration over phase space can be replaced by aver- E()/T=10+Ae™" (53
aging over a sufficiently long time to entirely explore the yieldsA=5.3 in both cases;=11.5 ps without renormaliza-
phase space. tion andr=13 ps otherwise, i.e., the renormalization for the

Although Eq.(52) looks reasonable, it is not equivalent considered model leads to the 12% longer relaxation time.
to the original definition of the trace, given by E(p1). The same procedure, applied to the NEMD kinetics after
Indeed, from Eq.(51) it follows, that the renormalization smoothing the curve, gives=11.7 ps.
concerns only the diagonal of the bath variables part of the The above analysis fundamentally questions the accu-
QDS—-bath Hamiltonian. In other words, only that part of theracy of the Markovian approximation, as it appears not to be
QDS—-bath Hamiltonian, whicldoes not inducdransitions  well defined if the force correlation function does not decay
between bath states is included into the renormalization. Th&® zero. In contrast, in view of their non-Markovian nature,
“classical” definitions(52), however, do not account for this neither our NQCA-MD nor NEMD approaches suffer from
fact. In our case the QDS—bath interaction Hamiltonian isthis problem.
given by Eq.(43) and has no diagonal part. But the transi- It has been showi? that the applicability of different
tions induced by such a Hamiltonian are necessarily accomapproaches used to theoretically describe VER dynamics
panied by transitions between bath stad®e QDS either may depend on the initial conditions. Although the fiGa-
receives energy from or gives it to the baffihus, as follows laxed state must be independent of the initial state of the
from the quantum-mechanical definitid®1), the Hamil-  system, the influence of the initial coherence on VER kinet-
tonian(43) does not lead to renormalization. The “classical” ics of a harmonic oscillator has to be analyzed. Figure 6
analog of the partial tracé2), however, leads to the oppo- shows the comparison between VER kinetics for a coherent
site conclusion. Besides, E@2) treats time averaged QDS— state(47) with |«|?=5, and the fifth eigenstate of the har-
bath interaction as an external field, which introduces im-monic oscillator as initial state. The difference between the
proper coherencies into the QDS, see Sec. lll. Thus, based dawo relaxation curves is hardly visible in Fig. 6. Thus the
the above analysis, we conclude, that for the QDS—batlmitial coherence has no noticeable effect on the energy re-
Hamiltonian in use, see E43), the renormalization should laxation of the harmonic oscillatofln both calculations we
not be done. utilized the same set of 500 MD trajectories.

The contribution of the time averaged force into relax- A NQCA-MD simulation of VER gives more detailed
ation kinetics for the system under consideration is shown innformation about the state of the QDS than purely classical
Fig. 5. In the first caségray line the average force is in- NEMD. Figures Ta) and 7b) show the dynamics of indi-
cluded into the QDS Hamiltonian, and the QDS—bath intervidual vibrational level populations for the two types of the
action contains only its fluctuating part, see EGZ)) and initial conditions considered above. Starting from the fifth

that in this case the integration W(q) over phase space
coordinates is the direct analog of taking the trace over baté
variables, i.e., that
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0.2 A n=2

/
0'0 1 ! 0 T T T T 1 T T T T 1 T 1
initial coherent state (a=5) (b) 0 10 20 ‘zo[ o 40 50 60
b
0.8 A
/n=0 FIG. 8. Evolution of the uncertainty for the initial coherent state with

2 =5.
8061
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Within the first ~15 ps the evolution of the uncertainty is
nonmonotonous, after that it increases rather smoothly to its
equilibrium value equal to 1.03%&.

. . ~_VII. CONCLUSION
FIG. 7. Evolution of the populations of energy levels. Two types of initial

conditions with the same initial energy are used, in das¢he eigenstate . -
number 5 was originally populated, while ca&g corresponds to the initial In the present article we deveIOped an efficient method

coherent state withv=5. to solve equations of our novel non-Markovian quantum-
classical approximatidn directly in the time domain by us-
ing the molecular dynamics method fab initio simulation
of the dynamics of the classical bath. This NQCA-MD ap-

v, while that of the fourth level first i dth r{3roach gives an accurate and physically sound description of
nously, while that of the fourth level first increases, and then ;s characteristics of an open quantum model system

decays to its equilibrium value. Similar behavior is observedcoupled to a dissipative environment. The close agreement
for the lower levels, only their increase appears at later imes,veen the VER kinetics obtained from nonequilibrium
This happens becaPSe the QDS~bath coupling, se@&)q. __classical MD simulations and from our NQCA-MD approach
has nonzero matrix elements only between nelgh'borm rovides evidence for the accuracy of the new method. On
3tates_. In this Way,_the_ground State has the longest incub e other hand, the close agreement between classical and
tion t|me,| afte_r Wh'cr:.b't.s popullat|og mgrea]:ses nearlry]/ rno'quantum-classical descriptions of VER could be the result of
notonogsy to its equrlibrium vajue. tarting rom a co er_entpeculiar features of the one-dimensional harmonic oscillator
stgte,_[F_lg. 7(b)], the dn‘fer_ences between the time evolution employed as a model. One might expect, therefore, that for
of individual level pop‘%'a“o"‘ become less pronoqn_cgd, as aI}nore realistic and complex open quantum systems there will
of them already contribute more or less to the initial statey,q gjgnificant deviations between results from purely classi-

For example, the incubation time of the ground state bebal and quantum-classical modeling of the VER.

comes s.hc_)rter since neighboring levels are slightly populated Several aspects of quantum-classical treatments were
aIreaQy initially. i discussed throughout the article. In particular, the widely

F'”‘?‘”_Vz we analyze the time dependent loss of COherenCEsed approach to model the system—bath interaction as a
of the |_n|t|al coherent state. For th_|s purpose we plot thefluctuating external force field and within the framework of
uncertainty product of the state, defined as Schralinger or Liouville equations does not correctly treat

= = the system—bath correlations and introduces improper coher-

AxAp=Nx*=X*\p?~p*. (54 enceybetween the states of the quantum subsygter%. As a re-
It is well known, that the coherent state is a minimum uncersult, the external field approach fails to describe non-
tainty state, i.e., that it obeyAxAp=*#/2. In contrast, if Markovian relaxation and/or the case of large initial
only some diagonal element of the RDM is nonzero, one coherence in the quantum subsystem, see also Sec. Ill. An-
has AxAp=7#(n+1/2). Thus, the uncertainty is a conve- other aspect is the absence of the well-defined Markovian
nient measure of the extent of coherence in a given statdéimit in the presence of a nonzero time averaged force, which
Figure 8 shows its time evolution starting from an initially appears to be properly handled only within non-Markovian
coherent state withe=>5. Initially, the uncertainty ish/2.  approaches.

eigenstate[see Fig. 7a)], its population relaxes monoto-
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APPENDIX: NUMERICAL IMPLEMENTATION 0

Our numerical approach employes the standard leapfrognd

algorithm. The time dependence of the QDS—bath coupling JM dé(7)

W(q(t)) is represented as a series of switching Hamilto- 7), " dr
nians, where the time between switches is equal to the time +
stepAt. The numerical integration of Eqé9) and(10) pre-  where the tilde denotes integrated overoperators, defined
sents certain difficulties caused by fast oscillation of the off-gg

diagonal elements of the density and auxiliary matrices. To

1 e,

overcome the problem, we introduce “slow” matrices by k= AtWk( Adr @k:fAtok(T)dT
switching to the interaction representation, 0 ’ 0 ’
-~ -~ -~ -~ A7
g =eMa(e ™, gt)=eTp(e M (A1) S fAtQk(T)dT A7
They satisfy the following set of equations which are readily 0
obtained from Eqgs(9), (10), and(Al), Then we get the following set of algebraic equations:
de) 1§ 1Y
ot T m W], B2 = G 3 K o, (A8)
d¢k( ) K “ k 1
+ - < <
gt~ IWOEOTHOD. 01, b= —ILWR,£1+ [0, 8), + 7 [V%6= o)+ 7ox.
Gy GED s (A9)
YA, dat |’ (A3) Substituting Eq(A9) in the right-hand side of EqA8)

. . i . we get a closed equation for determinigg
and with the same initial conditions, as in E¢8) and(10).

Here M is the number of MD trajectories used for partial . N 1M «
average, and §=0(§)+og, O(H= ngl (&), (A10)
W(t) =M gy(1)e MY, where
04t =e"0(qu(t))e ™, (A4) 0K (&)= —[WH WK, £1]—i[ WK [T¥,¢1,]

YK =" (g(t)) e
are operators in the interaction representation.

Since Eqgs(9) and(10) are local-time differential equa- Then, Eqs(A10) and (A11) are solved in theigenbasif
tions, we only need to construct a numerical method toy oo

propagate the solution on the length of a single time step

- el R ool =R . (ATD)

(from O to At) and with a fixed setcorresponding to the Om( o) oo M
given time stepof the QDS—bath couplings. The initial con- ffr?])= —+ogm, D=— E (A12)
ditions for each time step are obtained from the preceding 1+Diy M k=
one(for the first time step they are given by E@)]. where there is no summation over indidesndm, and ma-

The evaluation of the right-hand sides of E¢&2) and
(A3) can be done using the results from the preceding time
steps or using those from tr:e cu'rr'e"nt time step as well. The ﬁrm:(wk\';vk)” +(\7Vk\7vk)mm_ 2\7\/hVVI;1m+i((VVka)”
former schemes are called “explicit” and usually have poor
stgl_)il,i’ty and accuracy. The latter schemes are calle_d “Im- —(kak)mm+\7Vﬁﬁﬁqm—\7Vﬁ1mﬁﬁ)- (A13)
plicit,” they are more stable and accurate, but require the
inversion of the Liouville space operator, which leads to un-In other words, in the equation fofi,, we take from the
favorable scaling. We propose a simple approach, intermedright-hand side of EqiA11) the term containing,, as well,
ate between explicit and implicit integration schemes. Itand treat it implicitly. It is readily seen, however, that the
combines the stability of implicit scheme and easy evaluacontribution from the third term in the right-hand side of Eqg.
tion of the right-hand sides provided by an explicit scheme(A11) is absent in®*(o,). To take it into account we sub-
First, we integrate Eq$A2) and(A3) over the time stepht stitute the obtained solution fog® into the above-
and use the following approximations for the integrads ( mentioned term to get the corresponding correction to the
=¢,9): solution, i.e.,

tricesD¥ has the following matrix elements:
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Mo also added slow exponential decay to E49) in order to
=80 — — > i[WKYK O —00], 1. (A14)  compensate accumulation of errors at longer times.
At M &L . . . .
The last operation required is to transform matriées

The solution obtained fog is then substituted into the right- and ¢, back from the interaction representation to find
hand side of Eq(A9) to determine elements ap,. The o(At) andn(At), correspondingly. It is readily done using
resulting scheme is quite stable and computationally inexa vector, defined by EqA15), i.e.,
pensive as well. The accuracy and stability of the algorithm -
may be increased, but that would also increase computational Tim(AD =27 Eim(ADZm,
cost. _ | (P A)im=Z} (S A imZnm,

The algorithm works as follows. At first, we use some

appropriate basis and specify the matrix elements of the QD@’here there is no _summat|on ovem, while asterisk de-
Hamiltoniant. and the initial conditions for the density m notes complex conjugate. The valuesodfAt) and »,(At)

_a ontant, "_’1 e_ a C? itions for the dens y_ _a obtained in this way are used to calculate output values and
trix og. After this, we diagonalizéd and transform the ini-

. I . ‘ X _replace the initial conditionsofy, 7¢) for the next step.
tial conditions into the new basis. The transformation matri- ~ The suggested algorithm has relatively low computa-

ces and the eigenvalues f are stored for subsequent use. tional cost and requires several matrix multiplications at each

We also calculate and store matriggg andb,,,, defined by  time step. The matrices involving exponentiatg.{, by,

Eq. (6), vectorZ with elements, Q, 2), are calculated only once and stored before the propa-
Z=(elF18t glB2At (A15)  gation in time. This makes it possible to efficiently treat a

multilevel systems with several hundred quantum states.

(A19)
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