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Abstract

Long-time correlations in the solution of a linear
second-order quasi-periodic differential equation are
investigated numerically and graphically. The equation

is also equivalent to an autonomous Hamiltonian system
which is linear in the action variables P and hence not
amenable to KAM theory. The existence of invariant tori
in six-dimensional phase space 1s investigated with the
help of 3-d stereoscopic pictures. Both torus destruction

and torus survival for finite perturbations are found.



Introduction

In the following we discuss properties of the solution
of an ordinary second-order linear differential equation
(1.1), whose coefficient f is a quasiperiodic function

of the independent variable t.

The investigation was motivated by a study of the
"continuum" in Alfvén wave propagation L in non-axi-
symmetric tori where the equilibrium is periodic in the
poloidal and toroidal angles 6 and ¢, respectively. The
wave propagates along the magnetic field, so that
8 = 6(t), o = 4(t), where t is a coordinate along the
field, and =» < t < « on irrational surfaces. In order
to be physically acceptable, the solution must also be
periodic in 6(t) and ¢(t). Whether such a solution exists
is unknown. Equation (1.1) represents a simplified model

equation.

Independently of its origin eq. (1.1) proves to be
of more general interest. It may also be written as an
autonomous Hamiltonian system and one may ask whether it
is integrable or not, in particular for |[f| << 1. The
essential point is that the results of Kolmogorov, Arnold
and Moser 2 (KAM) cannot be used here since one of their
assumptions, non-linearity in the momenta, does not hold.
In particular, as an anusual feature, both the undisturbed
and the disturbed Hamiltonian are linear in the momenta.
We want to draw attention to this class of problems. We
shall investigate it here with the "surface of section"

technique 3 in 6-d phase space.

1. Basic Equations and Formal Solution

We consider the differential equation
. 2
vit) + [og + £(8)] v =0, (1.1)

where
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is a "quasiperiodic" function of t:
P

f(81,82) = f(61+2ﬂ,92) = f(e1,92+2n) ( e3)
with
B, = w,t +c, ; w, = n/T, ; €, = const ;
i i i i i i
i=1,2 . (1.4)

Equation (1.1) is an oscillator whose frequency w g is
modified quasiperiodically by the 6 function terms.
T.]/T2 is assumed to be irrational. The shift t - t + 2Ti
corresponds to ei > ei + 2m. Equation (1.1) may be

written in the form

x(£) =& (8(t))-x ; A(Q) = A(s+2re,) , (1.5)
where in the present case
" o) 1 8,
x = (,); a=( , )i 8= (") (1.6)

—_) -
] - f 0
and €, are unit vectors with components O and 1.
Between the § functions eqg. (1.1) has the solution
¥ = a cos wot + b sin wot. Integration across the §

functions at t = tn yields the jump conditions

[v] =0 , [v] =-C, vt ). (1.7)




For the amplitudes .. bn at t = tn one obtains the

recursion
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where cn = Cn/(ZmO). This allows fast numerical calculation
of the solution, in particular of X = Uy (t = tn),

Vi = P (= t + 0) at the end of each jump.

2. Two-dimensional Plots

In order to determine the amount of stochasticity in the
long-time behaviour of the solution we ran the system for

O <n<N, N being up to 106, and plotted the consecutive
"states" (xn, yn) as points on an xX-y plane. To be more
precise, points belonging to full periods 2T1 and 2T2
are plotted in separate figures characterized by the in-
dices 1 and 2, respectively. Half-period points were
omitted. The origin is at the centre. The values 0O and
+ 1 are indicated at the margin. Each plot corresponds
to a single sequence of points, usually starting at

X, = 1, ¥y = O. A selection of typical cases is shown in
Figs. 1 to 7. The parameters Ti' Fi are normalized by

1s

settin
g s

The amount of stochasticity considerably varies from
one case to the other. Figure 1 corresponds to a high
degree of stochasticity. It was obtained by a random
choice of parameters. Other cases such as Fig. 5.1 show
considerable correlations. Figures 6 and 7 present a set
0of one-dimensional curves or even discrete points. Gener-
ally speaking, it takes much more time to find strongly
non-stochastic cases, by trial and error, than stochastic
ones, and they may be sensitive to variations in Ti of
less than 0.01 %!



Figures 6.1 and 7.1, although similar in appearance,
are very different. When the number N of recursions is
increased, more and more segments are created in cases
6.1 and 6.2, while Fig. 7 remains unchanged even for
extremely large N. Figures 3 and 4 correspond to weakly
unstable cases. In case 3 the sequence initially con-
verges towards the origin before its final slow exponential
divergence. There also exist strongly unstable cases
with just a few points on the plot. In most stable cases
the region occupied reaches its final size after a few

thousand iterations.

If a solution of eg. (1.1) exists which has the same
quasiperiodicity as the perturbation f, it is easily
recognized on the plots. From y(t) = u(61(t), ez(t)),
where u is a quasiperiodic function which obeys eq. (1.3),
it follows that in the figures either 81 or 82 is const,
mod 27, and both ¥ and | are periodic in the complementary
variable. Therefore, for N - «, the sequence of points
forms a closed curve. No such solution has been found so far. Case 7,
however, is a subharmonic solution with periods 27 and 7/4 in 91 and
62, respectively, as closer inspection reveals. Case 6 is difficult

to interpret because of its unsteady nature with increasing N.

3. Parameter Studies and General Properties

Equation (1.1) contains four parameters T1, T2, F1, F2
so that an exhaustive parameter study is difficult. Some

general conclusions, however, may be given.

It is useful to consider the special case of a

periodic perturbation by, say, setting F, = 0. In this case

2
the Floquet-Ljapunov theory 4 states that ¥ (t) is of the
form

§ o g B LTE ule, (£)) , (3.1)

with u(e1)= u(e1 + 27), v2 real, and v follows from the




knowledge of a fundamental solution of eq. (1.1) after

one full period, t = 2T1. (From eqg. (3.1) it follows

that the resulting figures (.1) of the last section would
be closed curves, while figs.(.2) in general would not.)
With eg. (1.8) Vv may be obtained analytically. The result-
ing stability diagram,vz < O corresponding to instability,
is shown in Fig. 9. The pattern repeats periodically in
AmoT = m. Instability sets in at the points (2n+1)w, =

1 1
2mo, n=20, +1,

It turns out that for quasiperiodic perturbations as

well the solution is (strongly) unstable if F, of F

1 2
is large enough, or if either T1 or T2 is inside an un-
stable region and F1, F2 are comparable in size. For

F1/mo = F2/wo = 0.5 we looked for strongly unstable be-
17 T2 grid. About one-third of all
cases were found to be unstable. The majority, but not

haviour on a coarse T
all unstable cases, closely corresponded to the relation

mw + no = Yw_, (3.2)

m, n, r being integers, with absolute values < 3. The

most conspicuous correlation is with P + wy = 2m0 (apart

from the above-mentioned (2n+1)mi = 2mo). The amplitudes

Fi’ however, also play a nontrivial role. For mOT1 =

0.998, onZ = 0.7574, for example, hence Wy, Ry o

there is a sickle-shaped (weakly) unstable region around
/F% + F% ¥ 0.6 W with stability for both larger and
smaller amplitudes; (compare cases 2 and 3).

We investigated how the distance Gn of two neigh-

bouring starting points changes in time by calculating

the Kolmogorov-Sinai (KS) entropy 5:
1 N 6
s=g5 * 1ln 3 (3.3)
n=1 n—1

for large N. For stable cases, with all initial wvalues

tested, its absolute value converges to zero. This has




to be expected since linearity of eq. (1.1) together
with stability of the solution exclude the existence of
a diverging sequence of 6n. "Local" mixing instability 3

thus does not occur.

4, Hamiltonian and Related Viewpoints

In order to obtain a better understanding of the proper-

ties of eq. (1.1), more general viewpoints are helpful.

A general investigation whether linear (and non-
linear) systems of quasiperiodic differential equations
of the form (1.5) are reducible has been made by
Bogoljubov, Mitropolskii and Samoilenko (BMS) 6.

Equation (1.5) is "reducible" if an ansatz x(t) = g(g(t))-x(t),
u(e) = u(e + 2wgi) with quasiperiodic matrix function U
yields y = K-y, where K is a constant matrix. Reducibility
is thus a generalization of Floquet-Ljapunov properties

to the quasiperiodic case, and determines the type

of solution. The BMS theory considers small quasiperiodic
perturbations, A = éo + §1(g), éo = const, 51 = 0(e<<1),

and employs the method of accelerated convergence of the
perturbation series as developed by Kolmogorov, Arnold

and Moser (KAM) 2. Very briefly speaking, BMS show that

the measure of reducible matrices A is finite and tends to 1
for € » 0O, and%that for any éo there is a slightly differ-
ent reducible éo' provided the frequencies involved

m Wy Wan w, in our case - are sufficiently incommensurate
and the perturbation is smooth enough. In addition, BMS

have proved reducibility under similar conditions,

provided the eigenvalues of éo have a real part, which,
however, does not hold in our case (wo real) . Consequently,

BMS theory gives us no explicit results.

There is a more direct connection of eq. (1.1) with

KAM theory. By introducing the canonical variables

g =49, P

& = {, which are transformed to Q_, P_ by

o]
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g, = JZPO/uO cos Qo’ Py = ~“ug /2Po/mo sin Qo' and the
canonical coordinates
Qi = wit tc,, 1= 1, 2 (4.1)

equation (1.1) may be written as an autonomous Hamiltonian

system with canonical variables P = (PO, P1, P2) and
Q = (QO, Q1, Q2) as follows
2 PO 2
H(Q,P) =u£0 w, P+ ;; cos“Q_ - £(Q;, Q,) (4.2)

with £(Q,, Q,) = £(Q, + 27, Q,) = £(Q,, Q, + 27). The
advantage of introducing two coordinates to make H time-
-independent is that as a result Pa' Qa, a =0, 1, 2,

are conjugate action and angle variables for the undisturbed
Hamiltonian Ho = H(£f=0). Qa' mod 27, are angles on
3-dimensional "torus surfaces" Pa = const, o« =0, 1, 2,
which are embedded in the 6-dimensional phase space.

KAM theory discusses the survival of invariant tori in
phase space, i.e. integrability, when a small perturbation,
|£| <<1 here, is applied. Unfortunately, KAM theory re-
quires that det (aZHO/aPian) + O (or an equivalent con-
dition). This condition, however, does not hold here since
HO is linear in P. Morover, the perturbation AH = H - HO
is also linear. Therefore, techniques to obtain a nonlinear
go go some higher order in f from the nonlinearity in

AH do not work here. Integrability of such "completely
degenerate" Hamiltonians has not, to our knowledge, been
investigated before. (Note that H is integrable if f is
periodic in t, according to the Floquet theory;

integrability is uncertain only for quasiperiodic f.)

In order to decide whether invariant tori exist, we
use the following surface of section technique appropriate
to our 6-dimensional problem: Let us assume H to be
completely integrable. Then, by definition, apart from

H(Q,P) = const, two additional invariants of motion exist,



Ii(g,g) = const, i = 1, 2. They may be used in principle

to express two variables, e.q. P2 Q2, in terms of the

other ones. One invariant, indeed, always exists:

I1(Q192) - Q1/m1 = Qz/wz' from the definition (4.1). In
addition, we make a cut at Q1 = 0, mod 2m. (Compare with

a cut at a fixed toroidal angle of a 2-d torus in 3-d space.)
If invariant tori exist, the trajectories crossing the

cut still form a smooth manifold on it 3. From H = const

the manifold follows in the form (with Qo' PO transformed
into - po)

h (qo, Py P1) = const , (4.3)

where s = v, B = J and P1 are taken at t = n-2T1.
Equation (4.3) represents a 2-d surface in dyr Pgr P1
space, in the limit t » «=. (A cut at Q2 = 0, mod 27 is
analogous.) Thus, if the points(xn =i iy @, = v, Z = P1)

at t = n-2T7, lie on a smooth surface, H is integrable,

1
and a torus is preserved. Conversely, if the sequence of
points fills a volume, H is not integrable. The method

of visualizing (y, @, P1),and the results are presented

in the next section.

Equation (4.3) requires a knowledge of P1 or P2.

They follow from the canonical equations

Q

2
9
= - °—f(Q1,Q2), { =1, 2 (4.4)

P, = o
2 30,

_ 8H
i aQi

By integration over the & functions and partial integration

one obtains for the jump of Pi

- 5. = - 1 2 3 =
[Pi] = /dt P; = > Jat q, Ju € f(m1t, wzt)
- 1 s e - _ 1 - _ _ 1 .2
= = Ok B, GF = =+~ JdE B, By = = 55 [p 1 (4.5)
i i i
- -, 2 )
where g = Bpe P, (wo+f)qO have been used and jumps

at t = 2nT, only contribute. [pi] follows from egs. (1.7),
(1.8).
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5. Three-dimensional Plots

In order to find out whether a numerically computed
sequence of points with the Cartesian coordinates (xn,
yn, zn) fills a volume or lies on a smooth surface the
usual methods of level lines or perspective drawing are
hardly applicable here because the (xn, yn) values are
not located on a fixed grid. Therefore, we chose to re-
present the sequence of points direct by a steroscopic
technique. Two conjugate plots are made from the sequence,
each being a projection undera slightly different viewing
angle. For better inspection the whole sequence is also
tilted and turned 45° counter clock wise. The double

plot should be viewed not by fixing the eyes on the
points but by "looking through" them and fixing at in-
finity. With some training a very pronounced stereoscopic
impression is created. Sometimes it is helpful to put a
white sheet between the eyes and the centre of the double
plot.

In Figs. 1.3 - 8.3 we present a selection of cases
with typical behaviour. For most cases the corresponding
two-dimensional figures were discussed in Section 7y
Figs. 1.1 - 7.1. The ellipse is a projection of the refer-
ence unit circle. The sequence of points starts with the
initial value (1, 0, b), where b is an arbitrary con-
venient "base". The number of iterations is called N3.

In order to make the position of points more obvious, the
z coordinate is either slightly compressed, or magnified

by a factor S ranging from 0.67 to 20.

The cases (8.3) and (1.3) correspond to randomly
chosen parameters. The figures show a ribbon-like struc-

ture and a thin, curved disk with a hole, respectively.

A cushion-like structure with holes and a fence-1like
structure are visible in Figs. 2.3 and 5.3. The curve seg-
ments of case 6.3 seem to lie on a "bee-hive". In most
cases the points do not yield a surface but fill a finite
volume. H in these cases is non-integrable. The deviation

from a surface, however, is relatively small in many cases,
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not only for nearly periodic ones. In Fig. 7.3, however,
well defined surfaces (looking like curtains) are ob-

tained so that integrability is proved.

Similarly to the horizontal dimensions, the final
size of the vertical extension in stable cases is reached

at about N3 =5 - 10,000 iterations.

Integrability should be investigated for different
initial values (Q,P) in phase space. The effects of 51,
P2 and of one of the Q1, Q2 are trivial. The absolute value
of the vector (qo, po) is also irrelevant since, owing

to the linearity of eq. (1.1) and owing to eq. (4.4),

(ay, ai, uzP ) is a solution if (y, v, P1) is. It remains

1
to check the effects of the direction of the vector

(éo, 50) and of the phase difference between Q

corresponding to c

1 and Q2,

-c, in eq. (1.2). In all cases in-

1T 72
vestigated we found that only minor details of the solution
are affected, while the type of the solution remains

unchanged (c1 =c, = O in Figs. 1-8).

In conclusion, concerning integrability of Hamiltonian
H, eq. (4.2), our results are: Depending on the para-

meters T1, P @and F1, F2, H is either integrable in the

2
whole phase space, or is nonintegrable everywhere in phase

space. Nonintegrability seems to occur more often.

Acknowledgements:

The authors would like to thank H. Tasso and D. Pfirsch

for helpful discussions.

This work was performed under the terms of the agreement
on association between the Max-Planck-Institut fir
Plasmaphysik and EURATOM.



References

Tataronis, J.A., Talmadge, J.N. and Shohet, J.L.,
"Alfvén Wave Heating in General Toroidal Geometry",
Univ. of Wisconsin Report ECE-78-10 (1978)

As a review, see: M.V. Berry in Topics in Nonlinear

Dynamics, Ed. Siebe Jorna, American Institute of
Physics, New York, (1978);
Whiteman, K.J., Rep. Progr. Phys. 40, 1033-1069 (1977)

Arnol'd, V.I. and Avez, A., Ergodic Problems of

Classical Mechanics, Benjamin W., New York (1968)

Yakubovich, V.A. and Starzhinskii, V.M., Linear
Differential Equations with Periodic Coefficients,
John Wiley and Sons, Inc., New York, (1975)

Chirikov, B.V., Phys. Reports 52, 263-379 (1979)

Bogoljubov, N.N., Mitropolskii, Ju., A. and

Samoilenko, A.M., Methods of Accelerated Convergence

in Nonlinear Mechanics, Springer Verlag, Berlin, (1976)

Ford, J. and Lemsford, G.H., Phys. Rev. A 188 (1970) 416;

Lichtenberg, A.J., in "Stochastic Behavior in Classical

and Quantum Hamiltonian Systems", Eds. Casati G. and

Ford J., Springer Verlag, Berlin (1979).




Figure Captions

Fig. 1  Solution (¢,¥) at t = 2nT, (Fig. 1.1) and t = 2nT,

(Fig. 1.2). Stereoscopic view of (v, 5, P1) (Fig.
For T, = v8.5, T, = /13, F, = 0.5, F, = 0.4;
N = 4000, N3 = 5000, s = 0.67.

Fig. 2 T1 = 0.998, T2 = 0.7574, F1 = 0.5, F2 = 0.4867;
N = 6000, N3 = 6000, s = 0.67.

Fig. 3 T1 = 0.998, T2 = 0.7574, F1 = 0.5, F2 = 0.4512;
N = 4000. Weakly unstable.

Fig. 4 T1 = 1.027, ’I‘2 = 0.77398, F1 = 0.3, F2 = 0.281;
N = 6000, Weakly unstable.

Fig. 5 T1 = 0.74844, T2 = 2.919144, F1 = 0.7, F2 = 0.7;
N = 8000, N3 = 5000, s = 0.67.

Fig. 6 T1 = 1.045, T2 = 0.7842, F1 = 0.1, F2 = 0.1;
N = 8000, N3 = 10 000, s = 6.67.

Fig. 7 T1 = 1.027; T2 = 0.773965, F1 = 0.1, F2 = 0.284;
N = 8000, N3 = 6000, s = 20

Fig. 8 T, = 0.5, T, = V0.3, F, = 0.5, F, = 0.1;
N, = 4000, s = 16.67.

Fig. 9 Stability diagram for periodic perturbation
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