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ABSTRACT

Active burn stabilization of an ignited tokamak by feed-
back ripple regulation is considered on the basis of recent
investigations on ripple-induced transport with insufficient
temperature dependence for passive stabilization. Ripple
variation is achieved by asymmetric coil currents in the even
and odd TF coils. Reference is made to an INTOR-like device.
The study comprises a linearized stability analysis based
on a O-D plasma description, TF coil calculations relating
the current asymmetry to the ripple size and an analysis of
the coil/power supply circuitry. Critical performance para-
meters are obtained in terms of the size of an initial
perturbation of the plasma from thermal equilibrium. The
performance parameters discussed are the voltages that have
to be applied to the TF coils, the powers and energies trans-
ferred from external sources and the losses within the TF
coils that are associated with the varying field. All critical
parameters, subject to technical limitations, are very much
on the safe side. The power and energy that have to be
transferred from external sources to the TF system can be
kept negligibly small by a proper circuit design. ﬁo net
power is required for the ripple variation. The enhancement
of the stationary power requirements by the coil losses is

insignificant.
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1. INTRODUCTION

Up to now burn control by enhanced ripple losses has been
mainly discussed as a passive stabilization method owing
to the favourable temperature scaling of the ripple induced

loss term in the energy balance. (1, 2, 3)

External manipul-
ations are only required in this picture at the beginning of
the burn phase, when the ripple has to be raised over its low

start-up value. (4, 3)

More recent investigations, however,
indicate a weaker temperature dependence which no longer
(6, 7, 8 Feedback

control of the field ripple is conceivable as a means of

suffices for passive stabilization.

overcoming this difficulty. It is rather obvious and will be
demonstrated later in this paper that stabilization is
readily possible, provided that the ripple size can be varied
with sufficient freedom in amplitude and rate of variation.
The main problems arising with this scheme are related to the
realization of the required ripple variations and are of a

technical nature.

Different methods have been proposed for ripple control,
such as asymmetric current variation in different TF coil
subsets or the implementation of additional auxiliary coils.
(47 35) 11 this paper the first method is discussed , specifi-
cally the case where there are two subsets, one comprising
the odd and one the even numbered TF coils. Because of the
extremely high stored energy of a typical ignited tokamak
even modest variations of the toroidal field require high
energies to be transferred. Since the e-folding time of the
instability is of the order of 1 s, the associated powers are
also high. High investment costs thus have to be expected for
the power supply of the control system. Furthermore the
voltages that have to be applied to perform the current
variation in the TF coils must not exceed certain limit
values in practice. Finally, the alternating TF fields cause
different losses within the TF coils which must be kept at
an acceptably low value.

To asses the feasibility of the scheme, we evaluate the

stated critical quantities for a system which is closely




related to the Phase I version of INTOR. Direct consideration
of the Phase I version of INTOR, however, proves inadequate.
INTOR, which was designed on the basis of the previous, more
pessimistic ripple transport models, has an edge ripple of

= 0.3 % (peak to average). The more recent studies require

an edge ripple of = 3 % in order to achieve ripple losses
comparable with the ALCATOR electron heat conduction losses.
As was pointed out in ref.(5)i, the edge ripple can hardly be
increased to this high value in the original INTOR design by
asymmetric coil excitation. In order not to hamper our
discussion with this artificial drawback yet keep as close

as possible to the INTOR discussion, we specify in Sec. 2

a system which is identical to INTOR in its performance
objectives but has a higher edge ripple owing to a reduction

of the coil number to N=8.

In Sec. 3 a linear stability analysis is performed in the
context of a O-D plasma model. The formulation is kept rather
general and applies to a wide class of ripple loss scalings.
Our discussion can thus easily be applied to new findings on
ripple transport. As a result the required ripple variation
and rate of variation are obtained in terms of an initial
temperature perturbation of the system, the gain factor, etc.
This yields the input for the next sections.

In Sec. 4 the coil current variation AI necessary to
produce a prescribed ripple variation AS§ is considered. An
analytical expression is derived for the function AI(AS).

The computations are based on the HEDO coil program. (9)

In Sec. 5 the electrical circuit equations for the system
comprising the two coil subsets and the respective power
supplies are considered. The voltages that must be applied
and the powers that have to be delivered from external sources

to control a given perturbation of the plasma thermal equi-
librium are evaluated.

In Sec. 6 estimates are given for the losses within the
TF coils associated with the field variations.

All units are mksa in this paper if not otherwise stated.
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2. REFERENCE SYSTEM

In this section a reference system meeting the stated
requirements on the edge ripple is specified. The calculations
were performed with the SUPERCOIL layout model. (10) In ref.
(10) an example closely reproducing the Phase I version of
INTOR was described in greater detail, (11} The system to
be considered has identical input parameters except that the
maximum allowable field ripple at the edge is raised from
0.3 % to 1.5 % and the coil number is reduced to N = 8. A
selective list of parameters for this system is given in
Table I. Except for the ripple and the coil number, the main
parameters are found to be similar to those of the Phase I
version of INTOR. This holds for both plasma and coil data.
We emphasize that the specified system is identical to INTOR

in its performance objectives and design specifications.

The ripple-induced transport losses should be a small
fraction during start-up. The value of 1.24 % meets this

requirement in agreement with both refs. (6) and (7).

3. STABILITY ANALYSIS

In this section a linear stability analysis of an actively
ripple-controlled system is performed in terms of a global
plasma description. Apart from its global character and the
linearization, the discussion is simplifying in that more
subtle effects, such as the shift of the magnetic axis or
imperfect confinement of suprathermal alphas, are ignored.
This is adequate for two reasons. Firstly, we are in a
situation where continuous progress is made in the under-
standing of ripple-induced transport and major modifications
can be expected. Secondly, the purpose of this paper is the
basic assessment of the scheme. In this context an order of
magnitude estimate of the ripple variation and speed of
variation that are required to bring a system back to equi-
librium after it has suffered a realistic perturbation is
sufficient. For the same reason we may also confine our-

selves to a simple controller.
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We consider a pure D-T plasma (n = n e ni). Equal temperatures ?
are assumed for ions and electrons (T = Te = Ti)' The global
energy balance equation then reads

3nT = Q - Q, - Qp» (1)

where it is assumed that n = const holds as is appropriate in this
context. denotes a volume average except for T, which is the
density weighted average (T = ﬁT/ﬁ),ﬁa is the a-heating term.
Incomplete confinement of fast a's is not taken into account.
GA describes ALCATOR losses, while GR describes the ripple
losses. Confinement to ALCATOR-type losses was mainly made to
allow a simple comparison with other burn control studies,
which mostly rely on this model. ALCATOR-like electron heat
conduction losses are assumed to be the dominant transport
losses besides ripple losses. Neglecting radiation losses, we
assume the system to be transport dominated. This is adequate
for a system like INTOR.

A thermal equilibrium point is characterized by the condition

(In what follows the average "will be omitted for convenience)

_n% _ A9 _ A
0=0 - Q - Q- (2)

It is convenient to characterize the equilibrium by Qg and the
ratios a = QK/QZ and B = QE/QZ. Equation (2) implies that

1T=a+ B (3)

holds.

For Qa we assume the scaling
Q T, (4)

which is a good approximation in the temperature range of
interest. For QA one has

Q, ~ T. (5)



For QR we assume the general scaling

op ~1f1 sf2 (6)

where f1 and f2 are constants to be left open during the
general discussion. § always denotes the peak-to-average
edge ripple.

Now, assuming all deviations from equilibrium to be of first
order, we get from eq. (1) with egs. (4), (5) and (6) the
linearized version of eq. (1) (T denotes deviations from
the equilibrium value, while 5 denotes equilibrium values;
T = T0 + T etc.) :

'."_ o} ra _ fo) ~
3nT = Qa (1 + 2T/T0) aQu (1 + T/TO)
O ~ ~
BQQ (1 + f1T/T0 + f26/60). (7)

With eq. (3) and the abreviation QZ/BnTO = 1/13 one gets

T =

Al=

; [(2 = a - pf)) T - szTos/ao] (8)

To get a closed equation for the dynamics of the system,
the feedback scheme has to be specified. As a first step we
consider the prescription

O jonde

7 (9)
H

together with the initial conditions

5(0) =0 and o) =r1,. (10)

The gain factor g is a constant which is yet optional.
Equations (9) and (10) prescribe the variation of § in terms
of T in a system with an initially perturbed temperature

To + T1. This choice for the controller is not unique. It results,




however, in stable solutions and permits a simple formal treat-
ment. Furthermore, such a scheme can easily be realized from

a technical point of view, as will be shown later.

From egs. (9) and (10) we obtain

o o o . (11)

Inserting eq. (11) into eq. (8) yields

T=§¥+%T1, (12)
o a

where ¢ = 2 - a - Bf1 - szg and p = szg.

By elementary methods one finds the solution with T(0) = T1:
£t £t

T T

T = - K 73
T T, (e a et gea ¥ (13)

1
Obviously, the system is stable if
k=2 - qa - Bf1 - szg <0 (14)

holds. In the absence of feedback (g = 0) stability requires
that

1 B {15)

hold, as is well known.

In the stable case the final temperature is given by
T0 + T(m), where

T(=) Tie (16)

The corresponding total ripple variation that is required

to bring the perturbed system back to the ignition curve
is given by



S (w) _ T(o) _ T T, 2 - o - Bf,
=g ( - 21) = gz1 il & D)
8 T, T, T, a + Bf1 + gfzg Z

$ (m)/a0 converges to a lower limit if g goes to infinity:

Z_G-Bfl. &
3 + BT, + if g » :

. (18)

Inserting eq. (13) into eq. (9) gives §. In the following
section we only need the maximum value of § which occurs
at t = 0:

(2 - a = Bf1)o (19)

Finally, we determine the control time. We characterize
it by the time t, within which the system has performed
1-1/e of the temperature shift when approaching the final
state:

(e=1) (T(=) - T,)/e

= L = K -
T1 (e « 7 + -ea ) T (20)

K : K

With eq. (16) we get

2 - o« - Bf, - BE,9 . (21)

o . (22)

To be more specific, we now consider special figures

taking the system specified in Sec. 2 . To evaluate T,r We




6

=2 .
Py f

estimate Et by Et = 0.12 s/A and ﬁa by ﬁa =.0.3 x 10

04 =3 . -{10)
Bt .

and T = 10keV we then get with the above definition

D -=3

Wm With the data of Table I, fi = 1.4 x 102%m"

T, & 1.2 8 . £23)
Note that our plasma parameters practically coincide with
those of the Phase I version of INTOR. (1 INTOR with its
underlying transport model is transport dominated and has
an ignition margin of roughly 2. Hence, if its layout work-
ing point is maintained by additional ripple losses, one
must have (approximately) o« = B = 1/2., Following refs.
= 1 and £, = 4.5, thus

1 2
assuming to be in a regime where the ripple-induced heat

(6), (7), and (8) we assume f

conductivity is virtually temperature independent.

The gain factor g can, in principle, be chosen freely.
In practice, however, it is determined by performance
considerations. Firstly, effective control requires that
the control time does not exceed the runaway time.
On the other hand, the control time should not be smaller
than the time for the reorganization of the temperature
profile (damping time for profile modes), which is of the
order of the energy confinement time. In a transport-dominated
system like INTOR the energy confinement time roughly equals
‘the runaway time of the thermal instability. Thus, to meet
both requirements, we determine the "optimum" gain factor
< by (see eq. (21))

t

1
2 - o - Bf, - Bf, g, - (24)

|

=1 = =

-
=3

In our example this yields Jo = 0.889.

With these specifications we now get for the feference

system
8 () T,
—3— = 0.889 &
o] To ’

(25)
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6max T

3 = 0.741 T1

o o) (26)

and

t

= = 1 . (27)
T

/8 represent the required

The quantities § (w)/G0 and 6max o

input for the next section.

4. MAGNETIC FIELD CALCULATIONS

In this section the functional dependence is established
between the asymmetric current variation and the magnetic
field variation at the coils on the one hand and the field
ripple on the other hand.

We divide the TF coils into two sets, one comprising the
odd and one the even coils. In the following we denote the
odd and even coils by the indexes 1 and 2, respectively. The
respective conductor currents are 11/2, while T1/2 are the
total coil currents. All coils are assumed to be identical
except for, possibly, the winding number, which may be n,

and n, for an odd and even coil, respectively. With these

definitions

I1 = n.II1 (28)
and

I, =nyl, (29)
hold.

During plasma start-up all coils have a common total

current fs to minimize the ripple. The corresponding conductor
currents I and I are then
s s2




~ 0=

H
Il
H

s1 = 1s/M 0]

and

Igp = I/ny (31)

The total currents 31 and fz at a later stage are expressed

in terms of the initial total current Ts by

1 i (32)

I1 s

and

2 IS (1. +%)-.

H
Il

(33)

We impose the constraint that the stored energy of the

, and Tz vary from their

initial wvalue is' This then implies that, apart from the

TF system shall be constant if T

losses to be discussed in Sec. 6 , no net power 1is required
for the ripple variation. The requirement of constant stored
energy establishes a unique relation between Y and X to be
derived below. Through this relation the current variation

can be characterized by, for instance, X alone.

For the stored energy one easily derives the expression.

B e R
Bn = 3010 + 3hply + LyoLiL, (34)
where
-
Ly = nqL, (35)
N/2
- —E =
Lg. = 22 125-1
j =1 ' (36)
_ 2=
Ly, = n3L, (37)
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- _ E s
L, ‘2E Ly (38)

12 = nyn,yL,, (39)

and

2
- —E -
Lia =3 Li2y . (40)
7

Here ii‘ is the mutual induction between coil i and j.
The derivation of egs. (34) to (40) makes use of, besides

Eij = Eji' the rflatlons Lij = Li - and
Lij = Li + N~ Lij + N Constancy of Em now means that
1= =2 2 1= =2 2 = =2
EL‘lIs (1 + X) + §L2Is (1 +Y) + L‘IZIS
_ 1= =2 1= =2 = =2
(1 +X) (1 +%Y) = 2L1Is + 35 2Is + L1ZIs (41)
must hold . Making elementary calculations and using i1 = iz,

one derives from eq. (41) the relation

2

Y=-(1+ k% (1 + X))

+ 0+ k2 +xn?-x 2+ 2%+ 2, (42
which expresses Y in terms of X.k2 = 'ifz/i1ﬂ2 . To
lowest order in X

Y=-X _ (43)

holds as expected.
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For the reference system we get with Table II

L, =L, =7.7521 x 1075 [u) (44)

and

L

1o = 4.0113 x 107° [H] . (45)

To establish the functional dependence X(8), one has to
confine oneself to a specific system. Table III summarizes
calculations that were performed with the HEDO coil program (9)
for the system specified in Sec. 2 . For given coil para-
meters and coil currents HEDO calculates the magnetic field

distribution, the stored energy, the iij etc.

In a first step HEDO is used to compute the Ei' (see
Table II). With these Lij Y is then evaluated from X on
the basis of eq. (42) and taken in a second step as input
for the HEDO program to compute the field ripple versus X.
In Table III the computed ripple values are given at Ro

(plasma center) and RO + a (boundary). The values for Em

are added as a check. In addition, the maximum field variation
relative to the start-up value (X = 0) is added. It typically
occurs at the outer coil legs. These data are used in Sec. 6
to estimate the losses within the TF coils.

In the following we only consider the edge ripple, A
least square fit by a third-order polynomial was used to

approximate the dependence X(§) as contained in Table III:

X = - 1.82750 x 10" + 1.78681 x 10~ s

- 2.78391 x 107252 + 2.29123 x 107343 | (46)

Here ¢ is in % and eq. (46) applies in the range
1.24 8 < 6 < 3.5 %.

Two types of ripple variations have to be distinguished
in our discussion. At the end of the heating phase, when
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ignition is reached, 8§ has to be raised to some value 60

_13...

corresponding to the presumably unstable burn point. We

assume that this is also achieved by asymmetric coil exci-
tation corresponding to some value xo. Around this equili-
brium point small variations § have to be performed to prevent
the system from thermal runaway. The corresponding current
variations are characterized by X=X - Xo‘ The transition

to equilibrium is not considered explicitly in this study.

To determine 60, we rely on refs. (6) and (4). Reference
(6) reports transport calculations for an INTOR-like system
on the basis of recent ripple loss models. Considering the slight
difference in density to the INTOR working point, a value
of 60 = 3 % seems sufficient to result in a 50 % contribution
(according to o« = B = 0.5) of the ripple losses to the total
transport losses. In ref. (4) similar calculations were re-
ported on the basis of previous ripple loss models. Re-
scaling these results to the recent models also results in

a similar wvalue for 60.

Inserting 60 in eqg. (46), we get the equilibrium value
of X:

X, = 0.16460 . ()

Denoting the equilibrium conductor currents by I0 and 102

1
we have as a consequence of definitions (32) and (33)

H
Il

o1 I (1 + X)) (48)

and

pe I (1 + YO) . (49)

B2, =852

Since i/xo <« 1 and 3/60 « 1 are valid, we can conveniently
use a linearized version of eq. (46) in the vicinity of the
equilibrium point:

1

§/8, - (50)

X = 2.205 x 10~
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From egs. (25), (26) and (50) and the above value for XO

the following ordering can be verified:

O T R
X s X =Y Y XO s YO ’ (51)

X, «< 1 . (52)

These relations will be conveniently used in the following

section.

5. ELECTRICAL CIRCUIT CONSIDERATIONS

In this section we discuss the required power and the
voltages that have to be applied in order to perform the
ripple variations as specified in Sec. 3. To this end the
circuit equations including the two coil subsets have to
be discussed. According to the circuit design of Fig. 1 these

equations are

114 1212 (53)

and

. 1 = -
U, = (U1 + U') L2I2 + L12I1 (54)

with L1, L2 and L12 according to egs. (35), (37) and (39).
One advantage of this circuitry is that only the current
difference I.I = 12 flows through source Uq. This considerably

reduces the powers delivered from sources 1 and 2.

In order to make convenient use of the ordering relations

as given by egs. (51) and (52), we write X = X, + X and
Y=Y + ¥ so that

I, = I (1 + X, + X) (55)
and

I. =1 (1+YO+§) (56)
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hold as a consequence of definitions eqgs. (30) to (33). For

st 45 s

the derivatives we then have

I1 = IS1 X L51)

and

2

I, =1

2 s2 (58)

We now consider two different cases as choice of the

winding numbers n, and n, of an odd and even coil, respec-

1 2
tively:

CASE 1 n, =n

This means that all coils have the same winding number and

are thus completely identical. Hence (see egs. (30) and (31))

5. . 1t

Ig1 = Tga = I (59)

holds.

For the voltage U1 we get in this case

Uy = LT, % L,,T,
= L1Isi + L1215§
= I_(L; - L,,) X
=In (E -L,, %. (60)

Here we have used egs. (59) and (43) and only retained lowest-
order contributions.

For the current through source 1 we find with egs. (59)
and (43), retaining only lowest - order terms:




_16-..
e S PR S SR X-1- YEn-av)
= 2I_X
= 2isxo/n . (61)

For the power delivered by source 1 we now have

= T (L1 - L12) zxox : (62)

The total energy required to bring the system back to
thermal equilibrium after some perturbation at time t = O

is given by

E (») = gp dt P,
=32 (@, - T..) 2x.% (=) (63)
s 1 12 (o}

where X(w) corresponds to 3§ («) according to eq. (50).

With TS = 1.85 x 107A, L

L,, = 4.011 x 107>
through eq. (50) we obtain with egs. (25) and (26) respectively

, = 7.752 x 10"°g,

H, Xo = 0.1646 and expressing X by 3/60

max 5

U1 =1.11 x 10 T1/T0, (64)
max _ 8
P1 = 6.89 x 10 T1/To (65)
and
8
E (=)= 8.26.%x 10 T1/To 5 (66)
Here U,™®* and p, ™3 are peak values occurring at t = 0. For

1 1
an initial perturbation of T1/To = 0.05 we find for example:
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v "% = 5540 [V], (67)
P, = 34,4 [MW], (68)
E (=) = 41.3 [MJ] . (69)

Note that the voltage per coil is only one-fourth of the
value given by egs. (64) and (67).

CASE 2 101 = 102 .

Since all coils have a common total current Is during start-

up this implies that the winding numbers of the even and odd

coils must be different. From IS1 = Is/n1, ISz = Is/n2 and
egs. (48 and (49 we get
n1 1 + Xo 1 + XO
— = = : (70)
n2 1 + Yo 1 - Xo
For the voltage U1 we find in this case
Uy = LIy + Lyyl,
= Lylgqd + LyI5%
= IS (L1}(/n.1 + L12Y/n2)
= Isn1 (L1X + L12Y)
= I.n, (L1 - L, X (71)

where analogous approximations as in case 1 were performed.
In these approximations the voltages U
1 and 2.

, are equal in cases




N T e s e e e T e e e e T |

= 48 .2

For the current that flows through source 1 we find

I, -I,=I, (1 +x +% - I, 1 +Y + %)
= IgX - I ¥
= 51'52§/n.I " (72)
where 101 = 102 and eq. (70) were used. It is smaller by the

ratio ﬁ/xO than in case 1. Consequently, the power that has to
be delivered from the source is also reduced:

Py =38 B =E.) 28K . (73)
By integration we get for E(»)
E(e) = s7atp = T2 (@, -L,) #4=) . (74)
By analogy with case 1 one obtains
p, ™% = §.20 x 108 {%1)2 (75)
o
and
E(») = 4.92 x 10° (%1)2
o R (76)
For the special perturbation T1/T0 = 0.05 this yields
P, = 2,05 [mw] (77)
and
E(w) = 1.23 [MJ] . (78)

These values are an order of magnitude smaller than in case 1.




:

To benefit fully from the case 2 version, precise know-

L G e

ledge of the equilibrium point is obviously required during
the design of the coils. It would thus be most attractive

for a reactor which can be built on a definite physical basis
and will operate at a fixed burn point. There is, however, a
continuous transition from case 1 to case 2 and an increase
of n, over n, may also be advantageous in an experimental
device like INTOR.

The control powers we found are quite acceptable and at
least do not exceed those for other non-powerless burn control
schemes. It is pointed out that this result crucially depends
on the circuit design chosen here. Indeed, the power trans-
ferred between the two coil sets exceeds the power delivered
by external sources by an order of magnitude in case 1 and

two orders of magnitude in case 2.

u' = U, - U1 is determined in terms of U1 by the condition

of constant stored energy:

' - -
g' = U1 (I.I Iz)/I2 . (79)
It is obvious that I1 - 12 / 12 << 1 is wvalid in both cases,

so that U' <« U, is also true. Hence U, = U, and the restric-

1 1 2

tion on U1 in the preceding discussion is justified. The

values we found for U1 are considerably below critical values.

We started our discussion in Sec. 3 with a discussion of
a desirable plasma dynamics, based on the artificial feedback
prescription according to eq. (9) and then determined "back-
wards" the necessary voltages, that produce the desired ripple
variations. Equation (9) can now immediately be transformed
into an equivalent prescription for U1 and U2. From egs. (9),
(30) and (60) or (71) we get

(80)

where the factor of proportionality is determined by g, XO

L1,E12etc. U' is determined by eq. (79). The realization of a

r

controller as defined by egs. (79) and (80) does not cause

any technical problems.



6. ALTERNATING CURRENT LOSSES

In this section the losses produced in the TF coils by
the alternating toroidal magnetic field are estimated. The
toroidal field is directed perpendicularly to the conductor
and to the coil casing. Only the AC losses due to variations

of "perpendicular magnetic fields" are therefore given.

First the connection between the rate of the magnetic
field variation B and the initial temperature perturbation
described by T1/To is established. A least-squares fit by

a first-order polynomial is used to approximate the depend-
ence AB(X) as given by 'l'able III:

4 4 5.386X . (81)

AB = 2.134 x 10
Note that AB is the locally maximum field variation, occurring

typically at the outer coil legs.

For the rate of the magnetic field variation ﬁ one

obtains from eq. (81)
B = 5.386X . (82)

From egs. (82), (50) and (26) the maximum value of B in terms
of T1/T0 is obtained:

Bmax = 0.880 T1/TO . (83)

Note that ﬁmax is now the time and local peak rate of the
field variations. In what follows we assume that the total

TF coil system is exposed to B thus overestimating the

max’
AC losses. For a temperature disturbation of T1/T = 0.05,
. o

for instance, a Emax value of 4.4 x 1072 7s” ! follows.
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The AC losses can be subdivided into the hystereses losses,

= 9" =

which scale with B, and the eddy current losses and coupling

losses, which scale with B2.

The hysteresis losses P, are given by

h

- 2 s ar
Ph T 30 Vscjch’ (84)

where Vsc is the volume of the superconducting material,
jC the critical current density of the superconductor,
and d the diameter of the superconducting filaments. For the
reference system (see Table I and ref. (10))egs. (83) and (84)
yield for the hysteresis losses

4

Ph = 2.56 x 10 T1/TO . (85)

VSc and jc were calculated according to the formulas of ref. (10),
3

whereas d is an input parameter. The values are: VSc = 1.6 m
92m™2 and 4 = 2.x10 °nm.
For a special temperature perturbation of T1/To = 0.05

(Nb3Sn as superconductor), jc = 4,3x10
the value

P, = 1.28 kW (86)

results.

The eddy current loss terms for conductor and casing and
the coupling loss term, which describes the losses produced
by induced currents flowing in the conductor core, are collected

in one formula:

Vs (aaz (iﬂ\z( . (a + 1)n)1/2
P=15 1 ¥ 2y | |92 F Am| S

IS L NL] B% (87)
,ca

where p and p are the specific resistivities of the
e e,ca

, SC
stabilizer ana casing, a is the conductor width and 1_ is the

twist length of the filaments. The volume ratio between
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stabilizer and superconductor is given by the parameter a.
The eddy current losses produced in the coil casing depend on
the thickness t, the radial width W of the casing and the

circumference L. The circumference is given by (10)

L = 21rke* [1_(k) + I, (k)] (88)

where k = 1/2 %n (R2/R1) and R1, R2 are the minimum and
maximum distances between the TF centre line and the main
torus axis (see, for example, ref. 10). The coupling losses
(second term in eq. (87) are estimated on the assumption that
the conductor core, in which the superconducting filaments are
embedded, is composed of equal amounts of superconductor and
stabilizer. The AC loss formulas are based on ref. 12.

With data of the reference system (see Table I and ref. (10))
the losses P can be expressed by

P=1.60 x 107 (T1/To)2 : (89)

e s iy and W are calculated according to ref. (10) , while
r

W= A+t and p » 1 and t are input data. The data used
e,ca P

BECE. P o = 4,22 x 10—1oﬂm (including magnetoresistance),
r ——
7

0 = 8.7 10 'am, 1p = 0.1m, t = 0.05m , a = 116,

a = 0.016m and W = 0.98m. The width a is calculated on the
assumption that the conductor has an aspect ratio 2 and a is
the smaller length.

For the special perturbation T1/To = 0.05 eq. (89) yields
P = 40.00 [kW] . (90)

This value is an order of magnitude greater than the hysteresis
losses.

The total peak losses which have to be cooled away are
41.28 kW. This value has to be considered with respect to
the questions whether this can be done without deterioration
of the superconducting state and whether the corresponding

electrical input power for the refrigerator is kept small enough.
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In this study the bath cooling concept is used, with liquid
He at a temperature of 4.2K as cooling medium. A maximum
temperature increase of the conductor of about 0.5K is allowed,
which corresponds to a maximum heat flux of é = 3 X 1O3W/m2.
Assuming a wetting parameter y = 0.3 - 0.5 (y is the fraction
of the conductor which is in direct contact with the coolant),

it can be shown that the heat flux produced by the AC losses
of 41.28 kW is far below the critical value.

Assuming a refrigerator effiency of 1/300, an electrical in-
put power for the refrigerator of 12.4 MW results from the
AC losses. This amounts to roughly 5 % of the INTOR stationary
loads. The electric input power can be further reduced far
below 10 MW if conductors with Cu-Ni barriers (high-resistance
barriers) are used. In addition the above value is based on
a pessimistic estimate of the time and spatial peak values.
The actual mean value can be expected to be much lower. The
coil losses thus do not significantly enhance the stationary
power requirements in an INTOR-1like device.

7. CONCLUSION

Active burn stabilization of an ignited tokamak via feed-
back ripple regulation was studied. Recently discovered modi-
fications of the ripple-induced losses, which no longer per-
mit passive stabilization, were taken into account. Only ripple
variation by asymmetric excitation of the even and odd TF
coils was considered. This scheme does not introduce new design
features and preserves as much symmetry of the TF system as
possible. Emphasis was placed on discussion of technical as-
pects of the scheme. Critical parameters under consideration
are the voltages at the coils, which must not exceed limit
values, and the coil losses, which are due to the varying
fields. They must be sufficiently low in order to avoid deterior-
ation of the superconducting state and unacceptable enhance-
ment of the refrigerator power. Finally, the powers and energies

that have to be transferred from external power supplies re-

quire high investment costs and are thus subject to practical
limitations.
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From our study the following conclusion can be drawn

with respect to the stated critical performance parameters:

Voltages of the order of 1 V per turn have to be applied
to the TF coils to perform the required ripple variations.
They are considerably below critical limits for a typical

conductor design.

The powers that have to be delivered by external sources
are comparable with other non-powerless schemes (com-
pression - decompression, reheating) in the case 1 version.
They are even negligibly small in the case 2 version. The

same is valid for the transferred energies.

Except for the low coil losses no net power from the TF

power supply system is required for the ripple variation.

Even pessimistic estimates of the coil losses, including
eddy current losses in the stabilizer and and cryostat,
coupling losses and hysteresis losses yield sufficiently
low values to avoid local deterioration of the super-
conducting state.

The enhancement of the refrigerator power, caused by the

coil losses is insignificant in a system like INTOR.

All critical performance quantities considered are thus

very much on the safe side and there is sufficient margin to

meet modifications such as may result from further progress

on ripple transport or other related fields.

There are some further aspects of the scheme which might

be a matter of concern. For instance, the effect of the

cyclic load on the coil structure should be estimated. Out-

of-plane loads, however, which are particularly undesirable,

do not occur at all in our case. This follows for symmetry

reasons for our special choice of the coil subsets. In order

not to lose this advantage, other possible ways of subdividing

the TF coils were ignored.




In our study we have not considered explicitly the problem
of how to reach the final working point after having reached
ignition at the minimum ripple wvalue GS. This transition can be
understood as a shift of the equilibrium point. In a feedback-
controlled system this does not entail any problem, apart from
possibly requiring a more refined controller, if this shift is
quasistatic, that is, if the transition time is long compared
with the control time. As far as the critical performance
parameters under consideration are concerned, this case is fully
involved in our treatment. Indeed, during the transition phase
the system moves into a regime of increasing instability and all
critical performance parameters increase monotonously
as follows immediately from the preceding discussion. All con-
straints discussed are thus even better satisfied during the
transition phase. A special problem arises, however, for short-
burning systems like INTOR, where the length of the transition
phase is not necessarily negligibly small compared with the burn
time. In this case the necessity of mimimizing the duration of
the transition phase is given in order to avoid an unfavourable
reduction of the duty factor of the system. This problem requires

a more refined study and will be treated in a subsequent paper.
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plasma minor radius
plasma aspect ratio
plasma elongation
plasma major radius
toroidal field at axis

ripple at R = R, +a

a (m)
A

S

Ry (m)
B (T)
8(R) (%)
Ry (m)
R2 (m)
A (m)
6ins (m)
Bax (m)
I, (A
n

L, (m)

Table I

Selective list of parameters of the reference system

Table II

0.93
0.15

2.18

1.85 x lo

980

43.7

(H)

(H)

(H)

(H)

(H)

inner coil radius
outer coil radius
radial thickness of the winding

thermal insulation thickness including the
casing thickness

axial thickness of the winding
total coil current
number of windings

average length of a conductor per turn

1.5908 x 10~

4,2922 x 10

1.4575 x 10

7.2193 x 10

5.5713 x 10

Inductances for the coil system specified in Sec.

L

ij

i+n j+n

remaining iij follow from the symmetry relations Eij

and Ljs = Dy 5 = Iy jun




28

o701% 0920°% 0920°¥ 0920" ¥ 0920°t 0920" ¥ 0920°t 0920° ¥ 0920°v 0920°¢ | (r) Y3
LL0°1 £v6°0 808°0 #£9°0 6ES°0 v0t 0 692°0 SET°0 0000 | (L) gv

pE05 € pIpl‘E 9908°2 926b°2 90022 91€6°1 6189°1 v0St "1 6r£2°1 | (2) (Cwe) 9
6v80°2 92€18°1 6Y505° 1 9082°1 1610°1 65€9L°0 vOTPS 0 1285€°0 tes1z0 | (%) (%o

(01X 8v5p°T 1L05°1 9845°1 2609°1 6859°1 6L0L°1 0954°1 vE08" 1 581 | (v) °1
1-0TXG9€T"2 | OTXSES8"1-| | OTXESLS T-|  OTXBTOE'I-| , OTX62€0° T , OTXEEBY (| ,_OTXB080S-| , OTX00ZS 2- 00 A
(01% 002272 8eL1°2 5/21°2 £180°2 05€0°2 88861 G2v6°1 £968°1 s8'1 | (v) L
(-01X¥0°2 [ [ 0TXSL'T (-OTXS'T | [ 0T¥62'T 1-01X0°1 5-0TX5"L PRULIN 2-01X6°2 0'0 X

Table IIT
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1 / IS for a coi
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Various HEDO output data versus X

system with data according to Table I



RO 1 g

U, U=-Uy-U’

~

SOURCE 1 SOURCE 2

Figure 1

Schematic circuit diagram of the two coil sets and the power

supply (The charging phase is not considered.)




	IPP 2_262 Deckblatt
	IPP 2_262 Text

