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Abstract

-

Covariant constitutive relations are developed for
an arbitrary, anisotropic, dispersive, dissipative medium,
thus allowing for relaxation phenomena, and the covariant
wave dispersion relation is derived. The susceptibility
tensor of order four is given explicitly for a Vlasov plasma
with arbitrary velocity distribution and non-zero d.c.
electric field. It is then shown how to determine the
constitutive relation explicitly from the moment of the
single particle current, without using the Vlasov equation.
The familiar "dielectric tensor" is obtained as a special

case,




I. INTRODUCTION

2

’

Since the pioneering work of Clemmow and Wilson L
Buneman 3 and others, the kinetic theory of relativistic
plasmas has acquired an extensive literature. See for example
the articles listed by the authors of references & =82
Basic to many treatments is the dielectric tensor derived

lo from the three-dimensional relativistic

by Trubnikov
Vlasov equation for a stationary, Maxwellian plasma with
zero d.c. electric field. Since the dielectric tensor is
not covariant, however, one of the main advantages of a
relativistic treatment,namelythe direct application to
drifting plasmas, is lost by this method. Furthermore,

the extension of Trubnikov’s dielectric tensor to cases
where the d.c. electric field is not zero is far from
obvious. In order to write covariant constitutive equations,
one needs the four-dimensional magnetization-polarization
tensor, which was introduced by Ddllenbach pt and Pauli 12.
They showed, on the basis of intuitive physical arguments,
that it can be expressed formally in terms of the averaged
moment of the single particle current density. They did

not, however, obtain the relationship between this tensor
and the electromagnetic field tensor.

In this paper, we develop the theory of the covariant
constitutive relations for an arbitrary, anisotropic, dispersive
medium, allowing for relaxation phenomena. To do this we
replace the familiar dielectric tensor of order two by a

susceptibility tensor of order four, which relates the



electromagnetic field tensor to the magnetization-polarization
tensor already mentioned. Taking the example of a Vlasov
plasma, we find an explicit expression for the susceptibility
tensor, and hence for the unspecified terms occurring in
D#llenbach’s expression for the magnetization-polarization
tensor. The susceptibility tensor would be of particular
importance in applications to a multiple drift plasma where
it would be difficult to obtain the same result by Lorentz
transformations. In deriving the susceptibility tensor, we
regard all particles in the plasma as bound particles, so
that the free current density is zero. This model is
particularly useful for bounded plasmas, since it removes

the need to work with surface charges and currents. The

model has been used by Derfler and Omura 13 who worked non
relativistically. They divided the total plasma current

into magnetization and polarization currents, from which

they derived separately the magnetic permeability and
dielectric permittivity tensors, whereas all previous treat-
ments lump both terms into one equivalent expression,
commonly called "the dielectric tensor" s 15.

In section II, we define the fourth order susceptibility
and permittivity tensors, and derive the general wave
dispersion relation in covariant form. In section III, we
solve the manifestly covariant Vlasov equation for a
drifting plasma with non-zero d.c. electric field in terms
of a four-dimensional gyro-tensor. In section IV, the
explicit form of the magnetization-polarization tensor is

first derived from the first-order solution of the Vlasov




equation. Then, after solving the first-order equation

of motion in terms of Lagrangian variables, we show how

the magnetization-polarization tensor can be obtained,
independently of the Vlasov equation, from the moment of

the single particle current. In section V we integrat@ the
magnetization-polarization tensor for a drifting equilibrium
plasma and finally obtain Trubnikov’s dielectric tensor as

a special case.



ITI. COVARIANT CONSTITUTIVE EQUATIONS FOR AN

ANISOTROPIC MEDIUM

Throughout the paper, we adopt the following conventions:
Unless otherwise indicated, Roman subscripts take the values 1
to 4 and Greek subscripts go from 1 to 3. We use Minkowski
coordinates, in which the four vector f has components £ i’
where fa are the components of a spacelike vector E. and f4 = ifo
is the timelike component. For example, x denotes the world-

point, with X,= ct. We denote the volume element df j df, d4f,

df, by df.

For an arbitrary medium, Maxwell’s equations are written
covariantly in terms of the electromagnetic field tensor B, the
. . . fe
excitation tensor H and the four-vector free current density J e,e

as follows:

* frea
3.8, =0 > .H. =1J (2.1)
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where B is the dual of B, defined by B,f %"}ijkt Bu » Mijee  being

the alternating tensor of order four. In terms of the familiar
le

three-vectors, we write, following Sommerfeld ¥
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where E and § are the electric and magnetic field strength

respectively, B is the magnetic induction and‘Q the electric

M

displacement. E and H are related by the equation

L 3o

.-.Q/H._

i

(2.2)

- where M =%(§F icP) is the magnetization-polarization tensor,
(TN L
involving the magnetization and polarization vectors, ¥ and P

respectively, which describes the effect of the current density

due to bound charges,

In the kinetic treatment of a plasma, E is the average
of the microfield existing between the particles. Regarding
all particles as bound particles, we set Iﬁn: o. The electro-
magnetic properties of the plasma are then completely described
by the tensor M, which in general is a non-linear functional

of the field tensor B. In the following, we shall consider

small perturbations, B', from the stationary state Bo, with
an (T

B = B2+ Bl ete.

and

1 + Jex

J = 3%+ 47
where the higher order contributions of the bound charges are
lumped into an equivalent excitation current J%. For a homo-

geneous medium, we can then represent the functional relating



the first order perturbations as a linear convolution of the form

M:j (i) = =g, B:c =T Jadgxzjue(”'g) B8, .

where X represents the first order susceptibility kernel and
dira

the arguments are invariant functionals of x. Hence the con-

volutions are manifestly covariant with respect to Lorentz

transformations,

X: = A'J xj , A = (8.“ + /\“Aﬁ/(y-ﬂ) f)\p (2.4)
(L.
ulA“ v
-3
where A= V,y/c e (1-— LV‘*/cz) » ¥ being the three-
velocity. The convolutions exist in the mathematical sense,
even in the presence of instabilities, due to the finite speed
of propagation, provided the perturbations are applied at some

finite time. For the same reason, the two-sided Laplace transform,

B:J.D:] = ffffdx e”(jx‘i B;.(x) , (2.5)

exists and is covariant with respect to Lorentz transformations.
Also, due to the finite speed of propagation, we can always find

upper bounds in each inertial frame, such that

, éx(x)l < C e—’f’X.:’ For‘ X, const, ,X‘}—b 0 |
' él(x) } < (C CK,X’. for X, Contt\ X, > ct*’ (2.6)
) 51(7-), = 0 for X“ canst, X, = ct*,

It follows from a theorem of Doetsch i that E}[k] is a regqular,

analytic function of the complex variables kj in the strips




’In I(“’ s XK . (2=7)

which include the real wave number axis, and a lower frequency

plane

Imk, = Imwe s -% (2.8)

e

where %, is positive in the presence of instabilities. Analytic
functions of ki satisfying the conditions of Egs.(2.7) and (2.8)
will henceforth be referred to as L(%,) functions. These can be
inverted in the form

Wj + 00

BL(x)=(2wy+LgTJkeﬂ%& Bb[kj' (2.9)
0 -00

where we restrict the Bromwich contours of integration to the
regions where E} [k] is regular and analytic, i.e. where
0,s-%, , o] s « . Since X (§) represents the response
of the medium to an impulse localized in space-time, i.e. El( x )
lo'd E(x). the susceptibility kernel satisfies conditions similar
to Egs. (2.6) and is therefore an L(X,) function. Under Laplace

analysis Eq. (2.3) takes the form
M Lk] = =X, [k] B, [K] 2.10)

and Ml[k] is thus an L(x,) function. Since, in the following,
we shall be concerned only with the Laplace transforms of the

tensors, we shall delete the square brackets identifying the




transforms wherever no confusion can arise. The calculations
in Appendices B and C will be performed for k_  real and 1Im k<0,
it being understood that the results applylto the region specified
in Egs. (2.7) and (2.8) and can be extended by analytical con-

tinuation.

By the skew-symmetry of M;. and Bic, X,,, must be skew-
symmetric in the index pairs (i,j) and k,?). Taking the transform

of Eq.(2.2) and substituting Egq. (2.1lo) we obtain

H: =T.. B (2.11)

] ‘j‘!e k‘
where

I
TJH ijke ’7ij,.,,, "JH,.,” /‘f’}.&e .
In terms of this tensor, we can write the Laplace transforms of

Maxwell’s Egs. (2.1) in the form

ex

= KL = E 212
=0 | ‘H-pk» [ I (2.12)

-

These equations can be solved most conveniently by means of the

vector potential A, defined in the usual manner, such that

Byle) =9, A, (x)- 0, A (x) = B_ =kA-kA= kmA,J

satisfies the first of Egs. (2.12) identically. The problem thus
reduces to the solution of the second set of Maxwell’s equations,
which, in terms of the vector potential, takes the form

KA T30 K2 T kok, s

mr r L] > mr qul' P q




- 1lo -

From the skew-symmetry of E, it follows that the rows and

columns respectively of the matrix K are linearly dependent, i.e.

K.k=0 | k K,_.=0. (2.14)
Thus the determinant ”K;r” vanishes identically for general k.
It is therefore obvious that the equation ”K.,” = @ cannot
be the wave dispersion relation, as has been claimed 18. By
substituting from Egs. (2.14) for rows and columns in the 3 x 3
minors of Kmr' it 1s easy to show that the cofactor Kmr of Kmr

equals K kmkr’ where K is an invariant. We can express K in

terms of the trace, Kii:

K=K./kk . (2.15)
i J J
Thus the cotensor can be written in the form

K.=kkK=kk R /k k. - (2.16)
Prévided.F(; 0 , it follows that the system of Egs. (2.13) has
rank three and hence can be solved for general k when the
continuity equation, km;m = o, is satisfied. If K were zero,
then by Eqg. (2.16), all the factors Rmr would vanish, so that
the system of Egs. (2.13) would have rank < 3. In this case,
we would have yet another condition on J for general k, which

would be unphysical.
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By deleting in Egs. (2.13) the Mth row and Rth column, we

get the system of equations

Kip An + KurAe =fil, , p#EM @2-X7)
il ex
K”PA/‘ +K A ;\JM . pER (2.18)

where the summation convention is suspended for capital subscripts.

We first solve Eq.(2.17) in the form

= 0 -1 ex— -1
AP L; KPF J’F ;<Mu K,uRAR (2.19)

and substitute from Egs. (2.14) the relations

Kiw® Kok ke o Ky =Kok, /k,

into Egs. (2.18) and (2.19). We thus confirm that the continuity
equation kam = o must be satisfied, and obtain the solution of

Egs. (2.13) in the form

B = = . K 2.2
W e Vi ke - (2.20)

N

To write this result covariantly, we first recall that the 3 x 3

matrix K can be inverted by Cramer’s rule in the form

PP

/
{

= /K (2,215




e RO e

where

|
it

mr 1}”"‘?‘! q?rsfu Kns Kpt Kqu /3!

and
< = 21
Kﬂmrs “?""Pq 'qr-sfu KPt K‘i“ /
are the cotensors to Ko of second and fourth order respectively.

Substituting Eq. (2.21) into Eg.(2.20) and using Eq. (2.16), we

H3
obtain, on multiplication with kM

kMBRIP = §iK, g k., J;xkj kj/R-h. _ (2.22)
By the skew symmetry of EM#RP , setting /u = M and =

would give zero contribution, so we can lift the restrictions

/usﬁM.and P#;R, replacing /u by n apd P by s. We can then sum

over M from 1 to 4, which produces a factor k.k. on the left-hand

side of Eg. (2.22) and cancels the one on the right-hand side.

Then M and R lose their uniqueness and can be replaced by m and

r respectively. We can now write the solution of the inhomogeneous

Maxwell’s equations for general k in the manifestly covariant

form

4B:s = iK J’"/ k Je’yjﬂki:{_ (2.23)

mnrs nnrs [m ]

It can be verified immediately that the excitation tensor

1

H"ln - ——i,([m‘]:\] ’(il(i

satisfies the second set of Maxwell’s Eq.(2.12) for general k.
Therefore, by substitution into Eq. (2.23), we obtain the inverse

of the permittivity tensor, defined in Eq.(2.11), in the form




= 13 =

B. = T H (2.24)

where

= . Jji
Fsmn 4'I’<ﬂ|"n-l' / K

(2.25)

Using the tensors T and 77!, we can now rewrite the constitutive
Lo b

Eq. (2.2) in either of the alternative forms

M;= - (T:;ae - Si[kgzjj/‘?f"“) B

M= (T = ko /29) e

(2.26)

where

-l*:: -1- -1

‘.ch-—- = n}a‘jmnTm. P '7qu!. b

We have already argued that K does not vanish for general k. On

T

the other hand, K must vanish in regions where the current density
in Eq. (2.23) vanishes in order to allow for finite fields Ef e.g.
to explain the phenomenon of propagating waves. The covariant wave
dispersion function is therefore given by the invariant K defined
in Eg.(2.15). One may be tempted to conclude from Eq. (2.25) that
the inverse tensors Eﬁl and Efl would not exist in the presence

of waves. This apparent contradiction can be resolved immediately
in the construction of the tensor kernels Erl(>:) and Eﬁl()c) in
the space-time domain by means of the inverse Laplace transform.
In this process, one encounters the problem of residue calculus at

discrete and/or continuous sets of poles'ko) of T-l[ k] and X—l[ k]
b ot e

which are in fact solutions of the wave dispersion relation K = o.




IR

i
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(n)
Provided Min Im ko >-K, , one can adjust the Bromwich

contour so that 0, <-X, ., implying that Erl['k] is an L(x))
function. Thé proof that this condition is always satisfied
can be given only on the basis of the kinetic theory of E[:k], ;
as developed in sections IV and V. Any finding to the contrary

would mean that the problem was ill-posed to start with. Since

Maxwell’s equations are satisfied for kbu, the residue calculus

leads to an expression for the propagators or Green’s functions

19 - 22

E_l(x ) and §"1(><) in terms of waves as discussed by Derfler

in the context of his wave stability criteria.

For purposes of comparison with the familiar non-covariant

dielectric permittivity and diamagnetic permeability tensors of
1

order two, we will now determine the components of T and T

in the rest frame. In the present context, this is unambiguously

defined as that frame in which the three-vector fields are

related in the form

- — =1
D_L-enewar5 , H“ fidﬂBﬂ//lp ,
which, following Sommerfeld 16, is the natural way of writing the
constitutive relations. Substituting these relationships into
Egs.(2.11]) and (2.24) and using the fact that, in the rest frame,

H is independent of E and Q of B, we obtain
e, L

- _—1% —_*

I“M‘*z T"‘f‘r*r= s lﬂpr‘r - ,olfrsr

SR o _ (2.27)
"‘P" ) d?“m/unr'?rﬁ/zf‘u L 6,(,/2,49 »

~ 1 -1 i
T‘(PF’S - ZH" 7*{5"76‘7?”7!75 > -rdfyf' 2}"0#,{,



= 915 &

It should be noted for completeness that the so-called

"plasma dielectric tensor", E;ﬂ , defined by

1
R 5 L
I, w (&, gmﬁ)z:ﬂ/zh,,r ,
is actually a combination of the dielectric permittivity and

diamagnetic permeability in the form

~ -2 -
Gx‘s ) ea({s i (k4') 47-(16‘ kr (Sfr“ﬂft‘)}(f’?é“fp v 42028)

Substitution of Egs. (2.27) and (2.28) into the covariant dis-
persion function of Eq. (2.15) gives the familiar three dimensional

form of the dispersion relation in the rest frame, viz.

G &+ deokymk ke, 5, ] = 0

In the case of an isotropic,non-dispersive medium, where ¢
1 »

and /u are scalars, the tensors T and T_l simplify, such that in
L [

the rest frame

1

T‘Pr‘ Yo 7475/2F°?* : T~f+r+ - 65*7/2)“- >

=1 % — X

,“Mf: /‘(°I7d#A7A1‘. /26 ; ’*1‘1'4'- = % /4./"' S-tf 2

By Lorentz transformation using Eq. (2.4),we can obtain expressions

for the tensors T and T in terms of € and /u, in any inertial

LY

frame. Egs. (2.26) then reduce to the constitutive equations for
an isotropic, non-dispersive medium given in three-dimensional
form by Sommerfeld and in four-dimensional form by Pauli and

24 ,
Synge , viz.:




M:j )l‘. = —(e-1) Blsj)\j//‘-z " Xe B:JAJ_A"

1M

Mi‘j /\J. = (,4—1) H::AJ.

(2.29)

"

x. H)

o

where {e and }b,are the electric and magnetic susceptibilities.
The analogy between Egs. (2.26) and (2.29) was anticipated in
designating the tensor i as the covariant electromagnetic
susceptibility tensor. Whereas, in the previous treatments, the
two equations (2.29) were needed to describe the properties of

the medium, either one of our Egs. (2.26) contains all the required

information, since the tensor X combines the electric and magnetic
]

susceptibilities.
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IIXI. SOLUTION OF THE COVARIANT VLASOV EQUATION

In covariant form, the Vlasov equation is

“ig—f.* ;%ijgju‘i = D , (3.1)

: u;

where e is the electronic charge, m is the proper mass of

an electron and u, = dx{/ds is the four-velocity of an electron,

s being defined by d52 =-dxidxi. The analysis can be generalized

to a multi-species plasma, but, to avoid extra subscripts,

we shall confine our attention to electrons within a back-

ground of very heavy ions. For comparison with the three-

dimensional formulation, we note that u_ = V«Y/C y U™ ty ,

where Vv, is the classical three-velocity and y = (1-—v3/c" -:t
The distribution function is restricted by the relativistic

energy-momentum relationship, uu, = - 1, to a hypersphere in

the eight dimensional phase space whose volume element is

dxdu = dx_dx, sz dx, du, du, dul dua .

Hence we can use the Dirac delta function to write

F(x,u) Flx,u) S(uiui-r 1)

{(3.2)
Flx ,u )[5(%‘@.‘7!)*5(“#@)]/2«,

where 32 F(xmu“,t) gives the usual distribution function over

six-dimensional phase space. The four-vector current density

is given by
li(x) = -ec fduu,-lc("; u) (3.3)

where we define




« 18 =

f&u = I”f duodu1duqu3
ui=p;

with p,=- e, p = 1 . This integral is covariant under
Lorentz transformation since u_ =y > 1 in all inertial
frames. The definition of ‘2(%) is compatible with the
normalization condition obtained by setting the number of

particles in the system,

=
\

[dw,de, dxy n () = [dx,dx dx, du e, f (x,)
[dx, dx dx, du, du, du, 3 F(x,u,.t) (3.4)

The Lorentz invariance of these expressions is demonstrated
by Akama 9. We note that the first integral in Eq. (3.4) in-
volves the product of relative volume by relative number
density in the case of a drifting plasma and proper volume
by proper number density in the case of a stationary plasma.

We now linearize Eqg.(3.1) with the ansatz {(Xﬁ)= f%h)+FYkM)

which gives to zeroth order
° °
= (3.5)
B;J' U B{/bu‘, 0
and to first order
: .3 tyf° = 3.6
U af/axi - e(mc) (B..J. 3{/3u5+ BEJ_ }'f/bua)uj 0. (3.6)

Taking the two-sided Laplace transform, we have

Sik,u - e(me)” ( By 3 /ou; + B H/ou; Ju, = 0 5.7
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where Eq. (3.7) involves functions of k and u. :

We solve Egs. (3.5) and (3.7) by the method of characteristics.

The zeroth order equation of motion

dl.{'.(s)/is = —e(mc)"B:.j uj(s) ' (3.8)

is formally equivalent to a characteristic equation of both

(3.5) and (3.7). Its solution, in matrix notation, is u(’)

=y (s-QexP 2 (9 where

exp § 2 2 é; (9= - ;‘;f;a;,@as'.

A necessary and sufficient condition for the existence of
this solution is that Eo(s) has a set of eigenvectors in-
dependent of s. In particular, the solution holds if B? is

independent of s. By the Cayley-Hamilton theorem, 2 satisfies

its own characteristic equation, viz.

0= =310 = JEN-<A+pX=yd+ A7, 3.9)

where a, B, y are independent of A. Since ? is skew-symmetric,
it follows that ”i" =a =y =0and B = %?ijéq P 4

BY is independent of s (i.e. for constant external fields),

]

p = G [(BFE) ]/

a ~2/2 ;
hence we write § = (s~s’) _O_/c covariantly, where Q may

be regarded as the relativistically covariant cyclotron
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frequeﬁcy. Introducing the variable ¢ =¥ , for s> s’, and
using Eq. (3.9) to generate a recurrence relation for @n we

obtain the covariant gyrotensor D in the form

b

= q - o & ° e 2 ~0 o L PO .
DGg)=(c). =5 v B #- ) By B st 1)+ (85 BL 8,5 Gingog)
Under the usual physical condition that EOL;goixzthe laboratory

frame, it is easily verified that§3==—5§.since this equation is

covariant, we have in general

D (-¢4) = - B Bl;(cosgg-l}-;%B;smfi . (3.10)

Q)
Further properties of R(—¢) are established in Appendix A. In

general, the solution of Eq. (3.8) is
w(s) = D (-4) u (s7) (3.11)
4

The most general solution of Eg. (3.5) is thus a function

fo(u) such that
FluGs)] = Frluts)] . (3.12)

For example, fo(u)==F(uiui,uiki)satisfies Eg. (3.5) provided

\B = 0. (3.13)
L ij

In particular, A; can represent the four-vector plasma drift

velocity. In this case, the drift velocity observed in the
laboratory frame is restricted to a component parallel to g?

and a component of magnitude E°/B®° in the direction oncﬁo.

Under these conditions, the Synge-Jiittner distribution, >




- 2

° A .
f°lu) = o et § (wu;# 1) , (3.14)

a and Ve constants, is a solution of Eg.(3.5).

We now solve the remaining characteristic equation of

Eqg. (3.7} viz.

A6/ ds = o8, (o, ks ) 1) it
= 9(“) e Ek;“zp

The homogeneous part has the solution

Fﬂ(s) = consl, exp [-if'k: u. (s’) cls:)

where u(s’) is given by inversion of Eq. (3.1ll1), using Eq. (A.l).
The inhomogeneous equation can now be solved by variation of

constant. Substituting P(S) = C(s) {H(‘) , we obtain

C’(s)-r"(s)= [u S)J
C(s) = J’ [u"((:')J de
ATkl k) ] expli fk ()ds7]+ .ﬁ’*r“ku(s*)dsjg[ (s)]ds"-
Since Iu.k <(,we can let s, - ‘s . Then we have

Pl Joop [ [lmeae] gbede - oo

Changing the variables of integration to 9‘ = (f-r’)ﬂ/c and
¢'= s-s*)2/c , we have

«@) = D (), wI=D I an




- T

The variable s is now eliminated from Eq. (3.16), since it
appears only in u(s). Introducing the tensor [ (¢)=ffD (¢’)d¢’

we obtain

el = & [explickl, W fa] g [,04]ds

We now evaluate g[Du(f)uz] by substitution into Eq. (3.15).

By Eq.(3.12), it follows that

3f°(u)/3uk /u->1) )

Wl

- ch ”D(u)/‘)“z

The Laplace-transformed solution of the first order Vlasov

equation is therefore:

fllk,u] = 5_1f.‘:!dexp[ick;LI,J.(#)L{,./QJBI:G[I‘}D“.‘(‘;));'_&)Q"@)Q" (3.18)
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IV. COVARIANT MAGNETIZATION-POLARIZATION TENSOR

From Eg. (3.3), the Laplace-transformed plasma current

density due to the first order perturbation is given by
1
1
J[K] = -eefduu, Fi[ku] . (4.1)

9 1
It has been shown that Eq. (4.l1) implies that J satisfies

the continuity equation, which in k-space takes the form
! —
k. J[k] = 0. (4.2)

We now seek to express JTk] in terms of the magnetization-

polarization tensor M'[k] such that
1
- 1
J[k] ‘I“,‘ M-‘j [k]

The continuity Eq. (4.2) confirms that M’[L] is skew-symmetric.

From Egs. (3.18) and (4.1) we have, for the first order current

density,
1 B ol i, »
s g e e
where
rj - ckPLPJ/Q ’

In Appendix B, we show by partial integration that




TTk]= -k iee® B [ [dg f° ;r’u’l_ D (4.4)
tkl=-k, -2 klf f. pie kw20 4 g gf[nstJ '

We can therefore write

ij [L] = —ec [du 7w Ax (4.5)

i JJ ?
where

ec * ifpu
Ax 2 - = B;‘C[k]joa;u "rL. D, u.

Comparing Eg. (4.5) with Eqg. (2.1o), one sees that we have now
obtained an explicit expression for the covariant susceptibility

. + in the case of a drifting Vlasov plasma with

tensor X*JH

‘an arbitrary zero-order velocity distribution. In Appendix C,
we show that 4x is the Laplace-transformed perturbation to
the zero order orbit of an electron, expressed in terms of
the Lagrangian variables u, . It is thus clear that we can
obtain the expression (4.5) for Ef directly from the
equation of motion, without using the Vlasov equation. The
same result could be obtained by means of the Hamilton-Jacobi
theory given by Pfirsch 23.

If we now recall the positive ions needed to maintain
charge neutrality in the plasma, it is clear that the zero-
order contribution to the plasma current density is zero and

we can write

Mij-M;""M:;,- = -5-()‘1: XC: u”> . (4.6)

ay.

where p, 1is the microscopic charge distribution in the plasma

and x is the position of a particle under the influence of the
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perturbing electromagnetic field. Writing

= 1 1
MI‘J' = 11!'4":( zﬂc‘?ktnnxnun)av_ )

we see that M:j is the dual of the averaged four-dimensional
moment of current density. We have now derived explicitly the
magnetization-polarization tensor for a drifting Vlasov plasma
and expressed it in the form arrived at by Ddllenbach on the
Basis of physical arguments and symmetry requirements. Whereas,
however, D&llenbach wrote the Eq. (4.6) in real space, inter-
preting the average as a volume integral and restricting the
application to nondispersive, lossless media, we have exténded
its application to dispersive, dissipative media, where the
equation now holds in Laplace transform space and involves

an ensemble average.
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V. MAGNETIZATION-POLARIZATION TENSOR FOR AN

EQUILIBRIUM PLASMA

In Egs. (4.5) we have given the magnetization-polarization
tensorﬂ.1 for an arbitrary velocity distribution £°(u). For
a given zero-order distribution in the rest frame, the co-
variant form of E} could be obtained by Lorentz transformation.
'For an equilibrium plasma, however, we can substitute for fo(u)
the covariant Synge-Jiittner distribution of Eq. (3.14), which,
in the rest frame, reduces to the relativistic Maxwell-
Boltzmann distribution. The constant a¢ occurring in Eq. (3.14)
'is the normalizing factor and P = mc/kT, kT being the
kinetic temperature in the rest frame of the plasma. Performing
the velocity integration for a Synge-Jlttner distribution in

Appendix D, we obtain
1 =_e"c"n, § =
My L] = - SRt B D5, [42,0L, P Ko K) (50
where ng is the proper number density of the plasma,
KW= Gs) o K,ss),

K; being the modified Hankel function of order n and

s(P= r@)-ipk, .

We recall that the drift velocity A is restricted by Bl €3.13)
in the laboratory frame to components parallel to ‘Eo and in the

E® x Bo direction.
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For a stationary plasma with no d.c. electric field,

we have A, =0 =D 4 = Lm4 and the current density, derived

in Appendix D, 1is

J:D‘] = -ik; M'I‘J mi.r—;_;i_) 2 fdf; (k K DM) :

In this case, we thus obtain the well-known "dielectric tensor"

of Trubnikov,

&= S 9 [ (KD Koy Dyy)

mk ™)

e
where NP:(‘?‘we"na/m). is the plasma frequency.




VI. DISCUSSION

We have developed a covariant description of an arbitrary,
anisotropic, dispersive medium, allowing for relaxation
phenomena, such as Landau damping. The covariant formulation
is especially useful in cases where each of several species
of particle has a different drift velocity, for example in a
two~stream plasma. In such cases, it would be difficult to
obtain the correct constitutive relations by means of Lorentz
transformations from the respective rest frames. In Eq. (2.23)
we obtained the complete solution of inhomogeneous Maxwell’s
equations in covariant form. Using the permittivity tensor
of order four, T, we wrote in Eg. (2.15) the general wave
dispersion function. The inverse permittivity tensor, 34
of Eg.(2.25) represents the Green’s function which is a pre-
requisite for the covariant solution of the nonlinear problem
of wave-wave interaction. Of particular practical interest
here is the phenomenon of stimulated synchrotron emission
which may well ,be responsible for the sharp resonance observed

by Fidone et al.?%/2%n experiments intended to determine the

self-magnetic field of the toroidal current in Tokamak devices.

In Eg. (4.5) the magnetization-polarization tensor M, and
hence the susceptibility tensor X and the permittivity tensor
T, are given explicitly for a drifting Vlasov plasma with
arbitrary velocity distribution and non-zero d.c. electric
field. We allow for drift velocities parallel to the magnetic
field as well as in the E x B direction. The tensor‘ﬂ is ex-

pressed in terms of the averaged moment of the single particle
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current density in Laplace transform space. This result
applies even in the case of a dissipative plasma and allows
for the occurrence of resonance phenomena. It is thus of

more general validity than the formally similar result ob-
tained by D&llenbach. Finally, we showed that in the special
case of a stationary Maxwellian plasma with zero d.c. electric
field, our results reduces to the relativistic dielectric

tensor of Trubnikov.

The theory developed here now makes it possible to
formulate Derfler’s stability criteria B3 = e in a covariant
fashion. Furthermore, the M tensor, derived in sections IV and
Vv, represents the relativistic extension of Derfler’s and
Omura’s separation of the plasma current into magnetization
and polarization currents in the non-relativistic case. Using
this non-relativistic treatment, Puri and Tutter have shown
numerically 8 that the magnetic contribution to classical
wave dispersion is negligible away from the immediate neigh-
bourhood of the cyclotron harmonic frequencies. It can now be
established whether this classical magnetic contribution is
meaningful at the cyclotron harmonics or whether it is
dominated by relativistic effects. These, according to

Shkarovsky 28 are important at the harmonics for perpendicular

wave propagation, even at moderate plasma temperatures.

In sections III and IV, we excluded gradients in plasma
density and in the unperturbed electromagnetic field. This

enabled the tensor M to be written as a simple product in
[
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transform space. In the future, we will extend the present
treatment to include gradients. The expressions obtained will
then be convolutions in the transform space, like those ob-
tained by Derfler and Leuterer 30 in the non-relativistic
treatment of Bernstein waves. Also, the possibility of a
covariant formulation involving anisotropic temperature must

be investigated because of its importance in plasma physics.

Finally, our treatment of the Vlasov plasma provides a
concrete example in which the mechanical response of the
medium to an electromagnetic perturbation is given explicitly
in covariant form. One is therefore in a position to scrutinize

the discrepancies arising out of the differing definitions
Sl

of the energy-momentum tensor given by Minkowski and Abraham
Thus it is hoped that the results obtained in this paper may
contribute to a solution of what may be considered the last

open question in classical electrodynamics.
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APPENDIX A: PROPERTIES OF THE GYROTENSOR AND ITS INTEGRAL

The solution of the first order equation of motion for

electrons in a Vlasov plasma given in Egs. (3.10) and (3.11)

holds for a varying field Eo which commutes with @, provided
(™)

Q is some scalar . In section IIT, we showed that Q has

special significance when Eo is independent of s. Since (0

L

is skew-symmetric, D is orthogonal and therefore
D@D (#) = 5. . (a.1)

Denoting differentiation with respect to f by a dot, and

using the commutativity of ¢ and §° we obtain
(75

D=¢-D=D3% (a.2)
which becomes
P s g it B e, S °
D‘J(¢) = m Bik .DkJ ) D'.k Bkj 5 {A.3)

when B® is independent of s. In this case, we also have

DUWD,W =D, (g+y), (a.4)

D:J_(c;‘)= D. ) = Ly = -L.(-9), (A.5)

where

o [y
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We also obtain two useful relationships involving D and L.
BY Eq_ (A‘z) B—:E- = Ioﬁé d*l = f.#‘D_'?d#’_

Integrating by parts then gives, since ¢=0 ,

D-1 =L-&=¢-L . (A.6)

By Egs. (A.4,5),

¢ é
LALW= [ D-)dg=[ Dy = L, (a.7)




APPENDIX B: INTEGRATION BY PARTS OF Ji (k)

In order to derive Eq. (4.4) from Eq. (4.3) we first
integrate by parts, with respect to us ,each term in the

sum represented by the repeated index m. Then

J:[k:l:%fzﬁﬁ jdu 2 ilinuu +8,u,+8..u;) . (B.1)

r.u.
The integrated parts depend on ['fdua i u,u ; ]
where du3 represents the volume element of the subspace

obtained by holding u_ constant. Now we have
i u. ne . & o
e ! Ju;un][‘ } = ]exp-{_tkq‘[y:(sz)_x*(;)]} u‘un)c j N

where x;(sdzz—cxflL+J¢)u;(0"+X;(S) is the timelike
component of the zero-order particle displacement. On writing
— Im(bk) < 0 , the modulus of the exponential factor be-
~Y[t()-t(5)] . .
comes e which is bounded by 0 and 1 over the
range of ¢ integration, since -w<s’<s and therefore —oe<t(s) S t(s),

The integrated parts thus vanish under the usual physical

L]
requirement that [M;u,;oju_

The third term in Eq. (B.l) vanishes since B! 8

k? km ln nm

—_— l — —
By, 8}{! = 0 by Eq. (A.1) and the skew-symmetry of Bkl' We

integrate the second term by parts with respect to ¢, obtaining
J—(z)[k - e'c B!- fdu ]["& j‘c; L (D el D I'I'JIIJ- (B.2)
; ]" mid ke n ; # k: In rP P f")e ) )

The integrated part depends on

LD L,. c'r“]é [D L, exr( a « -44- hy yf-;—yl‘)]
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where t/ = t(s’) and t = t(s). The lower limit vanishes

since Lki = o for t° = t and the upper limit vanishes due
= o

to the presence of ev. By Eq. (A.3), the first term of Ji(z)

becomes

J;(Za) D‘J

e (mn)™ Bie B;“ fduf.un fe:fs L,. D‘r e"'i“.i Y

P

(|

Ccle) BBl [dg LoD, Jdue ™3 (Fi)/

: o o
since B’ u 7y =0 Dby Eq.(3.5) and B =0 by the
skew-symmetry of q:|. We now integrate by parts with respect
to uy , the integrated parts vanishing by the argument already

used, to obtain
(22) ) 21 e 7 inU. pe
o dd 5
I 0] = -eeu) BB, [ LD Jdue T3 fuu, ek, L., /o
Eliminating Bgn by the use of Eg.(A.6), we find

2) . 2 P e ir.u,
170 = - e B faft [apl, e "k u D

m n (p P

Substituting into Eq. (B.l) and simplifying the product Dy mFm

by use of Eq.(A.7), we obtain Eq. (4.4).
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APPENDIX C: THE PERTURBED PARTICLE ORBIT

To zero order, the equation of motion is given by Eq. (3.8).
; : 1 . .
The velocity perturbation u(s) , due to the perturbing field
Bl, must be determined from the first order equation

L

dl (9)/ds = -elne)'[B )0+ @) *fak Bl [ ] o1

where we have used the inverse Fourier-Laplace transform for
Bl(x) and denoted the unperturbed velocity and displacement

o 1
of the particle by u%s) and x(s). We seek a solution for u(s)

by variation of constant, using the ansatz

d(9) = D, [2e'(s-s)] w, (5,57

We then have from Eg. (C.l), using Eqg. (A.l):
—ik, X
q

- 1 = 1 () e
dy.{;(s,sj/ds = —e(mc) !_ij [—QE s—s’)] (21r) TJ;”( Buee b :,,(E (s) )

-4 ! g VAR 059 - , E
ul; (s) = -e(MC)—l(ZW) fdk Bu[“]jsds, Dk;[_ﬂc (s_s)]e 5 uf(s)' 1

where So is the initial proper time and we have used Egs. (A.4)

and (A.5). Integrating and applying Eq. (A.4) again, we obtain 1.

Ax) = [deul(s) = el 8, [o]_[aete] o), ot N0y

Using Eq. (3.16) and its integral to represent u(s”) and x(s”)
in terms of the Lagrangian variables u(s) and x{s) and changing
the variables of integration to ¢=_Qc"(s-59 and ;6’:-!)51(3-5” , we
can eliminate s, since it occurs only in the arguments of the

displacements and velocity. Then we have

. |
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ik

eC

Ax,= gy [ak B, 6" g D.()[é'D, )0, @elerpieklLyp s ]

Integrating by parts with respect to ¢, and using Eq. (A.7),

we obtain

: ® g
Ax, = —(;T:)'—-—a:;zijdk B:E [k]edk,x’ fod;& e PLH 'Dz u, . (c.2)
We have deleted the superscript o since all velocities and
displacements occurring on the right hand side are those of
the unperturbed motion. The integrated part vanishes by the
argument used already in Appendix B. The Laplace transform
of AX is obtained immediately by comparing Eg. (C.2) with

Eg. (2.9).




APPENDIX D: VELOCITY INTEGRATION OF Mij FOR A SYNGE-JUTTNER

DISTRIBUTION

Substituting the Synge-Jiittner distribution of Eg. (3.14)
for fo(u) in Eqg. (4.5) we obtain
1
e o

1 1 (" IS
Mi.i [k] = ;‘F'Bu .[J';& D(n(d)Lk‘_(iﬁ) Si[m Squ ﬁuc ’ rg(u._uﬂ)u.u‘ (D.1)

where sp:’r}(d)‘ifAAr . We will now evaluate

IM; : fdu eis'uf J(ur“r"‘r)”nu'l

Integrating first over the variable Ul and introducing

cylindrical polar coordinates u,, u ,9 for u, ,we obtain

4

o ™ ELA0fan a0, T enp[oscn(b-Dr iy (o]

where
F = uz/ﬂN (no summation implied)
et 4
Eﬂ T gl ces 9/w ) * 3
F o= 1y = -w

o F i 4e )
b3
p S
w7 (UL*L%:+7)

and we have expressed s in terms of its cylindrical polar

components SE,S_L,r . After changing the variable to \# , where
. - 2\-7 . :

mnh¢ *l&(l*tﬁ) , we obtain the integral over u, in terms

of modified Hankel functions, K , by Eq.(9.6.24) of Abramowitz

and Stegun 32, such that




= 39 =

L]

1"1 Ldgf;ui k ci G"; (u‘,_.e) exF [isJ-u* Cos (9-:)],

where

Gd""' %tl [CDSQE Kz(y)— Ke()/)‘]'

G = -iu, cos 0 sinf K, (),)‘

<4 %‘Z"'“2€ K, (y)

_%1 [chZE Kz()/) + K,(y)]} ?=(7+uf)’£' y=¢1($:+s:)

. - P 2, 2\
sin § T -3 (:*+ss) ) ces & = 3, (‘4""’2) i
To perform the & integration, we use the fact that, by

o

g
&
-
i

the periodicity of the cosine function

f_ de exr[is*u*c“ (9‘5)] = 2[;# exr(t's*u“cos 94) .

-1

Then, by Eg.(9.1.21) of Abramowitz and Stegun, we obtain the

O integral in terms of Bessel functions Jn , such that

I"‘i = 2x fodu‘uL? Hm7 (u,), (D.2)
where

H-(-c - i? ‘]; (siu.t) [C°‘2€ Kz(y)—K-()’)]:
H-tf; = Cosg J;(’.L“J.) siqf K’(y)’

H-q- - i‘i J;(’J»“*) sin2§' Kz()’) )

. = ~3q J;(uu;)[cor 28K () + K.(y)] -

H
The integrals Inq of Eg.(D.2) are now in the form given by

‘(rJ:-N.sor’;sx3 in Eq{13.47(2)) and, combining the results, we obtain

I"‘i = -2+ 5”51 J{s“é;?}(z), (D.3)

where JQ is defined in section V,

L
z
)
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The normalizing factor « which occurs in Eq. (D.l) is
determined by the condition, n = Jdubg fTu) where n
is the relétive number density of the plasma. Integration
along similar lines to that performed above gives a =
"#/?Wk,k;00='hf¢2rK;QJ where n_ is the proper number density.
Substitution of this result together with Eq. (D.3) into

Eq.(D.1l) gives Eqg. (5.1).

The expression given for Mij[k] in Eq.(5.1) is arbitrary
in terms which make zero contribution to J =-iijij. We
proceed to eliminate such terms to obtain a slightly simpler

expression for Mij[k] . From Eqg. (5.1), using Eg. (A.7) we have

MATK) <A B, [43[(-L 5L, )oclob /2 £ K- (0,121 )5, ]

where

A = —ezr.'-‘.m,,lx,c/m.Qz Ko () .

| The product of the terms ijsi and xlep contributes
zero to J; and so is dropped. By partial integration of the

term DEijfH2' we obtain

M.'j'[k] = A B:e };d#{[(’Lth‘fL‘,‘js‘;)l‘_}%“"“\: L s C]('L'r/ﬁ:p{a”-ql-“ 4, /4d
+(L(j ;qc;+l)¢;Ll‘,-)';(:} )

since}{z-b o as ¢—>°o . The last term of the integrand is
symmetric in (k,£) and so can be dropped. Since d}(,_/ddi— 5.5, ‘ka)

we have

M [ = 48" [agl(1, 5L s )i phtek L (LoD 5L )/ ]X, .

o0’ Py
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The second term can be dropped since its contribution to g,

is A ’-'AB:ejdsﬁcﬂ H(L L s ( D) where we have interchanged

l!«P
the indices j and p in the second term. By Eq. (A.6)

A= AB:e J,CH& ec("‘ ﬂl)‘ikjkr Lk:Ley(iFXfﬂr)LJqB;' K=

; o _ = -
since quAr = o by Eq.(3.13) and kijqurrr o by the skew

symmetry of Bgr. Hence we have

M::[k] “fKn(H)B D‘ fdsﬁD(@ﬂAL ¢)5(¢)}{ (D.4)

Trubnikov’s dielectric tensor applies to the case of
zero drift velocity (Aa = o) and zero d.c. electric field

(Da4 = La4 = o). Under these conditions, Eq.(D.4) gives

M. [k = - AB, [ fagpd (L 5oL s)K,

(D.5)

‘T[k] *1kM —*1AB [qugﬁ(l(L rﬂ L ss)dl( ,

because

ks, '[(cf) !(L ~ik § /.1)\ k{QJLJLJ-n [D +e‘('“ﬂ L -B] AS

J ] """"J v-\nnJ J

by Egs.(A.7) and (A.6), and therefore k]sj = éjsjﬂ/c by .

Eg. (3.13). Integrating the second term of Eq. (D.5) by parts

and using Eq. (A.7) again, we have

1

J; D‘]: i Aﬂﬂépri [,16 (ngr;rqus— Dpd }{2>
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We thus obtain Trubnikov’'s dielectric tensor 22

by the relationship

1

J o= -iw (é:m- S«p) E;/‘f'n

é

’

defined
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