The Relativistic Theory of Electromagnetic
Susceptibility and its Application to
Plasmas

Richard A. O'Sullivan and Heinrich Derfler

IPP IV/55

April 1973

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK

GARCHING BEI MÜNCHEN

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK

GARCHING BEI MÜNCHEN

The Relativistic Theory of Electromagnetic Susceptibility and its Application to Plasmas

Richard A. O'Sullivan and Heinrich Derfler

IPP IV/55

April 1973

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem Max-Planck-Institut für Plasmaphysik und der Europäischen Atomgemeinschaft über die Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgeführt. IPP IV/55 R. A. O'Sullivan H. Derfler

The Relativistic Theory
of Electromagnetic
Susceptibility and its
Application to Plasmas

April 1973 (in English)

Abstract

Covariant constitutive relations are developed for an arbitrary, anisotropic, dispersive, dissipative medium, thus allowing for relaxation phenomena, and the covariant wave dispersion relation is derived. The susceptibility tensor of order four is given explicitly for a Vlasov plasma with arbitrary velocity distribution and non-zero d.c. electric field. It is then shown how to determine the constitutive relation explicitly from the moment of the single particle current, without using the Vlasov equation. The familiar "dielectric tensor" is obtained as a special case.

I. INTRODUCTION

Since the pioneering work of Clemmow and Wilson 1, 2, Buneman 3 and others, the kinetic theory of relativistic plasmas has acquired an extensive literature. See for example the articles listed by the authors of references 4 - 9 . Basic to many treatments is the dielectric tensor derived by Trubnikov lo from the three-dimensional relativistic Vlasov equation for a stationary, Maxwellian plasma with zero d.c. electric field. Since the dielectric tensor is not covariant, however, one of the main advantages of a relativistic treatment, namely the direct application to drifting plasmas, is lost by this method. Furthermore, the extension of Trubnikov's dielectric tensor to cases where the d.c. electric field is not zero is far from obvious. In order to write covariant constitutive equations, one needs the four-dimensional magnetization-polarization tensor, which was introduced by Dällenbach 11 and Pauli 12 . They showed, on the basis of intuitive physical arguments, that it can be expressed formally in terms of the averaged moment of the single particle current density. They did not, however, obtain the relationship between this tensor and the electromagnetic field tensor.

In this paper, we develop the theory of the covariant constitutive relations for an arbitrary, anisotropic, dispersive medium, allowing for relaxation phenomena. To do this we replace the familiar dielectric tensor of order two by a susceptibility tensor of order four, which relates the

electromagnetic field tensor to the magnetization-polarization tensor already mentioned. Taking the example of a Vlasov plasma, we find an explicit expression for the susceptibility tensor, and hence for the unspecified terms occurring in Dällenbach's expression for the magnetization-polarization tensor. The susceptibility tensor would be of particular importance in applications to a multiple drift plasma where it would be difficult to obtain the same result by Lorentz transformations. In deriving the susceptibility tensor, we regard all particles in the plasma as bound particles, so that the free current density is zero. This model is particularly useful for bounded plasmas, since it removes the need to work with surface charges and currents. The model has been used by Derfler and Omura 13 who worked non relativistically. They divided the total plasma current into magnetization and polarization currents, from which they derived separately the magnetic permeability and dielectric permittivity tensors, whereas all previous treatments lump both terms into one equivalent expression, commonly called "the dielectric tensor" 14, 15.

In section II, we define the fourth order susceptibility and permittivity tensors, and derive the general wave dispersion relation in covariant form. In section III, we solve the manifestly covariant Vlasov equation for a drifting plasma with non-zero d.c. electric field in terms of a four-dimensional gyro-tensor. In section IV, the explicit form of the magnetization-polarization tensor is first derived from the first-order solution of the Vlasov

equation. Then, after solving the first-order equation of motion in terms of Lagrangian variables, we show how the magnetization-polarization tensor can be obtained, independently of the Vlasov equation, from the moment of the single particle current. In section V we integrate the magnetization-polarization tensor for a drifting equilibrium plasma and finally obtain Trubnikov's dielectric tensor as a special case.

II. COVARIANT CONSTITUTIVE EQUATIONS FOR AN ANISOTROPIC MEDIUM

Throughout the paper, we adopt the following conventions: Unless otherwise indicated, Roman subscripts take the values 1 to 4 and Greek subscripts go from 1 to 3. We use Minkowski coordinates, in which the four vector f has components f_i , where f_{α} are the components of a spacelike vector f_{α} and $f_{\alpha} = if_{\alpha}$ is the timelike component. For example, x denotes the world-point, with $x_{\alpha} = ct$. We denote the volume element df_{α} df_{α} df_{α} by df_{α} .

For an arbitrary medium, Maxwell's equations are written covariantly in terms of the electromagnetic field tensor B, the excitation tensor H and the four-vector free current density J^{free} , as follows:

$$\partial_j B_{ij}^* = 0$$
 , $\partial_j H_{ij} = J_i^{free}$, (2.1)

where B is the dual of B, defined by $B_{ij}^* = \frac{1}{2} \eta_{ijk\ell} B_{k\ell}$, $\eta_{ijk\ell}$ being the alternating tensor of order four. In terms of the familiar three-vectors, we write, following Sommerfeld 16 ,

and

where E and H are the electric and magnetic field strength respectively, B is the magnetic induction and D the electric displacement. B and H are related by the equation

$$H = B/\mu_0 - M \tag{2.2}$$

where M = (M, icp) is the magnetization-polarization tensor, involving the magnetization and polarization vectors, M and P respectively, which describes the effect of the current density due to bound charges,

$$J_i = \partial_i M_{ij}$$

In the kinetic treatment of a plasma, B is the average of the microfield existing between the particles. Regarding all particles as bound particles, we set $J^{free} = o$. The electromagnetic properties of the plasma are then completely described by the tensor M, which in general is a non-linear functional of the field tensor B. In the following, we shall consider small perturbations, B^{1} , from the stationary state B^{0} , with

$$B = B^{\circ} + B^{1}$$
 etc.

and

$$J = J^0 + J^1 + J^{ex}$$

where the higher order contributions of the bound charges are lumped into an equivalent excitation current J^{ex} . For a homogeneous medium, we can then represent the functional relating

the first order perturbations as a linear convolution of the form

$$M_{ij}^{i}(x) = -X_{ijk\ell} * B_{k\ell}^{i} = -\int_{-\infty}^{\infty} d\xi X_{ijk\ell}(x-\xi) B_{k\ell}^{i}(\xi), \qquad (2.3)$$

where X represents the first order susceptibility kernel and the arguments are invariant functionals of x. Hence the convolutions are manifestly covariant with respect to Lorentz transformations,

$$x'_{i} = A_{ij} x_{j}$$
, $A_{ij} = \left(\frac{\delta_{\alpha\beta} + \lambda_{\alpha} \lambda_{\beta}}{-i\lambda_{\alpha}}\right) (\gamma+1) \qquad i\lambda_{\beta}$

where $\lambda_{\omega} = V_{\omega} \gamma / c$, $\gamma = (1 - V_{\omega} V_{\omega} / c^2)^{-\frac{1}{2}}$, V_{ω} being the three-velocity. The convolutions exist in the mathematical sense, even in the presence of instabilities, due to the finite speed of propagation, provided the perturbations are applied at some finite time. For the same reason, the two-sided Laplace transform,

$$B_{ij}^{1}[k] = \iiint_{-\infty}^{\infty} dx \ e^{ik_{j}x_{j}} B_{ij}^{1}(x) , \qquad (2.5)$$

exists and is covariant with respect to Lorentz transformations.

Also, due to the finite speed of propagation, we can always find upper bounds in each inertial frame, such that

$$\begin{aligned} \left| \begin{array}{l} \underline{B}^{1}(x) \right| &< C e^{-x/|x_{\alpha}|} & \text{for } x_{\alpha} \text{ const}, |x_{\alpha}| \rightarrow \infty, \\ \left| \underline{B}^{1}(x) \right| &< C e^{x_{\alpha}x_{\alpha}} & \text{for } x_{\alpha} \text{ const}, x_{\alpha} > ct^{*}, \\ \left| \underline{B}^{1}(x) \right| &= 0 & \text{for } x_{\alpha} \text{ const}, x_{\alpha} < ct^{*}. \end{aligned}$$

It follows from a theorem of Doetsch 17 that $\mathbf{B}^{1}[\mathbf{k}]$ is a regular, analytic function of the complex variables \mathbf{k}_{i} in the strips

$$|\operatorname{Im} k_{\kappa}| \leq \kappa$$
 (2.7)

which include the real wave number axis, and a lower frequency plane

$$Im k_o = Im \omega/c \leq -\kappa_o \qquad (2.8)$$

where κ_{\bullet} is positive in the presence of instabilities. Analytic functions of k_{i} satisfying the conditions of Eqs.(2.7) and (2.8) will henceforth be referred to as $L(\kappa_{\bullet})$ functions. These can be inverted in the form

$$B_{ij}^{1}(x) = (2\pi)^{-4} \iiint_{i\sigma_{i}-\infty}^{i\sigma_{j}+\infty} dk e^{-ik_{j}x_{j}} B_{ij}^{1}[k], \qquad (2.9)$$

where we restrict the Bromwich contours of integration to the regions where $\underline{B}^1[k]$ is regular and analytic, i.e. where $\sigma_* \leq -\kappa_o$, $|\sigma_x| \leq \kappa$. Since \underline{X} (ξ) represents the response of the medium to an impulse localized in space-time, i.e. $\underline{B}^1(\times)$ $\propto \delta(x)$, the susceptibility kernel satisfies conditions similar to Eqs. (2.6) and is therefore an $L(\kappa_*)$ function. Under Laplace analysis Eq. (2.3) takes the form

$$M_{ij}^{1}[k] = -X_{ijk\ell}[k] B_{k\ell}^{1}[k]$$
 (2.10)

and $M^{1}[k]$ is thus an $L(\kappa_{\sigma})$ function. Since, in the following, we shall be concerned only with the Laplace transforms of the tensors, we shall delete the square brackets identifying the

transforms wherever no confusion can arise. The calculations in Appendices B and C will be performed for k_{α} real and Im $k_{\alpha} < 0$, it being understood that the results apply to the region specified in Eqs. (2.7) and (2.8) and can be extended by analytical continuation.

By the skew-symmetry of M_{ij}^{i} and $B_{k\ell}^{i}$, $X_{ijk\ell}$ must be skew-symmetric in the index pairs (i,j) and (k, ℓ). Taking the transform of Eq.(2.2) and substituting Eq.(2.10) we obtain

$$H_{ij}^{1} = T_{ijkl} B_{kl}^{1}$$
 (2.11)

where

In terms of this tensor, we can write the Laplace transforms of Maxwell's Eqs.(2.1) in the form

$$\eta_{mpqr} k_p B_{qr}^i = 0, \quad -i H_{mp}^i k_p = T_{mpqr} k_p B_{qr}^i = J_m^{ex}.$$
(2.12)

These equations can be solved most conveniently by means of the vector potential A, defined in the usual manner, such that

$$B_{qr}^{i}(x) = \partial_{q} A_{r}(x) - \partial_{r} A_{q}(x) \implies B_{qr}^{i} = k_{q} A_{r} - k_{r} A_{q} = k_{[q} A_{r]}$$

satisfies the first of Eqs. (2.12) identically. The problem thus reduces to the solution of the second set of Maxwell's equations, which, in terms of the vector potential, takes the form

$$K_{mr}A_r = \frac{1}{2}iJ_m^{ex}, K_{mr} = T_{mpqr}k_pk_q$$
 (2.13)

From the skew-symmetry of T, it follows that the rows and columns respectively of the matrix K are linearly dependent, i.e.

$$K_{mr} k_r = 0$$
 , $k_m K_{mr} = 0$. (2.14)

Thus the determinant $\|K_{mr}\|$ vanishes identically for general k. It is therefore obvious that the equation $\|K_{mr}\| = 0$ cannot be the wave dispersion relation, as has been claimed ¹⁸. By substituting from Eqs. (2.14) for rows and columns in the 3 x 3 minors of K_{mr} , it is easy to show that the cofactor \overline{K}_{mr} of K_{mr} equals K K_{m} , where K is an invariant. We can express K in terms of the trace, \overline{K}_{ii} :

$$K = \bar{K}_{ii} / k_{j} k_{j} . \qquad (2.15)$$

Thus the cotensor can be written in the form

$$\bar{K}_{mr} = k_m k_r K = k_m k_r \bar{K}_{ii} / k_j k_j$$
 (2.16)

Provided $K \neq 0$, it follows that the system of Eqs.(2.13) has rank three and hence can be solved for general k when the continuity equation, $k_m J_m = 0$, is satisfied. If K were zero, then by Eq.(2.16), all the factors \overline{K}_{mr} would vanish, so that the system of Eqs.(2.13) would have rank < 3. In this case, we would have yet another condition on J for general k, which would be unphysical.

By deleting in Eqs. (2.13) the Mth row and Rth column, we get the system of equations

$$K_{\mu\rho} A_{\rho} + K_{\mu R} A_{R} = \frac{1}{2} i J_{\mu}^{ex} , \quad \mu \neq M , \qquad (2.17)$$

$$K_{Mp}A_{p} + K_{MR}A_{R} = \frac{1}{2}iJ_{M}^{ex}, \quad p \neq R,$$
 (2.18)

where the summation convention is suspended for capital subscripts. We first solve Eq.(2.17) in the form

$$A_{\rho} = \frac{1}{2} i K_{\rho\mu}^{-1} J_{\mu}^{ex} - K_{\rho\mu}^{-1} K_{\mu R} A_{R}$$
 (2.19)

and substitute from Eqs. (2.14) the relations

$$K_{\mu R} = -K_{\mu \rho} k_{\rho} / k_{R}$$
, $K_{\mu \rho} = -K_{\mu \rho} k_{\mu} / k_{M}$

into Eqs.(2.18) and (2.19). We thus confirm that the continuity equation $k_m J_m = o$ must be satisfied, and obtain the solution of Eqs.(2.13) in the form

$$B_{RP}^{i} = k_{[R} A_{P]} = \frac{1}{2} i K_{PP}^{-1} k_{R} J_{PP}^{ex}. \qquad (2.20)$$

To write this result covariantly, we first recall that the 3 x 3 matrix K $\mu\rho$ can be inverted by Cramer's rule in the form

$$K_{\mu\rho}^{-1} = \overline{K}_{M\mu R\rho} / \overline{K}_{MR} , \qquad (2.21)$$

where

$$\vec{K}_{mr} = \eta_{mnpq} \, \eta_{rstu} \, K_{ns} \, K_{pt} \, K_{qu} \, / 3!$$

and

are the cotensors to K_{mr} of second and fourth order respectively. Substituting Eq.(2.21) into Eq.(2.20) and using Eq.(2.16), we obtain, on multiplication with k_M^2 ,

$$k_{M}^{2}B_{R\rho}^{1} = \frac{1}{2}iK_{M\mu R\rho}k_{M}J_{\mu}^{ex}k_{j}k_{j}/K_{ii}$$
 (2.22)

By the skew symmetry of $K_{M\mu R\rho}$, setting $\mu = M$ and $\rho = R$ would give zero contribution, so we can lift the restrictions $\mu \neq M$ and $\rho \neq R$, replacing μ by n and ρ by s. We can then sum over M from 1 to 4, which produces a factor $k_j k_j$ on the left-hand side of Eq.(2.22) and cancels the one on the right-hand side. Then M and R lose their uniqueness and can be replaced by m and r respectively. We can now write the solution of the inhomogeneous Maxwell's equations for general k in the manifestly covariant form

$$4B_{rs}^{1} = i \overline{K}_{mnrs} k_{[m]} J_{n]}^{ex} / \overline{K}_{ii} = i \overline{K}_{mnrs} k_{[m]} / k_{i} k_{i} K. \qquad (2.23)$$

It can be verified immediately that the excitation tensor

$$H_{mn}^{1} = -ik_{[m}J_{n]}^{ex}/k_{i}k_{i}$$

satisfies the second set of Maxwell's Eq.(2.12) for general k. Therefore, by substitution into Eq.(2.23), we obtain the inverse of the permittivity tensor, defined in Eq.(2.11), in the form

$$B_{rs}^{1} = T_{rsmn}^{-1} H_{mn}^{1}$$
 (2.24)

where

$$T^{-1} = -\frac{1}{4} \overline{K} / K \qquad (2.25)$$

Using the tensors \underline{T} and \underline{T}^{-1} , we can now rewrite the constitutive Eq.(2.2) in either of the alternative forms

$$M_{ij}^{1} = -\left(T_{ijk\ell} - \delta_{i[k} \delta_{\ell]j} / 2\mu_{o}\right) B_{k\ell}^{1},$$

$$M_{ij}^{1*} = \left(T_{ijk\ell}^{-1*} - \delta_{i[k} \delta_{\ell]j} / 2\mu_{o}\right) H_{k\ell}^{3*},$$
(2.26)

where

We have already argued that K does not vanish for general k. On the other hand, K must vanish in regions where the current density in Eq. (2.23) vanishes in order to allow for finite fields B, e.g. to explain the phenomenon of propagating waves. The covariant wave dispersion function is therefore given by the invariant K defined in Eq. (2.15). One may be tempted to conclude from Eq. (2.25) that the inverse tensors \mathbf{T}^{-1} and \mathbf{X}^{-1} would not exist in the presence of waves. This apparent contradiction can be resolved immediately in the construction of the tensor kernels $\mathbf{T}^{-1}(\mathbf{x})$ and $\mathbf{X}^{-1}(\mathbf{x})$ in the space-time domain by means of the inverse Laplace transform. In this process, one encounters the problem of residue calculus at discrete and/or continuous sets of poles $\mathbf{k}^{(n)}$ of $\mathbf{T}^{-1}[\mathbf{k}]$ and $\mathbf{X}^{-1}[\mathbf{k}]$ which are in fact solutions of the wave dispersion relation $\mathbf{K} = \mathbf{0}$.

Provided Min Im $k_o^{(n)} > -\kappa_o$, one can adjust the Bromwich contour so that $\sigma_o < -\kappa_o$, implying that $\mathbf{T}^{-1}[\mathbf{k}]$ is an $\mathbf{L}(\kappa_o)$ function. The proof that this condition is always satisfied can be given only on the basis of the kinetic theory of $\mathbf{T}[\mathbf{k}]$, as developed in sections IV and V. Any finding to the contrary would mean that the problem was ill-posed to start with. Since Maxwell's equations are satisfied for $\mathbf{k}^{(n)}$, the residue calculus leads to an expression for the propagators or Green's functions $\mathbf{T}^{-1}(\mathbf{x})$ and $\mathbf{X}^{-1}(\mathbf{x})$ in terms of waves as discussed by Derfler 19-22 in the context of his wave stability criteria.

For purposes of comparison with the familiar non-covariant dielectric permittivity and diamagnetic permeability tensors of order two, we will now determine the components of T and T in the rest frame. In the present context, this is unambiguously defined as that frame in which the three-vector fields are related in the form

$$D_{\alpha} = \epsilon_{o} \epsilon_{\alpha\beta} E_{\beta}$$
, $H_{\alpha} = \mu^{-1}_{\alpha\beta} B_{\beta} / \mu_{o}$,

which, following Sommerfeld 16 , is the natural way of writing the constitutive relations. Substituting these relationships into Eqs. (2.11) and (2.24) and using the fact that, in the rest frame, $\stackrel{\text{\tiny $15}}{\text{\tiny 15}}$ is independent of E and $\stackrel{\text{\tiny 15}}{\text{\tiny 15}}$ of $\stackrel{\text{\tiny 25}}{\text{\tiny 15}}$, we obtain

$$T_{\alpha\beta\gamma4} = T_{\alpha+\beta\gamma} = 0 = T_{\alpha\beta\gamma4}^{-1*} = T_{\alpha+\beta\gamma}^{-1*}$$

$$T_{\alpha\beta\gamma\delta} = \eta_{\alpha\beta\eta} \mu_{\eta\varsigma}^{-1} \eta_{\varsigma\gamma\delta} / 2\mu_{o}, \quad T_{\alpha4\gamma4} = \epsilon_{\alpha\gamma} / 2\mu_{o},$$

$$T_{\alpha\beta\gamma\delta}^{-1*} = \frac{1}{2} \mu_{o} \eta_{\alpha\beta\eta} \epsilon_{\eta\varsigma}^{-1} \eta_{\varsigma\gamma\delta}, \quad T_{\alpha4\gamma4} = \frac{1}{2} \mu_{o} \mu_{\alpha\gamma}.$$

$$(2.27)$$

It should be noted for completeness that the so-called "plasma dielectric tensor", $\widetilde{\epsilon}_{\prec\beta}$, defined by

$$J_{\alpha}^{1} = -i\omega \left(\tilde{\epsilon}_{\alpha\beta} - \delta_{\alpha\beta} \right) E_{\beta}^{1} / 4\pi$$
,

is actually a combination of the dielectric permittivity and diamagnetic permeability in the form

$$\widetilde{\epsilon}_{\kappa\beta} = \epsilon_{\kappa\beta} + (k_{4})^{-2} \eta_{\gamma\gamma\delta} k_{\gamma} (\delta_{\delta\epsilon} - \mu_{\delta\epsilon}^{-1}) k_{\gamma} \eta_{\epsilon\varsigma\beta} . \quad (2.28)$$

Substitution of Eqs. (2.27) and (2.28) into the covariant dispersion function of Eq. (2.15) gives the familiar three dimensional form of the dispersion relation in the rest frame, viz.

In the case of an isotropic, non-dispersive medium, where ϵ and μ are scalars, the tensors T and T^{-1} simplify, such that in the rest frame

$$T_{\alpha\beta\gamma\delta} = \eta_{\alpha\beta\lambda} \, \eta_{\lambda\gamma\delta} / 2\,\mu_0 \,\mu \,, \quad T_{\alpha4\gamma4} = \epsilon \, \delta_{\alpha\gamma} / 2\,\mu_0 \,,$$

$$T_{\alpha\beta\gamma\delta}^{-1*} = \mu_0 \, \eta_{\alpha\beta\lambda} \, \eta_{\lambda\gamma\delta} / 2\epsilon \,, \quad T_{\alpha4\gamma4}^{-1*} = \frac{1}{2} \, \mu_0 \mu \, \delta_{\alpha\gamma} \,.$$

By Lorentz transformation using Eq.(2.4), we can obtain expressions for the tensors \underline{T} and \underline{T}^{-1} in terms of ε and μ , in any inertial frame. Eqs.(2.26) then reduce to the constitutive equations for an isotropic, non-dispersive medium given in three-dimensional form by Sommerfeld and in four-dimensional form by Pauli and Synge $\frac{24}{\varepsilon}$, viz.:

$$M_{ij}^{1} \lambda_{j} = -(\epsilon - 1) B_{ij}^{1} \lambda_{j} / \mu_{\bullet} = -\chi_{e} B_{ij}^{1} \lambda_{j} / \mu_{\bullet}$$

$$M_{ij}^{1*} \lambda_{j} = (\mu - 1) H_{ij}^{1*} \lambda_{j} = \chi_{m} H_{ij}^{1*} \lambda_{j}$$
(2.29)

where χ_e and χ_m are the electric and magnetic susceptibilities. The analogy between Eqs.(2.26) and (2.29) was anticipated in designating the tensor χ as the covariant electromagnetic susceptibility tensor. Whereas, in the previous treatments, the two equations (2.29) were needed to describe the properties of the medium, either one of our Eqs.(2.26) contains all the required information, since the tensor χ combines the electric and magnetic susceptibilities.

III. SOLUTION OF THE COVARIANT VLASOV EQUATION

In covariant form, the Vlasov equation is

$$u_i \frac{\partial f}{\partial x_i} - \frac{e}{mc} B_{ij} \frac{\partial f}{\partial u_i} u_j = 0 , \qquad (3.1)$$

where e is the electronic charge, m is the proper mass of an electron and $u_i = dx_i/ds$ is the four-velocity of an electron, s being defined by $ds^2 = -dx_i dx_i$. The analysis can be generalized to a multi-species plasma, but, to avoid extra subscripts, we shall confine our attention to electrons within a background of very heavy ions. For comparison with the three-dimensional formulation, we note that $u_x = v_x \gamma/c$, $u_4 = i\gamma$, where v_x is the classical three-velocity and $\gamma = (1-v^2/c^2)^{-\frac{1}{2}}$

The distribution function is restricted by the relativistic energy-momentum relationship, $u_i^u = -1$, to a hypersphere in the eight dimensional phase space whose volume element is $dx du = dx_0 dx_1 dx_2 dx_3 du_0 du_1 du_2 du_3$.

Hence we can use the Dirac delta function to write

$$f(x,u) = F(x,u) \delta(u_{i}u_{i}+1)$$

$$= F(x_{i}u_{i}) \left[\delta(u_{0} - \sqrt{u_{0}u_{0}+1}) + \delta(u_{0} + \sqrt{u_{0}u_{0}+1}) \right] / 2u_{0}$$
(3.2)

where $\frac{1}{2}F(x_{\alpha},u_{\alpha},t)$ gives the usual distribution function over six-dimensional phase space. The four-vector current density is given by

$$J_i(x) = -ec \int du u_i f(x, u) \qquad (3.3)$$

$$\int du = \iiint_{u_1 = \rho_1}^{\infty} du_0 du_1 du_2 du_3$$

with $\rho_{\alpha}=-\infty$, $\rho_{\circ}=1$. This integral is covariant under Lorentz transformation since $u_{\circ}=\gamma\geq 1$ in all inertial frames. The definition of $J_{i}(x)$ is compatible with the normalization condition obtained by setting the number of particles in the system,

$$N = \int dx_1 dx_2 dx_3 n(x) = \int dx_1 dx_2 dx_3 du u_0 f(x, u)$$

= $\int dx_1 dx_2 dx_3 du_1 du_2 du_3 \frac{1}{2} F(x_{\alpha_1} u_{\alpha_2}, t)$ (3.4)

The Lorentz invariance of these expressions is demonstrated by Akama ⁹. We note that the first integral in Eq.(3.4) involves the product of relative volume by relative number density in the case of a drifting plasma and proper volume by proper number density in the case of a stationary plasma.

We now linearize Eq.(3.1) with the ansatz $f(x,u) = f^{\circ}(u) + f^{i}(x,u)$ which gives to zeroth order

$$B_{ij}^{\circ} u_{j} \partial f^{\circ} / \partial u_{i} = 0$$
 (3.5)

and to first order

$$u_i \frac{\partial f^1}{\partial x_i} - e(mc)^{-1} (B_{ij}^o \frac{\partial f^1}{\partial u_i} + B_{ij}^i \frac{\partial f^2}{\partial u_i}) u_j = 0$$
. (3.6)

Taking the two-sided Laplace transform, we have

$$-ik_{i}u_{i}f^{1}-e(mc)^{-1}(B_{ij}^{\circ}\partial f^{1}/\partial u_{i}+B_{ij}^{1}\partial f^{\circ}/\partial u_{i})u_{j}=0$$
 (3.7)

where Eq. (3.7) involves functions of k and u.

We solve Eqs. (3.5) and (3.7) by the method of characteristics. The zeroth order equation of motion

$$du_{i}(s)/ds = -e(mc)^{-1}B_{ij}^{o}u_{j}(s)$$
 (3.8)

is formally equivalent to a characteristic equation of both (3.5) and (3.7). Its solution, in matrix notation, is $u(s) = u(s') \exp \Phi(s)$ where

$$\exp \Phi = \sum_{n=0}^{\infty} \frac{\Phi^n}{n!}$$
, $\Phi_{ij}(s) = -\frac{e}{mc} \int_{s'}^{s} B_{ij}^{\bullet}(s'') ds''$.

A necessary and sufficient condition for the existence of this solution is that $\underline{B}^{O}(s)$ has a set of eigenvectors independent of s. In particular, the solution holds if \underline{B}^{O} is independent of s. By the Cayley-Hamilton theorem, \underline{f} satisfies its own characteristic equation, viz.

$$0 = \| \underline{\phi} - \lambda \underline{I} \| = \| \underline{\phi} \| - \alpha \lambda + \beta \lambda^2 - \gamma \lambda^3 + \lambda^4, \qquad (3.9)$$

where α , β , γ are independent of λ . Since $\frac{\Phi}{\alpha}$ is skew-symmetric, it follows that $\|\frac{\Phi}{\alpha}\| = \alpha = \gamma = 0$ and $\beta = \frac{1}{2}\Phi_{ij}\Phi_{ij}$. If β^0 is independent of s (i.e. for constant external fields), then

$$\beta = (s-s')^{2} \left[(B^{0})^{2} (E^{0})^{2} / c^{2} \right] e^{2} / m^{2} c^{2}$$

hence we write $\beta = (s-s')^2 \Omega^2/c^2$ covariantly, where Ω may be regarded as the relativistically covariant cyclotron

frequency. Introducing the variable $\phi=\sqrt{\beta}$, for s>s', and using Eq.(3.9) to generate a recurrence relation for Φ^n we obtain the covariant gyrotensor D in the form

$$D_{ij}\left(-\phi\right) \equiv \left(e^{\frac{d}{2}}\right)_{ij} = \delta_{ij} - \frac{e}{m\Omega} B_{ij}^{\circ} \phi - \left(\frac{e}{m\Omega}\right)^{2} B_{ik}^{\circ} B_{kj}^{\circ} \left(\cos\phi - 1\right) + \left(\frac{e}{m\Omega}\right)^{3} B_{ik}^{\circ} B_{kj}^{\circ} \left(\sin\phi - \phi\right).$$

Under the usual physical condition that $\underline{\mathbb{E}}^0 \perp \underline{\beta}^0$ in the laboratory frame, it is easily verified that $\underline{\phi}^3 = -\beta \underline{\phi}$. Since this equation is covariant, we have in general

$$D_{ij}(-\phi) = \delta_{ij} - \left(\frac{e}{m\Omega}\right)^2 B_{ik} B_{kj}(\cos\phi - 1) - \frac{e}{m\Omega} B_{ij} \sin\phi . \qquad (3.10)$$

Further properties of $\mathbb{D}(-\phi)$ are established in Appendix A. In general, the solution of Eq.(3.8) is

$$u_i(s) = D_{ij}(-\phi)u_j(s')$$
 (3.11)

The most general solution of Eq.(3.5) is thus a function $f^{O}(u)$ such that

$$f^{\circ}[u(s)] = f^{\circ}[u(s')] . \qquad (3.12)$$

For example, $f^{O}(u) = F(u_i u_i, u_i \lambda_i)$ satisfies Eq.(3.5) provided

$$\lambda_i B_{ij}^{\circ} = 0 . \qquad (3.13)$$

In particular, λ_i can represent the four-vector plasma drift velocity. In this case, the drift velocity observed in the laboratory frame is restricted to a component parallel to B^0 and a component of magnitude E^0/B^0 in the direction $E^0 \times B^0$. Under these conditions, the Synge-Jüttner distribution, 25

$$f'(u) = \alpha e^{\mu \lambda_i u_i} \delta(u_i u_i + 1)$$
, (3.14)

 α and μ constants, is a solution of Eq. (3.5).

We now solve the remaining characteristic equation of Eq.(3.7), viz.

$$d f^{1}(s)/ds = e(mc)^{-1}B_{ij}^{1} u_{j}(s) \partial f^{2}(s)/\partial u_{i} + ik_{i}u_{i}(s) f^{1}(s)$$

$$\equiv q(u) + ik_{i}u_{i} f^{1}.$$
(3.15)

The homogeneous part has the solution

$$f^{H}(s) = const. exp [i \int_{s}^{s} k_{i} u_{i}(s') ds']$$

where u(s') is given by inversion of Eq.(3.11), using Eq.(A.1). The inhomogeneous equation can now be solved by variation of constant. Substituting $f^1(s) = C(s) f^H(s)$, we obtain

$$C'(s)f''(s) = g \left[u(s)\right]$$

$$C(s) = \int_{s}^{s} \frac{g\left[u(s')\right]}{f''(s')} ds'$$

$$f^{1}[k,u(s)] = \int_{-\infty}^{s} \exp\left[i\int_{s'}^{s}k_{i}u_{i}(s'')ds''\right]g[u(s')]ds'$$
 (3.16)

Changing the variables of integration to $\phi = (s-s')\Omega/c$ and $\phi' = (s-s'')\Omega/c$, we have

$$u_{i}(s') = D_{ij}(\phi)u_{j}(s), \quad u_{i}(s'') = D_{ij}(\phi')u_{j}(s)$$
 (3.17)

The variable s is now eliminated from Eq.(3.16), since it appears only in u(s). Introducing the tensor $L(\phi) = \int_{0}^{\phi} D(\phi') d\phi'$ we obtain

$$f^{1}[k,u] = \frac{c}{\Omega} \int_{0}^{\infty} \exp\left[ick_{i}L_{ij}(\phi)u_{j}/\Omega\right] g\left[D_{ke}(\phi)u_{e}\right] d\phi$$
.

We now evaluate $g\left[D_{k\ell}(\phi)u_{\ell}\right]$ by substitution into Eq.(3.15). By Eq.(3.12), it follows that

$$\partial f^{\circ}(u)/\partial u_{k}|_{u_{k} \to D_{k \ell} u_{\ell}} = D_{k \ell} \partial f^{\circ}(u)/\partial u_{\ell}$$

The Laplace-transformed solution of the first order Vlasov equation is therefore:

$$f^{1}[k,u] = \frac{e}{m\Omega} \int_{0}^{\infty} d\phi \exp\left[ick_{i}L_{ij}(\phi)u_{j}/\Omega\right] B_{k\ell}^{1}[k] D_{km}(\phi) \frac{\partial f(u)}{\partial u_{m}} D_{\ell m}(\phi)u_{m} . (3.18)$$

IV. COVARIANT MAGNETIZATION-POLARIZATION TENSOR

From Eq. (3.3), the Laplace-transformed plasma current density due to the first order perturbation is given by

$$J_{[k]}^{1}[k] = -ec \int duu_{[k]} f^{1}[k,u]$$
 (4.1)

It has been shown that Eq.(4.1) implies that J^1 satisfies the continuity equation, which in k-space takes the form

$$k_i J_i^4[k] = 0.$$
 (4.2)

We now seek to express $J^{i}[k]$ in terms of the magnetization-polarization tensor $M^{i}[k]$ such that

$$J_{i}^{1}[k] = -ik_{j} M_{ij}^{1} [k] .$$

The continuity Eq. (4.2) confirms that $M^{1}[k]$ is skew-symmetric. From Eqs. (3.18) and (4.1) we have, for the first order current density,

$$J_{i}^{1}[k] = -\frac{e^{2}c}{m\Omega} \int_{0}^{\infty} d\phi B_{k\ell}^{i} D_{kn} D_{\ell n} \int_{0}^{\infty} du e^{ir_{i}u_{i}} u_{i}u_{n} \frac{\partial f}{\partial u_{n}}$$
(4.3)

where

In Appendix B, we show by partial integration that

$$J_{i}^{1}[k] = -k_{j} \frac{ie^{2}c^{2}}{m\Omega^{2}} B_{k\ell}^{1} \int du \int_{0}^{\infty} d\phi f^{*} e^{ir_{p}u_{p}} L_{km} D_{\ell n} u_{n} u_{q} \delta_{i[m} \delta_{q]_{j}} . \tag{4.4}$$

We can therefore write

$$M_{ij}^{1}[k] = -ec\int du f'(u) \Delta x_{[i}u_{i]}, \qquad (4.5)$$

where

$$\Delta_{x_i} = -\frac{ec}{m\Omega^2} B_{ke}^1[k] \int_0^\infty d\phi e^{ir_p u_p} L_{ki} D_{\ell n} u_n$$

Comparing Eq.(4.5) with Eq.(2.10), one sees that we have now obtained an explicit expression for the covariant susceptibility tensor $X_{ijk\ell}$, in the case of a drifting Vlasov plasma with an arbitrary zero-order velocity distribution. In Appendix C, we show that Δx is the Laplace-transformed perturbation to the zero order orbit of an electron, expressed in terms of the Lagrangian variables u_i . It is thus clear that we can obtain the expression (4.5) for M_{in}^{i} directly from the equation of motion, without using the Vlasov equation. The same result could be obtained by means of the Hamilton-Jacobi theory given by Pfirsch 23 .

If we now recall the positive ions needed to maintain charge neutrality in the plasma, it is clear that the zero-order contribution to the plasma current density is zero and we can write

$$M_{ij} = M_{ij}^{o} + M_{ij}^{i} = \langle \frac{1}{2} \rho_{o} c \times_{[i} u_{j]} \rangle_{av},$$
 (4.6)

where ρ_o is the microscopic charge distribution in the plasma and \times is the position of a particle under the influence of the

perturbing electromagnetic field. Writing

we see that M; is the dual of the averaged four-dimensional moment of current density. We have now derived explicitly the magnetization-polarization tensor for a drifting Vlasov plasma and expressed it in the form arrived at by Dällenbach on the basis of physical arguments and symmetry requirements. Whereas, however, Dällenbach wrote the Eq. (4.6) in real space, interpreting the average as a volume integral and restricting the application to nondispersive, lossless media, we have extended its application to dispersive, dissipative media, where the equation now holds in Laplace transform space and involves an ensemble average.

V. MAGNETIZATION-POLARIZATION TENSOR FOR AN EQUILIBRIUM PLASMA

In Eqs. (4.5) we have given the magnetization-polarization tensor M^1 for an arbitrary velocity distribution $f^0(u)$. For a given zero-order distribution in the rest frame, the covariant form of M^1 could be obtained by Lorentz transformation. For an equilibrium plasma, however, we can substitute for $f^0(u)$ the covariant Synge-Jüttner distribution of Eq. (3.14), which, in the rest frame, reduces to the relativistic Maxwell-Boltzmann distribution. The constant α occurring in Eq. (3.14) is the normalizing factor and $\mu = mc^2/kT$, kT being the kinetic temperature in the rest frame of the plasma. Performing the velocity integration for a Synge-Jüttner distribution in Appendix D, we obtain

$$\mathsf{M}_{ij}^{1}[k] = -\frac{e^{2}c^{2}n_{o}\mu}{m\Omega^{2}K_{o}(\mu)} \mathcal{B}_{ke}^{i}[k] \mathcal{S}_{i[m} \mathcal{S}_{n]j} \int_{0}^{\infty} d\phi \mathcal{D}_{ep}(\phi) \mathcal{L}_{km}(\phi) \left(\mathcal{S}_{p} \mathcal{S}_{n} \mathcal{K}_{3} - \mathcal{S}_{p,n} \mathcal{K}_{2}\right) \quad (5.1)$$

where n_0 is the proper number density of the plasma,

$$\mathcal{K}_{n}(\phi) = (s, s,)^{-\frac{1}{2}n} K_{n}(\sqrt{s, s},),$$

 K_n being the modified Hankel function of order n and

$$s_i(\phi) = r_i(\phi) - i\mu\lambda_i$$
.

We recall that the drift velocity λ is restricted by Eq.(3.13) in the laboratory frame to components parallel to β^{O} and in the $E^{O} \times \beta^{O}$ direction.

For a stationary plasma with no d.c. electric field, we have λ_{α} = o = D $_{\alpha 4}$ = L $_{\alpha 4}$ and the current density, derived in Appendix D, is

$$J_{\alpha}^{1}[k] = -ik, M_{\alpha j}^{1} = -\frac{e^{2}n_{o}\mu^{2}}{m\Omega K_{2}(\mu)} E_{\beta}^{1} \int_{0}^{\infty} d\phi \left(\mathcal{K}_{2} D_{\beta\alpha} - \mathcal{K}_{3} r_{\alpha} r_{\gamma} D_{\beta\gamma}\right).$$

In this case, we thus obtain the well-known "dielectric tensor" of Trubnikov.

$$\tilde{\epsilon}_{\alpha\beta} = \delta_{\alpha\beta} + \frac{i\omega_p^2 \mu^2}{\omega_{J2} K_2(\mu)} \int_0^\infty d\phi \left(\mathcal{K}_2 D_{\beta\alpha} - \mathcal{K}_3 r_{\alpha} r_{\gamma} D_{\beta\gamma} \right)$$

where $\omega_p = (4\pi e^2 n_o/m)^{\frac{1}{2}}$ is the plasma frequency.

VI. DISCUSSION

We have developed a covariant description of an arbitrary, anisotropic, dispersive medium, allowing for relaxation phenomena, such as Landau damping. The covariant formulation is especially useful in cases where each of several species of particle has a different drift velocity, for example in a two-stream plasma. In such cases, it would be difficult to obtain the correct constitutive relations by means of Lorentz transformations from the respective rest frames. In Eq. (2.23) we obtained the complete solution of inhomogeneous Maxwell's equations in covariant form. Using the permittivity tensor of order four, T, we wrote in Eq.(2.15) the general wave dispersion function. The inverse permittivity tensor, T-1 of Eq. (2.25) represents the Green's function which is a prerequisite for the covariant solution of the nonlinear problem of wave-wave interaction. Of particular practical interest here is the phenomenon of stimulated synchrotron emission which may well, be responsible for the sharp resonance observed by Fidone et al. 26,27 in experiments intended to determine the self-magnetic field of the toroidal current in Tokamak devices.

In Eq. (4.5) the magnetization-polarization tensor M, and hence the susceptibility tensor X and the permittivity tensor T, are given explicitly for a drifting Vlasov plasma with arbitrary velocity distribution and non-zero d.c. electric field. We allow for drift velocities parallel to the magnetic field as well as in the E x B direction. The tensor M is expressed in terms of the averaged moment of the single particle

current density in Laplace transform space. This result applies even in the case of a dissipative plasma and allows for the occurrence of resonance phenomena. It is thus of more general validity than the formally similar result obtained by Dällenbach. Finally, we showed that in the special case of a stationary Maxwellian plasma with zero d.c. electric field, our results reduces to the relativistic dielectric tensor of Trubnikov.

The theory developed here now makes it possible to formulate Derfler's stability criteria 19 - 22 in a covariant fashion. Furthermore, the M tensor, derived in sections IV and V, represents the relativistic extension of Derfler's and Omura's separation of the plasma current into magnetization and polarization currents in the non-relativistic case. Using this non-relativistic treatment, Puri and Tutter have shown numerically 28 that the magnetic contribution to classical wave dispersion is negligible away from the immediate neighbourhood of the cyclotron harmonic frequencies. It can now be established whether this classical magnetic contribution is meaningful at the cyclotron harmonics or whether it is dominated by relativistic effects. These, according to Shkarovsky 29 are important at the harmonics for perpendicular wave propagation, even at moderate plasma temperatures.

In sections III and IV, we excluded gradients in plasma density and in the unperturbed electromagnetic field. This enabled the tensor M to be written as a simple product in

transform space. In the future, we will extend the present treatment to include gradients. The expressions obtained will then be convolutions in the transform space, like those obtained by Derfler and Leuterer 30 in the non-relativistic treatment of Bernstein waves. Also, the possibility of a covariant formulation involving anisotropic temperature must be investigated because of its importance in plasma physics.

Finally, our treatment of the Vlasov plasma provides a concrete example in which the mechanical response of the medium to an electromagnetic perturbation is given explicitly in covariant form. One is therefore in a position to scrutinize the discrepancies arising out of the differing definitions of the energy-momentum tensor given by Minkowski and Abraham 31. Thus it is hoped that the results obtained in this paper may contribute to a solution of what may be considered the last open question in classical electrodynamics.

ACKNOWLEDGMENT

This work has been performed as part of the joint research program between Euratom and the Max-Planck-Institut für Plasmaphysik.

APPENDIX A: PROPERTIES OF THE GYROTENSOR AND ITS INTEGRAL

The solution of the first order equation of motion for electrons in a Vlasov plasma given in Eqs.(3.10) and (3.11) holds for a varying field \underline{B}^O which commutes with $\underline{\Phi}$, provided Ω is some scalar. In section III, we showed that Ω has special significance when \underline{B}^O is independent of s. Since $\underline{\Phi}$ is skew-symmetric, \underline{D} is orthogonal and therefore

$$D_{ik}(\phi)D_{jk}(\phi) = \delta_{ij} . \qquad (A.1)$$

Denoting differentiation with respect to ϕ by a dot, and using the commutativity of Φ and Φ we obtain

which becomes

$$\dot{D}_{ij}(\phi) = -\frac{e}{m\Omega} B_{ik}^{\circ} D_{kj} = -\frac{e}{m\Omega} D_{ik} B_{kj}^{\circ} , \qquad (A.3)$$

when $\mathbf{B}^{\mathbf{O}}$ is independent of s. In this case, we also have

$$D_{ik}(\phi)D_{kj}(\psi) = D_{ij}(\phi + \psi), \qquad (A.4)$$

$$D_{ij}(\phi) = D_{ji}(-\phi) \Rightarrow L_{ij}(\phi) = -L_{ji}(-\phi), \qquad (A.5)$$

where

$$L(\phi) = \int_{a}^{\phi} D(\phi) d\phi'.$$

We also obtain two useful relationships involving D and L. By Eq.(A.2) D-I = $\int_{0}^{\phi} \vec{D} d\phi' = \int_{0}^{\phi} \vec{D} \cdot \vec{\phi} d\phi'$. Integrating by parts then gives, since $\vec{\phi} = 0$,

$$D - I = L \cdot \dot{\Phi} = \dot{\Phi} \cdot L . \tag{A.6}$$

By Eqs. (A.4,5),

$$D_{ik}(\phi) L_{jk}(\phi) = \int_{0}^{\phi} D_{ij}(\phi - \phi') d\phi' = \int_{0}^{\phi} D_{ij}(\psi) d\psi = L_{ij}(\phi). \tag{A.7}$$

APPENDIX B: INTEGRATION BY PARTS OF Ji (k)

In order to derive Eq.(4.4) from Eq.(4.3) we first integrate by parts, with respect to \mathbf{u}_{m} , each term in the sum represented by the repeated index m. Then

$$J_{i}^{1}[k] = \frac{e^{i}c}{m\Omega} \int_{0}^{\infty} d\phi \, B_{k\ell}^{i} D_{km} D_{\ell n} \int du \, f^{\circ} e^{ir_{i}u_{i}} (ir_{m}u_{i}u_{n} + \delta_{im}u_{n} + \delta_{nm}u_{i}) \,. \tag{B.1}$$

The integrated parts depend on $\left[\int du^3 e^{ir_j u_j} u_i u_n f^{\circ}\right]_{u_m = \rho_m}^{\infty}$, where du^3 represents the volume element of the subspace obtained by holding u_m constant. Now we have

$$\left| e^{ir_{j}u_{j}}u_{i}u_{n}f^{\circ} \right| = \left| exp\left\{ -ik_{+}\left[x_{+}^{\circ}(s') - x_{+}^{\circ}(s) \right] \right\} u_{i}u_{n}f^{\circ} \right|,$$

where $x_{4}^{\circ}(s') = -c\Omega^{-1}L_{4i}(\phi)u_{i}(s) + x_{4}^{\circ}(s)$ is the timelike component of the zero-order particle displacement. On writing $y = I_{m}(ck_{o}) < 0$, the modulus of the exponential factor becomes $e^{-\gamma [t(s')-t(s)]}$ which is bounded by 0 and 1 over the range of ϕ integration, since $-\infty < s' \le s$ and therefore $-\infty < t(s') \le t(s)$. The integrated parts thus vanish under the usual physical requirement that $\left[u_{i}u_{m}f^{\circ}\right]_{u_{m}=p_{m}}^{\infty}=0$.

The third term in Eq.(B.1) vanishes since $B_{k\ell}^{i}$ D_{km} $D_{\ell n}$ δ_{nm} = $B_{k\ell}^{i}$ $\delta_{k\ell}^{i}$ = 0 by Eq.(A.1) and the skew-symmetry of B_{kl}^{i} . We integrate the second term by parts with respect to ϕ , obtaining

$$J_{i}^{(2)}[k] = -\frac{e^{i}c}{m\Omega} B_{k\ell}^{i} \int du \, f u_{n} \int_{0}^{\infty} d\phi \, L_{ki} \left(\dot{D}_{\ell n} + i \dot{r}_{p} u_{p} D_{\ell n} \right) e^{i r_{j} u_{j}} . \tag{B.2}$$

The integrated part depends on

$$\left[D_{e_n} L_{ki} e^{i'ju_j} \right]_{\phi=0}^{\infty} = \left[D_{e_n} L_{ki} \exp\left(-\frac{ic}{12}k_{\alpha}L_{\alpha +}u_{\alpha -}\nu t'_{+}\nu t\right) \right]_{t'=t}^{-\infty},$$

where t' = t(s') and t = t(s). The lower limit vanishes since $L_{ki} = 0$ for t' = t and the upper limit vanishes due to the presence of $e^{-\nu t'}$ By Eq.(A.3), the first term of $J_i^{(2)}$ becomes

$$\begin{split} J_{i}^{(2\alpha)}[k] &= e^{3}c\left(m\Omega\right)^{-2}B_{k\ell}^{1}B_{mn}^{\bullet}\int\!\!du\,f^{\bullet}u_{n}\int_{o}^{\infty}\!\!d\phi\,L_{ki}D_{\ell p}\,e^{ir_{j}u_{j}}S_{mp} \\ &= e^{3}c\left(m\Omega\right)^{-2}B_{k\ell}^{1}B_{mn}^{\bullet}\int_{o}^{\infty}\!\!d\phi\,L_{\ell i}D_{kp}\int\!\!du\,e^{ir_{j}u_{j}}\partial\left(fu_{n}u_{p}\right)\!/\partial u_{m}\,, \end{split}$$

since $B_{m_n}^{\sigma} u_n \partial f^{\sigma} \partial u_m = 0$ by Eq.(3.5) and $B_{m_n}^{\sigma} \delta_{m_n} = 0$ by the skew-symmetry of $B_{m_n}^{\sigma}$. We now integrate by parts with respect to u_m , the integrated parts vanishing by the argument already used, to obtain

$$J_{i}^{(2a)}[k] = -e^{3}c(m\Omega)^{-2} B_{ke}^{1} B_{mn}^{o} \int_{0}^{\infty} d\phi L_{i} D_{kp} \int du e^{ir_{j}u_{j}} f_{u_{n}u_{p}} ick_{q} L_{qm}/\Omega$$

Eliminating B_{mn}^{O} by the use of Eq.(A.6), we find

$$J_{i}^{(2)}[k] = -\frac{ie^{2}c}{m\Omega^{2}}B_{k\ell}^{1}\int du f^{o}\int_{0}^{\infty}d\phi L_{ki}e^{ir_{j}u_{j}}k_{n}u_{n}D_{\ell\rho}u_{\rho}.$$

Substituting into Eq.(B.1) and simplifying the product D_{km}^{r} m by use of Eq.(A.7), we obtain Eq.(4.4).

APPENDIX C: THE PERTURBED PARTICLE ORBIT

To zero order, the equation of motion is given by Eq.(3.8). The velocity perturbation $u^1(s)$, due to the perturbing field B^1 , must be determined from the first order equation

$$du_{k}^{1}(s)/ds = -e(mc)^{-1} \left[B_{k\ell}^{o} u_{\ell}^{1}(s) + (2\pi)^{-4} \int dk B_{k\ell}^{1}[k] e^{-ik_{q} x_{q}^{o}(s)} u_{\ell}^{o}(s) \right]$$
 (C.1)

where we have used the inverse Fourier-Laplace transform for $\underline{B}^1(x)$ and denoted the unperturbed velocity and displacement of the particle by $u^{\hat{}}(s)$ and $x^{\hat{}}(s)$. We seek a solution for $u^{\hat{}}(s)$ by variation of constant, using the ansatz

$$u_{i}^{1}(s) = D_{ij} \left[-\Omega c^{-1}(s-s') \right] w_{j}(s,s')$$

We then have from Eq.(C.1), using Eq.(A.1):

$$u_{i}^{1}(s) = -e(mc)^{-1}(2\pi)^{-4} \int dk \, \beta_{k\ell}^{1}[k] \int_{s_{i}}^{s} ds' \, D_{ki} \left[-\Omega c^{-1}(s'-s) \right] e^{-ik_{q} \chi_{q}^{0}(s')} u_{\ell}(s') \, ,$$

where s_0 is the initial proper time and we have used Eqs.(A.4) and (A.5). Integrating and applying Eq.(A.4) again, we obtain

$$\Delta x_{i}(s) = \int_{s_{o}}^{s} ds' u_{i}^{1}(s') = -e(mc)^{-1}(2\pi)^{-4} \int dk B_{k\ell}^{1} \int_{s_{o}}^{s} ds' D_{im} \left[-\Omega c^{-1}(s'-s) \right] \int_{s_{o}}^{s'} ds'' D_{km} \left[-\Omega c^{-1}(s'-s) \right] e^{-ik_{q}x_{q}^{0}(s'')} u_{i}^{s'}(s')$$

Using Eq.(3.16) and its integral to represent u'(s'') and x'(s'') in terms of the Lagrangian variables u'(s) and x'(s) and changing the variables of integration to $\phi = \Omega c^{-1}(s-s')$ and $\phi' = \Omega c^{-1}(s-s'')$, we can eliminate s, since it occurs only in the arguments of the displacements and velocity. Then we have

Integrating by parts with respect to ϕ , and using Eq.(A.7), we obtain

$$\Delta x_{i} = -\frac{ec}{(2\pi)^{4}m\Omega^{2}}\int dk B_{k\ell}^{1}[k]e^{-ik_{q}x_{q}}\int_{0}^{ec}d\phi e^{ir_{p}u_{p}}L_{ki}D_{\ell n}u_{n}. \qquad (C.2)$$

We have deleted the superscript o since all velocities and displacements occurring on the right hand side are those of the unperturbed motion. The integrated part vanishes by the argument used already in Appendix B. The Laplace transform of Δx is obtained immediately by comparing Eq. (C.2) with Eq. (2.9).

APPENDIX D: VELOCITY INTEGRATION OF Mij FOR A SYNGE-JÜTTNER
DISTRIBUTION

Substituting the Synge-Jüttner distribution of Eq. (3.14) for $f^{O}(u)$ in Eq. (4.5) we obtain

$$M_{ij}^{1}\left[k\right] = \frac{e^{1}c^{1}\alpha}{m\Omega^{2}}B_{k\ell}^{1}\int_{0}^{\infty}d\phi D_{\ell n}(\phi)L_{km}(\phi)S_{i[m}S_{q]j}\int due^{iS_{p}u_{p}}S(u_{r}u_{r}+1)u_{n}u_{q} \quad (D.1)$$

where $s_p = r_p(\phi) - i\mu\lambda_p$. We will now evaluate

$$I_{nq} = \int du e^{is_p u_p} \delta(u_r u_r + 1) u_n u_q .$$

Integrating first over the variable u_0 , and introducing cylindrical polar coordinates u_z , u_z , θ for u_α , we obtain

$$\bar{I}_{nq} = \frac{1}{2} \int_{-\pi}^{\pi} d\theta \int_{0}^{\infty} du_{\perp} \int_{-\infty}^{\infty} du_{\perp} \, H_{nq}(u) \exp\left[i s_{\perp} u_{\perp} \cos\left(\theta - \zeta\right) + i s_{\perp} u_{\perp} - s_{\perp} \left(u_{\perp}^{2} + u_{\perp}^{2} + 1\right)^{\frac{1}{2}}\right],$$

where

$$F_{\alpha\beta} = u_{\underline{z}}^2 / W \qquad \text{(no summation implied)}$$

$$F_{\alpha\beta} = u_{\underline{z}} u_{\underline{z}} \cos \theta / W , \qquad \alpha \neq \beta$$

$$F_{\alpha\beta} = i u_{\underline{z}} , \qquad F_{\beta} = -W ,$$

$$W = \left(u_{\underline{z}}^2 + u_{\underline{z}}^2 + 1\right)^{\frac{1}{2}}$$

and we have expressed s in terms of its cylindrical polar components s_{z}, s_{\perp}, ζ . After changing the variable to ψ , where $\sinh \psi = u_{z} (1 + u_{\perp}^{2})^{-\frac{1}{2}}$, we obtain the integral over u_{z} in terms of modified Hankel functions, K_{n} , by Eq. (9.6.24) of Abramowitz and Stegun 32 , such that

$$I_{nq} = \int_{\pi}^{\pi} d\theta \int_{0}^{\infty} du_{\perp} u_{\perp} q G_{nq}(u_{\perp}, \theta) \exp \left[i s_{\perp} u_{\perp} \cos (\theta - \zeta)\right],$$

where

$$G_{x,y} = \frac{1}{2} q \left[\cos 2\xi K_{2}(y) - K_{0}(y) \right],$$

$$G_{x,y} = -iu_{1} \cos \theta \sin \xi K_{1}(y),$$

$$G_{x,4} = \frac{1}{2} q \sin 2\xi K_{2}(y),$$

$$G_{x,4} = -\frac{1}{2} q \left[\cos 2\xi K_{2}(y) + K_{0}(y) \right], \quad q = (1 + u_{1}^{2})^{\frac{1}{2}}, \quad y = q \left(s_{+}^{2} + s_{2}^{2} \right)^{\frac{1}{2}},$$

$$\sin \xi = -s_{z} \left(s_{+}^{2} + s_{z}^{2} \right)^{-\frac{1}{2}}, \quad \cos \xi = s_{+} \left(s_{+}^{2} + s_{2}^{2} \right)^{-\frac{1}{2}}.$$

To perform the θ integration, we use the fact that, by the periodicity of the cosine function

$$\int_{-\pi}^{\pi} d\theta \exp \left[i s_{\perp} u_{\perp} \cos \left(\theta - \zeta \right) \right] = 2 \int_{0}^{\pi} d\phi \exp \left(i s_{\perp} u_{\perp} \cos \phi \right).$$

Then, by Eq.(9.1.21) of Abramowitz and Stegun, we obtain the θ integral in terms of Bessel functions \textbf{J}_n , such that

$$I_{nq} = 2\pi \int_0^\infty du_{\perp} u_{\perp} q H_{nq}(u_{\perp}), \qquad (D.2)$$

where

$$H_{KK} = \frac{1}{2} q J_{o}(s_{\perp}u_{\perp}) \left[\cos 2\xi K_{2}(y) - K_{o}(y)\right],$$

$$H_{KK} = u_{\perp} \cos \zeta J_{1}(s_{\perp}u_{\perp}) \sin \xi K_{1}(y),$$

$$H_{KK} = \frac{1}{2} q J_{0}(s_{\perp}u_{\perp}) \sin 2\xi K_{2}(y),$$

$$H_{KK} = -\frac{1}{2} q J_{0}(s_{\perp}u_{\perp}) \left[\cos 2\xi K_{2}(y) + K_{o}(y)\right].$$

 $H_{44} = -\frac{1}{2}q \int_{0}^{\infty} (s_{1}u_{1}) \left[\cos 2\xi K_{2}(y) + K_{3}(y)\right].$ The integrals I_{nq} of Eq. (D.2) are now in the form given by

Watson³³ in Eq.(13.47(2)) and, combining the results, we obtain

$$I_{nq} = -2\pi \left(s_n s_q K_3 - \delta_{nq} K_2 \right),$$
 (D.3)

where \mathcal{K} is defined in section V.

The normalizing factor α which occurs in Eq.(D.1) is determined by the condition, $n = \int du \, u$, f'(u) where n is the relative number density of the plasma. Integration along similar lines to that performed above gives $\alpha = n\mu/2\pi\lambda_o K_1(\mu) = n_o\mu/2\pi K_2(\mu)$ where n_o is the proper number density. Substitution of this result together with Eq.(D.3) into Eq.(D.1) gives Eq.(5.1).

The expression given for $M_{ij}[k]$ in Eq.(5.1) is arbitrary in terms which make zero contribution to $J_i = -ik_j M_{ij}$. We proceed to eliminate such terms to obtain a slightly simpler expression for $M_{ij}[k]$. From Eq.(5.1), using Eq.(A.7) we have

$$M_{ij}^{1}[k] = A B_{k\ell}^{1} \int_{0}^{\infty} d\phi \left[\left(-L_{ki} s_{j} + L_{kj} s_{i} \right) \left(-ck_{\ell} L_{\ell \rho} / \Omega + i D_{\ell \rho} \mu \lambda_{\ell} \right) \mathcal{K}_{3} \left(D_{\ell j} L_{ki} D_{\ell i} L_{kj} \right) \mathcal{K}_{2} \right],$$

where

The product of the terms $L_{kj}s_i$ and k_pL_{tp} contributes zero to J_i and so is dropped. By partial integration of the term $D_{\ell j}L_{k}I_{2}^{\mathcal{H}_{2}}$, we obtain

$$\begin{split} M_{ij}^{1}[k] &= A B_{k\ell}^{1} \int_{0}^{\infty} d\phi \left\{ \left[\left(-L_{ki} s_{j} + L_{kj} s_{i} \right) i D_{\ell n} \mu \lambda_{n}^{+} L_{ki} s_{j} c k_{\ell} L_{\ell p} / \Omega \right] \mathcal{K}_{3} + L_{\ell j} L_{ki} d\mathcal{K}_{2} / d\phi \right. \\ &\qquad \qquad + \left(L_{\ell j} D_{ki} + D_{\ell i} L_{ki} \right) \mathcal{K}_{2} \right\}, \\ \text{since} \mathcal{K}_{2} &\to \text{o as} \quad \phi \to \infty \quad \text{. The last term of the integrand is} \\ \text{symmetric in } (k,\ell) \text{ and so can be dropped. Since } d\mathcal{K}_{2} / d\phi = -\dot{s}_{r} s_{r} \mathcal{K}_{3}, \\ \text{we have} \end{split}$$

$$M_{ij}^{1}[k] = A B_{ke}^{1} \int_{0}^{\infty} d\phi \left[\left(-L_{ki} s_{j} + L_{kj} s_{i} \right) i D_{n} \mu \lambda_{n} + c k_{p} L_{ki} \left(L_{ep} s_{j} - D_{pr} s_{p} L_{ej} \right) / \Omega \right] \mathcal{K}_{3} .$$

The second term can be dropped since its contribution to J_i is $\Lambda = AB_{k\ell}^1 \int_0^\infty d\phi c \Omega^{-1} k_j k_j \sum_{ki} \sum_{\ell,p} s_r (s_j - p_j) \mathcal{K}_3$ where we have interchanged the indices j and p in the second term. By Eq. (A.6)

$$\Lambda = A B_{k\ell}^{1} \int_{0}^{\infty} d\phi \, e \, c \, (m \, \Omega^{2})^{-1} k_{j} k_{p} L_{ki} L_{\ell p} (i \mu \lambda_{r} + r_{r}) L_{jq} B_{qr}^{\circ} \mathcal{K}_{3} = 0,$$

since $B_{qr}^{o}\lambda_{r}^{}=o$ by Eq.(3.13) and $k_{j}L_{jq}B_{qr}^{o}r_{r}^{}=o$ by the skew-symmetry of B_{qr}^{o} . Hence we have

$$M_{ij}^{1}[k] = \frac{i e^{2} c^{2} n_{o} \mu}{m \Omega^{2} K_{2}(\mu)} B_{ke}^{1}[k] \delta \delta \delta \int_{i[m q]_{j}} \int_{0}^{\infty} d\phi D(\phi) \mu \lambda_{n} L_{km}(\phi) s_{q}(\phi) \mathcal{K}_{3} . \quad (D.4)$$

Trubnikov's dielectric tensor applies to the case of zero drift velocity ($\lambda_{\alpha}=0$) and zero d.c. electric field ($D_{\alpha 4}=L_{\alpha 4}=0$). Under these conditions, Eq.(D.4) gives

$$M_{xj}^{1}[k] = -iAB_{\beta+}^{1}[k]\int_{0}^{\infty}d\phi\mu\lambda_{4}(L_{\beta j}s_{\alpha}-L_{\beta\alpha}s_{j})\mathcal{K}_{3},$$

$$\therefore J_{\alpha}^{1}[k] = -ik_{j}M_{xj}^{1} = -iAB_{\beta+}^{1}\mu\int_{0}^{\infty}d\phi(k_{x}L_{\beta r}r_{\alpha}-\Omega c^{-1}L_{\beta\alpha}s_{j}'s_{j})\mathcal{K}_{3},$$
(D.5)

because

$$k_{j} s_{j} = k_{j} c \Omega^{-1} k_{m} L_{mj} - i k_{m} \delta_{mj} \mu \lambda_{j} = k_{m} \left\{ c \Omega^{-1} k_{j} L_{jn} D_{mn} - i \left[D_{mj} + ec \left(m \Omega \right)^{-1} L_{mn} B_{nj}^{n} \right] \mu \lambda_{j} \right\}$$

by Eqs.(A.7) and (A.6), and therefore $k_j s_j = s_j s_j \Omega/c$ by Eq.(3.13). Integrating the second term of Eq.(D.5) by parts and using Eq.(A.7) again, we have

$$J_{\alpha}^{1}[k] = -i A_{\mu} \Omega c^{-1} B_{\beta 4}^{1} \int_{0}^{\infty} d\phi \left(D_{\beta \gamma} r_{\gamma} r_{\alpha} \mathcal{K}_{3} - D_{\beta \alpha} \mathcal{K}_{2} \right)$$

We thus obtain Trubnikov's dielectric tensor $\widetilde{\epsilon}_{\alpha\beta}$, defined by the relationship

$$J_{\alpha}^{1} = -i\omega \left(\tilde{\epsilon}_{\alpha\beta} - \delta_{\alpha\beta} \right) E_{\beta}^{1} / 4\pi .$$

REFERENCES

- + On leave from the School of Physics, University of Melbourne, Parkville, Vic. 3o52, Australia.
- 1 P.C. Clemmow and A.J. Wilson, Proc. Roy. Soc. (London)
 A 237, 117 (1956)
- 2 P.C. Clemmow and A.J. Wilson, Proc. Cambridge Phil. Soc. 53, 222 (1957)
- 3 O. Buneman, Phys. Rev. <u>112</u>, 1504 (1958)
- 4 G. Bekefi, Radiation Processes in Plasmas (Wiley, New York, 1966), Chaps. 6 and 7
- 5 D.C. Montgomery and D.A. Tidman, <u>Plasma Kinetic Theory</u> (McGraw-Hill, New York, 1964), Chap. lo
- 6 V.L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Pergamon, Oxford, 1970), 2nd Ed.
- 7 B.N.A. Lamborn, Plasma Physics 11, 899 (1969)
- 8 S.K. Luke and G. Szamosi, Nuovo cimento (B) 70, 100 (1970)
- 9 H. Akama, J. Phys. Soc. Japan 28, 478 (1970)
- 10 B.A. Trubnikov, in <u>Plasma Physics and the Problem of</u>

 <u>Controlled Thermonuclear Fusion</u> (Pergamon, London, 1959),

 Vol.III, p. 122

- 11 W. Dällenbach, Ann. Physik <u>58</u>, 523 (1919)
- W. Pauli, <u>Theory of Relativity</u> (Pergamon, London, 1958), p. 104
- 13 H. Derfler, to be published. For preliminary results, see: M. Omura, SU-IPR Report No. 156 (1967), Institute for Plasma Research, Stanford University, Stanford, Calif.
- 14 B.D. Fried and S. D. Conte, <u>The Plasma Dispersion Function</u> (Academic Press, New York, 1961)
- 15 T. H. Stix, <u>The Theory of Plasma Waves</u> (McGraw-Hill, New York 1962), Chap. 9
- 16 A. Sommerfeld, <u>Vorlesungen über Theoretische Physik</u>,

 Bd. III <u>Elektrodynamik</u> (Geest und Portig, Leipzig, 1961),

 Teil III
- 17 G. Doetsch, <u>Handbuch der Laplace-Transformationen</u>, Bd. I <u>Theorie der Laplace-Transformation</u> (Birkhäuser, Basel, 1950), p. 403
- 18 K. Furutsu, Phys. Rev. <u>185</u>, 257 (1969)
- 19 H. Derfler, in <u>Proceedings of the Fifth International</u>

 <u>Conference on Ionization Phenomena in Gases</u> (North-Holland,

 Amsterdam, 1961), Vol. 2, p. 1423, and details in <u>Electron</u>

 <u>Devices Research</u>, QSR No. 18 (Electronics Laboratories,

 Stanford University, 1961), pp. 17 40

- 20 H. Derfler, in <u>Proceedings of the Eight International</u>

 <u>Conference on Phenomena in Ionized Gases</u> (Springer Verlag, Vienna, 1967), p. 294
- 21 H. Derfler, Phys. Letters <u>24A</u>, 763 (1967)
- 22 H. Derfler, Phys. Rev. <u>A 1</u>, 1467 (1970)
- 23 D. Pfirsch, Nuclear Fusion 6, 3ol (1966)
- 24 J.L. Synge, Relativity: The Special Theory (North-Holland, Amsterdam, 1965), 2nd ed., p. 415
- 25 J.L. Synge, <u>The Relativistic Gas</u> (North-Holland, Amsterdam, 1957), p.30
- 26 R. Cano, G. Chaignot, I. Fidone and M.J. Schwartz, Phys. Fluids 15, 1635 (1972)
- 27 R. Cano, C. Étievant and J. Hosea, Phys. Rev. Letters 29, 13o2 (1972)
- 28 S. Puri, F. Leuterer and M. Tutter, J. Plasma Physics 9, 89, (1973)
- 29 I.P. Shkarovsky, Phys. Fluids <u>9</u>, 561 (1966)
- 30 H. Derfler and F. Leuterer, Plasma Physics 14, 473 (1972)

- P. Penfield, Jr. and H.A. Haus, <u>Electrodynamics of Moving</u>

 <u>Media</u> (MIT Press, Cambridge, Mass., 1967), p. 241
- 32 M. Abramowitz and I.A. Stegun, <u>Handbook of Mathematical</u>
 Functions (National Bureau of Standards, Washington, 1970)
- 33 G.N. Watson, <u>Theory of Bessel Functions</u> (Cambridge University Press, Cambridge, 1958) p. 416