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Abstract

Model comparison requires the determination of integrals over the
posterior probability function. We present a variety of numerical
methods for this calculation. As working examples serve in various
dimensions a single Gaussian peak as well as two Gaussian peaks with
equal and different width and height, with and without infinitesimal
integrands in between the two peaks.
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1 Introduction

Bayesian model comparison is inevitably associated with the calculation of
the prior predictive value or evidence which involves integration over the
posterior probability density function. Most of the time this integral has
no analytical solution and one is referred to either approximative or numer-
ical approaches or a mixture of both. Then employed integration methods
have to cope with all the cumbersome features of a function which could
sparsely populate a large parameter space, consisting of broad and narrow
peaks, involving large and small scales and finally be spread such that the



integral weight between the structures is zero (at least according to numerical
means). We present a comparison of a variety of numerical methods featur-
ing Laplace approximation, trapezoidal rule, importance sampling, VEGAS
(from Numerical Recipes [Press et al.(2001)]), thermodynamic integration
scheme (thin-MCMC), and nested sampling [Skilling (7777)]. This choice is
far from being complete and simply arises from the fact that we have long-
time experience with most of the methods (apart from [Press et al.(2001)]
and [Skilling (7777)]). For a further, much more sophisticated method for
the integration of ill-conditioned problems (Perfect Tempering) we refer to
the paper of M. Daghofer, published in the proceedings of the 2004 MaxEnt
conference [Daghofer and von der Linden(2004a)].

2 Statement of the problem

The posterior probability function is composed of likelihood and prior proba-
bility density function. If the data is normally distributed the likelihood will
be of Gaussian shape. Moreover, if the information gain from an experiment
is large the likelihood will be much more structured than the prior and be
of dominating role in the posterior. So the posterior will be of Gaussian-like
character as well. The exercises of this paper shall therefore consist of the
integration of Gaussian peaks in K-dimensions. We look for the integral

I= /p(w|a)dm , (1)

with the following choice of integrands: The simplest case shall consist of a
single Gaussian peak. This problem should be feasible for any method.

pi(x|o) = %exp {_wa;c} ) (2)

( 27r0)

Without loss of generality we set 0=0.3. To simulate multi-modal posteriors,
the next case consists of two Gaussians of equal height and width.

The o is set to 0.3 and 0.03, respectively. With the first setting, the integrand
is still of small weight between the two peaks and therefore would allow “path
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following” methods to pass from one mode to the other. For 0=0.03 this is
not possible since the peaks are fully separated according to numerical means.

The Monte Carlo method cannot decide between weight originating in
one peak or the other and therefore gives a correct result even if the samples
are coming erroneously from the same peak. To disclose such failure we
investigate another setup with two peaks of different height (10:1) and width
(1:2).

ps(@) = 15 i 2 2;0_)[( llOeXp {— (- dl)T;w —dy) }

e {_ (- d(;ggi — o) H S

o is again set to 0.3 and 0.03, respectively. For the rest of the paper d;
consist of K numbers 2, dy of numbers -2.

3 Description of the methods and results

In the following we give only a brief description of the employed numeri-
cal methods. Please refer to the literature for deeper insights. Some of these
methods require a preceding MCMC run in order to determine the covariance
of the parameters. The covariances are naturally provided if the expectation
values of the parameters are needed anyway and determined beneficially with
the Metropolis algorithm which does not require the norm. The MCMC sam-
ples are separated into so-called bins from which the expectation values and
the variances are calculated. Each bin is preceded by burn-in sampling with
randomly chosen starting values. The computer code was run on a 2.1GHz
processor. The indicated running time is given for comparison reasons only.

3.1 Laplace approximation

This is also called steepest descent method or saddle-point approximation,
where the term ”Laplace approximation” is reserved for the real space. It
constitutes a simple and powerful approximation to the integral of Eq. (1) if
the integrand has a single mode only (regardless of dimension).

As mentioned above most posterior probability distributions resemble a
Gaussian shape. It is therefore a good approximation to employ a Taylor



Dimension 1 2 4 8 16 32
1 peak, 0=0.3 1 0.99 | 0.99 | 1.02 | 1.00 | 0.99 | 0.94
timels] 0.26 10411070 1.41 | 3451 10.1

Table 1: Laplace approximation. The results for the other test cases con-
taining two peaks were clearly senseless.

series at the maximum of the integrand (first order is zero)

p(z|o) ~ exp{®(x)} . (5)
1
é(w) - (I)(wmax) - 5(33 - wmaz)TH(w - wmax) ) (6)
with the Hessian matrix
9*In p(z|o)
H=——"-— . 7
The second order is just a Gaussian integral solvable analytically:
const
plzl|o) = exp{®o} . (8)

vdet H

One merely has to find the maximum of ® in x-space and take advantage of
a previous MCMC run in determining the Hessian matrix during parameter
estimation from the covariances of the parameters:

H=C"' |, (9)
with covariance matrix

Cij = (@i = (i) (x5 — (7)) (10)

The results are given in table 1. The desired value of 1 is reproduced as good
as the previous Monte Carlo run was (10 times 2000 samples plus burn-in
of altogether 2000 samples). The time given is therefore the running time
of exactly this MCMC run. The time for the calculation of the Laplace
approximation itself is negligible. So fast and satisfying the result for p; is,
so utterly devastating it is for integrands with more than one mode (not
shown). Nevertheless, for its simple use it should be part of every evidence
calculation program, but be regarded as for diagnostic reasons only.
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Dimension 1 2 4 8

1 peak, 0=0.3 1.00 | 0.99 | 0.98 0.97
timels] 0.000 | 0.000 | 0.04 901

2 peaks, 0=0.3 1.00 | 1.00 | 1.00 1.00
timels] 0.000 | 0.004 | 0.032 2041

2 peaks, 0=0.03 1.00 | 0.99 | 0.98 ?
timel[s] 0.000 | 0.024 | 432 | ~ 6935 years
2 different peaks, 0=0.3 1.00 | 1.00 | 1.00 0.99
time|s] 0.000 | 0.004 | 0.088 1995

2 different peaks, 0=0.03 | 1.00 | 0.99 | 0.99 ?
timel[s] 0.004 | 0.052 | 446 | ~ 7160 years

Table 2: Mesh integration. The number of points to calculate were N,,.sp=15
for 0=0.3 and N,,s,=150 for 0=0.03. The question mark means “not cal-
culated due to lack of sufficient time”.

3.2 Trapezoidal rule (integration on a mesh)

We employ simple trapezoidal integration over the parameter space.
N N
plxlo) =D .. pl@i, ..., vkjl0) Az - - Azg (11)
=1 j=1

One can think of more sophisticated algorithms, refined in adjusting the in-
tegration grid automatically according to the integral weight. The accuracy
of the result may be controlled by increasing the grid density and comparing
the outcome with the step before. However, for larger numbers of parameters
all these mesh integration techniques fail due to the curse of dimension (see
table 2). In many cases it is possible to run a new programmed code for
smaller dimensions where mesh integration still works. In order to detect er-
rors in coding, the recommended procedure is to check the results with other
evidence calculation methods and then proceed to the actual problem with
its larger number of dimensions, i.e. parameters. Note: numerical problems
may occur if the numbers in the exponent become too large (small), so we
actually sum over p(x|o) — p(@maz|0).



Dimension 1 2 4 8 16 32

1 peak, 0=0.3 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
timels] 0.084 | 0.124 | 0.192 | 0.344 | 0.552 | 0.808
2 peaks, 0=0.3 0.99 | 0.98 | 0.94 | #4 | #HH# | ##
timels] 0.156 | 0.208 | 0.276 | ## | ##H | #+#
2 peaks, 0=0.03 1.04 | 0.50 | #4 | ##H | #H# | #F#
time|s] 0.444 | 0.676 | ## | #H# | #H# | ##
2 different peaks, 0=0.3 1.00 | 0.29 | 0.62 | 0.96 | 0.99 | ##
time|s] 0.156 | 0.208 | 0.284 | 0.436 | 0.548 | ##
2 different peaks, 0=0.03 | 1.00 | 0.28 | #4# | #HH# | #H# | ##
time|s] 0.224 | 0.848 | #H# | #HH#H | ## | ##

Table 3: Importance sampling. The entry “##” means an obviously erro-
neous result.

3.3 Importance sampling

The idea is to generate samples from a simpler function easy to sample from.

I:/p(w\a)dw:/p(ig)g(w)dw . (12)
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For the function g(x) we employ a Gaussian with widths from the covari-
ances generated by the preceding MCMC run already utilized for the Laplace
approximation. 100000 sampling steps are performed to create each entry to
table 3. While being excellent for the one peak problem, importance sampling
fails rapidly for the other problems. It is simply harmed from the fact that
already the MCMC run for the determination of the covariances produces
wrong results getting stuck in a particular peak.

3.4 VEGAS algorithm

The algorithm invented by Peter Lepage is freely available from e.g. Nu-
merical Recipes [Press et al.(2001)] and reportedly “widely used for multi-
dimensional integrals that occur in elementary particle physics”. It works
accordingly to the importance sampling scheme, however separates the tar-
get function into a multidimensional weight function g

p(x) = g1(71)g2(72)..gx (k) - (13)



The implementation as an additional integration method is simple and straight
forward. Table 4 shows the problems of Monte Carlo methods with peaky
structures as in the importance sampling case, however it scores somewhat
better. Expecially for the one peak problem it would be possible to get rea-
sonable results for dimensions larger than 4 if the integration integral would
be confined to a smaller range around the maximum. However, since we
pretend to have no knowledge about the structure of the integrand, we stay
with the range of { -4,4 } as for all other case in this paper.

3.5 Thermodynamic integration scheme

At the Maxent workshop 1997 in Boise John Skilling suggested to employ a
formalism, borrowed from statistical physics, to compute the prior-predictive
value, the so-called 'thermodynamic integration” scheme[Neal(1993)]: Define
the function

ZQ%:/AN@H@)M:, (14)

with Z(A=0) = 1 and Z(A=1) as the desired quantity. Commonly the func-
tion A comprises terms from the likelihood. II is the normalized prior. Here
we chose A = p(x|o) and I1=1/8 within [—4, 4] and 0 otherwise. The deriva-
tive with respect to A\ gives

MHTi()\) = /lnA(m)pA(w) dx
= (nA(z)\ (15)
with (@) T()

p)\(.’B) = IA)‘(.’I}/)H(.’B/) dx’ (16>

as the new sampling density. Both sides of Eq. (15) are integrated over \:

[siapan [ 220 "
— WZMA=1)-Z(\=0) (18)
= InI . (19)

To obtain the prior predictive value one therefore has to calculate the integral
on the Lh.s. in (17) where the expectation value (In A(x)), is accessible by
Markov chain Monte Carlo techniques[von der Linden et al.(1999)]. A plot
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Figure 1: (InA(x)), for the case of two equal peaks with 0=0.3 in various
dimensions.

of the latter for the integrand of a two peak case in various dimensions is
given in Fig. 1. The A-axis is on the logarithmic scale. As can be seen, one
has to be careful to approach steadily A — 0.

The results are shown in table 5. In comparison with the other methods,
the thermodynamic integration scheme works best. However, for the most
difficult exercise with the peaky structures completely separated, it fails as
well.

3.6 Nested sampling

Nested sampling, a recently proposed method [Skilling (7777), Skilling(2004),
Skilling(2006)] for evidence computation tabulates the likelihood function
in a probabilistic 'sorted” manner. It samples a collection of n objects x
from the prior distribution subject to the constraint that only objects with
a likelihood value above an evolving threshold L(x) > L* are accepted. For



the threshold L* the lowest likelihood value of the collection is used, then
the respective object is discarded and a new object is sampled from the prior
within the restriction of the constrained likelihood. The worst object of this
new sample gives the next threshold L* and the process is iterated until
convergence. The key idea is that the sequence of iterated objects contains
(probabilistic) information about the enclosed prior volume ¢y, which in turn
allows the estimate of the corresponding contribution to the total evidence
7 &y 2k, with 2, = dxp X Li. At the same time the random samples allow
the computation of all interesting posterior distributions. Nested sampling is
a new sampling method different from the standard techniques. However it
does not solve the curse of dimensions. If there is a small hidden likelihood
peak in some corner of the prior space the probability of detecting it is low,
like in all other MCMC approaches. Nevertheless the different characteristics
of this approach makes nested sampling an important tool complementing
the conventional suite of MCMC techniques. Taking into account the simple
structure (no implementation issues) it is highly recommended to be used as
a standard tool for evidence computations.

4 Conclusion

In conclusion we have to admit that for integrands in dimensions larger
than 10 with sparsely distributed multi-modal structures showing no integral
weight in-between, one is left with Perfect Tempering [Daghofer and von der Linden(2004b)]
as seemingly the only method capable of performing such integrations. How-
ever, as it is with any sophisticated method in the numerical analysis busi-
ness, Perfect Tempering needs a lot of experience to sail around the pitfalls
of Monte Carlo methods (among them omission of important contributions
to the integral from undiscovered parameter space, correlated samples or
erroneous bookkeeping). Apart from that, on ’second place’, the thermody-
namic integration scheme and nested sampling work best, though showing
their problems with peaky structures as well. Still, the bunch of the pre-
sented methods can come close and should be used as standard diagnostic
tools monitoring the outcome all the time.
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Dimension 1 2 4 8 16 | 32
1 peak, 0=0.3 1.00 | 1.00 | 1.00 | #4 | ## | ##
time|s] 0.33 | 0.55 | 0.66 | ## | ## | ##
2 peaks, 0=0.3 1.00 | 1.00 | 0.99 | ## | ## | ##
time(s] 0.50 | 0.77 | 1.21 | #4# | ## | ##
2 peaks, 0=0.03 1.00 | 1.00 | ## | ## | ## | ##
time(s] 0.50 | 0.90 | #4F | ## | #4 | ##
2 different peaks, 0=0.3 | 1.00 | 1.00 | 0.99 | 0.95 | ## | ##
time[s] 0.50 | 0.68 | 1.08 | 2.68 | ## | #4
2 different peaks, 0=0.03 | 1.00 | 1.00 | ## | ## | #H# | ##
time|s] 0.64 | 0.70 | ## | ## | #4# | ##

Table 4: Results obtained with the VEGAS algorithm.

Dimension 1 2 4 8 16 32

1 peak, 0=0.3 1.00 | 0.97 | 0.96 | 0.95 | 0.90 | 0.83
time|s] 5 11 25 64 | 185 | 598
2 peaks, 0=0.3 0.99 { 0.97 | 0.96 | 0.95 | 1.27 | 449
time|s] 9 20 45 | 122 | 365 | 1133
2 peaks, 0=0.03 170 | #F | #4 | #4 | #H# | #H#
times] 12 | | B | H | |
2 different peaks, 0=0.3 | 1.04 | 0.64 | 0.69 | 0.93 | 0.94 | #+#
timels] 9 20 | 44 | 118 | 337 | ##
2 different peaks, 0=0.03 | 2.92 | ## | ## | #H# | #H# | #H#
times| 12 | # | | B | B | B

Table 5: Thermodynamic integration.
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Dimension 1 2 4 8 16 32

1 peak, 0=0.3 1.01 {094 | 095 |1.02|1.03| 0.7

timels] 90 | 160 | 210 | 270 | 490 | 920
2 peaks, 0=0.3 0.96 | 0.85 ] 0.53 | 0.32 | 0.13 | 0.012
timels] 144 | 360 | 410 | 566 | 680 | 1200
2 peaks, 0=0.03 0.96 | 0.64 | 0.32 | 0.13 | 0.04 | ##
time|s] 200 | 256 | 270 | 400 | 700 | 1200
2 different peaks, 0=0.3 | 0.99 | 0.86 | 0.65 | 0.55 | 0.25 | 0.06
time|s] 205 | 246 | 290 | 560 | 740 | 1150
2 different peaks, 0=0.03 | 0.85 | 0.73 | 0.52 | 0.11 | 0.05 | ##
timels] 265 | 305 | 350 | 560 | 700 | 1200

Table 6: Nested sampling.
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