JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 4 22 JULY 2003

Vibrational energy relaxation in classical fluids. Il. High-frequency spectra
in liquids
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A procedure is outlined to determine high-frequency spectra of classical liquids interacting via
Lennard-Jones and similar potentials and applied to the problem of vibrational energy relaxation.
The theory is based on analytical expressions derived for spherical particles ingapes I, D.
Schwarzer and M. Teubner, J. Chem. PHyi6, 5680(2002] and is extended to the dense liquid
phase by considering binary collisions in the potential of mean force. The calculated spectra are in
good agreement with those derived from classical trajectory and molecular dynamics
simulations. ©2003 American Institute of Physic§DOI: 10.1063/1.1585018

I. INTRODUCTION oscillators this is a challenging problem for several
reasons? First, the dynamic range of the Fourier transform

the competition between reactive steps and vibrational eM:assible. Secon d, spectra at high frequency are determined

ergy transfer. Therefore, over the last decades great experi- . -
: by rare high-energy collisions. To properly sample these col-
mental and theoretical efforts have been expended to ascer-. . L o
Isions, the simulation time can become prohibitively large.

tain the main factors affecting VER processes in the gas an . ) : >
nd, finally, computer simulations are usually done in finite

the liquid phasé® T )
The simplest energy relaxation mechanism involves theensembles with fixed total energy underestimating the prob-
bility of high-energy collisions with respect to a Boltzmann

transfer of vibrational energy into translational degrees of

freedom of the bath. The theoretical description of this pro_distribution. Accordingly, the calculated spectral density at

cess is usually based on first-order perturbation theory. on@igh frequency is lower than expected from a canonical en-

finds that the classical VER rate of a harmonic oscillator withS€MPl€, even for an infinitely long simulation time.
frequencyw, in a thermal environment is given By Therefore, a theory to calcula®&(w) at high frequen-
cies, at least for simple cases, is desirable. Employing the

1 breathing sphere model we have developed such a theory for
Kver= 2ukgT Sr(wo), @ the gas pha® (Paper J, i.e., at conditions where only bi-

) ) nary interactions between colliders have to be considered.
where is the reduced mass of the oscillator dadandT  gqr particles interacting via Lennard-Jones and similar po-
are the Bolizmann constant and the temperature, respefsniia|s expressions for the spectra were derived which are
tively. Sc(w) is the power spectrum of_ the_fluctuatmg.sol- asymptotically exact and of the for®(w)<exg—(w7)"],
vent f(_)rceF(t) .exerted_o.n the solute vibrational coordinate where exponent and time constant depend only on the
while its bond is held rigid, interaction potential. Since the exponent was shown te be

w =<2/3, the spectra decay always slower than exponentially in

SF(w):f cog wt)(F(t)F(0))dt. (2)  contrast to the popular exponential energy gapaw: The
- result, however, is in agreement with the more qualitative
In principle, the force—force time-correlation function ap- theory of Landau and Tell&which, for the special case of a
pearing in Eq(2) should be evaluated at a quantum lekel. repulsive exponential potential, found=2/3.
Reliable and tractable methods to derive this quantity, how- In this paper we will extend our theory to derive high-
ever, are not available for interacting many-body systemsfrequency spectra for liquids. As in Paper | the theory is
Thus, just the classical correlation function is usually usedapplied to the vibrational energy relaxation of a breathing
and certain corrections factors are introduced to account fasphere in an atomic environment. Our approach takes advan-
quantum effectd6-19 tage of the fact that at high frequencies all collective motion

A widely used method to derive the classical spectrum isof the solvent is frozen. The only processes which contribute
to calculateSg(w) directly from an equilibrium molecular to the spectra in this frequency domain are rare high-energy
dynamics simulation. However, in the case of high-frequencybinary collisions as in the gas phase. This is the basis of the
independent binary collisioiBC) model¢25-2wiithin this
3Electronic mail: mteubne@gwdg.de approach the complicated many-body dynamics reduces to
PElectronic mail: dschwar@gwdg.de the two-body problem of binary collisions in a static poten-
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tial. In the gas-phase the trajectory associated with a colli- % glot

sion is determined simply by the binary potential between r‘p(w)=f dtW, (8)
the molecules. In the liquid the static potential of the frozen o

environment has to be added. In principle, the static potentisand assume that the potent¥d(r) is analytic in the whole
of the environment changes between collisions. In ouicomplexr-plane with the exception of a singularity at the
theory, however, we take the average and approximate it bgrigin where the dominant term is

the potential of mean force. With respect to the binary inter- A

actions the potential of mean force is treated as a small per-  v(r)~—, r~0. (9)
turbation. r

The paper is organized as follows: In the next section weynder these conditions the spectrum can be asymptotically

briefly summarize the analytical results of Pap@rand Ref.  evaluated in the high-frequency range with the result
29 obtained for spectra of spherical particles in dilute gases.

In Sec. Il the theory is extended to the liquid phase and  Sa(®)~a(wr)’e MNE(E+ 20" (E) (10
approximate expressions for corresponding high-frequenc%herea is an amplitude,r is a time constant, ant® is
spectra are derived. We apply the theory to the problem Oﬁefined by
vibrational energy relaxation by introducing the breathing
sphere model in Sec. IV. In Sec. V a Monte Carlo method is w (o dr
presented to samptg(r) at short distances relevant for high- t*(B)= 2 fo ﬁ
energy collisions. Finally, the theory is compared with tra-
jectory and molecular dynamics simulations. ro is the turning point given bw(rq)=E [for sufficiently
high energy any potential of the form E() has a single
turning poini. t* depends on the details of the potential, but
Il. SPECTRA IN DILUTE GASES 7 depends only on the dominant singulary ~", while a
and o depend in addition op. Exponento is given by

(11)

In this section we briefly review the general theSr?
which studies the high-frequency spectra of binary observ- _ 4p 5n+8
ables in dilute classical gases. T h+2 3n+2

Consider a dilute gas of density A relative binary ob-
servableA= A(t) associated with a tagged particles a sum
of local observables,

(12

SinceA has dimension energglengtt, it is convenient to
replaceA by a lengthry, defined by

A=KgTry,. (13
A:jE#:i Aloc: @ Then time constant and amplitudea are given by
where eact\ .= A(t) depends only on the relative trajec- 7=Col W21 8, (14
tory rjj=r;—r; of a pair of particles at tim¢. We also re- 3. p
quire thatA,,. tends to zero for large separation. Examples a=a(prip) iy - (15

for functions Aj,c are the potentiaV(r;;(t)) or the force  The numerical constants, and « are
—V'(rij(t)) between the particles. We are interested in the

spectrum F(E
Su(w)= | dt e tgama©) (a2 @  ComVmas ”)mﬂ 10
n

In a dilute gas of density and in the high-frequency

range the spectrum can be written in the form and
% o 27 \2 —op N
sA(w)zf dEJ dl Z(E,D)|Aed @)]?, (57 a=4mCo TN ((n+2)co) P
0 0
1 1 1
where F(§+—)F(1—ﬁ>
Z(E,l)=4mp(2muksT) *%e FE2rl (6) X\2u(1= (1= e, (1)
is the number density of collisions with enerfyand angu- r 5~ ﬁ) F(ﬁ)
lar momentum per unit time. Hereuw=m/2 is the reduced
mass,3=(kgT) ", and with
A @)= Jm dt @91A (1) ) P (18
loc o loc! 3n+2°
is the Fourier transform of\p(t) = Ac(r (t)). For special potentials more explicit results can be ob-
In the following we often take as local observalflg,  tained. In the simplest situation the potential has the form
an inverse power of the distance of the colliding pair Eq. (9) everywhere. Then

Downloaded 03 Jun 2010 to 134.76.223.56. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 119, No. 4, 22 July 2003 Vibrational energy relaxation in fluids. Il 2173

v/1—yp\@m-1 centrality, that guarantees that the collisions seen in the
(E)=75 BE ) : (19 high-frequency spectra are independent, even in a dense
liquid.

the minimum can be performed, and E0) becomes
We conclude that the high-frequency spectra in fluids, as

— oca—(wr)” . . . . .. R
Sa(w)~a(w7)%e : (200 i gases, are determined by independent binary collisions in
The main contribution to the spectra comes from energied static potential. The situation differs form a gas only inso-
near far as the potential is different in every collision.
The potential is a sum of the direct pair potenN&lr
BE(0)=(1- (7" 2 ; palr potentr)

and a perturbatio@V(r) which is due to the environment. In
For the Lennard-Jones potential, general, the perturbing potentidV/(r) is noncentral, but it is
12 [ ;)6 analytic and bounded near=0 (it is, however, singular at
) _( ) ) (22)  the positions of the neighbgrsAt any given moment, the
environment essentially has three different effects on a col-
Eq. (10) becomes in the high-frequency limit, liding pair: A force accelerates the pair, a torque rotates it,
and a compression or dilation along the radius vectacts
like a radial potential. The first two effects are small and we

where k=4e/ksT and n=12 in Egs.(12)—(18). For high  €Xpect them to be completely negligible at high.fiequencies.
frequency the main contribution to the spectra comes front-urthermore, they do not affect observables like’ that

VLJ(r)=4e((z

r r

S (w)~a(wr)’e” (07)12194 0.408 88/k(w7)%1%+0.126 51k (23)

energies near depend only on the distance. The third effect, however, does
modify the spectra somewhat and is equivalent to a spheri-
BE(w)~ 15(w7)?1°-0.279 76/k(w7) %'~ 0.126 51k. cally symmetric perturbationV/(r). Using Eq. (10), this

(24) suggests that the spectra in a dense liquid in the high-

This is similar to Shid® but differs in the frequency- frequency domain can be written in the form
independent terms. . *
I pen rms SA(w)Na(wr)(r<e—M|nE(ﬁE+2wtv+§v(E))>, (25)

where the average is over the differeif generated by the

IIl. SPECTRA IN LIQUIDS environment and

A. General remarks

We now turn to our main subject, high-frequency spectra  t}_ - (E)= \/E fro dr . 26
in dense fluids. 2 Jo WW(r)+oV(r)—E
At very low-frequency, spectra in fluids are simple and

have universal features. They are determined by the coIIe(%yOW it is important to note thabV(r) is bounded and ana-

tive motion of many particles and can be described by macY¢ at r=0. Sincea, 7, and o depend only on the

: C . .__asymptotic features of the potential near 0, these quanti-
roscopic hydrodynamics involving a few phenomenological. .
pic VY y g b g ties have the same values as in the gas phase. Therefore, the

constants?! In the intermediate range, where the inverse fre-r o of th tra in the liauid and th h is qiven b
qguency is comparable to the collision time, the problema 0 ofthe spectra eliquida € gas phase Is given by

seems complicated because hydrodynamics becomes unreli-
able while multibody correlations must still be taken into
account. At high frequency, however, the situation drastically ~ Plig Sgad ©) e
simplifies again.

Pgas Squ( (1)) <97 Ming(BE + ZwtfH_ 5v(E))>
Pig N —Ming(BE+ 20ty (E))

(27)

The right hand side can be evaluate using Monte Carlo
(1) Asin gases, at high frequency the spectra are dominategk molecular dynamics with moderate effort. We prefer, how-
by rare binary collisions with high energy. ever, to proceed in a semianalytic way which better illumi-
(2) The high-frequency spectra are dominated by a smalhates the physical issues involved and permits us to intro-
region near the turning point where the particle spendgjuce some approximations.
only a very short time. During this time the configuration
of the environment is practically unchanged. Therefore
we again have scattering in a time-independent potential. o
(3) Davis and Oppenheiff have argued that high-energy B- APProximations
collisions are not independent but occur in groups. While  In the spirit of mean field theory we assume that the
this is true, it has been shown previodSiyhat the col-  fluctuations of the potentiafV in different environments are
lisions dominating the high-frequency spectra are almospf minor importance, and that it is sufficient to study scatter-
central. In fact, the higher the frequency, the less noning in some effective or average potential. We will argue
central collisions contribute to the spectfaConsider  below that a good candidate for this potential is the potential
now an almost central collision. Even if the colliding of mean forceV,«(r) = —kgT Ing(r).
particles retain most of their energy, the probability that Let us write
one of the particles makes a second central collision is
overwhelmingly small. It it this stringent condition on SV(r)=6V(r)—6V(ry), (28
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wherer is the turning point. ReplacéV(r) by &V(rg)
+68V(r) inty, 5 . Then

ths s(E) =ty s (E—8V(r0)), (29
and we may write Eq(27) in the form
Pgas S”q(w) V(i) e~ MlnE(ﬁE+2wtv+ﬂE))
Piiq Syad @) € e~ Ming(BE+20ty)(E))
(30)

M. Teubner and D. Schwarzer

The dominant energieSg,{ ) in the gas phase for the po-
tential Ar~" and the Lennard-Jones potential are given by
Egs.(21) and(24), respectively. Approximatio33) in con-
junction with (36) is our improved IBC approximation which
we test below.

2. Mean field theory

The IBC approximation rests on the assumption that the
only effect of the environment is a redefinition of the energy

It has been stated below that the high-frequency spectra at@vel by the potential of the mean force at the turning point.

determined by the potential in the vicinity of the turning

point. Slnce5V(ro) 0, the potentialsv and V+ 6V have
the same values at the turning point. Their effect only d|ffer

by the force — V' from the environment which is very
small compared to the direct force at close separation.

1. IBC and improved IBC approximation

As our first approximation, let us neglect the force from
the environment altogether. Then we obtain

Pgas Squ(w)

Piiq Sgaiw)
In order to relatesV to known quantities note that in this

~ (& AV, (31)

Now we try to improve upon this approximation. We retain
the assumption that the relevant potential for the high-energy
collisions is the potential of mean force, but we no longer

neglect the force from the environment.

As a first step we must esUmathV(E) for large E.

SinceéV(r) is finite while V(r) diverges for —0, we have
for smallr,

approximation the particles experience precisely the same

force during their collision in the liquid as in the gas. This

implies that the ratio of the spectra depends on static quan-

tities only and

Siig( @) _ Niig(r o)
sgas(w) Ngas(ro) ’
whereN(rg) is the number density of pairs with a turning

point atry. The right-hand side is equal to the ratio of the
equilibrium pair distribution functions,

(32

Pgas Sig(@) _ Gig(To)

Piig Sgaiw) ggas(ro) , (33
or

Paas Sia( @) pvytr)-ver)

Piiq Sgad @) € f ’ (34

whereV, is the potential of mean force. Comparing, we find
that in this approximation the effective potential in a fluid is
the potential of mean force.

Equation (33) is essentially the IBC approximation of
Oppenheim and Davi€. However, while it is not obvious

from the previous work what values should be taken for the

turning point, this follows easily from our results.

Indeed, ro is defined by V(ro)+oV(rg) =Ejq(w),
whereEq(w) is the energy minimizingBE+ 2wty , 5/(E).
According to Eq(29), V. sv(E) =t3(E—6V(rp)) where we
have neglecte®V in the spirit of the IBC approximation.
This implies

Eiig(@) =Egad @) +6V(ro), (35
and therefore the turning point can be obtained from

V(ro)=Egd ). (36)
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ﬂ<l (37)
V(r)=V(rg) ™
and may expand as
)= \/EfrO ! — dr
2 Jo (V(r)=V(rq)+ &V(r))*?
S\ j—T—
2 Jo (V(r)=V(ro)*?
( 1 V() )
x|1-> ————"—|dr+
2 V(r)=V(ro)
ey L 8V(r)
=ty (E) \[f V(- ro))3/2
o (38)

For potentials satisfying Eq9) it is easy to see that the
neglected terms are of ord&§(E)(BE) 2. With

-1

1 1 ds
)\(ro)—z fo—/‘(v(ros) )12
V(ro)
L BoV(res)—B6V(ro)
XJ;) (V(I’OS) 1)3/2 dS, (39)
V(ro)
we write Eq.(38) in the form
t5, s7(E) N(ro)
viev =) 0 s
=1- + .
w@E L pE touse™ (40)
N(rg) is of order 1 for potentials satisfying E¢P).
The next step is to minimiz8E + ZthMV%E) with re-

spect toE. To first order(i.e., for sufficiently largeBE) this
minimum is given by the value &, =E,(w) which mini-
mizesBE + 2wty (E). Denoting Mif{ E+2wt},, (E)} by
Miny . sv, etc. we find in the high-energy region,
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. _ N . A(ro)
iy - 5= BBy + 2015 (Ey)~ 2085 (Ey)
:M|nv_(M|nV_,8Ev)M (41)
BEv

Comparing with Eqs(20) and(21) we find, that in the high-
frequency region,

MinVN 1 42
BE, 1-v’

and therefore we obtain finally
%Mwe*ﬁw(foﬂﬂ(fo), (43
Piiq Sgas(w)

where

14

ﬂ(fo):EMro)- (44)

This differs from the Davis—Oppenheim result by the factor

e”(ro)_

If V(r) varies much stronger near the turning point than

6V(r), we can approximate

v 1 ds -1
ﬂ(fo)NmfoﬁﬁV'(ro) LW
(V<ro> - )
Xfl%ds. (45)
o [V(res)
(V(ro) - )

For the homogeneous potentidk " the integrals can be
evaluated with the result

7(rg)~roBoV'(rg) 1 (46)
:
n
In particular forn=12,
7(rg)~—0.045 69,856V’ (ry). (47

IV. VIBRATIONAL ENERGY RELAXATION
OF A BREATHING SPHERE

Vibrational energy relaxation in fluids. Il 2175
aVv(ri.q)
F=> fr)=—2 ——| . (48)
| i aq 4=0

wheref(r) is the binary force and the summation is over all
the bath particles. Considering the repulsiVe, and the
Lennard-Jones potential,

o 12
vlz(r>=s(;) , (49
o 12 o 6
Vi(r)=4e (? —(?) : (50)
the binary forces are
elo 12
flz(r)=—6; T) (51)
and
€ g 12 (o 6

respectively.

The effective interaction parameters are given dy
=(ost0p)/2 ande = esey, Whereeg and e, are the well
depths of solvent and solute, respectively.

Note that for the repulsive potential the binary breathing
sphere force is proportional to the potential energy. In the
case of the Lennard-Jones potential the same is true for the
leading repulsive terms which dominate the high-frequency
spectrum. Therefore, the potential energy spectra of 5.
and (23) have to be multiplied by (6f)? to get the corre-
sponding force spectra. A comparison of E@9) and (50)
with (9) and (13) impliesry,= o*4/e/(kgT) for the repulsive
potential, whereas for the Lennard-Jones potentigl
=o%/4¢/(kgT) holds.

For our simulations we simplify the model by consider-
ing the special case of a neat liquid correspondingoto
=0s=0(, €=es=¢&g, andm=mg=my=2u. This proce-
dure improves the statistics of the molecular dynamics simu-
lations considerably, because each particle can be treated as a
solute. To present our data we use reduced spatial and time

units:r=rl/o andt_=t\/s/2,th. Accordingly, dimensionless
forces and force power spectra are definedad-o/¢ and

§F=S,:m/1/2,u33. Reduced temperature and density are
=kgT/e andp=po>, respectively.

In order to calculate vibrational energy relaxation rates

and corresponding spectral densitigw) by means of our

V. SIMULATION METHODS

theory, the oscillator and its vibrational coordinate have to be

spherically symmetric. Such a “breathing sphere” model has

The theory is compared with two types of numerical

been used in numerous studies to predict the density depemethods, namely classical molecular dynamics simulations

dence of VER rates of diatonfitor even more complex
molecules’? According to Egorov and Skinnéf,the diam-
eter of the breathing sphere isgs=o0y+q, whereq de-
scribes deviations from the equilibrium valug. When the
breathing sphere collides with a bath particle of diameter
the interaction is determined by the effective diameteg (

in an NVE ensemble and classical trajectory simulations of
single collisions in a potential of mean force. For all calcu-

lations the temperature was=1.0.
A. Molecular dynamics simulations

Molecular dynamic§MD) simulations were performed

+0p+q)/2. The perturbing force acting on the vibrational in a cubic simulation box with periodic boundary conditions

coordinate is given by

containing 108-1372 particles. The density was adjusted to
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p=0.85-0.90. Equations of motions were integrated with al. In order to evaluate the radial distribution function at short

time step of At=0.001 applying the leap-frog algorithm. distances we applied a Monte CarfMC) method which

“Shifted-force potentials” of the forrft:®3 relies on the following formalism.
The pair distribution function in a canonical ensemble of

dV(r) . o
VSF(r): V(r)—V(RC)—( T ) (r—RC) G(Rc—r), N partlcles IS given by
r=R;
(53 g(r):conste_ﬁv(r)f e—ﬁvex(rl ----- I'N)drs e dry,
were used to prevent high-frequency artefacts in the spectra (54)

[0(x) is the Heaviside step functignThis method keeps
forces(in particular, breathing sphere forseontinues at the Wherer=|r,;—r| and
cutoff distanceR. by adding a small linear term to the po-

tential. For all simulation®R; was set equal to half the box VE(ry, .. i) =2 V(ri—r)+ 2 V(rp—r))
length. 2<i 2<]
After equilibration the breathing sphere foreg(t) act-
ing on each particlé was recorded for up to? time steps. + > V(i) (55)

The power spectrum was calculated by first dividing the time 2<i<)

series into overlapping segments dfl%teps lengthineigh- s the total potential energy with the exception of the direct
boring segments overlap over 3/4 of their lengthultiply-  potential between particles 1 and 2. In order to evalgétd

ing each segment with a Hanning window functirper-  at small distances, we define the cavity correlation function
forming the Fourier transform by applying the Wiener—y(r) by writing

Khintchine theorem, and averaging over all the segments and
particles. These numerical calculations were performed with ~ 9(r)=e AV0y(r). (56)

double precision. While g(r) strongly vanishes for small distances, the func-

tion y(r) stays finite at the origin and can therefore be
sampled much more easily by Monte Carlo methtd.In-
deed, since

In order to numerically demonstrate the validity of the
mean field approximation for high-frequency spectra, the
phase space integral E@5) is calculated by repetitively
simulating binary collisions of two particles moving in the
relevant gotentigl of mean force. 1Phe impact pargmeter id (r) can be interpret_ed as the _radial_distributio_n function_ of
varied betweerb=0 and a maximumb,,, beyond which a fluid yvhere a_II pairs of partlcles mte_ract with potential
interactions between colliders are negligible. The initial ki—.V(r).' with the smgl.e exception of the pair 1 and 2. Because
netic energy is varied between 0 aigl,, with E, .., being in in this system part!cles 1 and 2 no longer repel each _other,
the range (40—5@®T. For each trajectory consisting of2 there are no sampling problems near0. To the contrary, in

. . dense fluids the pressure from the other particles so often
time steps(step widthAt=0.001) the power spectrum was P b

lculated. and weiahted and d ding t drives this pair to close distances, that it is difficult to sample
calculated, and weignted and averaged according . the region of large distances which is needed to guarantee
For the final spectrum typically 40 000 trajectories were re-,

ded. Si th kinds of calculati lativelv ch thaty(r) tends to 1 for large distances. In order to cope with
cor ?1 - oince these ;n sorca cufaléggs are refatively cheagy;s problem, we consider yet another system where all pairs
We chose a humerical accuracy of -. . . of particles interact with potential(r) with the single ex-
Note that the trajectory calculations only consider colli-

. . ; ception of the pair 1 and 2 which interact with some mild|
sions which start and end at large distances where forces P P y

practically vanish. As a consequence, bound states of paF?pUISiVe potential/(r). We adjustv(r) in such a way that

ticles in potential wells are not sampled by this method. Asthe corresponding(r) can be sampled for the whole range

we have already shown in Paper | and is also confirme@ distancesumbrella sampling). The precise form o is
below this effect is of no importance for the high-frequencyunimportant since(r) is independent o¥. y(r) is obtained
spectra. from

B. Classical trajectory simulations

y(r)=constJ e AV g dry, (57)

y(1)=g(r) e#V0, (58)

C. Evaluation of r) at short distances o .
9(n In order to determing(r), MC calculations were per-

Our theory requires the knowledge of the potential offormed with a canonical ensemble in a cubic simulation box
mean force. The corresponding radial distribution functionwith periodic boundary conditions. The thermodynamic con-
g(r) can in principle be derived from a classical molecularditions were similar to the MD simulations. For the interac-
dynamics simulation. High-frequency spectra, however, aréion between particles 1 and 2 we chose a potential of the
determined by rare high-energy collisions and, thereforeform
g(r) has to be known at short distances which usually are
not sampled properly by conventional molecular dynamics

simulations. This problem is discussed extensively in Paper ' (59

- r\2
V(r)=A0ex;{—4(;) In2
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FIG. 2. Spectral densities of the breathing sphere force for the repulsive
FIG. 1. Radial distribution functions for particles interacting via the repul- potentialV,,(r) at T=1.0 andp=0.9. The inset enlarges the low-frequency

sive potentialV,,(r) at T=1.0 andp=0.9. In the lower panel the cavity ~SPectrum, whereas in the lower panel ratios of simulated to gas phase spec-
correlation functions are shown. tra are showr(see the tejt

with Ap~8kgT and ao which is the same as for the poten- yisianca, . =0.778 which corresponds to the most energetic
tials of Eqs.(49) and(50) describing all the other pair inter- ¢jjision during the simulation. At shorter distances we ob-
actions. After equilibration, up to farials for each particle tained g(r) by the Monte Carlo method described in the

were taken to sample the configurational phase space. geceding section. The result is shown in the lower panel of
every MC step the pair distribution between particle 1 and Zjg 1 py a solid line. At large distances this curve is in
was determined and averaged. This method yigld$ and  omplete agreement with the MD result. At short distances,
by means of Eqs(56) and (S8) we obtaing(r) apart froma  powever, it is well defined even for—0 where y(r)
constant factor. The scaling factor was obtained by compar= 4(ry/q°r) reaches a maximum of 7x 10°.

ing the MC result with the radial distribution function de-
rived from the corresponding MD simulation at large dis-
tances were the latter method gives reliable results.

The MC radial distribution function is used to obtain the
potential of mean force vid/(r)=—kgT Ing(r). As dis-
cussed previously, to calculate the spectra we approximate
the liquid interacting with potentiaV/(r) by a hypothetical
VI. COMPARISON BETWEEN THEORY gas interacting with potentiadi,(r) (“mean field gas’). By
AND COMPUTER SIMULATIONS definition, the liquid and the mean field gas then have the
same radial distribution function. Sind&.(r) is no longer
purely repulsive, the trajectory calculations in the mean field

Radial distribution functions play a key role in high- gas do reproducg(r) only in the high-energy and small
frequency spectra in liquids. In the upper panel of Fig. lregion where the bound states become irrelevant. This is
the radial distribution function from a MD simulation of thoroughly discussed in Paper I. The open circles in Fig. 1
500 particles interacting via the purely repulsVe, poten-  display the so determined radial distribution function in the
tial at densityp=0.9 and temperatur&=1.0 is shown by mean field gas. Only in the very limited regior<0.92, the
black dots. For comparison, the low density lingf(r)  calculations ofg(r) by trajectory and MC simulations do
=exd —V(r)/kgT] is also plotted by a thin line. coincide. This, however, is the range relevant for the high-

As expected, the MD result strongly deviates from thefrequency spectra. For the trajectory simulations the maxi-
gas phase distribution due to the formation of a structurednum collision energy used was . Via V(T min)
liquid. As is apparent from the lower panel of Fig. 1 where =Emax, this corresponds to,,=0.722 in accord with Fig. 1.
ratiosg(r)/g°(r) are plotted, the MD curve ends at a certain Figure 2 displays the spectral densitgsof the breath-

A. Repulsive potential Vy,
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ing sphere forcd ;, of the repulsive potentiaV,,. The thick [ " T
dotted curve is from the MD simulation, the thick dashed 25}

V(1) = 4e[(ofr) *<(o/r)°]

curve represents the trajectory result, and the thin solid line L | T =1.00

is the theoretical spectrum as derived from E@) and 20F | p" =085

(47). The frequency is given in units af * wherer is cal- . ;XS(';I/(?T;;;
culated from Eq. (14). For typical values of u  __ 1.5F| o mD.N=108
=50 gmol'!, 0=0.4 nm, ande/kg=100 K, the value of = - | —o—trajectories
w7=1 corresponds t&= w/2rc=1.812 cm’. The insert 1.0 L—MC

in the upper panel of Fig. 2 enlarges the low-frequency spec [
tra, whereas in the lower panel ratios of the liquid phase 0.5
spectra to the theoretical gas phase spectrum, normalized 0.0 |
the respective densitieS(;pgad/(Sgagiiq) are plotted. This ) 0
representation shows directly how the many-body effects ’ 05'
change the spectrum when going from the gas to the liquic :
phase. ol
In principle, the MD calculation should give the most E
reliable spectrum. However, due to the limited numerical ac- .~ 10° |
curacy of 16 orders of magnitude, only the frequency ranges— E
up to w7~400 is accessible. But even below this, complica- =’ 102 !
tions can occur due to finite simulation tinfeee Papen! In F
order to demonstrate that the MD spectrum is actually accu 10"
rate forw <400, return to the radial distribution function of o F
Fig. 1. There we found agreement between MD and MC 10
simulation down ta ,;,=0.778. This corresponds to a maxi- aF . i e ]
mum c_ollision energy o&,,,,=20.3KgT. Accprdirjg to Eq. 10 0.0 05 1.0 15 ' 20
(21) this energy corresponds @7~570 which is clearly r/ o
above 400 and indicates that the MD spectrum is reliable in
this region. FIG. 3. Radial distribution functions for a Lennard-Jones liquid at1.0
The trajectory spectrum covers 32 orders of magnitudendp=0.85. In the lower panel the cavity correlation functions are shown.
since these calculations were performed with fourfold preci-
sion. As a result, the spectrum extends upwteo~1100. A

comparison between trajectory and MD result in<307 In the upper panel the MD resulblack dot3 was ob-
<<400 shows that the trajectory spectrum underestimates th@ined from a simulation with 1372 particles. The low den-
true spectrum by about 10%. We attribute this difference taty [imit g°(r) is shown for comparison. In the lower panel
the mean field approximation, i.e., to the fact that fluctua+he ratio of both curves is plotted. The inset shows that the
tions of the perturbing potenti@V of the environment were \vp curve becomes noisy at short distances and ends at
neglected and only the potential of mean force was considr, . —0.85 corresponding to a maximum collision energy of
ered for the trajectory calculations. Nevertheless, the closg =17.5gT during the simulation. At shorter distances
agreement between both spectra indicates that the physi r) can be explored only by the Monte Carlo metHéuall
picture and theory developed in Sec. Il are essentially corfine). Also plotted in the inset is the result of a MD simula-
rect. ' _ o tion with an ensemble of only 108 Lennard-Jones particles
The theoretical curvéthin solid ling is in perfect agree- (open triangles In this case the curve systematically goes
ment with the trajectory calculation apart from the very low- pajow the MC result already at<0.89 and ends af,,
frequency spectral regions(r<20), where the theory is not =g g6. In agreement with the analysis of finite particle num-
applicable. This shows that within the mean field approximajers in the MD ensemble at gas phase conditi@es our
tion the theory is asymptotically exact at high frequencies. Ifyrevious papéf) we attribute the decrease gfr)/g°(r) at
particular, the theory can be used to predict high-frequency— g g9 to a finite-size effect. The consequences on the spec-
spectral densities in regions which are not accessible by n4rym will be discussed below.
merical methods. o . The radial distribution function defines the potential of
Also shown in the lower panel of Fig. 2 is the improved mean forceV,(r). As previously, we approximate the liquid
IBC approximation of Eqs(33) and (36) (dashed—dotted gpectra by the spectra of a hypothetical gas where the par-
line). This spectrum overestimates the MD result by 20% andjcles interact with this potential. Since bound states are
indicates that the main contribution of the environment to theymitted in the trajectory calculations, tiggr) of the trajec-
spectra stems from the static quantf(ro)/dgadro)- The  tory and MC calculations again coincide only for high ener-
force near the turning point is less important. gies or small distances, but this is all we need for the
asymptotic spectra. The maximum collision energies for
these trajectory simulations wekg,,,=40kgT. This corre-
In Fig. 3 radial distribution functions for the Lennard- sponds to turning points af,;,,=0.804 in accord with Fig. 3.

Jones liquid alf=1.0 andp=0.85 are presented. In Fig. 4 we have plotted spectral densit%,s of the

a(n/g

B. Lennard-Jones potential
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10° F (thin solid line. Figure 4 shows that the improved IBC ap-
L F proach of Egqs(33) and (36) also gives satisfactory results.
10 - The corresponding spectrum overestimates the MD calcula-
10° F tion by about 10%.
107
§F . VIl. CONCLUSIONS
10™ E
2K In this paper, we have applied a theory of high-frequency
10 5 spectra in dense classical liquids to the phenomenon of vi-
102l T ; ) brational energy relaxation employing the breathing sphere
r | = = trajectories . . . .
102 E theory model. The theory is based on analytical expressions which

109 E— \ | . | Y represent exact asymptotic forms of spectra in classical gases
0 200 400 600 800 1000 1200 at high frequency._ln _order to derive the_z corresponding spec-
i . tra for the dense liquid, we note that high-frequency spectra

s 4 are dominated by rare binary collisions, and that during these
! ____________ | collisions the environment is practically frozen. In this way
4L 1 e the environment influences the binary interaction by an per-
= | . --&.' turbing potential. Assuming that the fluctuations of the envi-
mé 3L ronment are of minor importance, the perturbing potential is
PG NP : _ identified with the potential of mean force. The final expres-
Lol G2 mg m _ 18;2 | sions require knowledge of the radial distribution function at
o s ~ — trajectories | short distances. The latter is obtained by an importance sam-
1 }z —— theory i pling Monte Carlo calculation.
il —_— improved IBC | | For the repulsiveV,, and the Lennard-Jones potential

ob— v o the theoretical spectra are compared with conventional mo-
lecular dynamics and trajectory simulations of binary colli-
0 200 400 600 800 1000 1200 g i :
T sions in the relevant potential of mean force. The general
N _ agreement between all the spectra at high frequency is good.
FIG. 4. Spectral derEmes of the breathing sphere force for a Lennard-Jon§Sayiation are of the order of 10—15 % indicating that the
liquid at T=1.0 andp=0.85. The inset enlarges the low-frequency spec- theory can be used to accurately predict spectral densities at
trum, whereas in the lower panel ratios of simulated to gas phase spectra are _. . . .
shown(see the text regions which are not accessible by numerical methods. As
in the gas phase, the spectra are of stretched exponential
form which is in contrast to the popular exponential energy
__gap law. Our results are of general relevance and not limited
breathing sphere force for the Lennard-Jones liquidT at to the breathing sphere model.
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