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Vibrational energy relaxation in classical fluids. II. High-frequency spectra
in liquids

Max Teubnera) and Dirk Schwarzerb)

Max-Planck-Institut fu¨r biophysikalische Chemie, Postfach 2841, 37077 Go¨ttingen, Germany

~Received 13 March 2003; accepted 30 April 2003!

A procedure is outlined to determine high-frequency spectra of classical liquids interacting via
Lennard-Jones and similar potentials and applied to the problem of vibrational energy relaxation.
The theory is based on analytical expressions derived for spherical particles in gases@Paper I, D.
Schwarzer and M. Teubner, J. Chem. Phys.116, 5680~2002!# and is extended to the dense liquid
phase by considering binary collisions in the potential of mean force. The calculated spectra are in
good agreement with those derived from classical trajectory and molecular dynamics
simulations. ©2003 American Institute of Physics.@DOI: 10.1063/1.1585018#
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I. INTRODUCTION

Vibrational energy relaxation~VER! of excited mol-
ecules plays a key role in chemical dynamics because
often the outcome of a chemical reaction is determined
the competition between reactive steps and vibrational
ergy transfer. Therefore, over the last decades great ex
mental and theoretical efforts have been expended to as
tain the main factors affecting VER processes in the gas
the liquid phase.1–9

The simplest energy relaxation mechanism involves
transfer of vibrational energy into translational degrees
freedom of the bath. The theoretical description of this p
cess is usually based on first-order perturbation theory.
finds that the classical VER rate of a harmonic oscillator w
frequencyv0 in a thermal environment is given by10–14

kver5
1

2mkBT
SF~v0!, ~1!

wherem is the reduced mass of the oscillator andkB andT
are the Boltzmann constant and the temperature, res
tively. SF(v) is the power spectrum of the fluctuating so
vent forceF(t) exerted on the solute vibrational coordina
while its bond is held rigid,

SF~v!5E
2`

`

cos~vt !^F~ t !F~0!&dt. ~2!

In principle, the force–force time-correlation function a
pearing in Eq.~2! should be evaluated at a quantum leve15

Reliable and tractable methods to derive this quantity, ho
ever, are not available for interacting many-body syste
Thus, just the classical correlation function is usually us
and certain corrections factors are introduced to accoun
quantum effects.16–19

A widely used method to derive the classical spectrum
to calculateSF(v) directly from an equilibrium molecula
dynamics simulation. However, in the case of high-freque

a!Electronic mail: mteubne@gwdg.de
b!Electronic mail: dschwar@gwdg.de
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oscillators this is a challenging problem for seve
reasons.20 First, the dynamic range of the Fourier transfor
of the force–force time-correlation function is usually lim
ited by the numerical accuracy to 16 orders of magnitu
such that the high-frequency spectral range often is not
cessible. Second, spectra at high frequency are determ
by rare high-energy collisions. To properly sample these c
lisions, the simulation time can become prohibitively larg
And, finally, computer simulations are usually done in fin
ensembles with fixed total energy underestimating the pr
ability of high-energy collisions with respect to a Boltzman
distribution. Accordingly, the calculated spectral density
high frequency is lower than expected from a canonical
semble, even for an infinitely long simulation time.

Therefore, a theory to calculateSF(v) at high frequen-
cies, at least for simple cases, is desirable. Employing
breathing sphere model we have developed such a theor
the gas phase20 ~Paper I!, i.e., at conditions where only bi
nary interactions between colliders have to be conside
For particles interacting via Lennard-Jones and similar
tentials expressions for the spectra were derived which
asymptotically exact and of the formSF(v)}exp@2(vt)n#,
where exponentn and time constantt depend only on the
interaction potential. Since the exponent was shown to bn
<2/3, the spectra decay always slower than exponentiall
contrast to the popular exponential energy gap law.21–23The
result, however, is in agreement with the more qualitat
theory of Landau and Teller24 which, for the special case of
repulsive exponential potential, foundn52/3.

In this paper we will extend our theory to derive hig
frequency spectra for liquids. As in Paper I the theory
applied to the vibrational energy relaxation of a breath
sphere in an atomic environment. Our approach takes ad
tage of the fact that at high frequencies all collective mot
of the solvent is frozen. The only processes which contrib
to the spectra in this frequency domain are rare high-ene
binary collisions as in the gas phase. This is the basis of
independent binary collision~IBC! model.1,6,25–28Within this
approach the complicated many-body dynamics reduce
the two-body problem of binary collisions in a static pote
1 © 2003 American Institute of Physics
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tial. In the gas-phase the trajectory associated with a c
sion is determined simply by the binary potential betwe
the molecules. In the liquid the static potential of the froz
environment has to be added. In principle, the static poten
of the environment changes between collisions. In
theory, however, we take the average and approximate i
the potential of mean force. With respect to the binary int
actions the potential of mean force is treated as a small
turbation.

The paper is organized as follows: In the next section
briefly summarize the analytical results of Paper I20 and Ref.
29 obtained for spectra of spherical particles in dilute gas
In Sec. III the theory is extended to the liquid phase a
approximate expressions for corresponding high-freque
spectra are derived. We apply the theory to the problem
vibrational energy relaxation by introducing the breathi
sphere model in Sec. IV. In Sec. V a Monte Carlo method
presented to sampleg(r ) at short distances relevant for high
energy collisions. Finally, the theory is compared with t
jectory and molecular dynamics simulations.

II. SPECTRA IN DILUTE GASES

In this section we briefly review the general theory20,29

which studies the high-frequency spectra of binary obse
ables in dilute classical gases.

Consider a dilute gas of densityr. A relative binary ob-
servableA5A(t) associated with a tagged particlei is a sum
of local observables,

A5(
j Þ i

Aloc , ~3!

where eachAloc5Aloc(t) depends only on the relative traje
tory r i j 5r i2r j of a pair of particles at timet. We also re-
quire thatAloc tends to zero for large separation. Examp
for functions Aloc are the potentialV„r i j (t)… or the force
2V8„r i j (t)… between the particles. We are interested in
spectrum

SA~v!5E
2`

`

dt eivt
„^A~ t !A~0!&2^A&2

…. ~4!

In a dilute gas of densityr and in the high-frequency
range the spectrum can be written in the form

SA~v!5E
0

`

dEE
0

`

dl Z~E,l !uAloc~v!u2, ~5!

where

Z~E,l !54pr~2pmkBT!23/2e2bE2p l ~6!

is the number density of collisions with energyE and angu-
lar momentuml per unit time. Herem5m/2 is the reduced
mass,b5(kBT)21, and

Aloc~v!5E
2`

`

dt eivtAloc~ t ! ~7!

is the Fourier transform ofAloc(t)5Aloc„r (t)….
In the following we often take as local observableAloc

an inverse power of the distance of the colliding pair
Downloaded 03 Jun 2010 to 134.76.223.56. Redistribution subject to AIP
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r 2p~v!5E
2`

`

dt
eivt

r ~ t !p , ~8!

and assume that the potentialV(r ) is analytic in the whole
complex r -plane with the exception of a singularity at th
origin where the dominant term is

V~r !;
A

r n , r;0. ~9!

Under these conditions the spectrum can be asymptotic
evaluated in the high-frequency range with the result

SA~v!;a~vt!se2MinE„bE12vt* (E)…, ~10!

where a is an amplitude,t is a time constant, andt* is
defined by

t* ~E!5Am

2 E
0

r 0 dr

AV~r !2E
. ~11!

r 0 is the turning point given byV(r 0)5E @for sufficiently
high energy any potential of the form Eq.~9! has a single
turning point#. t* depends on the details of the potential, b
t depends only on the dominant singularityAr2n, while a
ands depend in addition onp. Exponents is given by

s5
4p

n12
2

5n18

3n12
. ~12!

SinceA has dimension energy3 lengthn, it is convenient to
replaceA by a lengthr th defined by

A5kBTr th
n . ~13!

Then time constantt and amplitudea are given by

t5c0r thA2mb, ~14!

a5a~rr th
3 !tr th

2p . ~15!

The numerical constantsc0 anda are

c05Ap~12n!21/n

GS 1

n D
GS 1

nD ~16!

and

a54pc0S 2p

G~pl! D
2

„~n12!c0…
22pl

n

n

3A2n~12n!~12n!12 2/n

GS 1

2
1

1

nDGS 12
1

nD
GS 3

2
2

1

nDGS 1

nD , ~17!

with

n5
2n

3n12
. ~18!

For special potentials more explicit results can be o
tained. In the simplest situation the potential has the fo
Eq. ~9! everywhere. Then
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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t* ~E!5t
n

2 S 12n

bE D (1/n)21

, ~19!

the minimum can be performed, and Eq.~10! becomes

SA~v!;a~vt!se2(vt)n
. ~20!

The main contribution to the spectra comes from energ
near

bE~v!5~12n!~vt!n. ~21!

For the Lennard-Jones potential,

VLJ~r !54eS S s

r D 12

2S s

r D 6D , ~22!

Eq. ~10! becomes in the high-frequency limit,

SLJ~v!;a~vt!se2(vt)12/1910.408 88Ak(vt)6/1910.126 511k, ~23!

where k54e/kBT and n512 in Eqs.~12!–~18!. For high
frequency the main contribution to the spectra comes fr
energies near

bE~v!; 7
19 ~vt!12/1920.279 76Ak~vt!6/1920.126 511k.

~24!

This is similar to Shin30 but differs in the frequency-
independent terms.

III. SPECTRA IN LIQUIDS

A. General remarks

We now turn to our main subject, high-frequency spec
in dense fluids.

At very low-frequency, spectra in fluids are simple a
have universal features. They are determined by the co
tive motion of many particles and can be described by m
roscopic hydrodynamics involving a few phenomenologi
constants.31 In the intermediate range, where the inverse f
quency is comparable to the collision time, the proble
seems complicated because hydrodynamics becomes u
able while multibody correlations must still be taken in
account. At high frequency, however, the situation drastica
simplifies again.

~1! As in gases, at high frequency the spectra are domin
by rare binary collisions with high energy.

~2! The high-frequency spectra are dominated by a sm
region near the turning point where the particle spe
only a very short time. During this time the configuratio
of the environment is practically unchanged. Therefo
we again have scattering in a time-independent poten

~3! Davis and Oppenheim26 have argued that high-energ
collisions are not independent but occur in groups. Wh
this is true, it has been shown previously29 that the col-
lisions dominating the high-frequency spectra are alm
central. In fact, the higher the frequency, the less n
central collisions contribute to the spectra.29 Consider
now an almost central collision. Even if the collidin
particles retain most of their energy, the probability th
one of the particles makes a second central collision
overwhelmingly small. It it this stringent condition o
Downloaded 03 Jun 2010 to 134.76.223.56. Redistribution subject to AIP
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centrality, that guarantees that the collisions seen in
high-frequency spectra are independent, even in a de
liquid.

We conclude that the high-frequency spectra in fluids,
in gases, are determined by independent binary collision
a static potential. The situation differs form a gas only ins
far as the potential is different in every collision.

The potential is a sum of the direct pair potentialV(r )
and a perturbationdV(r ) which is due to the environment. In
general, the perturbing potentialdV(r ) is noncentral, but it is
analytic and bounded nearr 50 ~it is, however, singular at
the positions of the neighbors!. At any given moment, the
environment essentially has three different effects on a
liding pair: A force accelerates the pair, a torque rotates
and a compression or dilation along the radius vectorr acts
like a radial potential. The first two effects are small and
expect them to be completely negligible at high frequenc
Furthermore, they do not affect observables liker 2p that
depend only on the distance. The third effect, however, d
modify the spectra somewhat and is equivalent to a sph
cally symmetric perturbationdV(r ). Using Eq. ~10!, this
suggests that the spectra in a dense liquid in the h
frequency domain can be written in the form

SA~v!;a~vt!s^e2MinE„bE12vtV1dV* (E)…&, ~25!

where the average is over the differentdV generated by the
environment and

tV1dV* ~E!5Am

2 E
0

r 0 dr

AV~r !1dV~r !2E
. ~26!

Now it is important to note thatdV(r ) is bounded and ana
lytic at r 50. Since a, t, and s depend only on the
asymptotic features of the potential nearr 50, these quanti-
ties have the same values as in the gas phase. Therefore
ratio of the spectra in the liquid and the gas phase is given

rgas

r liq

Sliq~v!

Sgas~v!
;

^e2MinE„bE12vtV1dV* (E)…&

e2MinE„bE12vtV* (E)…
. ~27!

The right hand side can be evaluate using Monte Ca
or molecular dynamics with moderate effort. We prefer, ho
ever, to proceed in a semianalytic way which better illum
nates the physical issues involved and permits us to in
duce some approximations.

B. Approximations

In the spirit of mean field theory we assume that t
fluctuations of the potentialdV in different environments are
of minor importance, and that it is sufficient to study scatt
ing in some effective or average potential. We will arg
below that a good candidate for this potential is the poten
of mean forceVmf(r )52kBT ln g(r).

Let us write

dV̄~r !5dV~r !2dV~r 0!, ~28!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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where r 0 is the turning point. ReplacedV(r ) by dV(r 0)
1dV̄(r ) in tV1dV* . Then

tV1dV* ~E!5t
V1dV̄
*

„E2dV~r 0!…, ~29!

and we may write Eq.~27! in the form

rgas

r liq

Sliq~v!

Sgas~v!
;K e2bdV(r 0)

e2MinE„bE12vt
V1dV̄
* (E)…

e2MinE„bE12vtV* (E)… L .

~30!

It has been stated below that the high-frequency spectra
determined by the potential in the vicinity of the turnin
point. SincedV̄(r 0)50, the potentialsV and V1dV̄ have
the same values at the turning point. Their effect only diff
by the force2dV̄8 from the environment which is very
small compared to the direct force at close separation.

1. IBC and improved IBC approximation

As our first approximation, let us neglect the force fro
the environment altogether. Then we obtain

rgas

r liq

Sliq~v!

Sgas~v!
;^e2bdV(r 0)&. ~31!

In order to relatedV to known quantities note that in thi
approximation the particles experience precisely the sa
force during their collision in the liquid as in the gas. Th
implies that the ratio of the spectra depends on static qu
tities only and

Sliq~v!

Sgas~v!
5

Nliq~r 0!

Ngas~r 0!
, ~32!

whereN(r 0) is the number density of pairs with a turnin
point at r 0 . The right-hand side is equal to the ratio of th
equilibrium pair distribution functions,

rgas

r liq

Sliq~v!

Sgas~v!
5

gliq~r 0!

ggas~r 0!
, ~33!

or

rgas

r liq

Sliq~v!

Sgas~v!
5e2b„Vmf(r 0)2V(r )…, ~34!

whereVmf is the potential of mean force. Comparing, we fi
that in this approximation the effective potential in a fluid
the potential of mean force.

Equation ~33! is essentially the IBC approximation o
Oppenheim and Davis.26 However, while it is not obvious
from the previous work what values should be taken for
turning point, this follows easily from our results.

Indeed, r 0 is defined by V(r 0)1dV(r 0)5Eliq(v),
whereEliq(v) is the energy minimizingbE12vtV1dV* (E).
According to Eq.~29!, tV1dV* (E)5tV* „E2dV(r 0)… where we
have neglecteddV̄ in the spirit of the IBC approximation
This implies

Eliq~v!5Egas~v!1dV~r 0!, ~35!

and therefore the turning point can be obtained from

V~r 0!5Egas~v!. ~36!
Downloaded 03 Jun 2010 to 134.76.223.56. Redistribution subject to AIP
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The dominant energiesEgas(v) in the gas phase for the po
tential Ar2n and the Lennard-Jones potential are given
Eqs.~21! and~24!, respectively. Approximation~33! in con-
junction with~36! is our improved IBC approximation which
we test below.

2. Mean field theory

The IBC approximation rests on the assumption that
only effect of the environment is a redefinition of the ener
level by the potential of the mean force at the turning poi
Now we try to improve upon this approximation. We reta
the assumption that the relevant potential for the high-ene
collisions is the potential of mean force, but we no long
neglect the force from the environment.

As a first step we must estimatet
V1dV̄
* (E) for large E.

SincedV̄(r ) is finite whileV(r ) diverges forr→0, we have
for small r ,

dV̄~r !

V~r !2V~r 0!
!1, ~37!

and may expand as

t
V1dV̄
* ~E!5Am

2
E

0

r 0 1

„V~r !2V~r 0!1dV̄~r !…1/2
dr

;Am

2
E

0

r 0 1

„V~r !2V~r 0!…1/2

3S 12
1

2

dV̄~r !

V~r !2V~r 0!
D dr1 ¯

5tV* ~E!2
1

2
Am

2
E

0

r 0 dV̄~r !

„V~r !2V~r 0!…3/2
dr

1 ¯. ~38!

For potentials satisfying Eq.~9! it is easy to see that the
neglected terms are of ordertV* (E)(bE)22. With

l~r 0!5
1

2 S E0

1 ds

S V~r 0s!

V~r 0!
21D 1/2D 21

3E
0

1 bdV~r 0s!2bdV~r 0!

S V~r 0s!

V~r 0!
21D 3/2 ds, ~39!

we write Eq.~38! in the form

t
V1dV̄
* ~E!

tV* ~E!
512

l~r 0!

bE
1O„~bE!22

…. ~40!

l(r 0) is of order 1 for potentials satisfying Eq.~9!.
The next step is to minimizebE12vt

V1dV̄
* (E) with re-

spect toE. To first order~i.e., for sufficiently largebE) this
minimum is given by the value atEV5EV(v) which mini-
mizesbE12vtV* (E). Denoting Min$bE12vt

V1dV̄
* (E)% by

MinV1dV̄ , etc. we find in the high-energy region,
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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MinV1dV̄5bEV12vtV* ~EV!22vtV* ~EV!
l~r 0!

bEV

5MinV2~MinV2bEV!
l~r 0!

bEV
. ~41!

Comparing with Eqs.~20! and~21! we find, that in the high-
frequency region,

MinV

bEV
;

1

12n
, ~42!

and therefore we obtain finally

rgas

r liq

Sliq~v!

Sgas~v!
;e2bdV(r 0)1h(r 0), ~43!

where

h~r 0!5
n

12n
l~r 0!. ~44!

This differs from the Davis–Oppenheim result by the fac
eh(r 0).

If V(r ) varies much stronger near the turning point th
dV(r ), we can approximate

h~r 0!;
n

2~12n!
r 0bdV8~r 0!S E0

1 ds

S V~r 0s!

V~r 0!
21D 1/2D 21

3E
0

1 s21

S V~r 0s!

V~r 0!
21D 3/2ds. ~45!

For the homogeneous potentialAr2n the integrals can be
evaluated with the result

h~r 0!;r 0bdV8~r 0!S 12
1

2

GS 1

nDGS 3

2
1

2

nD
GS 2

nDGS 3

2
1

1

nD D . ~46!

In particular forn512,

h~r 0!;20.045 69r 0bdV8~r 0!. ~47!

IV. VIBRATIONAL ENERGY RELAXATION
OF A BREATHING SPHERE

In order to calculate vibrational energy relaxation ra
and corresponding spectral densitiesSF(v) by means of our
theory, the oscillator and its vibrational coordinate have to
spherically symmetric. Such a ‘‘breathing sphere’’ model h
been used in numerous studies to predict the density de
dence of VER rates of diatomic22 or even more complex
molecules.32 According to Egorov and Skinner,22 the diam-
eter of the breathing sphere issBS5s01q, where q de-
scribes deviations from the equilibrium values0 . When the
breathing sphere collides with a bath particle of diameterss

the interaction is determined by the effective diameter (ss

1s01q)/2. The perturbing force acting on the vibration
coordinate is given by
Downloaded 03 Jun 2010 to 134.76.223.56. Redistribution subject to AIP
r

s

e
s
n-

F5(
i

f ~r i !52(
i

]V~r i ,q!

]q U
q50

, ~48!

wheref (r ) is the binary force and the summation is over
the bath particles. Considering the repulsiveV12 and the
Lennard-Jones potential,

V12~r !5«S s

r D 12

, ~49!

VLJ~r !54«F S s

r D 12

2S s

r D 6G , ~50!

the binary forces are

f 12~r !526
«

s S s

r D 12

~51!

and

f LJ~r !5212
e

s F2S s

r D 12

2S s

r D 6G , ~52!

respectively.
The effective interaction parameters are given bys

5(ss1s0)/2 and«5A«s«0, where«s and «0 are the well
depths of solvent and solute, respectively.

Note that for the repulsive potential the binary breathi
sphere force is proportional to the potential energy. In
case of the Lennard-Jones potential the same is true for
leading repulsive terms which dominate the high-frequen
spectrum. Therefore, the potential energy spectra of Eqs.~20!
and ~23! have to be multiplied by (6/s)2 to get the corre-
sponding force spectra. A comparison of Eqs.~49! and ~50!
with ~9! and~13! implies r th5s12A«/(kBT) for the repulsive
potential, whereas for the Lennard-Jones potentialr th

5s12A4«/(kBT) holds.
For our simulations we simplify the model by conside

ing the special case of a neat liquid corresponding tos
5ss5s0 , «5«s5«0 , and m5ms5m052m. This proce-
dure improves the statistics of the molecular dynamics sim
lations considerably, because each particle can be treated
solute. To present our data we use reduced spatial and
units: r̄ 5r /s and t̄ 5tA«/2ms2. Accordingly, dimensionless
forces and force power spectra are defined asF̄5Fs/« and
S̄F5SFsA1/2m«3. Reduced temperature and density areT̄
5kBT/« and r̄5rs3, respectively.

V. SIMULATION METHODS

The theory is compared with two types of numeric
methods, namely classical molecular dynamics simulati
in an NVE ensemble and classical trajectory simulations
single collisions in a potential of mean force. For all calc
lations the temperature wasT̄51.0.

A. Molecular dynamics simulations

Molecular dynamics~MD! simulations were performed
in a cubic simulation box with periodic boundary conditio
containing 108–1372 particles. The density was adjuste
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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r̄50.8520.90. Equations of motions were integrated with
time step ofD t̄ 50.001 applying the leap-frog algorithm
‘‘Shifted-force potentials’’ of the form23,33

VSF~r !5FV~r !2V~Rc!2S dV~r !

dr D
r 5Rc

~r 2Rc!Gu~Rc2r !,

~53!

were used to prevent high-frequency artefacts in the spe
@u(x) is the Heaviside step function#. This method keeps
forces~in particular, breathing sphere forces! continues at the
cutoff distanceRc by adding a small linear term to the po
tential. For all simulationsRc was set equal to half the bo
length.

After equilibration the breathing sphere forceFi(t) act-
ing on each particlei was recorded for up to 224 time steps.
The power spectrum was calculated by first dividing the ti
series into overlapping segments of 214 steps length~neigh-
boring segments overlap over 3/4 of their length!, multiply-
ing each segment with a Hanning window function,34 per-
forming the Fourier transform by applying the Wiene
Khintchine theorem, and averaging over all the segments
particles. These numerical calculations were performed w
double precision.

B. Classical trajectory simulations

In order to numerically demonstrate the validity of th
mean field approximation for high-frequency spectra,
phase space integral Eq.~5! is calculated by repetitively
simulating binary collisions of two particles moving in th
relevant potential of mean force. The impact paramete
varied betweenb50 and a maximumbmax beyond which
interactions between colliders are negligible. The initial
netic energy is varied between 0 andEmax with Emax being in
the range (40– 50)kBT. For each trajectory consisting of 219

time steps~step widthD t̄ 50.001) the power spectrum wa
calculated, and weighted and averaged according to Eq.~5!.
For the final spectrum typically 40 000 trajectories were
corded. Since these kinds of calculations are relatively ch
we chose a numerical accuracy of 1:1032.

Note that the trajectory calculations only consider co
sions which start and end at large distances where fo
practically vanish. As a consequence, bound states of
ticles in potential wells are not sampled by this method.
we have already shown in Paper I and is also confirm
below this effect is of no importance for the high-frequen
spectra.

C. Evaluation of g „r … at short distances

Our theory requires the knowledge of the potential
mean force. The corresponding radial distribution funct
g(r ) can in principle be derived from a classical molecu
dynamics simulation. High-frequency spectra, however,
determined by rare high-energy collisions and, therefo
g(r ) has to be known at short distances which usually
not sampled properly by conventional molecular dynam
simulations. This problem is discussed extensively in Pa
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I. In order to evaluate the radial distribution function at sh
distances we applied a Monte Carlo~MC! method which
relies on the following formalism.

The pair distribution function in a canonical ensemble
N particles is given by

g~r !5conste2bV(r )E e2bVex(r1 , . . . ,rN)dr3 ¯ drN ,

~54!

wherer 5ur12r2u and

Vex~r1 , . . . ,rN!5(
2, i

V~r12r i !1(
2, j

V~r22r j !

1 (
2, i , j

V~r i2r j ! ~55!

is the total potential energy with the exception of the dire
potential between particles 1 and 2. In order to evaluateg(r )
at small distances, we define the cavity correlation funct
y(r ) by writing

g~r !5e2bV(r )y~r !. ~56!

While g(r ) strongly vanishes for small distances, the fun
tion y(r ) stays finite at the origin and can therefore
sampled much more easily by Monte Carlo methods.35,36 In-
deed, since

y~r !5constE e2bVex(r1 , . . . ,rN)dr3¯drN , ~57!

y(r ) can be interpreted as the radial distribution function
a fluid where all pairs of particles interact with potenti
V(r ), with the single exception of the pair 1 and 2. Becau
in this system particles 1 and 2 no longer repel each ot
there are no sampling problems nearr 50. To the contrary, in
dense fluids the pressure from the other particles so o
drives this pair to close distances, that it is difficult to sam
the region of large distances which is needed to guara
thaty(r ) tends to 1 for large distances. In order to cope w
this problem, we consider yet another system where all p
of particles interact with potentialV(r ) with the single ex-
ception of the pair 1 and 2 which interact with some mild
repulsive potentialṼ(r ). We adjustṼ(r ) in such a way that
the correspondingg̃(r ) can be sampled for the whole rang
of distances~umbrella sampling37!. The precise form ofṼ is
unimportant sincey(r ) is independent ofṼ. y(r ) is obtained
from

y~r !5g̃~r ! ebṼ(r ). ~58!

In order to determineg̃(r ), MC calculations were per-
formed with a canonical ensemble in a cubic simulation b
with periodic boundary conditions. The thermodynamic co
ditions were similar to the MD simulations. For the intera
tion between particles 1 and 2 we chose a potential of
form

Ṽ~r !5A0 expF24S r

s D 2

ln 2G , ~59!
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with A0;8kBT and as which is the same as for the pote
tials of Eqs.~49! and~50! describing all the other pair inter
actions. After equilibration, up to 108 trials for each particle
were taken to sample the configurational phase space
every MC step the pair distribution between particle 1 an
was determined and averaged. This method yieldsg̃(r ) and
by means of Eqs.~56! and~58! we obtaing(r ) apart from a
constant factor. The scaling factor was obtained by com
ing the MC result with the radial distribution function de
rived from the corresponding MD simulation at large d
tances were the latter method gives reliable results.

VI. COMPARISON BETWEEN THEORY
AND COMPUTER SIMULATIONS

A. Repulsive potential V12

Radial distribution functions play a key role in high
frequency spectra in liquids. In the upper panel of Fig
the radial distribution function from a MD simulation o
500 particles interacting via the purely repulsiveV12 poten-
tial at densityr̄50.9 and temperatureT̄51.0 is shown by
black dots. For comparison, the low density limitg0(r )
5exp@2V(r)/kBT# is also plotted by a thin line.

As expected, the MD result strongly deviates from t
gas phase distribution due to the formation of a structu
liquid. As is apparent from the lower panel of Fig. 1 whe
ratiosg(r )/g0(r ) are plotted, the MD curve ends at a certa

FIG. 1. Radial distribution functions for particles interacting via the rep

sive potentialV12(r ) at T̄51.0 andr̄50.9. In the lower panel the cavity
correlation functions are shown.
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distancer̄ min50.778 which corresponds to the most energe
collision during the simulation. At shorter distances we o
tained g(r ) by the Monte Carlo method described in th
preceding section. The result is shown in the lower pane
Fig. 1 by a solid line. At large distances this curve is
complete agreement with the MD result. At short distanc
however, it is well defined even forr̄→0 where y(r )
5g(r )/g0(r ) reaches a maximum of;73104.

The MC radial distribution function is used to obtain th
potential of mean force viaVmf(r )52kBT ln g(r). As dis-
cussed previously, to calculate the spectra we approxim
the liquid interacting with potentialV(r ) by a hypothetical
gas interacting with potentialVmf(r ) ~‘‘mean field gas’’!. By
definition, the liquid and the mean field gas then have
same radial distribution function. SinceVmf(r ) is no longer
purely repulsive, the trajectory calculations in the mean fi
gas do reproduceg(r ) only in the high-energy and smallr
region where the bound states become irrelevant. Thi
thoroughly discussed in Paper I. The open circles in Fig
display the so determined radial distribution function in t
mean field gas. Only in the very limited regionr̄ ,0.92, the
calculations ofg(r ) by trajectory and MC simulations do
coincide. This, however, is the range relevant for the hig
frequency spectra. For the trajectory simulations the ma
mum collision energy used was 50kBT. Via V12( r̄ min)
5Emax, this corresponds tor̄ min50.722 in accord with Fig. 1.

Figure 2 displays the spectral densitiesS̄F of the breath-

-

FIG. 2. Spectral densities of the breathing sphere force for the repul

potentialV12(r ) at T̄51.0 andr̄50.9. The inset enlarges the low-frequenc
spectrum, whereas in the lower panel ratios of simulated to gas phase
tra are shown~see the text!.
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ing sphere forcef 12 of the repulsive potentialV12. The thick
dotted curve is from the MD simulation, the thick dash
curve represents the trajectory result, and the thin solid
is the theoretical spectrum as derived from Eqs.~43! and
~47!. The frequency is given in units oft21 wheret is cal-
culated from Eq. ~14!. For typical values of m
550 g mol21, s50.4 nm, and«/kB5100 K, the value of
vt51 corresponds toñ5v/2pc51.812 cm21. The insert
in the upper panel of Fig. 2 enlarges the low-frequency sp
tra, whereas in the lower panel ratios of the liquid pha
spectra to the theoretical gas phase spectrum, normalize
the respective densities (Sliqrgas)/(Sgasr liq) are plotted. This
representation shows directly how the many-body effe
change the spectrum when going from the gas to the liq
phase.

In principle, the MD calculation should give the mo
reliable spectrum. However, due to the limited numerical
curacy of 16 orders of magnitude, only the frequency ran
up tovt;400 is accessible. But even below this, complic
tions can occur due to finite simulation time~see Paper I!. In
order to demonstrate that the MD spectrum is actually ac
rate forvt,400, return to the radial distribution function o
Fig. 1. There we found agreement between MD and M
simulation down tor̄ min50.778. This corresponds to a max
mum collision energy ofEmax520.3 kBT. According to Eq.
~21! this energy corresponds tovt;570 which is clearly
above 400 and indicates that the MD spectrum is reliable
this region.

The trajectory spectrum covers 32 orders of magnitu
since these calculations were performed with fourfold pre
sion. As a result, the spectrum extends up tovt;1100. A
comparison between trajectory and MD result in 30,vt
,400 shows that the trajectory spectrum underestimates
true spectrum by about 10%. We attribute this difference
the mean field approximation, i.e., to the fact that fluctu
tions of the perturbing potentialdV of the environment were
neglected and only the potential of mean force was con
ered for the trajectory calculations. Nevertheless, the c
agreement between both spectra indicates that the phy
picture and theory developed in Sec. III are essentially c
rect.

The theoretical curve~thin solid line! is in perfect agree-
ment with the trajectory calculation apart from the very lo
frequency spectral region (vt,20), where the theory is no
applicable. This shows that within the mean field approxim
tion the theory is asymptotically exact at high frequencies
particular, the theory can be used to predict high-freque
spectral densities in regions which are not accessible by
merical methods.

Also shown in the lower panel of Fig. 2 is the improve
IBC approximation of Eqs.~33! and ~36! ~dashed–dotted
line!. This spectrum overestimates the MD result by 20% a
indicates that the main contribution of the environment to
spectra stems from the static quantitygliq(r 0)/ggas(r 0). The
force near the turning point is less important.

B. Lennard-Jones potential

In Fig. 3 radial distribution functions for the Lennard
Jones liquid atT̄51.0 andr̄50.85 are presented.
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In the upper panel the MD result~black dots! was ob-
tained from a simulation with 1372 particles. The low de
sity limit g0(r ) is shown for comparison. In the lower pan
the ratio of both curves is plotted. The inset shows that
MD curve becomes noisy at short distances and end
r̄ min50.85 corresponding to a maximum collision energy
Emax517.5kBT during the simulation. At shorter distance
g(r ) can be explored only by the Monte Carlo method~full
line!. Also plotted in the inset is the result of a MD simula
tion with an ensemble of only 108 Lennard-Jones partic
~open triangles!. In this case the curve systematically go
below the MC result already atr̄ ,0.89 and ends atr̄ min

50.86. In agreement with the analysis of finite particle nu
bers in the MD ensemble at gas phase conditions~see our
previous paper20! we attribute the decrease ofg(r )/g0(r ) at
r̄ ,0.89 to a finite-size effect. The consequences on the s
trum will be discussed below.

The radial distribution function defines the potential
mean forceVmf(r ). As previously, we approximate the liqui
spectra by the spectra of a hypothetical gas where the
ticles interact with this potential. Since bound states
omitted in the trajectory calculations, theg(r ) of the trajec-
tory and MC calculations again coincide only for high ene
gies or small distances, but this is all we need for t
asymptotic spectra. The maximum collision energies
these trajectory simulations wereEmax540kBT. This corre-
sponds to turning points atr̄ min50.804 in accord with Fig. 3.

In Fig. 4 we have plotted spectral densitiesS̄F of the

FIG. 3. Radial distribution functions for a Lennard-Jones liquid atT̄51.0
and r̄50.85. In the lower panel the cavity correlation functions are show
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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breathing sphere force for the Lennard-Jones liquid aT̄
51.0 andr̄50.85. Bold dotted and dashed lines show t
MD and trajectory results, respectively. The theoretical sp
trum @Eqs.~43! and ~45!# is the thin solid line. In the lower
panel, where ratios of (Sliqrgas)/(Sgasr liq) are plotted, we
have included the MD results for 108 particles. Using E
~24! the cutoff ofg(r ) at r̄ min50.85 in Fig. 3 indicates tha
the spectrum is reliable up tovt;750 which is well above
the limit of vt,450 set by the numerical accuracy of th
MD calculations. The MD spectral density obtained from t
ensemble of 108 particles atvt.200 starts to fall below the
spectrum with 1372 particles. This is in accord with the c
responding radial distribution function shown in Fig. 3 whi
at r̄ ,0.89 is smaller than expected. Central collisions w
turning points atr̄ 50.89 correspond to collision energies
E58.1kBT. According to Eq.~24! these events contribute t
the spectrum atvt;300. At higher frequency the spectr
density is smaller than for the larger ensemble since str
collisions are under-represented. As mentioned previou
this is probably a finite-size effect.

At high frequencies the spectrum from the trajector
underestimates the true spectrum by 15%. This indicates
the mean field approximation is appropriate to describe
influence of the liquid environment on binary collisions. T
theoretical spectrum of Eq.~43! is about 10% below the true
spectrum and slowly converges to the trajectory spect

FIG. 4. Spectral densities of the breathing sphere force for a Lennard-J

liquid at T̄51.0 andr̄50.85. The inset enlarges the low-frequency sp
trum, whereas in the lower panel ratios of simulated to gas phase spect
shown~see the text!.
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~thin solid line!. Figure 4 shows that the improved IBC ap
proach of Eqs.~33! and ~36! also gives satisfactory results
The corresponding spectrum overestimates the MD calc
tion by about 10%.

VII. CONCLUSIONS

In this paper, we have applied a theory of high-frequen
spectra in dense classical liquids to the phenomenon of
brational energy relaxation employing the breathing sph
model. The theory is based on analytical expressions wh
represent exact asymptotic forms of spectra in classical g
at high frequency. In order to derive the corresponding sp
tra for the dense liquid, we note that high-frequency spec
are dominated by rare binary collisions, and that during th
collisions the environment is practically frozen. In this wa
the environment influences the binary interaction by an p
turbing potential. Assuming that the fluctuations of the en
ronment are of minor importance, the perturbing potentia
identified with the potential of mean force. The final expre
sions require knowledge of the radial distribution function
short distances. The latter is obtained by an importance s
pling Monte Carlo calculation.

For the repulsiveV12 and the Lennard-Jones potenti
the theoretical spectra are compared with conventional
lecular dynamics and trajectory simulations of binary co
sions in the relevant potential of mean force. The gene
agreement between all the spectra at high frequency is g
Deviation are of the order of 10–15 % indicating that t
theory can be used to accurately predict spectral densitie
regions which are not accessible by numerical methods
in the gas phase, the spectra are of stretched expone
form which is in contrast to the popular exponential ener
gap law. Our results are of general relevance and not lim
to the breathing sphere model.

1J. Chesnoy and G. M. Gale, Ann. Phys.~Paris! 9, 893 ~1984!.
2H. Hippler and J. Troe, inBimolecular Collisions, edited by M. N. R.
Ashfold and J. E. Baggott~The Royal Society of London, London, 1989!,
p. 209.

3R. G. Gilbert and S. C. Smith,Theory of Unimolecular and Recombina
tion Reactions~Blackwell Scientific, Oxford, 1990!.

4J. C. Owrutsky, D. Raftery, and R. M. Hochstrasser, Annu. Rev. Ph
Chem.45, 519 ~1994!.

5G. W. Flynn, C. S. Parmenter, and A. M. Wodtke, J. Phys. Chem.100,
12817~1996!.

6J. Chesnoy and G. M. Gale, Adv. Chem. Phys.70, 297 ~1988!.
7C. B. Harris, D. E. Smith, and D. J. Russell, Chem. Rev.90, 481 ~1990!.
8T. Elsaesser and W. Kaiser, Annu. Rev. Phys. Chem.42, 83 ~1991!.
9Y. Deng, B. M. Ladanyi, and R. M. Stratt, J. Chem. Phys.117, 10752
~2002!.

10R. Zwanzig, J. Chem. Phys.34, 1931~1961!.
11R. M. Whitnell, K. R. Wilson, and J. T. Hynes, J. Phys. Chem.94, 8625

~1990!.
12R. M. Whitnell, K. R. Wilson, and J. T. Hynes, J. Chem. Phys.96, 5354

~1992!.
13M. Tuckerman and B. J. Berne, J. Chem. Phys.98, 7301~1993!.
14S. A. Adelman, R. Muralidhar, and R. H. Stote, J. Chem. Phys.95, 2738

~1991!.
15D. W. Oxtoby, Adv. Chem. Phys.47, 487 ~1981!.
16J. S. Bader and B. J. Berne, J. Chem. Phys.100, 8359~1994!.
17K. F. Everitt and J. L. Skinner, J. Chem. Phys.110, 4467~1999!.
18K. F. Everitt, S. A. Egorov, and J. L. Skinner, Chem. Phys.235, 115

~1998!.
19S. A. Egorov, K. F. Everitt, and J. L. Skinner, J. Phys. Chem. A103, 9494

~1999!.

es

-
are
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



le
nc

14 D
e
nen-

la-

em.

ry,
e,

2180 J. Chem. Phys., Vol. 119, No. 4, 22 July 2003 M. Teubner and D. Schwarzer
20D. Schwarzer and M. Teubner, J. Chem. Phys.116, 5680~2002!.
21A. Nitzan, S. Mukamel, and J. Jortner, J. Chem. Phys.63, 200 ~1975!.
22S. A. Egorov and J. L. Skinner, J. Chem. Phys.105, 7047~1996!.
23D. Rostkier-Edelstein, P. Graf, and A. Nitzan, J. Chem. Phys.107, 10470

~1997!.
24L. D. Landau and E. A. Teller, Phys. Z. Sowjetunion10, 34 ~1936!.
25K. F. Herzfeld and T. A. Litovitz,Absorption and Dispersion of Ultrasonic

Waves~Academic, New York, 1959!.
26P. K. Davis and I. Oppenheim, J. Chem. Phys.57, 505 ~1972!.
27P. K. Davis, J. Chem. Phys.57, 517 ~1972!.
28C. Delalande and G. M. Gale, J. Chem. Phys.71, 4804~1979!.
29M. Teubner, Phys. Rev. E65, 031204~2002!.
30H. K. Shin, J. Chem. Phys.56, 2617~1972!. After the publication of the

paper in Ref. 19 we discovered that Shin had studied the same prob
However, his paper contains a few errors that are mainly in the freque
independent terms in our Eqs.~23! and ~24!. Using MATHEMATICA , we
verified our results with Shin’s method. In particular, in his Eq.~16! the
Downloaded 03 Jun 2010 to 134.76.223.56. Redistribution subject to AIP
m.
y-

denominator 144 should read 114 and the last term should read 19/1
instead of 2/3 D. In his Eq.~17! the sign of the second to last term in th
exponential must be negative. This changes the last term in the expo
tial of his Eq.~18! to 10.5060 D/kT from20.838 D/kT.

31D. Forster,Hydrodynamic Fluctuations, Broken Symmetries, and Corre
tion Functions~W. A. Benjamin, Reading, MA, 1980!.

32V. S. Vikhrenko, D. Schwarzer, and J. Schroeder, Phys. Chem. Ch
Phys.3, 1000~2001!.

33M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids~Claren-
don, Oxford, 1996!.

34W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flanne
Numerical Recipes in C~Cambridge University Press, Cambridg
1992!.

35M. Llano-Restrepo and W. G. Chapman, J. Chem. Phys.97, 2046~1992!.
36M. Llano-Restrepo and W. G. Chapman, J. Chem. Phys.100, 5139~1994!.
37G. Torrie and G. N. Patey, Mol. Phys.34, 1623~1977!.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


