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The energy approach to the analysis of the propagation of geodesic acoustic modes presented in
Physics of Plasmas 16, 072503 (2009) is generalized to up-down asymmetric magnetic geometries
including a model for single-null configuration. By removing the neoclassical cancellation effects, up-
down asymmetry can trigger a non-vanishing group velocity at zero radial wavenumber. Theoretical
insight in this effect is provided by analytical calculations combined with numerical gyrokinetic and
two-fluid studies. Thereby, an useful estimate of the group velocity at zero radial wavenumber is
derived within a two-fluid framework.

I. INTRODUCTION

Radial propagation of geodesic acoustic modes
(GAMs) [1], and GAM eigenmodes have been discussed
in recent literature [2–4]. The existence and properties
of global GAM eigenmodes, which are influenced by the
GAM group velocity, might be relevant for the efficiency
of GAM excitation [4, 5]. This, in turn, could affect tur-
bulent transport due to the potential role of GAMs in
nonlinear turbulence saturation [6].

In this context we have presented a method to esti-
mate the radial group velocity of a GAM by comparing
its energy flux to its total free energy [5]. The energy
flux of GAMs consists of two kinds of transports, the ad-
vection of free energy with the magnetic inhomogeneity
drift (curvature, ∇B) and the polarization energy flux.
In case of up-down symmetric plasma equilibria, which
have been used in Ref. [5], the magnetic inhomogeneity
fluxes are of order krρsevdEfluc due to neoclassical can-
cellation effects, where vd is the sum of curvature and∇B
drifts and Efluc is the energy of the fluctuations. Since
the polarization fluxes are also of order krρsevdEfluc and
opposite to the curvature energy-flux, the observed group
velocities are much smaller than vd. Here as well as in
the following, r is defined as the minor radius of a partic-
ular flux surface at the outboard midplane, which makes
r a flux surface label. Thus, kr is the wavenumber and
vr the velocity with respect to the coordinate r.

In this article, we extend the analysis presented in Ref.
[5] to up-down asymmetric magnetic geometries includ-
ing a model for single-null configuration. In these cases,
the curvature energy-fluxes can be of order vdEfluc since
the asymmetry removes the neoclassical cancellation, and
larger group velocities of order vd and above are expected.
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II. FLUID MODEL

The units are chosen such that the magnetic drift ve-
locity equals unity at the outboard midplane. Density n,
ion and electron temperature Ti and Te, and electric po-
tential perturbations φ are normalized to ρ?n0, ρ?T0,i/e,
ρ?T0,e/e, respectively, where the subscript 0 indicates
the corresponding background value and ρ? is given by
ρse/R0 with the major torus radius at the outboard mid-
plane R0, cse ≡ (T0,e/mi)1/2, and ρse ≡ (micse) / (eB0).
The time scale is t0 ≡ R0/(2cse).

The evaluation of the time derivative of the total free
energy for the cold ion equations in Ref. [5] in general
geometry yields:

∂t 〈E〉 =
〈
−∇ ·

(
vdn

2

2

)
+∇ · (n∇ṅ)

B2
rel

+ ∇ ·

(
n∇φ̇0

)

B2
rel

〉
, (1)

where vd is the sum of curvature and ∇B-drift, and
Brel ≡ B/B0. The additional factor 1/Brel appears be-
cause the polarization related terms in [5] implicitly con-
tain a factor ρ2

i (normalized to its value at the outboard
midplane). The flux-surface average in general geome-
try is defined by A0 ≡ 〈A〉 ≡ (

∮
B−1 dl‖)−1

∮
AB−1 dl‖,

where dl‖ denotes the line element parallel to the mag-
netic field. With adiabatic electrons, φ = φ0 + n and
n0 = 0 still hold.

The first term on the right hand side of Eq. (1) is the
flow of the energy of the electron pressure perturbations
in the ion magnetic drift direction. The second term is a
polarization energy-flux, which can be interpreted as an
hydraulic energy-flux, pevpol, consisting of the electron
pressure and the polarization drift velocity. A detailed
discussion of the two terms can be found in Ref. [5]. The
term n∇φ̇0/B2

rel appearing in Eq. (1) is an additional
component of the polarization energy-flux caused by the
flux-surface averaged potential φ0, and vanishes for up-
down-symmetric magnetic geometries.

In [5] the density perturbation for kr ¿ 1 was approx-
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imated by

n2 ≈ 4v2
E

ω2R2

(
1 +

2vd,r

vp

)
(2)

with the E×B-drift velocity vE , the radial component of
the magnetic inhomogeneity drift vd,r, the major radius
R and the GAM phase velocity vp. Whereas in circular
geometry, the first term in Eq. (2) and the last term on
the right hand side of Eq. (1) do not contribute to the
flux-surface averaged energy flux – implying zero group
velocity for kr = 0 – in general geometries, they can give
rise to a non-vanishing vg(kr = 0) and are much larger
than the kr-dependent part of the polarization energy-
flux, n∇ṅ/B2

rel.
Circular flux-surfaces [7] augmented with an r-

dependent vertical shift Z0(r), i.e. R(r, θ) = R0+r cos(θ)
and Z(r, θ) = Z0(r) − r sin(θ), may serve as the most
straightforward test of up-down asymmetric geometry in
numerical studies. The Z-shifted geometry is the sim-
plest modification of the circular equilibrium which shows
the basic effects of up-down asymmetry while avoiding
the complexity of force-free asymmetric configurations.
Lacking complete consistency, it can be thought of as be-
ing maintained by a conductor inside the considered flux
surface. We have studied the dependence of vg(kr = 0)
on the differential Z-shift sz ≡ ∂rZ0 (which can take val-
ues between −1 and 1) for cold ions and infinite safety
factor using the two fluid code NLET [8], the gyrokinetic
codes GS2 [9] and GYRO [10], and direct numerical so-
lutions of the GAM equation.

A GAM spectrum computed with NLET, in which vd

is parallel to the Z-axis, for sz = 0.3 is shown in Fig. 1.
As an effect of the additional kr-independent terms in the
group velocity, the extremum of the GAM dispersion is
shifted away from kr = 0. The group velocity at kr = 0 is
positive. Thus, as conjectured in Ref. [5], vg(kr = 0) 6= 0
due to the up-down asymmetry of the flux-surfaces.

The group velocity at kr = 0 is rather accurately linear
in (1+|sz|)/(1−|sz|) (Fig. 2), the ratio of the inverse flux-
surface distances at the poloidal positions of the maxi-
mum and the minimum of the poloidal magnetic field, i.e.
|∇r(θ = π/2)|/|∇r(θ = −π/2)| for sz > 0. This implies
vg(kr = 0) →∞ for sz → 1.

A very realistic up-down asymmetric magnetic ge-
ometry can be constructed with the magnetic field of
three toroidal current loops, representing the plasma cur-
rent and the currents of two coils, used to elongate the
plasma and to generate separatrices. For large aspect
ratios, the corresponding vector potentials are given by
Ai = ai/2 ln((R0 + R)2 + (Z + zi)2) where ai measures
the current and zi the position of conductor i on the Z-
axis. Since, due to axisymmetry, equipotential surfaces
of the vector potential (of the poloidal field) are also sur-
faces of constant poloidal flux, the flux-surface shape is
determined by the condition

∑2
i=0 Ai = Ψ = const. with

Ψmax ≡ Ψ for the last closed flux-surface. In order to
assure that the vertical forces on the flux surface bal-
ance to zero, we choose a1 = ma2 and z1 = −mz2 with

FIG. 1: (color online) NLET computed log-color-coded GAM
spectrum (Fourier transform of φ) for τ = 0, q = 100, and
sz = 0.3 with direct numerical solution of the GAM equations
(dashed). The extremum of the GAM dispersion is shifted
along the kr-axis due to the up-down asymmetric magnetic
geometry.

FIG. 2: GAM group velocity vg(kr = 0) in shifted Miller
geometry plotted against (1 + sz)/(1 − sz). For sz → 1, the
ratio (1 + sz)/(1− sz) diverges, implying vg(kr = 0) →∞.

a real factor m > 0. The necessary geometry data can
then be calculated analogous to an ordinary Miller equi-
librium [7]. As in Miller geometry we define r to be the
minor radius of a particular flux surface at the outboard
midplane. The corresponding value at the separatrix is
referred to as rmax.

In this geometry, (1 + |sz|)/(1 − |sz|) corresponds to
x ≡ |∇r(θ = −π/2)|/|∇r(θ = π/2)|. Thus, the sepa-
ratrix geometry can be compared to the shifted circular
geometry by plotting vg versus sz ≡ (x−1)/(x+1) (Fig.
3). The group velocity at kr = 0 obtained from the
numerical solution of the GAM equations for a0 = 1,
z0 = 0, a1 = 2a2 = 2, z1 = −2z2 = 2 is positive.
The values of sz for which vg is plotted correspond to
r = (0.055...0.999) rmax. For small sz, the group veloc-
ities of the shifted circular and the separatrix geometry
are of the same order, but for sz → 1 the latter stays
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FIG. 3: (color online) GAM group velocity vg(kr = 0) in
single-null (crosses) and shifted Miller geometry (solid) plot-
ted against sz. When approaching the X-point, i.e. sz → 1,
the single-null group velocity approaches a finite maximum,
while vg diverges in case of the Miller equilibrium with Z-
shift.

finite whereas the former diverges.
An estimate of the group velocity for τ > 0 and large

safety factor can be derived by evaluating the two-fluid
Poynting flux for warm ions and infinite safety factor.
This in turn is obtained by a straightforward modifica-
tion of Eq. (15) of Ref. [5] to general geometry – anal-
ogous to Eq. (1) – and adding the third term on the
right hand side of Eq. (1). In the infinite safety factor
limit, we can neglect all terms involving v‖ ·∇, and since
kθ ¿ kr for GAMs, we only have to consider the radial
component of ∇⊥. In flux coordinates using the normal-
ization defined at the beginning of this section, we can
write ∇⊥ = γ∂Ψ ≡ γrel∂r. Here, Ψ is the poloidal flux,
γ ≡ |∇Ψ|, γ0 is the value of γ at the outboard midplane,
and γrel ≡ γ/γ0. The partial derivative ∂r corresponds
to ikr in Fourier space, where kr is the minor radial wave
number at the outboard midplane. Thus, the radial com-
ponent of the curvature operator Ĉ ≡ −vd · ∇ is −vd,r∂r

with

vd,r ≡ γrelvd · ∇Ψ
|∇Ψ| =

R0γrel

Brel

(
b̂×∇ ln B

)
· ∇Ψ
|∇Ψ| . (3)

We use the ordering krφ0 ∼ n ∼ Ti ∼ E
1/2
fluc and keep

only Poynting fluxes of order vdEfluc. Assuming con-
stant ion entropy, Ti ≈ 2n/3, and neglecting polariza-
tion effects, n ≈ (vd,rkrφ0)/ω, where ω ≈ ω(kr = 0) ≈
((1 + 5τ/3)/2)1/2. The total free energy of the GAM is
E ≈ k2

rφ2
0〈γ2

rel/B2
rel〉. Combining everything, one obtains

the group velocity

vg (τ) ≈
(
1 + 5τ

3

)2 + 10τ2

9(
1 + 5τ

3

) 〈
v3

d,r

〉
g

+
11τ

12

〈
γ2

relvd,r

B2
rel

〉

g

−
(

1 +
5τ

3

) 〈
γ2

relvd,r

B2
rel

〉

g

, (4)

where 〈. . . 〉g ≡ 〈γ2
rel/B2

rel〉−1〈. . . 〉. The first term on the
right hand side of Eq. (4) corresponds to the first term in
Eq. (1), the second term is a finite Larmor radius (FLR)
correction to the first one. The third term corresponds
to the polarization energy-flux n∇φ̇0/B2

rel in Eq. (1).
With large aspect ratio and small sz, vd,r ≈

− sin(θ)(1+sz sin(θ)) and γrel ≈ (1−sz sin(θ))−1. Thus,
to first order in sz one obtains 〈v3

d,r〉g ≈ −3sz/4 and
〈γ2

relvd,r/B2
rel〉g ≈ −sz.

As mentioned before, the parameters ai and zi of the
separatrix geometry have been chosen such that the ver-
tical magnetic forces on the central current loop (i.e. the
flux surfaces) balance, which corresponds to the condi-
tion FZ =

∫∫
p⊥ρ̂Z df = 0 on each flux surface. Here,

p⊥ = B2/(2µ0) is the perpendicular component of the
magnetic pressure, ρ̂Z the vertical component of the flux-
surface normal vector, and df is an infinitesimal flux-
surface element. This can be reduced to

∮
γ2∂‖ ln R dl‖ =

0. By expressing vd,r = FB0R0/γ0(∂‖ ln B)/B, one ob-
tains

〈
γ2

relvd,r

B2
rel

〉
=

1∮
B−1dl‖

FB3
0R0

γ3
0

∮
γ2

B4
∂‖ ln B dl‖. (5)

For large aspect ratio, B is approximately constant and,
due to q À 1, ∂‖ ln B ≈ −∂‖ ln R. Thus, the second
integral on the right hand side of Eq. (5) reduces to the
force-balance condition.

Therefore, 〈γ2
relvd,r/B2

rel〉g ≈ 0 in contrast to the
shifted-circle geometry. This implies that for kr = 0, the
energy of GAMs is transported essentially by the mag-
netic drift energy-flux vdEfluc. In case of vertical force-
balance this result agrees with the conjecture in Ref. [5],
that in single-null geometry vg(kr = 0) has the sign of
vd,r at the position opposite to the X-point. However,
with low aspect ratio, when the variation of B across the
flux-surface cannot be neglected any longer, the remain-
ing two terms in Eq. (4) might be significant.

Numerical calculations suggest that for large aspect ra-
tio one can approximate the geometry coefficient 〈v3

d,r〉g
by 0.028(1−(sz−1)4)−1/2 for a0 = 1, z0 = 0, a1 = 2a2 =
2, and z1 = −2z2 = 2.

III. GYROKINETIC MODEL

To elaborate the analogies between gyrokinetic and
two-fluid theory, we return to the linear gyrokinetic
framework already used in Ref. [5]. As in our previ-
ous article, we only treat cases, in which the parallel ion
dynamics can be neglected, i.e. high safety factors q. In
practice, this is hardly a restriction because modes lose
the character of a GAM due to resonances with sound-
waves at low q [5, 11]. For effects of finite orbit width
(FOW) on GAMs in that regime see e.g. Ref. [12].

With arbitrary geometry but infinite safety factor, the
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expression for ∂t〈E〉 is given by:

∂t 〈E〉 =
〈
−

∫ [
∇ · vd

τ

K2

2F0
−

{vd

τ
· ∇K, n

}
Ĵ0

+
{

τf,
vd

τ
· ∇φ0

}
Ĵ0

+
{

nF0,
vd

τ
· ∇φ0

}
Ĵ2
0

]
d3v

− 1
2

{
φ, φ̇

}
1−Γ̂0

τ

+∇ · (φ0χ̂∂tE)
〉

. (6)

The velocity vd is the sum of the curvature and ∇B
drifts of the individual particles. F0 is the thermal back-
ground distribution function, which is normalized such
that

∫
F0 d3v = 1. Gyro-averaging is represented by

the operator Ĵ0, the thermal average of Ĵ2
0 is defined

by Γ̂0 ≡ ∫
F0Ĵ

2
0 d3v, K ≡ τf + Ĵ0nF0 and χ̂ is the

susceptibility operator. The brackets denote {a, b}K ≡
a(K∗b)−b(K∗a), with ∗ indicating convolutions. {a, b}K

can always be written as a divergence, provided the ker-
nel K is symmetric [5].

As in section II, one can write the curvature oper-
ator vd · ∇ as vd,r∂r with the appropriate kinetic ex-
pression for vd,r when evaluating Eq. (6). The oper-
ators Ĵ0, Γ̂0 and χ̂ are defined by their Fourier trans-
forms (using flux coordinates and the normalization
given in Sec. II). The gyro-average Ĵ0 corresponds to
J0(τ1/2v⊥krγrel/Brel), the thermal average of Ĵ2

0 , Γ̂0,
to Γ0(kr) ≡ exp(−τk2

rγ2
rel/B2

rel)I0(τk2
rγ2

rel/B2
rel), and

the susceptibility operator χ̂ to χ(kr) ≡ (γ2
rel/B2

rel)(1 −
Γ0)/(τk2

r) with the Bessel function of the first kind J0

and the modified Bessel function of the first kind I0.
The first term on the right hand side of Eq. (6) rep-

resents the advection of the free energy of gyro-averaged
fluctuations by magnetic drifts. It is the equivalent to
the first term on the right hand side of Eq. (1). Since
krφ0 ∼ n ∼ E

1/2
fluc, this energy flux is of order vdEfluc.

The remaining three terms in the integral are FLR correc-
tions. As J0 is O(k2

r) in the commutator brackets, those
terms correspond to energy fluxes of order krρsevdEfluc

and will therefore be neglected. The last two terms de-
scribe the polarization energy-flux.

Different from Eq. (20) in Ref. [5], the very last term
contains the entire electric field instead of its flux-surface
average. Analogous to Ref. [5] the polarization energy-
flux can be expressed as

−γ2
relχ

B2
rel

[
krω

(
φ0n + n2

)
+ vp

χ |krφ|2
2

∂ ln χ

∂ ln kr

]
. (7)

Since χ is O(1) and vpχ(∂ ln χ/∂ ln kr) = ω(∂χ/∂kr) is
O(kr), only the very first term in Eq. (7) contributes to
vg(kr = 0). In Ref. [5] this term vanished due to flux-
surface symmetry. It can therefore be considered as the
equivalent of the additional polarization flux in Eq. (1).

We have studied the τ -dependence of vg(kr = 0) for
the shifted circular flux-surfaces defined in section II us-
ing the gyrokinetic codes GS2 [9] and GYRO [10]. The
plot of vg(kr = 0) for sz = 0.3 and 0.5 against τ (Fig.

FIG. 4: (color online) GAM group velocity – computed with
GS2, GYRO and with the estimate (4) – at kr = 0 for sz = 0.3
and sz = 0.5 vs. the ratio of ion to electron temperature τ .
Since contrary to NLET, GS2 and GYRO take vd to be in
negative Z-direction, one has to compare the results with Eq.
(4) for sz → −sz.

4) illustrates that the additional polarization flux dis-
cussed here [see Eq. (7)] and in section II exceeds the
energy flux due to the magnetic inhomogeneity drift in
the cold ion case. When the ion temperature is increased
(τ & 0.3) gyroradius effects overcompensate this effect
such that the group velocity changes sign and behaves
as suggested in Ref. [5]. This behavior and the order of
magnitude of vg is quite well reproduced by our two-fluid
approximation (4).

IV. CONCLUSIONS

We have studied the effects of up-down asymmetric
magnetic geometry on the propagation of geodesic acous-
tic modes.

The two-fluid expression for the Poynting flux of GAMs
in the cold ion and infinite safety factor limit with large
aspect ratio circular flux-surfaces derived in Ref. [5]
has been generalized to arbitrary toroidal geometries,
yielding an additional component of the polarization
energy-flux of order vdEfluc. Together with the curvature
energy-flux of the same order – caused by the up-down
asymmetry eliminating neoclassical cancellation effects –
it leads to a non-vanishing group velocity at kr = 0, the
sign and magnitude of which depend on the ratio of ion
to electron temperature, τ , and the magnetic geometry.
Analogous terms have been found in the generalized gy-
rokinetic expression of the GAM Poynting flux.

The geometry and temperature dependences of
vg(kr = 0) have been studied numerically using the two-
fluid code NLET, and the gyrokinetic codes GS2 and
GYRO as well as analytically by deriving a group veloc-
ity estimate [see Eq. (4)] for arbitrary τ in a two-fluid
framework. By means of the estimate, we have found that
it is an important for the energy transport at large aspect
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ratio, whether the vertical magnetic forces on the flux-
surfaces balance or not. While in the former case, the
energy of GAMs is transported essentially by the mag-
netic inhomogeneity drift – which confirms the conjecture
in Ref. [5], that in single-null geometry vg(kr = 0) has
the sign of vd,r at the position opposite to the X-point –
the polarization energy-flux might become important in
the latter case.

In order to have high GAM group velocity, the mag-
netic geometry should have a maximum of the poloidal
magnetic field – corresponding to the flux-surfaces be-
ing close to each other – at a poloidal position where
the magnetic inhomogeneity drift has a significant ra-
dial component. In case of the single-null geometry in
Sec. II, this could be realized by adding an indentation

coil – with a current opposite to the elongation currents
– close to the plasma column opposite to the X-point.
Preliminary studies easily yield a group velocity three
times larger that way. In a real device, such a config-
uration could be generated by appropriately combining
the plasma shaping coils, for example in DIII-D, where
the shaping system is located close to the plasma [13].
Altering the direction and speed of the GAM propaga-
tion might be used to search for a potential influence on
the confinement and even on the H-mode. For example,
it would be interesting to determine whether the depen-
dence of the H-mode-power-threshold on the magnetic
drift direction is really due to its relation to the X-point
or possibly rather due to its influence on the GAM prop-
agation direction.

[1] N. Winsor, J. L. Johnson, and J. M. Dawson, Physics of
Fluids 11, 2448 (1968).

[2] F. Zonca and L. Chen, Europhysics Letters 83, 35001
(2008).

[3] X. Q. Xu, Z. Xiong, Z. Gao, W. M. Nevins, and G. R.
McKee, Phys. Rev. Lett. 100, 215001 (2008).

[4] K. Itoh, S.-I. Itoh, P. H. Diamond, A. Fujisawa, M. Yagi,
T. Watari, Y. Nagashima, and A. Fukuyama, Plasma
Fusion Res. 1, 037 (2006).

[5] R. Hager and K. Hallatschek, Physics of Plasmas 16,
072503 (2009).

[6] R. E. Waltz and C. Holland, Physics of Plasmas 15,
122503 (2008).

[7] R. L. Miller, M. S. Chu, J. M. Greene, Y. R. Lin-Liu,

and R. E. Waltz, Physics of Plasmas 5, 973 (1998).
[8] K. Hallatschek and A. Zeiler, Physics of Plasmas 7, 2554

(2000).
[9] W. Dorland, F. Jenko, M. Kotschenreuther, and B. N.

Rogers, Physical Review Letters 85, 5579 (2000).
[10] J. Candy and R. E. Waltz, Journal of Computational

Physics 186, 545 (2003).
[11] K. Hallatschek, Plasma Physics and Controlled Fusion

49, B137 (2007).
[12] H. Sugama and T.-H. Watanabe, Physics of Plasmas 13,

012501 (2006).
[13] J. Luxon, Nuclear Fusion 42, 614 (2002).


