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he clathrin adaptor complex AP-2 serves to coordinate
clathrin-coated pit assembly with the sorting of trans-
membrane cargo proteins at the plasmalemma. How

precisely AP-2 assembly and cargo protein recognition at
sites of endocytosis are regulated has remained unclear,
but recent evidence implicates phosphoinositides, in
particular phosphatidylinositol (4,5)-bisphosphate (PI[4,5]P2),
in these processes. Here we have identified and functionally
characterized a conserved binding site for PI(4,5)P2 within
�2-adaptin, the medium chain of the clathrin adaptor
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complex AP-2. Mutant �2 lacking a cluster of conserved
lysine residues fails to bind PI(4,5)P2 and to compete the
recruitment of native clathrin/AP-2 to PI(4,5)P2-containing
liposomes or to presynaptic membranes. Moreover, we
show that expression of mutant �2 inhibits receptor-mediated
endocytosis in living cells. We suggest that PI(4,5)P2 binding
to �2-adaptin regulates clathrin-mediated endocytosis and
thereby may contribute to structurally linking cargo recog-
nition to coat formation.
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Introduction
Clathrin-mediated endocytosis is a vesicular transport pro-
cess by which eukaryotic cells take up nutrients, internalize
growth factor receptors (Mellman, 1996; Marsh and McMa-
hon, 1999), and recycle synaptic vesicles after exocytotic ac-
tivity (Hannah et al., 1999; Brodin et al., 2000; Slepnev and
De Camilli, 2000; Jarousse and Kelly, 2001). Clathrin is the
major structural component of coated pits (Hirst and Rob-
inson, 1998; Kirchhausen, 2000; Robinson and Bonifacino,
2001) that coassembles with the heterotetrameric adaptor
complex AP-2 and the monomeric coat protein AP180/
CALM into clathrin-coated pits (Marsh and McMahon,
1999; Kirchhausen, 2000). This process is aided by several
accessory proteins including amphiphysin, eps15, syndapin,
endophilin, intersectin, and epsin (for reviews see Brodin et
al., 2000; Slepnev and De Camilli, 2000). The AP-2 adaptor
complex (composed of four subunits, �, �2, �2, and �2)
executes two key functions in the initial stages of clathrin-
coated pit nucleation: it recruits clathrin to the membrane
and, via its �2 subunit, selects specific cargo proteins (Rob-
inson and Bonifacino, 2001). A crucial question is how
AP-2 assembly and cargo recognition are regulated at en-
docytotic “hot spots” at the plasmalemma. Phosphoinositide
lipids, in particular phosphatidylinositol (4,5)-bisphosphate
(PI[4,5]P2),* can directly interact with several endocytotic
proteins, including �-adaptin (Gaidarov and Keen, 1999),
thereby facilitating clathrin-mediated endocytosis (Jost et
al., 1998; Arneson et al., 1999; Cremona et al., 1999; Wenk
et al., 2001). Here we report on the identification and char-
acterization of a novel phosphoinositide binding site within
�2-adaptin.

Results and discussion
The endocytotic proteins �-adaptin, AP180, and epsin have
been shown to interact with phosphoinositides via clusters of
basic residues (Gaidarov and Keen, 1999; Ford et al., 2001;
Itoh et al., 2001; Mao et al., 2001). Because �2-adaptin har-
bors a major membrane binding site within AP-2 (Page and
Robinson, 1995), we analyzed the primary sequence of �2-
209

*Abbreviations used in this paper: HA, hemagglutinin; PC, phosphati-
dylcholine; PE, phosphatidylethanolamine; P, phosphate; P2, bisphos-
phate; P3, trisphosphate; PI, phosphatidylinositol.
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Figure 1. Phosphoinositide binding of �2-adaptin. 
(A) Sequence alignment of �-adaptins from various 
species. The conserved lysine residues within the 
putative phosphoinositide binding site are shaded. 
(B) Structural model of �2 (aa 157–435) complexed 
with a tyrosine-based endocytosis signal (yellow) 
(modified from Owen and Evans, 1998). The three 
conserved lysine residues (red) form a basic patch 
at the surface of subdomain B. (C) Purified wild-
type or mutant �2 (2 �g) were incubated with 
liposomes containing 10% PC, PI(4)P, or PI(4,5)P2. 
After reisolation of the liposomes, samples were 
analyzed by SDS-PAGE and staining with Coomassie 
blue. 50% Std, 50% of the protein sample added 
to the assay. (D) Quantification of the binding of 
wild-type or mutant �2 to PI(4,5) P2-containing 
liposomes from three independent experiments 
and plotted as mean � SE. (E) Binding of �2 to 
liposomes containing 10% of the indicated lipid. 
PS, phosphatidylserine; PA, phosphatidic acid. 
The experiment was performed as described in A.

 on O
ctober 14, 2015

jcb.rupress.org
D

ow
nloaded from

 
Published July 15, 2002
adaptins from various species. Human, mouse, rat, fly, and
nematode �2-adaptins all shared a common sequence motif
containing several conserved lysine residues reminiscent of
the phosphoinositide binding site of AP-180 (Ford et al.,
2001; Mao et al., 2001) (Fig. 1 A). Medium chains of AP
complexes targeted to intracellular locations other than the
plasma membrane, such as �1- or �3-adaptins, did not con-
tain the putative phosphoinositide binding motif. This
lysine cluster represents a surface-exposed positively charged
patch within subdomain B of the crystallized cargo recog-
nition domain of �2 (Owen and Evans, 1998; Nesterov
et al., 1999) (Fig. 1 B). To test whether �2 can interact
with phosphoinositides, we purified recombinant wild-type
�2 (aa 157–435) or a mutant in which three conserved ly-
sine residues (K345, K354, and K356) had been replaced
by glutamates (Fig. 1 C). We then prepared unilamellar
liposomes composed of phosphatidylcholine (PC) and
phosphatidylethanolamine (PE) supplemented with 10%
PI(4,5)P2, PI (4)-phosphate (PI[4]P), or PC and assayed the
ability of �2 to interact with the liposomal membrane.
Wild-type �2 cosedimented only with PI(4,5)P2-contain-
ing liposomes but not with PI(4)P or PC. The �2 mu-
tant (KKK–EEE) displayed a greatly reduced affinity for
PI(4,5)P2 (Fig. 1, C and D). Among different phosphoinosi-
tides, the strongest interaction was seen with PI(4,5)P2,
whereas both PI(3,5)P2 and PI(3,4)P2 were less effective in
recruiting �2. To our surprise, no specific interaction with
PI (3,4,5)-trisphosphate (PI[3,4,5]P3) or any other lipid
tested was detectable (Fig. 1 E).
To see whether the mutant protein had retained the struc-
tural characteristics of wild-type �2, we used limited pro-
teolysis. Incubation of wild-type �2 with increasing con-
centrations of trypsin generated two protease-resistant
fragments, f1 and f2, similar to those seen with �2 incorpo-
rated into AP-2 complexes (Aguilar et al., 1997). The mu-
tant protein yielded identical proteolytic products upon lim-
ited digestion (Fig. 2 A), suggesting that it had retained
native folding characteristics. An important functional prop-
erty of �2-adaptin is to recognize endocytosis signals of
transmembrane cargo receptors (Mellman, 1996; Marsh and
McMahon, 1999; Robinson and Bonifacino, 2001). We
therefore analyzed the ability of the mutant protein to inter-
act with tyrosine-based endocytosis signals. To this aim, we
coupled peptides harboring the tyrosine-based endocytosis
signal YQRL or a nonfunctional variant (AQRL) to beads
(Rapoport et al., 1997) and assayed the ability of wild-type
and mutant �2 to interact specifically with these motifs.
Both wild-type and mutant �2 displayed an equal ability to
recognize the functional YQRL peptide, whereas both of
them failed to bind to the mutant AQRL variant (Fig. 2, B
and C). Thus, mutation of the triple lysine cluster does not
impair the ability of �2 to recognize tyrosine-based endocy-
tosis signals, which is in agreement with structural studies
(Owen and Evans, 1998).

Clathrin/AP-2–coated pits can assemble efficiently on li-
posomal membranes (Takei et al., 1998). We therefore in-
vestigated whether purified �2 could compete with clathrin/
AP-2 recruitment to liposomes. We incubated liposomes
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Figure 2. Effects of the KKK–EEE mutation on the interaction of 
�2 with tyrosine-based endocytosis signals and synaptotagmin. 
(A) �2 (157–435; 2 �g) was incubated with the indicated concen-
trations of trypsin for 15 min at RT. Samples were analyzed by 12% 
SDS-PAGE and staining with Coomassie blue. The asterisk denotes 
trypsin. (B) Mutant and wild-type �2 (157–435; 2 �g) were 
incubated for 1 h at 4�C with peptides bearing the tyrosine-based 
endocytosis motif of TGN38 (YQRL) or its AQRL mutant immobilized 
on beads. Beads were reisolated, washed, and analyzed by 
SDS-PAGE and staining with Coomassie blue. Std, 50% of the 
protein added to the assay. (C) Quantification of the results shown 
in B. Data from three independent experiments were analyzed and 
plotted as mean � SE. Binding of wild-type �2 to the YQRL peptide 
was set as 100%.

 on O
ctober 14, 2015

jcb.rupress.org
D

ow
nloaded from

 
Published July 15, 2002
containing 10% PI(4,5)P2 with rat brain cytosol and ATP/
GTP�S, conditions under which clathrin-coated pits are
abundantly formed in vitro (Takei et al., 1996, 1998), in the
presence or absence of purified �2. After reisolation, clath-
rin/AP-2 association of the liposomes was analyzed by SDS-
PAGE and staining with Ponceau S (Fig. 3 A) and immuno-
blotting (Fig. 3 B). Wild-type �2 inhibited the recruitment
of both clathrin and AP-2 to PI(4,5)P2-containing lipo-
somes, whereas the mutant version was an inefficient com-
petitor (Fig. 3, A and B). Tubulin–liposome association was
not affected. Inhibition was dose dependent, requiring low
micromolar concentrations of �2 (Fig. 3, C and D). This
suggests that binding of PI(4,5)P2 to �2-adaptin may con-
tribute to clathrin/AP-2 association with liposomes.

Next we analyzed whether PI(4,5)P2 binding to �2 might
facilitate clathrin/AP-2 recruitment to native membranes.
We first investigated the effect of neomycin, a drug that se-
questers PI(4,5)P2, on adaptor recruitment to isolated pre-
synaptic LP2 membranes (Takei et al., 1996). In agreement
with earlier observations, we found that neomycin inhibited
clathrin/AP-2 recruitment (unpublished data; West et al.,
1997; Jost et al., 1998). Likewise, neomycin partially inhib-
ited the association of �2 with synaptic membranes (Fig. 4
A). Recruitment of �2 to LP2 membranes could also be in-
hibited by adding phospholipase C�1, an enzyme that spe-
cifically cleaves PI(4,5)P2 (Fig. 4 B). These data suggest that
phosphoinositides may aid targeting of �2 to synaptic mem-
branes. When we compared the ability of wild-type or mu-
tant �2 to bind to LP2 membranes, we noticed that only the
wild-type, not the mutant, protein became efficiently re-
cruited to the membrane (Fig. 4 C). We then incubated syn-
aptosomal LP2 membranes with cytosol and ATP plus
GTP�S in the presence of wild-type or mutant �2. We
found that only wild-type �2, not its mutated counterpart,
could effectively compete clathrin/AP-2 recruitment (Fig. 4,
D and E), whereas membrane binding of hsc70 was not af-
fected. An intact PI(4,5)P2 binding site therefore is required
for the ability of �2-adaptin to compete clathrin/AP-2 re-
cruitment to the plasma membrane.

Finally, we were interested to see whether mutant �2 de-
fective for PI(4,5)P2 binding and incorporated into AP-2
complexes would affect AP-2 localization and receptor-
mediated endocytosis in living cells. To this aim, we tran-
siently expressed epitope-tagged versions of full-length wild-
type or mutant �2 bearing an internal hemagglutinin (HA)
epitope. In agreement with previous studies (Nesterov et al.,
1999), we found that both �2 variants were incorporated
into AP-2 complexes, as judged by specific coimmunopre-
cipitation of �-adaptin with HA–�2 (Fig. 5 A). Whereas a
large fraction of the expressed wild-type HA–�2 was associ-
ated with membranes, most of the mutant version localized
to the soluble fraction (Fig. 5 B). At low expression levels,
both �2 variants displayed a punctate distribution that colo-
calized with endogenous �-adaptin. High-level expression of
mutant, but not wild-type, HA–�2 resulted in a decreased
association of �-adaptin with coated pits (Fig. 5 C). These
data suggest that phosphoinositide binding to �2-adaptin
contributes to localizing AP-2 to clathrin-coated pits in vivo.

Cells expressing HA-tagged �2 were then analyzed for
their ability to internalize extracellularly added Texas red–
labeled transferrin or EGF. Whereas cells expressing wild-
type �2 could endocytose transferrin normally (Fig. 5 D;
Nesterov et al., 1999), cells expressing the PI(4,5)P2 bind-
ing–defective mutant displayed a reduced ability to accumu-
late transferrin within recycling endosomes (Fig. 5 D). This
defect was similar to that seen for a mutant of �2 in which
W421 was changed to alanine (unpublished data), a muta-
tion known to impair the interaction of �2 with the trans-
ferrin receptor (Owen and Evans, 1998; Nesterov et al.,
1999). Similarly, transfected cells expressing mutant HA–
�2 were also less capable of internalizing Texas red–labeled
EGF (Fig. 5 E). We conclude that the PI(4,5)P2 binding site
within �2-adaptin facilitates clathrin-mediated endocytosis
in living cells.

In the present study, we have identified and functionally
characterized a PI(4,5)P2 binding site within the �2 sub-
unit of AP-2. Structurally, the phosphoinositide binding
motif within �2 resembles the basic fingers found in
AP180 (Ford et al., 2001; Mao et al., 2001), with several
conserved lysine residues forming a surface-exposed posi-
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Figure 3. Recruitment of clathrin/AP-2 to 
PI(4,5)P2-containing liposomes. (A and B) 
PI(4,5)P2-containing liposomes were incubated 
with cytosol, ATP, GTP�S, and 4 �M wild-type or 
mutant �2 (157–435). Liposomes were reisolated, 
washed, and analyzed by SDS-PAGE and staining 
with Ponceau S (A) or immunoblotting (B). Bands 
were visualized with 125I-protein A and quantified 
by phosphoimage analysis. (C) Dose dependence 
of �2-mediated inhibition of clathrin/AP-2 recruit-
ment to liposomes. The experiment was done as 
described in A, using the indicated concentrations 
of wild-type or mutant �2. (D) Quantification of 
clathrin recruitment onto liposomes in the presence 
of different concentrations of �2. Data are plotted 
as mean (�SE) from several experiments. The 
amount of clathrin recruited to liposomes in the 
absence of added �2 was taken as 100%.

Figure 4. Recruitment of clathrin/AP-2 and �2 
to synaptic LP2 membranes. (A) Membrane 
association of �2 is inhibited by neomycin. 
Carbonate-washed LP2 membranes (10 �g) were 
incubated with cytosol (0.4 mg/ml), ATP, GTP�S, 
and �2 (157–435; 1.5 �g) in the presence or 
absence of 2 mM neomycin. LP2 membranes were 
reisolated, washed, and analyzed by Western 
blotting and staining with Ponceau S. Std, 50% of 
the �2 added to the assay. (B) Membrane association 
of �2 is inhibited by phospholipase C�1. Recruit-
ment of �2 was assayed as described in A in the 
presence or absence of 5 �g purified phospholipase 
C�1 or BSA. (C) Membrane recruitment of �2 
requires an intact PI(4,5)P2-binding site. Recruit-
ment of wild-type or mutant �2 was analyzed as 
in A, except that the samples were analyzed by 
staining with Ponceau S to detect bound �2 and 
immunoblotting for synaptotagmin I as a mem-
brane marker. (D) Clathrin/AP-2 recruitment to LP2 
membranes can be competed by wild-type but not 
KKK–EEE mutant �2. LP2 membranes (20 �g) were 
incubated with cytosol, ATP, GTP�S, and 2 or 4 
�M of wild-type or mutant �2 (157–435). Mem-
branes were reisolated, washed, and analyzed by 
staining with Ponceau S (top) or immunoblotting 
(bottom) for clathrin heavy chain (HC), �-adaptin, 
hsc70, and synaptotagmin I. 1/4 cyt, 25% of the 
cytosol used in the experiment. (E) Quantification 
of clathrin recruitment as shown in D. The amount 
of clathrin recruited to LP2 in the absence of �2 
was taken as 100%. Data are plotted as mean 
(�SE) from three independent experiments.
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Figure 5. Expression of KKK–EEE mutant �2 
inhibits clathrin-mediated endocytosis in CHO 
cells. (A) CHO cells (10 
 106) transiently trans-
fected with HA-tagged wild-type or mutant �2 
were lysed and subjected to immunoprecipitations 
with monoclonal antibodies against the HA tag. 
Samples were analyzed by SDS-PAGE and 
immunoblotting for �-adaptin and hsc70. Extract, 
10% of the total extracted proteins used for the 
experiment. (B) Transfected CHO cells (as in A) 
were fractionated into membrane (M) and cytosol 
(C). Samples were analyzed by SDS-PAGE and 
immunoblotting for HA-tagged �2 or hsc70. (C) 
HA-tagged wild-type or mutant �2 were transiently 
expressed in CHO cells. 48 h after transfection, 
cells were methanol fixed and immunostained 
with antibodies against �-adaptin or HA. Bar, 10 
�m. (D) HA-tagged wild-type or mutant �2 was 
transiently expressed in CHO cells (see C) and 
analyzed for their ability to internalize Texas red–
labeled transferrin (2.5 �g/ml; 10 min at 37�C) by 
immunofluorescence microscopy. Transfected 
cells are indicated by an arrow. The results are 
representative of three independent transfection 
experiments in which 85% of the cells expressing 
elevated levels of mutant �2 displayed strongly 
reduced transferrin uptake. (E) HA-tagged wild-
type or mutant �2 were transiently expressed in 
HeLa cells and analyzed for the ability to internalize 
Texas red–labeled EGF (2 �g/ml; 3 min at 37�C) by 
immunofluorescence microscopy.
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tively charged patch. In contrast to �-adaptin, which pref-
erentially recognizes PIP3 over PIP2, �2 displays a high de-
gree of specificity for PI(4,5)P2. This suggests that AP-2
may interact with phosphoinositides via two independent
sites within its � and �2 subunits. One possibility is that
phosphoinositide binding to both subunits synergistically
triggers coated pit assembly. Alternatively, different stim-
uli, such as growth factor activation, could result in the
formation of distinct species of PI lipids (Di Fiore and De
Camilli, 2001; McPherson et al., 2001). These might then
exert differential effects on AP-2 with regard to coated pit
assembly or cargo recognition. Lastly, it is conceivable that
PI(4,5)P2 and PI(3,4,5)P3 sequentially interact with �2
and �-adaptin during progressive coated pit invagination
(Kirchhausen, 2000; Slepnev and De Camilli, 2000) or
upon cargo selection and transport. Support for the latter
possibility comes from the observation that 3	-phospho-
inositides, which are synthesized by a clathrin-activated ki-
nase (Gaidarov et al., 2001), stimulate binding of tyrosine-
based endocytosis signals to AP-2 (Rapoport et al., 1997).
It is therefore conceivable that binding of 3	-phosphoinosi-
tides to AP-2 induces a conformational change that allows
�2 to interact more efficiently with cargo protein sorting
signals at the membrane perhaps assisted by the concomi-
tant association of �2 with PI(4,5)P2.
We favor the possibility that the temporally or spatially
ordered interaction of several endocytotic proteins with
PI(4,5)P2 is required for clathrin-mediated endocytosis. This
view is supported by the observation that the phosphoinositide
binding sites within AP180/CALM (Ford et al., 2001; Mao et
al., 2001), �-adaptin (Gaidarov and Keen, 1999), and �2
(this study) apparently cannot substitute for one another. Al-
though binding of phosphoinositides to �-adaptin may largely
function in targeting AP-2 to the plasma membrane (Gaidarov
and Keen, 1999), the association of �2 with PI(4,5)P2 could
in addition help to stabilize AP-2 at sites of endocytosis or to
reorient the molecule with respect to the membrane.

In conclusion, the results reported here support a model
according to which the binding of phosphoinositides to �2-
adaptin, as well as to other endocytotic proteins, links the
formation of clathrin/AP-2–coated pits with the selection of
cargo proteins.

Materials and methods
Antibodies and lipids
All lipids used were from Sigma-Aldrich or Calbiochem. Monoclonal anti-
bodies against clathrin (TD.1) and synaptotagmin I (Cl41.1) were gifts from
Pietro De Camilli (Yale University, New Haven, CT) and Reinhard Jahn
(Max-Planck Institute). Anti–�-adaptin, �-tubulin, and anti-HA antibodies
were from Affinity BioReagents, Inc. and Sigma-Aldrich, respectively.
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Molecular biology procedures
Constructs encoding full-length �2-adaptin bearing an internal HA epitope
tag (YPYDVDYA) between aa 236 and 237 (Nesterov et al., 1999) were
generated by PCR (plasmid DNA was a gift from J.S. Bonifacino, National
Institutes of Health, Bethesda, MD), subcloned into pcDNA3, and verified
by DNA sequencing. Hexahistidine-tagged wild-type or mutant versions of
�2-adaptin (aa 157–435) were made by PCR, subcloned into pET28a
(Novagen Inc.), and verified by DNA sequencing. Standard techniques
were used for preparation of plasmid and genomic DNA, restriction analy-
sis, PCR, and cloning of DNA fragments.

Generation of liposomes
Unilamellar liposomes were made as previously described (Takei et al.,
1998), by using a mixture of defined lipids (70% PC, 20% PE, plus 10%
variable lipid [wt/wt]). Liposome recovery was followed by tagging with
the lipophilic dye 1,6-diphenyl-1,3,5-hexatriene (�EX � 360 nm; �EM �
430 nm) on a fluorimeter after reisolation of the liposomes.

Protein recruitment to membranes and liposomes
For biochemical analysis of protein recruitment onto synaptic LP2 mem-
branes, published procedures were used (Takei et al., 1996, 1998). Protein
binding to liposomes (Fig. 1) was done as follows: 100 �g liposomes was
incubated for 30 min at RT with 2 �g purified �2 (aa 157–435) in cytosolic
buffer. Liposomes were reisolated by sedimentation, washed extensively,
and analyzed by SDS-PAGE and staining with Coomassie blue. For the ex-
periments shown in Fig. 3, liposomes (0.4 mg/ml) were incubated with rat
brain cytosol (3 mg/ml) in the presence of 2 mM ATP, 200 �M GTP�S, and
purified �2 (aa 157–435) for 10 min at 37�C, chilled on ice, and reisolated
as described above.

Transfection experiments and endocytosis assay
CHO (Fig. 5, A–D) or HeLa (Fig. 5 E) cells were transfected with plasmids
encoding internally HA-tagged �2-adaptin (wild type or mutant) with Lipo-
fectamine 2000 (GIBCO BRL). 48 h after transfection, cells were washed
and incubated for 2–3 h in serum-free medium. Texas red–labeled transfer-
rin (2.5 �g/ml) or EGF (2 �g/ml) were added and cells were allowed to in-
ternalize the probe for 10 or 3 min at 37�C, respectively. Cells were acid
washed, fixed, and processed for indirect immunofluorescence microscopy.

For biochemical fractionation studies, cells were harvested 40 h after
transfection by scraping into isotonic buffered sucrose (10 mM Hepes, 320
mM sucrose, pH 7.4, 1 mM PMSF). Cells were homogenized using an
EMBL cell cracker and centrifuged at 1,500 g. The supernatant was sepa-
rated into membrane and soluble fractions by centrifugation for 30 min at
12,000 g, and samples were precipitated with 10% trichloroacetic acid
and analyzed by SDS-PAGE.

Miscellaneous
Rat brain cytosol and LP2 synaptic membrane preparations have been de-
scribed previously (Takei et al., 1996; 1998). Hexahistidine-tagged fusion
proteins were purified from CHAPS (2%)-lysed Escherichia coli detergent
extracts according to the manufacturer’s instructions. Bacterially expressed
histidine-tagged phospholipase C�1 was purified according to Bromann et
al. (1997). Standard procedures were used for indirect immunofluores-
cence, SDS-PAGE, and immunoblotting.
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