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The development and application of computational methods for studying molecular

crystals, particularly density-functional theory (DFT), is a large and ever-growing

field, driven by their numerous applications. Here we expand on our recent study

of the importance of many-body van der Waals interactions in molecular crystals

[Reilly and Tkatchenko, J. Phys. Chem. Lett., 4, 1028–1033, (2013)], with a larger

database of 23 molecular crystals. Particular attention has been paid to the role of

the vibrational contributions that are required to compare experiment sublimation

enthalpies with calculated lattice energies, employing both phonon calculations and

experimental heat-capacity data to provide harmonic and anharmonic estimates of

the vibrational contributions. Exact exchange, which is rarely considered in DFT

studies of molecular crystals, is shown to have a significant contribution to lattice

energies, systematically improving agreement between theory and experiment. When

the vibrational and exact-exchange contributions are coupled with a many-body

approach to dispersion, DFT yields a mean absolute error (3.92 kJ/mol) within the

coveted “chemical accuracy” target (4.2 kJ/mol). The role of many-body dispersion

for structures has also been investigated for a subset of the database, showing good

performance compared to X-ray and neutron diffraction crystal structures. The

results show that the approach employed here can reach the demanding accuracy

of crystal-structure prediction and organic material design with minimal empiricism.
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I. INTRODUCTION

The structure and properties of molecular crystals have long been of great interest, not

just for fundamental reasons of understanding molecular aggregation but also due to their

numerous applications. As the preferred form of active pharmaceutical ingredients for oral

administration, the dissolution and morphology of drug-molecule crystals are very important

for bio-availability and processing.1 For these reasons alone the prediction of molecular

crystal structures is of the utmost importance.2 In addition, molecular crystals can also

have a wide range of optical, electronic and mechanical properties,3 which in some cases can

be tuned based on environmental variables4 or composition.5

The importance of molecular crystals has lead to various computational approaches being

employed to understand and elucidate their properties. While crystal-structure prediction

and pharmaceuticals are very active and important areas of research,6,7 many computational

studies have also focused on energetic materials,8,9 proton-transfer systems,4,10 vibrational

properties such as phonons and thermal displacement parameters,11,12 as well as electronic

properties.13 The methods employed range from tailor-made force fields8 to generic force

fields such as OPLS14 and CHARMM15 to first-principles methods such as density-functional

theory (DFT).

The growth in the use of DFT for studying molecular crystals has gone in tandem with

the development of dispersion-inclusive DFT methods,16 as semi-local functionals (as well

as hybrid functionals) neglect long-range dispersion interactions, which can be essential for

the formation of molecular solids. There are numerous dispersion-inclusive DFT methods,

including the pairwise approaches of DFT-D,17,18 DFT+vdW19 and XDM20 as well as “vdW

density functionals” such as vdW-DF121 and vdW-DF2.22

Given the important applications of molecular crystals, considerable effort has been put

into benchmarking these approaches. Crystal-structure prediction trials show encouraging

results for DFT-D approaches,6 but the small energy differences involved7 mean that different

methods can still yield conflicting predictions of the stable structure of crystal.23 The most

common type of benchmark for these systems is to calculate lattice energies:

Elat =
Es

Z
−Eg, (1)

where Es is the total energy of a unit-cell, Z is the number of molecules per unit-cell and

Eg is the total energy of the molecule in the gas phase, in its lowest-energy conformation.
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In the absence of an established computational standard, the calculated lattice energies are

often compared with sublimation enthalpies.24–27 This comparison requires accounting for

a number of vibrational contributions. In many instances these contributions were either

ignored or considered in the high-temperature limit, whereby following the Dulong-Petit law

the relationship reduces to:25,28

∆Hsub(T ) = −Elat − 2RT. (2)

A realistic benchmark of DFT methods requires the accurate estimation of the vibrational

contributions to the sublimation enthalpy to avoid systematic bias towards methods that

over- or under-estimate lattice energies. It is equally important to properly assess the role of

the density functional used to calculate the lattice energies. While many studies have focused

on the role of dispersion,25,29,30 few have critically assessed the shortcomings of semi-local

functionals in detail. For example, the de-localisation or self-interaction errors in DFT31 can

often have a significant effect on hydrogen-bonded systems.32

Recent work by Otero-de-la-Roza and Johnson has shown that apart from an

implementation of XDM,33 many dispersion-inclusive methods systematically overestimate

lattice energies. In subsequent work we have shown that the origin of this overestimation

for DFT+vdW (also known as the Tkatchenko-Scheffler or TS method) clearly lies in the

absence of many-body collective response and energy contributions.34 The recently developed

many-body dispersion (MBD) method35,36 was shown to correctly model these contributions,

halving the mean absolute error compared to the pairwise method and reducing the MAE

between DFT and experiment for 16 molecular crystals to 3.8 kJ/mol, within the coveted

“chemical accuracy” target of 4.2 kJ/mol. Crucially, such good agreement hinged on using

MBD with a non-empirical hybrid functional (PBE037). The corresponding semi-local

functional, PBE,38 achieved an accuracy of 6.4 kJ/mol.

In the present contribution we expand on our recent work in three ways. First, we consider

the computational evaluation of the vibrational contributions to sublimation enthalpies

in detail (Section IIIA), focusing on the role of phonon dispersion and anharmonicity.

Secondly, predicted lattice energies for a larger set of 23 molecular crystals will be

presented and discussed in terms of many-body dispersion and exact-exchange contributions

(Section IIIB). Finally, we explore the role of many-body dispersion in determining the

structure of molecular crystals, presenting optimized lattice constants and structures for
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some representative systems (Section IIIC). The computational methodology is outlined in

the following section.

II. METHODOLOGY

A. Density-functional theory calculations

All DFT calculations were performed using the CASTEP plane-wave DFT code (version

6.01).39 A plane-wave cut-off energy of 1000 eV was used in all calculations, sufficient to

converge both norm-conserving and ultra-soft pseudo-potential calculated total energies

to less than 1 meV/atom. For solid-state calculations a k-point sampling of at least

0.06 Å−1 was used to sample the electronic reciprocal space. Norm-conserving pseudo-

potentials were employed for calculating total energies used in the lattice-energy calculations,

while the phonon calculations were performed using ultra-soft pseudo-potentials, with

phonon calculations starting from the ultra-soft pseudo-potential minimized geometry.40

To ensure convergence, the Fourier-transform grid scales for the density and its high-

frequency components were set to 2.25 and 2.50 times the wavefunction value, respectively.

Calculations were performed with the Perdew-Burke-Ernzerhof (PBE)38 and hybrid PBE037

functionals. Pairwise dispersion-interaction contributions were added using the DFT+vdW

(or TS method),19 using the built-in functionality of CASTEP.41

Initial structures for the crystals were obtained either from Otero-de-la-Roza and

Johnson30 or the Cambridge Structural Database.42 Space-group symmetry was exploited

for solid-state calculations. Isolated molecules, representing the gas-phase reference for

lattice-energy calculations, were modeled in cubic supercells of at least 15 Å in length,

with some of the larger molecules, such as adamantane and anthracene being modeled in a

supercell of 20 Å length. In most cases the initial structure for the isolated molecule was

obtained directly from the optimised crystal structure. For oxalic acid care was taken to

use the correct gas-phase conformation, which features intra-molecular hydrogen bonds that

substantially alter the gas-phase stability of the molecule.43 Succinic acid is known to have

a number of gas-phase conformers around 445 K,44 but here we use only the most stable

C2 conformer, which is likely to be the main conformer at the lower temperature range

(360–375 K) of the sublimation measurement.45 The full geometries (lattice parameters for
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crystals and coordinates for both crystals and molecules) were optimised at the PBE+TS

level, with convergence criteria of 5 × 10−6 eV/atom for total energies, 5 × 10−3 eV/Å for

forces, 1 × 10−3 Å for displacements and 2 × 10−2 GPa for stresses. All subsequent PBE0

and MBD single-point calculations were performed using these PBE+TS geometries.46

B. Many-body dispersion method

The many-body dispersion (MBD) method is described in detail elsewhere.34–36

Briefly, the atoms in the system are represented as quantum harmonic dipole oscillators

defined by the TS polarisabilities. In a two stage process, the frequency-dependent

electrodynamic response of the system is first obtained using the self-consistent screening

(SCS) equations.47,48 The resulting screened polarizabilities and static frequencies are used

in a Hamiltonian that explicitly considers all orders of dipole interactions. The calculation

of MBD energies has been implemented in a development version of CASTEP. For the

solid-state calculations of both the SCS equations and MBD energies, interactions with

periodic replicas of the unit-cell have been included in the dipole-coupling elements within

a spherical cut-off distance of ≈ 50 Å. The SCS equations are solved for the unit-cell only,

as there is no dependence on the size of the simulation cell, as long as sufficient periodic

interactions are included. However, the many-body Hamiltonian must be evaluated for a

supercell (typically 25 Å in each direction) to properly sample the reciprocal space of the

explicit many-body interactions. For isolated molecules the MBD calculations are performed

with a single molecule in an aperiodic calculation.

The derivation of analytical forces and stresses for the MBD method is currently

in progress,49 although analytical gradients exist for the contributions from the SCS

equations.50 In the present work, finite-difference forces and stresses have been used to

optimise a small number of the crystal structures studied. The convergence criteria were

the same as those for the PBE+TS optimisations.
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C. Estimation of vibrational contributions to sublimation enthalpies

The enthalpy of sublimation can be related to the lattice energy via a number of

vibrational and thermodynamic quantities:

∆Hsub(T ) =− Elat + (EZPE, g −EZPE, s)

+

∫ T

0

∆Cp(T )dT +
∑

∆Htrans,
(3)

where s and g refer to the solid and gas-phase respectively, EZPE is the zero-point vibrational

energy, ∆Cp is the difference between the gas-phase and solid-state heat capacities and

∆Htrans is the enthalpy of transformation for any phase transition that occurs between 0 K

and T . This expression is only valid when when the isolated molecule has a single well-

defined conformation at the temperature of the measurement. When this is not the case

additional terms accounting for the conformation ensemble must be included. By design,

the present database includes relatively rigid molecules, which are known to have a single

conformation at the temperature of the experimental sublimation-enthalpy measurements.

In the limit of an ideal gas, taking the rigid-rotor and harmonic approximations and assuming

no solid-state phase transformations, Eq. (3) reduces to:

∆Hsub(T ) = −Elat +∆Evib(T ) + 4RT, (4)

where ∆Evib(T ) is the total (thermal and zero-point) vibrational-energy difference between

the gas and the solid. For a linear molecule, such as CO2, the final term becomes 7/2RT

to account for the missing rotational degree of freedom. For a more detailed discussion of

these approximations see e.g. Otero-de-la-Roza and Johnson.30 The vibrational quantities

can be readily calculated in the harmonic limit using DFT phonon calculations:30,51

Evib(T ) =
∑

q

(

∑

p

(

~ωp,q

2
+

~ωp,q

exp(~ωp,q

kbT
)− 1

))

, (5)

where ωp,q is the p
th phonon frequency at wavevector q, T is temperature and kb Boltzmann’s

constant. The first part of Eq. (5) is the ZPE, while the second part gives the thermal

energy based on a Planck distribution. In the absence of phonon dispersion or for an

isolated-molecule supercell calculation, the summation can be performed using only the Γ-

point frequencies. In the present work we have determined the vibrational terms using both

unit-cell and supercell finite-displacement phonon calculations52,53 (at the PBE+TS level
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of theory) to interpolate to arbitrarily fine q-point grids, using the in-built functionality of

CASTEP. The thermal contribution was evaluated at 298 K, the temperature to which

most sublimation enthalpies are extrapolated.54,55 The application of density functional

perturbation theory51 is not possible as it would require a fully self-consistent implementation

of the TS vdW term, which is not currently available in the CASTEP code. The vibrational

quantities for isolated molecules were also determined using phonon calculations. In such

isolated-molecule calculations we expect to find six zero-frequency modes (or five for a linear

molecule), which correspond to the translational and rotational degrees of freedom. Three

such zero-frequency modes are expected at the Γ point in the solid state, corresponding to

complete translations of the crystal. In any numerical calculations minor deviations, with

small negative or positive non-zero values will occur.56 Care was taken to ignore the spurious

contributions from these frequencies. In no case were “true” negative frequencies found,

indicating that all of the optimized molecular geometries and crystal structures represented

true minima on the potential-energy surface.

For adamantane,57 anthracene,58 hexamine,57 naphthalene,59 succinic acid,60 trioxane61

and urea62 experimental solid-state Cp data are available. These data have been used with

DFT-calculated gas-phase Cp values and the DFT ZPE values to evaluate Eq. (3) directly,

yielding a semi-anharmonic value for the lattice energy. Taking the derivative of Eq. (5)

with respect to temperature, the constant-volume heat capacity for an isolated molecule can

be calculated as:

CV (T ) = kb
∑

p

(

( ~ωp

kbT
)2 exp( ~ωp

kbT
)

(exp( ~ωp

kbT
)− 1)2

)

. (6)

The calculated values of CV were then converted to Cp by adding R. To account for the

rotational heat capacity of the isolated molecule in the rigid-rotor approximation, 3RT was

added to the value of the integrated heat-capacity difference.

In the case of adamantane, examination of the literature revealed that a phase

transformation from the ordered trigonal phase to a disordered fcc phase occurs at 208 K.57

The low-temperature structure used as the basis of the DFT calculations here is not

appropriate for use with Eq. (4) as this ignores the enthalpy of transition and the highly

anharmonic nature of phase transitions. Experimental Cp values are available for the solid

phase over the range of 0–298 K.57 By extrapolating the Cp data through the second-order

phase-transition an estimate for the vibrational contribution has been made on the basis of
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the low-temperature trigonal crystal structure.

III. RESULTS AND DISCUSSION

A. Vibrational contributions to theoretical lattice energies

To enable a direct and fair comparison between theoretical lattice energies and

experimental sublimation enthalpies requires careful evaluation of Eq. (3) or Eq. (4). In the

harmonic limit, this can be readily achieved using phonon calculations as outlined above.

In the solid state, interactions over distances larger than the unit-cell lead to a wavevector

dependence of the phonon frequencies. Using finite-displacements within a unit-cell neglects

this dispersion, sampling only the Γ point and ignoring the acoustic modes, which are

purely translation (ω = 0) at the zone center. By exploiting the short-range nature of

the force-constant matrix the supercell or direct method can extrapolate unit-cell phonon

calculations to arbitrary wavevectors, presuming the simulation cell is of sufficient size so

that force constants decay to zero.52,53

To assess the importance of phonon dispersion and the size of simulation cell for the

supercell method we have performed phonon calculations using both a crystallographic unit-

cell and supercells of phase-I ammonia. The PBE functional (without a vdW term) is

already known to model the phonons of phase-I ammonia well at the Γ point.11 Table I

shows the calculated ZPE and total vibrational energy at 298 K using different sized cells to

calculate the phonon frequencies at the PBE+TS level of theory. Changing from a unit-cell

to a 3 × 3 × 3 supercell leads to a change in the ZPE of 0.5 kJ/mol and a change in the

thermal energy, and hence vibrational contribution, of nearly 1.7 kJ/mol at 298 K, 5% of the

sublimation enthalpy. The larger contribution of phonon dispersion to the total energy can

be understood as the contribution of the acoustic and low-frequency phonon modes, which

are more sensitive to the simulation cell size. While their low frequencies contribute less to

the ZPE, they are thermally populated more easily. Figure 1 shows the phonon dispersion

for ammonia as calculated using the 2×2×2 supercell. It is clear that there is appreciable

phonon dispersion in the lattice and acoustic modes. Encouragingly, even with a cell of

only 9 Å, the acoustic modes are well represented, with only some minor artefacts as they

approach the Γ point.
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FIG. 1: The phonon dispersion of the lattice modes of phase-I ammonia, calculated with

PBE+TS using the supercell method, with a 2×2×2 simulation cell. The isolated molecule

vibrations appear at higher wavenumbers.11

TABLE I: The zero-point energy and total vibrational energy at 298 K (per molecule) of

phase-I ammonia as calculated using PBE+TS phonon calculations with three different

supercells of length a.

Supercell EZPE, s (kJ/mol) Evib, s(298 K) (kJ/mol) a / Å

1× 1× 1 98.04 104.21 4.9548

2× 2× 2 98.49 105.86 9.9096

3× 3× 3 98.53 105.88 14.8644

The difference in energies between the 2 × 2 × 2 and 3× 3× 3 supercells is of the order

of 0.1 kJ/mol, suggesting that supercells around the size of 9–10 Å are of sufficient size

to obtain reliable estimates of the vibrational contributions to the sublimation enthalpy.

This is supported by supercell phonon calculations of the polyacene crystals.63 To study

the broad importance of phonon dispersion on the vibrational contributions unit-cell and

supercell (of at least 9–10 Å length in each direction) calculations have been performed

for the whole database of molecular crystals. The resulting vibrational contributions at
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FIG. 2: Vibrational contributions (∆Evib + 4RT ) to the sublimation enthalpy in the

harmonic limit at 298 K, as derived from PBE+TS unit-cell and supercell phonon

calculations. The gray line indicates the 2RT value.

298 K are shown in Figure 2. For the majority of cases there is a substantial increase in the

vibration contributions. Those systems where there are only small changes are typically ones

with larger unit-cells (e.g. the smallest lattice constant for triazine is ≈ 7 Å). In the case of

oxalic acid (both α and β) and succinic acid the unit-cell calculations give spuriously small

values. Both oxalic acid polymorphs have small unit-cells and feature hydrogen bonding over

cell boundaries. It is likely that the interpolation of the force-constant matrix to arbitrary

wavevectors is not at all valid for such small simulations cells. The relative rigidity will also

reduce the contribution from internal degrees of freedom.

Recently, Otero-de-la-Roza and Johnson have also carried out phonon calculations to

obtain vibrational contributions for many of the systems studied here.30 They employed the

Einstein model to approximate the zero-point and thermal energy of each crystal. In this

model the phonon dispersion is ignored and each phonon branch is approximated with a

single frequency obtained at the Γ point. The ZPE contribution from the acoustic modes is

then neglected, while their thermal contribution is approximated in the Dulong-Petit limit

as 3RT . This approach was validated based on the lack of any phonon dispersion in the
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CO2 crystal. Figure 2 confirms this assertion for CO2, but it is clear that for the majority of

systems there is some contribution from dispersion. However, this may be limited solely to

the contribution of the acoustic modes, which are poorly modeled in small simulation cells.

To assess this, a comparison between the full phonon treatment and the Einstein model is

given for a selection of systems in Table II. Generally, the Einstein model underestimates

zero-point energies by 0.5–1.0 kJ/mol, partly due to neglecting the contribution of the

acoustic vibrations and dispersion in the low-frequency translational vibrations, which

typically increases the wavevector-averaged zero-point energy. However, overall there is

some error cancellation as the final thermal energies at 298 K are in remarkable agreement,

with deviations of less than 0.5 kJ/mol.

Given the good agreement between the supercell and Einstein models, we would expect

the vibrational contributions of Otero-de-la-Roza and Johnson30 to agree well with those

obtained here. However, in general the values of Otero-de-la-Roza and Johnson are smaller

than those obtained here, by around 1.4 kJ/mol on average, although in some cases

the difference is as much as 5 kJ/mol. It should be noted that their calculations were

performed with the PBE functional using PBE+XDM geometries. In the absence of a vdW

contribution, the PBE+XDM geometry will be far from equilibrium, a necessary prerequisite

for phonon calculations. This could substantially affect the low-frequency lattice modes and

the vdW term is the most likely source of the remaining discrepancies between the two sets

of vibrational contributions. Performing the phonon calculations with PBE+MBD might

further increase the vibrational contributions but given the difference between the PBE and

PBE+TS values it is unlikely to alter the values significantly. This is the case for ammonia,

where the Γ-point ZPE increases by less than 0.2 kJ/mol when using MBD instead of TS.

The harmonic treatment ignores effects due to anharmonic thermal motion and cell

expansion. To partly understand the effect of these approximations, experimental solid-state

heat capacities have been used with DFT-calculated ZPEs and gas-phase heat capacities

[Eq. (6)] to evaluate Eq. (3) in a semi-anharmonic fashion. A comparison between the

harmonic and semi-anharmonic vibrational contributions is given in Table III. In most

cases the semi-anharmonic correction is appreciably larger than than the harmonic one

by around 2–3 kJ/mol. The small correction for hexamine is likely due to its high-symmetry

crystal structure (I 4̄3m) and rigid molecular structure. Figure 3 shows the experimental and

theoretical heat capacities for naphthalene. The experimental curve clearly has additional
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TABLE II: Comparison between zero-point and thermal (298 K) vibrational energies (per

molecule) calculated using supercell phonon calculations and the Einstein model using only

Γ-point frequencies. A contribution of 3RT has been added to the Einstein-model thermal

energies (before converting into per molecule values) to account for the acoustic modes.

Crystal Einstein model Supercell method

EZPE (kJ/mol) Evib (kJ/mol) EZPE (kJ/mol) Evib (kJ/mol)

Adamantane 624.52 649.14 625.05 649.15

Ammonia 98.22 105.77 98.53 105.88

benzene 261.66 277.98 261.81 278.00

Cyanamide 92.87 103.61 93.11 103.66

Ethylcarbamate 281.69 303.27 282.48 303.35

Urea 170.02 184.65 171.19 184.30

contributions to the heat capacity in the low temperature region (< 75 K) and also diverges

from the theoretical data at higher temperatures, indicating the anharmonic contributions of

the low-frequency modes, which are populated at low-temperatures and the high-frequency

modes, which are only populated sufficiently as the system approaches room temperature.

For naphthalene and anthracene there are experimental gas-phase heat capacities that

have been extrapolated to low temperature.64 For naphthalene using the experimental gas-

phase values changes the vibrational contribution by less than 0.2 kJ/mol, a clear indication

that in taking the difference between a theoretical and experimental quantity we do not lose

any fortuitous cancellation of errors in the computational quantities. Performing the phonon

calculations with experimental lattice parameters might account for part of the thermal

expansion contributions to the ZPE, but it is not clear to what extent such contributions

are contained within the Cp term.

Anharmonic corrections of the order of 2–3 kJ/mol are not negligible in pursuit of chemical

accuracy (4.2 kJ/mol). Give the magnitude of the contributions and fact that even where

Cp data are available the anharmonicity in the ZPE is ignored, we must always attach an

uncertainty to experimental lattice energies, even when there is little uncertainty in the

value of the underlying sublimation enthalpy.
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FIG. 3: Solid-state heat capacity of naphthalene as a function of temperature obtained

from experiment (Black solid line, Ref.59) and PBE+TS supercell phonon calculations (red

dashed line).

TABLE III: Harmonic and semi-anharmonic estimates of the vibrational contribution

(∆Evib + 4RT ) to the sublimation enthalpy at 298 K. It should be noted that the

semi-anharmonic value for adamantane includes the contribution from the phase

transformation known to occur at 208 K.

Crystal ∆Evib + 4RT (kJ/mol)

Harmonic Anharmonic

Adamantane −8.0 −11.0

Anthracene −7.6 −10.9

Hexamine −9.9 −10.4

Naphthalene −7.9 −10.5

Succinic acid −4.3 −7.2

Trioxane −8.3 −10.1

Urea −6.6 −8.7
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B. Prediction of lattice energies

1. Overview of the X23 database

Having determined the vibrational contributions to the sublimation enthalpy, we can now

directly compare the DFT predicted lattice energies with experimental estimates. In this

work we consider 23 systems, the 21 systems of Otero-de-la-Roza and Johnson,30 and two

additional systems, hexamine and succinic acid. This database (the X23 database) contains a

mix of systems that have largely vdW or hydrogen bonding, together with three systems that

feature both interactions. These two types of interactions are among the most important

and common in molecular crystals, making the database a useful and broad benchmark.

Before comparing theory and experiment it is worth briefly commenting on uncertainties in

experimental sublimation enthalpies. One estimate of the general uncertainty in sublimation

enthalpies is 4.9 kJ/mol, based on a statistical assessment of experimental deviations.65

Other broad estimates are ±10%.25 Some of the systems in the present database, such

as naphthalene and anthracene, are established thermochemical standards with well-

defined uncertainties of around 1–2 kJ/mol.55 For other systems larger uncertainties, up

to 10 kJ/mol, are not uncommon and there can often be a wide variation between different

experimental measurements.64 As such, care must be taken when interpreting experimental

data. The majority of the systems in the present database have multiple experimental values

and small or moderate uncertainties. Therefore, in the present work we can quantitatively

assess the performance of computational methods to an accuracy of around 1–3 kJ/mol.

The predicted lattice energies using PBE and PBE0 with TS and MBD are given in

Table IV, while a statistical summary is give in Table V. Figure 4 shows the relative

error in the lattice energy, with the database divided into mainly vdW interactions

and hydrogen-bonding interactions, although many systems will also have appreciable

electrostatic interactions. CO2 is discussed separately in Section IIID. The general trends

for the performance of the different functionals are the same as seen with our smaller study of

the X16 database of 16 molecular crystals:34 the inclusion of MBD generally halves the mean

absolute error (MAE) and standard deviation (SD) in the pairwise TS method, while the

inclusion of a fraction of exact exchange shifts the lattice energies down, reducing the MAE

but barely changing the SD. While with this larger database there is a slight increase in the
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FIG. 4: Relative error in the lattice energy prediction of 22 molecular crystals with four

different combinations of vdW terms and functionals. As the relative error is calculated as

100%× (Elat, DFT − Elat, exp)/Elat, exp, a positive value indicates overbinding.

MAE and SD compared to the X16, the MAE is still within the chemical accuracy target of

4.2 kJ/mol, and the SD within one estimate of experimental uncertainties, 4.9 kJ/mol.65

In absolute terms, the worst agreement is for adamantane, a globular molecule whose

lattice energy is overestimated by 9.2 kJ/mol with PBE0+MBD, although this is a significant

improvement on the PBE+TS value. Interestingly, hexamine, which also has a similar

globular structure, has a much smaller absolute error of less than 2.8 kJ/mol. In relative

terms, the worst agreement is for CO2, with a relative error of 25%. This value is very

sensitive to any contributions from MBD and PBE0 as the experimental lattice energy is

the smallest in the database at −28.4 kJ/mol. Possible origins for this large deviation will

be discussed in Section IIID.

2. Many-body dispersion contributions

It is evident from Table IV that the role of MBD is to reduce lattice energies, with

positive values for the contribution of MBD to the lattice energy in all cases bar cyanamide,
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TABLE IV: Experimental sublimation enthalpies (∆H0
sub; at 298 K), vibrational

contributions (∆Evib + 4RT ; calculated using supercell phonon calculations with

experimental Cp data were available), the resulting experimental lattice energies (Elat,exp),

DFT-predicted lattice energies (EDF+disp, where “DF” is the density functional and “disp”

the dispersion method), and the contributions of many-body and exact-exchange effects to

the PBE0+MBD binding energies, for each of the crystals studied. Experimental

sublimation enthalpies are taken from Otero-de-la-Roza and Johnson,30 except for those of

anthracene,55 succinic acid,45 and hexamine.64,66 All quantities are in kJ/mol.

Molecules Lattice energies

∆H0
sub ∆Evib + 4RT Elat,exp EPBE+TS EPBE0+TS EPBE+MBD EPBE0+MBD ∆EMBD

a ∆EPBE0
b

1,4-cyclohexanedione 81.1 −7.5 −88.6 −105.9 −101.2 −92.2 −88.2 13.0 4.1

Acetic acid 68.0 −4.9 −72.8 −82.6 −79.0 −78.3 −74.6 4.4 3.6

Adamantane 58.4 −11.0 −69.4 −108.0 −105.0 −81.0 −78.6 26.4 2.4

Ammonia 29.8 −7.4 −37.2 −45.4 −42.4 −42.9 −40.2 2.2 2.7

Anthracene 101.9 −10.9 −112.7 −134.4 −133.5 −121.8 −119.1 14.5 2.8

Benzene 45.1 −6.6 −51.7 −66.3 −62.0 −55.0 −51.0 11.0 4.0

CO2 24.6 −3.8c −28.4 −25.2 −24.4 −21.7 −21.2 3.2 0.5

Cyanamide 75.5 −4.2 −79.7 −94.3 −88.8 −94.3 −88.8 0.0 5.5

Cytosine 163.4 −6.4 −169.8 −172.6 −167.9 −170.0 −164.5 3.5 5.6

Ethylcarbamate 78.7 −7.6 −86.3 −99.2 −94.0 −92.1 −87.1 6.9 5.0

Formamide 71.8 −7.4 −79.2 −86.3 −84.0 −82.8 −80.7 3.3 2.1

Hexamine 75.8 −10.4 −86.2 −114.9 −109.8 −86.9 −83.4 26.3 3.5

Imidazole 81.4 −5.5 −86.8 −101.9 −96.3 −97.1 −91.4 4.9 5.7

Naphthalene 71.3 −10.5 −81.7 −99.9 −98.4 −87.4 −85.4 13.0 2.0

Oxalic acid (α) 93.7 −4.7 −96.3 −100.7 −98.5 −98.1 −95.7 2.8 2.3

Oxalic acid (β) 93.6 −2.4 −96.1 −104.3 −100.1 −98.6 −94.8 5.3 3.9

Pyrazine 56.3 −5.0 −61.3 −76.2 −72.0 −67.3 −63.0 9.0 4.3

Pyrazole 72.4 −5.4 −77.7 −88.5 −83.1 −82.8 −77.6 5.5 5.2

Succinic acid 123.1 −7.2 −130.3 −147.1 −143.4 −138.7 −135.3 8.1 3.4

Triazine 55.7 −6.0 −61.7 −68.9 −65.6 −58.7 −55.7 10.0 3.0

Trioxane 56.3 −10.1 −66.4 −75.9 −72.0 −62.4 −59.3 12.7 3.2

Uracil 129.2 −6.5 −135.7 −149.0 −144.6 −145.9 −140.4 4.2 5.5

Urea 93.8 −8.7 −102.5 −113.1 −111.4 −111.2 −109.7 1.7 1.5

a ∆EMBD = (EPBE0+MBD − EPBE0+TS)
b ∆EPBE0 = (EPBE0+MBD − EPBE+MBD)
c Calculated as ∆Evib + 7/2RT

where there is practically no difference between the lattice energies with MBD and TS. Many

previous studies at capturing many-body effects in dispersion have employed some variation

on the Axilrod-Teller-Muto (ATM) three-body dispersion interaction.67 It is well known that

the contribution of the three-body term to cohesive energies or lattice energies is normally

repulsive.68 In their recent work Otero-de-la-Roza and Johnson employed an XDM-based

ATM term for 21 of the 23 systems studied here.69 The found that the ATM term had only
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TABLE V: The mean error (ME), mean absolute error (MAE), standard deviation (SD)

and mean absolute relative error (MARE) of different vdW-inclusive DFT methods with

respect to experimental lattice energies. The ME, MAE and SD are in kJ/mol, while the

MARE is in %.

ME MAE SD MARE

PBE+TS 13.13 13.40 8.62 17.22

PBE0+TS 9.51 10.02 8.53 12.94

PBE+MBD 4.72 5.91 5.13 8.04

PBE0+MBD 1.17 3.92 4.79 5.51

relatively small contributions to the total dispersion energies and marginal contributions

to lattice energies, although this may in part stem from the damping functions employed.

Overall the ATM terms increased the MAE marginally for their dataset. This is in contrast

to the MBD contributions to the 23 systems studied here. Risthaus and Grimme have also

shown recently that an ATM term can give significant improvements for the modeling of

supramolecular complexes.70

It is clear from the results here that many-body contributions for molecular crystals are

significant, not just for the relative energies but also for the absolute value of the dispersion

energy, e.g. for the acetic acid crystal the pairwise energy is −39.6 kJ/mol, while the MBD

energy is −45.1 kJ/mol, an increase of 12%. Even for adamantane, in which MBD reduces

the lattice energy by 26.4 kJ/mol, the MBD energy of the lattice is 29.0 kJ/mol larger than

the pairwise energy. However, the corresponding MBD energy of the isolated molecules are

also substantially larger and in relative terms the isolated molecules become more stable,

reducing lattice energies.

These different effects, increases in absolute energies, decreases in relative energies, stem

primarily from polarisation effects. MBD considers not just many-body energies, like the

ATM expression, but also explicitly couples the various dipole interactions, leading to a

number of different types of polarisation effects within the molecules and solids. The

first effect is short-range intramolecular polarisation, whereby the polarisability of an atom

increases appreciably along covalent chemical bonds. Obtaining C6 coefficients from the

self-consistently screening polarisabilities can illustrate this effect, with, for example, the
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C-atom C6 of β oxalic acid increasing from 34 a.u. with TS to 43.0 a.u. This increase in

polarisability will increase the dispersion energy, but it is present in both the solid and the

isolated molecules.

The second contribution is long-range de-polarisation or screening of the dispersion

interactions. In a solid, the presence of many atoms and molecules in between two (or

more) interacting atoms will typical reduce the polarizabilty. We have noted previously

that the screened C-atom C6 coefficients of form-I aspirin are 10% smaller than those of the

isolated molecules.34 The MBD Hamiltonian will also give additional long-range screening

as it is equivalent to a random-phase approximation treatment of the model coupled dipole-

oscillators system it considers.49 The third type of polarisation effect is intermolecular

polarisation. Hydrogen-bonded solids have strong interactions in the solid state, through

which further polarisation of atoms can occur. As such polarisation is missing in the isolated

molecules, any such additional polarisation will increase the polarisability and hence relative

stability of the solid form. Competition between short-range intermolecular polarisation and

long-range de-polarisation may explain the more complex behavior of MBD for the hydrogen-

bonded solids. All of the vdW systems show appreciable screening effects, with large

reductions in the lattice energy, whereas some hydrogen-bonded systems (e.g. cyanamide

and cytosine) show barely any change. The importance of polarization effects has also

recently been demonstrated using solely the SCS equations by Bučko and co-workers.50

These competing effects are illustrated for oxalic acid in Figure 5. The ellipsoids represent

the anisotropic polarisability tensors obtained from the self-consistent screening equations,

with half of the molecule shown with the solid-state tensors and half with the gas-phase

ones. A C2 axis relates the two parts. The intramolecular polarisation is evident with

highly anisotropic polarisabilities directed primarily along chemical bonds, although in the

gas phase the H atoms point also towards the more polarizable C atoms. In standard

pairwise methods all of the atoms would have spherical polarizabilities. Examining the C-

atom tensors we can see that the gas-phase one is slightly larger (C6 = 43.0 a.u. in the solid

and 45.5 a.u. in the isolated molecule), partly illustrating the long-range screening effect.

Going from the gas phase to the solid state there is a significant re-orientation of the H-atom

tensor, shifting from being orientated towards the C atom, to being orientated along the

hydrogen bonds that are formed in the solid state.
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FIG. 5: Screened anisotropic polarisability tensors for a molecule of the β oxalic acid

crystal structure without and with solid-state interactions. In β oxalic acid the molecules

form chains of hydrogen-bonded dimers. Note that the correct gas-phase conformation of

oxalic acid has intramolecular hydrogen bonds.43

3. Role of exact exchange

Inclusion of 25% exact exchange through the PBE0 functional has a small but still

important contribution to the lattice energy. In general the contribution of PBE0 is to shift

the lattice energies down, as can be seen from the reduction in the mean error and the slight

change in the standard deviation. The individual contributions vary between 1–5 kJ/mol,

with many of the hydrogen-bonded and lone-pair systems having a larger contribution.

However, even benzene has a large change in its lattice energy on the order of 8%, which

likely stems from the better modeling of its multipole moment and density with a hybrid

functional.71 The primary reason for applying hybrid functionals for cohesive properties is

to correct for artefacts due to electron self-interaction or de-localisation errors.31 Such errors

are less significant in the solid state, where there is natural de-localisation, especially in

hydrogen-bonded systems. The role of PBE0 is therefore most likely related to reducing

de-localisation errors in isolated molecules, stabilising them relative to the solid. The

comparable relative contribution of MBD and exact exchange for many system suggests

19



that caution must be employed when fitting or scaling dispersion contributions. As both

contributions reduce the lattice energy, spurious and inconsistent results may be obtained

by fitting or scaling pairwise dispersion terms for semi-local functionals to experimental or

benchmark theoretical data.

Hybrid functionals are often not used in the study of cohesive properties of molecular

crystals,29,30 largely due to their additional computational cost, which particularly in a plane-

wave basis can reach more than an order of magnitude larger than the corresponding semi-

local functional. The present database of crystals suggests that hybrids may be important

for accurate work. Indeed, the correct polymorphic ordering of the polymorphs of oxalic

acid and glycine is only recovered when coupling MBD with PBE0.72 In their study of 21

molecular crystals Otero-de-la-Roza and Johnson employed the B86b functional,30 as it best

mimicked the Hartree-Fock repulsive wall when compared to other semi-local functionals.33

However, B86b only marginally improves over PBE by 0.6 kJ/mol, whereas the hybrid

functional used here (PBE0) yields contributions of around 3 kJ/mol.

The choice of PBE0 is driven by its non-empirical nature. While there is no definitive

value for the amount of exact exchange that should be added to a hybrid, there is some

motivation for a value of 25%,73 and the important aspect of PBE0 (and PBE) is that it is not

fitted to any experimental or theoretical data and is therefore not artificially biased towards

or against specific systems. PBE0 also has a small short-range many-body correlation error,74

which allows it to cleanly couple with the MBD method.

There are numerous other exchange functionals available, both with and without exact

exchange and different fractions thereof. Indeed, recently it has been suggested that a

fraction of 1/3 exact exchange be used as the PBE-based hybrid functional.75 In addition,

screened hybrids such as HSE76 might be more computationally efficient and accurate in

some cases, although their effect on molecular-crystal lattice energies is largely unknown. It

is likely that for many of the hydrogen-bonded systems the lattice energy could be tuned

with differing amounts of exact exchange and or screening, as different systems have different

hydrogen-bond strengths and therefore de-localisation. We refrain from such a study in the

present work, in part due to the substantial computational cost of hybrid functionals in a

plane-wave implementation. Crystal-structure prediction and material design can also only

work when computational methods are fully transferable to different geometries and even

compositions, making an ab initio approach essential.
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4. Comparison with (effective) pairwise treatments

The results presented in the previous subsections show that the MBD approach represents

a physically motivated and systematic improvement over the TS pairwise method. There

are a number of other pairwise or two-body approaches reported in the literature. Using

the data for 21 crystals of Otero-de-la-Roza and Johnson, we compare PBE0+MBD with

XDM and the vdW-DF2 functional in Table VI. To make a direct comparison it should

be noted that for oxalic acid the gas-phase structure was assumed to have the solid-state

conformation in their work. At the PBE and PBE0 levels (with and without dispersion

contributions) the difference between the correct conformer and the solid-state conformation

is approximately 21.5 kJ/mol and a correction of this amount has been applied. As this is

averaged over 21 systems variations in this correction due the different functionals are liable

to be minimal. Of the three methods PBE0+MBD performs the best for all four metrics.

The MAE of B86b+XDM is still quite good at 4.71 kJ/mol. However, with a negative

ME, correctly adding exact-exchange or many-body contributions would make the XDM

performance worse, as has in part been seen with the use of the ATM term.69 The vdW-DF2

functional performs well compared to the TS pairwise method but still appreciably overbinds

the crystals, almost twice as much as PBE0+MBD. This overbinding is surprising given the

known underestimation of small-molecule C6 coefficients by vdW-DF2.77

TABLE VI: The ME, MAE, SD and MARE of different vdW-inclusive DFT methods for

the lattice energies of the 21 molecule crystals of Otero-de-la-Roza and Johnson.30 Note

that an approximate correction has been applied to the oxalic acid lattice energies of Ref.30

and that the reference lattice energies from the present work (Table IV) have been

employed for calculating the different metrics. The ME, MAE and SD are in kJ/mol, while

the MARE is in %.

ME MAE SD MARE

B86b+XDM −3.47 4.71 5.49 5.97

vdW-DF2 4.80 6.40 5.77 8.49

PBE0+MBD 1.17 3.92 4.87 5.69

That an effective pairwise approach can give seemingly good performance for molecular
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crystals is no surprise. There are numerous studies of condensed phases of molecular systems

employing empirical potentials. Fitting or scaling of C6 parameters for specific systems

can often give good results but their transferability and suitability for arbitrary molecular

configurations is a concern.78 Given that the overall role of MBD is to reduce the lattice

energy, it is natural to investigate to what extend could a scaled version of the TS method

capture this behavior. Fitting the expression Elat = (Elat,PBE0 + Ascr.ETS,solid − ETS, gas) to

the experimental lattice energies yields a pairwise screening coefficient of Ascr. = 0.85(2) and

a MAE of 4.54 kJ/mol.

While a scaled version of TS might yield good predictions for lattice energies, there are a

number of situations where the fine detail of many-body dispersion is essential. The lattice

energy of cytosine is predicted well by both TS and MBD, likely due to cancellation of

the different polarisation effects in MBD. Scaling the TS value therefore gives a very poor

prediction, in error by 14 kJ/mol. Constant scaling would also not affect the relative ordering

of polymorphs, the correct ordering of which is the critical challenge for crystal-structure

prediction. In the present database, TS and other pairwise approaches30 systematically

overestimate the stability of β oxalic acid, with near degeneracy only restored at the

PBE0+MBD level.34,72 The importance of including many-body effects goes beyond cohesive

energies; it has been recently shown that the prediction of the dielectric constants of the

polyacene crystals is also significantly improved by the MBD method.63

C. Role of MBD in crystal structure geometries

All of the lattice energy and phonon calculations present in the preceding sections

have employed PBE+TS optimised geometries. Compared to PBE without any vdW

contributions, PBE+TS yields very good lattice parameters, often within a few percent

of experimental values.29,30 To understand the role of MBD in determining the structure of

molecular crystals, the lattice parameters and internal geometries of a selection of molecular

crystals have been optimized at the PBE+MBD level. The resulting lattice parameters are

compared with PBE+TS and experiment in Table VII.

In many cases the MBD and TS lattice vectors are smaller than experimental values,

with mean relative errors of −0.55% and −0.75% for TS and MBD, respectively. In it

interesting to note that although MBD reduces the binding energy, it leads to a more compact
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structure than the stronger bound pairwise method. None of the systems studied are known

to feature negative thermal expansion and therefore we expect the equilibrium optimized

lattice parameters to be smaller than experimental values, as even at very low temperatures

zero-point vibrations will lead to an expansion of the experimental cell, both in terms of

contributions to the free-energy surface and anharmonic averaging over the lattice vibrations.

In non-cubic systems variations in the orientation of the molecules will also lead to changes

in the cell parameters and their relative sizes. Quantifying how much smaller the lattice

parameters should be in the absence of zero-point and thermal contributions is difficult.

For simple systems the expansion contribution from quasi-harmonic effects can be readily

determined using phonon calculations,51,79 but for orthorhombic or monoclinic systems

accurate calculations would be much more demanding. Estimation of the anharmonic

contributions would also require NPT molecular-dynamics simulations, which would be

similarly demanding, especially at low temperatures, where path-integral methods would

be required. However, the ZPE contributions to covalently bound cubic solids are known

to be of the order of 0.25% to 0.5% of the lattice constant.79 For weaker-bound molecular

crystals values around 1% cannot be seen as surprising, and this is consistent with the range

of values observed here.

In a few cases, MBD yields lattice vectors longer than experiment. TS also overestimates

the length of the benzene c lattice vector. The overestimated lattice vectors in acetic

acid and pyrazine both occur for relatively short lattice vectors, with sheets or stacking of

molecules occurring in these directions. In particular, the c vector of pyrazine corresponds

to the direction in which the molecules stack in sheets, tilted at an angle. Such geometries

can lead to repulsive three-body interactions.68 Over such small distances the repulsive

contributions likely dominate the other attractive interactions. This may be sensitive to the

range-separation parameter used to match MBD to the DFT functional, which is fitted solely

considering a database of 22 small gas-phase dimers.35 However, the differences between PBE

and PBE+TS/MBD dwarf those between TS and MBD alone. Both methods capture the

vast majority of the contribution of dispersion, and given its far superior prediction of lattice

energies, MBD is clearly a better choice for DFT calculations of molecular crystals.

23



TABLE VII: The unique equilibrium lattice parameters and unit-cell volumes of 6

molecular crystals obtained using PBE+TS and PBE+MBD optimisations, together with

relative errors and experimental values determined at the temperature Texp.. Zero-point

vibrational contributions are not included in the unit-cell relaxations but are known for

simple cubic covalently bound solids to amount 0.25% to 0.5% of the lattice constant.79

Lattice parameters are in Å and ◦, while volumes are in Å3.

Molecule Texp. (K) PBE+TS ∆PBE+TS PBE+MBD ∆PBE+MBD Exp.

Naphthalene80 10 a 8.109 0.30 7.970 −1.42 8.0846

b 5.884 −0.90 5.868 −1.17 5.9375

c 8.660 0.30 8.570 −0.74 8.6335

β 124.05 −0.50 123.11 −1.26 124.67

V 342.32 0.44 335.70 −1.50 340.83

Ammonia81 2 a 4.962 −1.70 4.987 −1.21 5.048

V 122.18 −5.02 124.03 −3.58 128.63

Urea82 12 a 5.559 −0.11 5.508 −1.03 5.565

c 4.683 −0.02 4.662 −0.47 4.684

V 144.71 −0.24 141.42 −2.51 145.06

Benzene83 4 a 7.368 0.24 7.307 −0.60 7.351

b 9.225 −1.48 9.293 −0.76 9.364

c 6.839 2.15 6.814 1.78 6.695

V 464.88 0.87 462.69 0.40 460.84

Acetic acid84 40 a 13.157 0.05 12.988 −1.24 13.151

b 3.907 −0.40 4.005 2.10 3.923

c 5.712 −0.86 5.686 −1.31 5.762

V 293.66 −1.21 295.82 −0.49 297.27

Pyrazine85 184 a 9.292 −0.35 9.181 −1.54 9.325

b 5.717 −2.28 5.689 −2.74 5.850

c 3.683 −1.33 3.763 0.80 3.733

V 195.66 −3.92 196.55 −3.48 203.64

D. Higher-order multipole contributions to van der Waals interactions

The many-body dispersion method accounts for all orders of dipole interactions in a

seamless fashion. While these dipole interactions represent the leading order contribution

to the dispersion energy, a number of two-body methods also employ higher-order dipole-

quadrupole (C8) and quadrupole-quadrupole (C10) interactions in the pairwise energy

expansion.18,20 These higher-order terms are much more short-ranged than the leading

order dipole-dipole term and can become correlated with the semi-local functional, making

their parameterization difficult.18 While several groups advocate the use of these higher-

order terms, a number of studies suggest that with non-empirical semi-local functionals the

leading-order dipole term is the most important in the pairwise expansion of the dispersion

energy,86,87 while for water-sulfate clusters the higher-order terms in XDM have been found to
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worsen the prediction of binding energies.88 The present work, focusing on ambient-pressure

crystal structures, strengthens the suggestion that the dipole contributions are dominant

when they are coupled with non-empirical DFT functionals.

At higher pressures or for very close-packed structures, atoms may approach at much

shorter distances, making the short-range multipole terms more important for describing

their properties. This has been seen for the high-pressure phases of ice, which cannot be

sufficiently modeled using only a dipole-dipole term.32 In the present database we believe

CO2 to be an example of a close-packed structure where multipoles are important. The

lattice has high symmetry (Pa3) and is essentially fcc packing of angled ellipsoids. The

TS method yields a reasonable prediction for the lattice energy, however when many-body

contributions are accounted for, the lattice energy is underestimated by nearly 7 kJ/mol

(PBE0+MBD), a relative error of 25%. The TS lattice parameter for CO2 is 5.790 Å, while

the experimental value, extrapolated to 0 K, is 5.55 Å.89 Even with a lattice constant 4.3%

too large all of the CO nearest neighbor distances (3.21 Å) are within the CO vdW radius

of 3.32 Å. Optimizing the lattice with MBD yields little improvement with a = 5.786 Å.

With such high symmetry, many of the dipole contributions cancel out, making an accurate

treatment of the multipole terms important. We note though that the XDM method, which

does include C8 and C10 terms in the pairwise expansion, yields a very similar lattice constant

to TS,30 suggesting that such an accurate treatment is not trivial. Indeed, as they are

so short ranged in nature, the higher-order effects might be better represented by using

improved functionals. For instance, it is known that PBE0 has smaller short-range errors

for interactions in van der Waals systems compared to PBE.74

Systems such as CO2 and adamantane clearly require additional contributions, whether

higher-order mutlipole terms or improved density functionals and they therefore are useful

targets for method development. However, the excellent performance of PBE0+MBD for

the remainder of the X23 database demonstrates that it is a powerful approach for predicting

lattice energies and stabilities of organic molecular crystals.

IV. CONCLUSION

In the present work, a detailed assessment of the different contributions to the lattice

energies of molecular crystals has been performed. The vibrational contributions are
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not strictly contributions to the lattice energy, but rather are important for converting

experimental sublimation enthalpies into lattice energies that can be compared with theory.

In the harmonic approximation, supercell phonon calculations show significant deviations

from the widely used Dulong-Petit law, as noted elsewhere.30 A semi-anharmonic treatment

using experimental heat-capacity data suggests that the anharmonic contributions are not

negligible and care should be taken in comparing experimental lattice energies with DFT

values.

The contribution of many-body dispersion and exact exchange to the lattice energy

has been assessed for a database of 23 molecular crystals, building on our previous work

with 16 systems.34 Both contributions are found to be important. The use of MBD as

compared to the TS pairwise method reduces the MAE by more than half from 10.04 kJ/mol

with PBE0+TS to 3.92 kJ/mol with PBE0+MBD. Using a single scaling parameter,

the pairwise approach can reach within 0.6 kJ/mol of the many-body lattice energies.

However, such scaling will not correct any systematic deviations, such as the incorrect

ordering of polymorph stabilities. The use of exact exchange has a smaller but still

important contribution of the order of 3 kJ/mol, reducing the impact of de-localisation

errors, particularly in hydrogen-bonded systems.

The role of MBD in determining the lattice parameters has also been explored for a

selection of systems using finite-difference forces and stresses. Compared to PBE, which is

known to often substantially overestimate lattice constants,29 both the pairwise and many-

body approaches give good agreement with experiment, with many of the differences likely to

be on the order of zero-point and thermal vibrational contributions to the lattice constants.

The estimation of these contributions for any crystal is non-trivial and will form part of our

future work in this area.

Overall, it has been shown that assessing predictions of lattice energies requires careful

consideration of vibrational, many-body dispersion and exact-exchange contributions.

Neglecting any of these contributions would lead to an overestimation of the importance

of other contributions, hindering efforts to develop more accurate and physically motivated

computational approaches. While the need for exact-exchange functionals may at present

pose computational difficulties, developments in localized-basis set codes90 and screened-

exchange functionals76 should provide a way forward. The excellent performance of

MBD, both for lattice energies and structures, suggests that it can be a powerful tool
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for the investigation of structure-properties relationships of molecular crystals. Ongoing

development of analytical forces and stresses should enable us to fully explore the role of

MBD in governing geometries and phonons, as well as related properties. Studies at high

pressure should also lead to a better understanding of multipole terms in the dispersion

energy.
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