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We show that as an electron transfers between closed-shell molecular fragments at large separation,
the exact correlation potential of time-dependent density functional theory gradually develops a step
and peak structure in the bonding region. This structure has a density-dependence that is non-local
both in space and time, and even the exact ground-state exchange-correlation functional fails to cap-
ture it. In the complementary case of charge-transfer between open-shell fragments, an initial step
and peak vanish as the charge-transfer state is reached. Lack of these structures in usual approxima-
tions leads to inaccurate charge-transfer dynamics. This is dramatically illustrated by the complete
lack of Rabi oscillations in the dipole moment under conditions of resonant charge-transfer.

Charge-transfer dynamics play a critical role in many
processes of interest in physics, chemistry, and biochem-
istry, from photochemistry to photosynthesis, solar cell
design and biological functionality. The quantum me-
chanical treatment of such systems calls for methods
that can treat correlated electron excitations and dy-
namics efficiently for relatively large systems. Time-
dependent density functional theory (TDDFT) [1, 2] is
the leading candidate today, and has achieved an un-
precedented balance between accuracy and efficiency in
calculations of electronic spectra [2, 3]. Charge-transfer
excitation energies over medium to large distances
are, however, notoriously underestimated by the usual
exchange-correlation (xc) functionals, and recent years
have witnessed intense development of many methods
to treat it [4–6]. There is recent optimism for obtaining
accurate charge-transfer excitations [5] but only for the
case of charge-transfer between closed-shell fragments.
No functional approximation developed so far works
for charge-transfer between open-shell fragments [7, 8].
Here standard approximations predict even an unphys-
ical ground-state with fractionally-charged species in
the dissociation limit. For open-shell fragments the ex-
act ground-state correlation potential has step and peak
structures [9, 10], while the exact exchange-correlation
kernel has strong frequency-dependence and diverges
as a function of the fragment separation; lack of these
features in the usual (TD)DFT approximations is respon-
sible for their poor predictions.

In contrast to linear response phenomena, the de-
scription of important photophysical/chemical pro-
cesses such as excited state reactivity, photoisomerisa-
tion, photofragmentation, electron and proton transfer
and electron-hole recombination, generally requires a
complete electron transfer from one state to another, or
from different regions of space. All those processes are
clearly nonlinear and require a non-perturbative time-
resolved study of electron dynamics rather than a cal-

culation of the excitation spectrum of the unperturbed
system. TDDFT still applies: non-interacting electrons
evolve in a one-body time-dependent Kohn-Sham (KS)
potential, in principle reproducing the exact one-body
density of the true interacting system and from which
all properties of the interacting system may be exactly
extracted. In practise, approximations are required for
the many-body effects, in particular the xc potential,
vXC[n; Ψ0,Φ0](r, t), a functional of the one-body density
n, the initial interacting state Ψ0 and the initial KS state
Φ0. Almost all calculations today use an adiabatic ap-
proximation, that inserts the instantaneous density into
a ground-state approximation, vadia

XC
[n; Ψ0,Φ0](r, t) =

vg.s.XC [n(t)](r, t), neglecting the dependence of vXC on the
past history and initial states [2]. Further, while the exact
vXC has in general a non-local dependence on space, the
ground-state approximation most often has a spatially
local or semi-local dependence on the density [23].

How would these approximations perform for the
time-resolved charge-transfer process? In this paper,
we unambiguously show that when an electron trans-
fers at long range from a ground-state to an excited
charge-transfer state, a time-dependent step and peak
are generic and essential features of the xc potential. In
the case where the donor and acceptor are both closed
shells, the initial potential has no step nor peak, but a
step and peak structure in the bond midpoint region of
the xc potential builds up over time. Although initially
the usual approximations may be good approximations
to the exact xc potential, they are increasingly worse as
time evolves, leading to a completely wrong long-time
dynamics. The reverse is true in the case where the
donor and acceptor are both open-shell species. Thus
the step and peak, spatially non-local features that are
difficult to capture in functional approximations, play
a significant role even in charge-transfer between closed-
shell fragments, unlike in the calculation of excitation ener-
gies. Further, we show that although an adiabatic ap-
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proximation to the xc potential may yield a step struc-
ture, the step will, at best, be of the wrong size. Accom-
panying the step and peak structures associated with
the charge transfer there is also typically a generic dy-
namical step [12], that depends on details of how the
charge-transfer is achieved. The structure of the ex-
act vXC functional thus has a complicated space- and
time-dependence that adiabatic functionals fail to cap-
ture. The consequence for the time-resolved dynamics
is severe, as we will show under conditions of resonant
charge-transfer.

To illustrate the mechanism of charge-transfer pro-
cesses and the relevance of spatial and time non-locality
we use a “two-electron molecule” in one-dimension.
The Hamiltonian is (atomic units are used throughout):

H(x1, x2, t) = −
1

2

∂2

∂x21
−

1

2

∂2

∂x22
+ vmol(x1) + vmol(x2)

+vee(x1 − x2) + E(t) · (x1 + x2) (1)

where vee(y) = 1/
√

y2 + 1 is the “soft-Coulomb”
electron-electron interaction, and E(t) = A cos(ωt) is an
applied electric field. The neutral molecule is modeled
by:

vmol(x) = −
Z

√

(x+ R
2 )

2 + a
−

U0

cosh2(x− R
2 )

(2)

Asymptotically the soft-coulomb potential (donor) on
the left decays as −Z/x, similar to a true atomic po-
tential in 3D, while the cosh-squared (acceptor) on the
right is short-ranged, decaying exponentially away from
the “atom”. The acceptor potential mimics a closed-
shell atom without including core electrons. By varying
the parameters Z and U0, the character of the ground
and excited states change. We model charge-transfer be-
tween two closed-shell fragments, by choosing Z and
U0 such that, at large separations R, the ground-state
has two electrons on the donor and zero on the accep-
tor, while the first singlet excited state, Ψ∗, is a charge-
transfer excited state with one electron in each well (see
Fig. 1). The applied electric field E(t) induces this
charge transfer. For this case we choose Z = 2 and
U0 = 1. Choosing Z = 2 and U0 = 1.5 places one
electron in each well in the ground-state, with a charge-
transfer excited state having both electrons in the ac-
ceptor well; such a system would be used in modeling
charge-transfer between two open-shell fragments.

If we consider beginning the KS simulation in a
doubly-occupied singlet state, KS evolution retains this
form for all later times, Φ(x1, x2, t) = φ(x1, t)φ(x2, t),
and requiring the exact density to be reproduced at all
times leads to the expression:

φ(x, t) =
√

n(x, t)/2ei
∫

x dx′u(x′,t) (3)

where u(x, t) = j(x, t)/n(x, t) is the local “velocity”. In-

verting the KS equation yields the KS potential as:

vS(x, t) =
∂2xn(x, t)

4n(x, t)
−
(∂xn(x, t))

2

8n2(x, t)
−
u2(x, t)

2
−

∫ x

∂tu(x
′, t)dx′

(4)
The xc potential is then found via

vXC(x, t) = vS(x, t) − vext(x, t)− vH(x, t) (5)

where vH(x, t) =
∫

dx′n(x′, t)vee(x − x′) is the Hartree
potential and the external field is given by vext(x, t) =
vmol(x) + E(t)x. Further, for this case, vC(x, t) = vXC −
vX(x, t), may easily be isolated since vX = −vH/2.

Before discussing the time-dependent electron dy-
namics, we first consider the final charge-transfer state.
Let us assume we have complete transfer of an electron
at some time T into the excited state Ψ∗ (for example us-
ing a tailored laser pulse, which is then turned off), and
the system then stays in this state for all times t > T .
The density, n(t > T ) = n∗, is then static in the excited
state, and the current and velocity u(x, t) are zero. It fol-
lows that the exact vXC(t > T ) is static and that the exact
KS potential is given by first two terms of Eq. (4) only.
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FIG. 1: Density (black solid), vS (red long-dashed), vC (blue
dashed), and vext (pink dotted) for the ground-state (left) and
for the charge-transfer state (right) in our model molecule of
closed-shell fragments at separation R = 7au.

In Fig. 1, we show the density and the exact KS
and correlation potentials for the ground and charge-
transfer states for separation R = 7au. A clear step and
peak structure has developed in the correlation poten-
tial in the region of low-density between the ions in the
charge-transfer state. There is no such structure in the
initial potential of the ground-state. As the separation
increases, the step in vC saturates to a size

∆ = |IND−1
D − INA+1

A | , (6)

where IND−1
D = IN=1

D is the ionization energy of the

donor ion containing one electron, INA+1
A = IN=1

A is
that of the one-electron acceptor ion, andND(NA) repre-
sent the number of electrons of the donor(acceptor) ion.
This can readily be shown by considering the asymp-
totic decay of the donor and acceptor KS orbitals, fol-
lowing similar arguments to Refs. [9, 10] that hold for
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the case of the ground-state of a molecule made of open-
shell fragments. Here instead, we have a step in the the
correlation potential of a charge-transfer excited-state of
a molecule made of closed-shell fragments.

The step requires a spatially non-local density-
dependence in the correlation functional, as described
for the ground-state case in Refs.[9, 10, 13, 14]. The in-
ability of usual ground-state approximate functionals to
capture this step results in them incorrectly predicting
fractionally charged species. Here we are studying an
excited state of the interacting system. However the
KS orbital is in fact a ground-state orbital, because the
excited-state one-body density has no nodes. Given the
static ground-state nature of the orbital and KS poten-
tials after time T , does the adiabatic approximation be-
come exact?

To answer this, we examine the adiabatically exact xc
potential for t > T , vadia−ex

XC
[n∗], i.e. evaluating the exact

ground-state xc functional on the instantaneous charge-
transfer density. This is defined as [17]:

vadia−ex
XC

[n] = vadia
S

[n]− vadiaext [n]− vH[n] (7)

where vadiaext [n] is the external potential for two inter-
acting electrons in a ground-state of this density, and
vadia
S

[n] is the exact ground-state KS potential for this
density (first two terms of Eq. (4)).

In Fig. 2 we plot the vadia−ex
XC

[n∗] for two separations
R = 7au and 10au, found using similar numerical tech-
niques to Refs. 17 and 18. Evidently, the adiabatic ap-
proximation does yield a step, but of the wrong size.

To understand this, first consider the functional de-
pendence of the exact xc potential. We may write

vXC[n](t > T ) = vXC[n
∗,Ψ∗,Φgs

CT ](t > T ) , (8)

where, on the left, the dependence is on the entire his-
tory of the density, n(0 < t < T ), and initial-state depen-
dence is not needed since at the initial time the interact-
ing and KS states are at the ground-state [2, 19]. On the
right, history-dependence has been “traded” for initial-
state dependence; time T is considered as the “initial”
time, and the functional depends on just the static den-
sity n∗ after this time, and, crucially, the interacting
state and KS states at time T . The former is the charge-
transfer excited state Ψ∗, while the latter is the doubly-

occupied orbital, Φ(x1, x2, T ) =
√

n∗(x1)n∗(x2)/2 ≡
Φgs

CT , a ground-state wavefunction, as discussed above.
On the other hand, the adiabatic approximation for

the xc potential

vadia
XC

[n∗] ≡ vadia
XC

[n∗,Ψgs
CT ,Φ

gs
CT ] , (9)

differs from the exact xc potential Eq. (8), in its depen-
dence on the time-T interacting state: here Ψgs

CT is the
ground-state wavefunction of an interacting system with
density n∗, not the true excited state wavefunction. There-
fore, Eqs. (8) and (9) show that the adiabatically-exact xc
potential is not the same as the exact xc potential. In the

infinite-separation limit, we expect Ψ∗ and Ψgs
CT to be

very similar, both having a Heitler-London form with
one electron in each well, but the fact that Ψ∗ is an ex-
cited state is encoded in the nodal structure of its wave-
function. The correlation potential is extremely sensitive
to this tiny difference in the two interacting wavefunc-
tions, which accounts for the different step size in Fig. 2.

The magnitude of the step in vadia−ex
XC

in the infinite-
separation limit can be derived by examining the terms
in Eq. (7). In this limit, locally around each well vadiaext

must be the atomic potential, up to a spatial constant,
in order for Ψgs

CT [n
∗] to satisfy Schrödinger’s equation

there. It cannot simply be the sum of the atomic po-
tentials, because the ground-state Ψ0 of that potential
(Eq. 2) places two electrons in the donor well. For Ψgs

CT

to be the ground-state wavefunction, vadiaext has a step in
the region of negligible density that pushes up the donor
well relative to the acceptor well; the size of this step,
C, is the lowest such that energetically it is favorable to
place one electron on each well, as Ψgs

CT [n
∗] does. So,

Egs,N=1
D + Egs,N=1

A + C < Egs,N=2
D + 2C (10)

where the left-hand-side represents the energy E[Ψgs
CT ]

and the right-hand-side represents the energy of the
lowest state of vadiaext that has two electrons in the donor
well. This leads to

C ≥ Egs,N=1
D + Egs,N=1

A − Egs,N=2
D (11)

= AN=1
D − IN=1

A = IND

D − INA

A (12)

where in the last line, we have generalized the result to
a donor(acceptor) with ND(NA) electrons.

Now that we have the magnitude of the step in
vadiaext [n∗], we use Eq. (7) to quantify the step in
vadia−ex
XC

[n∗]. Since vadia
S

= vexact
S

here, Eq. 6 tells us that
the step in vadia

C
is

∆adia = IND−1
D −AND−1

D (13)

which is equal to the derivative discontinuity of the (ND−
1)-electron donor. (As before, we note that the entire
step is contained in the correlation part of the potential,
because with the doubly-occupied orbital, vX = −vH/2).
For our system IN=1

D = 1.483au, AN=1
D = 0.755au and

IN=1
A = 0.5au, thus in the infinite separation limit we

get a step of 0.983(0.729)au in the exact vC(vadia
C

). The
numerical results verify this analysis; the steps shown
in Figure 2 for separation R = 7(R = 10)au have val-
ues of 0.61 (0.76)au in the exact vC and 0.42 (0.55)au in
vadia
C

. For larger separations, the steps tend towards the
asymptotic values predicted by the analysis above.

Having studied how the xc potential looks for the fi-
nal charge-transfer state, we now study how the poten-
tial evolves in time to reach such a state. To greatly
simplify the analysis we will exploit Rabi physics to
reduce this to a two-state problem. This approach is
justified for weak-enough resonant driving, and veri-
fied by comparing the xc potential found via this ap-
proach with that found using the exact time-dependent
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FIG. 2: The exact vC (dashed blue line) and the adiabatic ex-
act vadiaC (red solid line) for R = 7au (left) and for R =
10 au(right). Note that the potential eventually rolls back
down to zero far enough away from the system. In the infi-
nite separation limit the size of the step ∆(∆adia)is given by
Eq. (6)(Eq. (13)).
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FIG. 3: Upper panel: The correlation potential (dotted blue
line) and density (solid black) shown at snapshots of time in-
dicated. Lower panel: Vc at snapshots over an optical cycle
centered around TR/8.

wavefunction found using octopus [15, 16] (see also
Ref.12). The interacting wavefunction may be written as
|Ψ(t)〉 = ag(t)|Ψ

gs〉+ ae(t)|Ψ
∗〉, where

i∂t

(

ag(t)
ae(t)

)

=

(

Eg − dggE(t) −degE(t)
−degE(t) Ee − deeE(t)

)(

ag(t)
ae(t)

)

(14)
with deg = dge = 0.231, dgg = 7 and dee = 0 for our sys-
tem. The strength of the field is choosen to beA = 0.006.
The electric field is resonant with the first excitation:
E(t) = 0.006 cos(0.112t).

Fig. 3 displays the correlation potential at snapshots
in time over a half Rabi period TR/2 [24] for separa-
tion R = 7. The step, accompanied by a peak, develops
over time as the excited charge-transfer state is reached;
at TR/2 the correlation potential agrees with the static
prediction earlier (see Fig. 2, left). Notice that making
a time-dependent constant shift to the correlation po-
tential does not affect the dynamics, just adds a time-
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FIG. 4: Dipole moments d(t) for the charge-transfer between
closed-shell fragments at separation R = 7au for exact (solid
black line), adiabatic exact-exchange (AEXX) (dashed red line)
and self-interaction-corrected adiabatic local density approxi-
mation (SIC-ALDA)(dotted blue line). The calculations were
done using a resonant field of frequency ω = 0.112 and ampli-
tude A = 0.00667.

dependent overall phase. During the second half of the
Rabi cycle, the step gradually disappears. A closer in-
spection however indicates that superimposed on this
smoothly developing step, is an oscillatory step struc-
ture, whose dynamics is more on the time-scale of the
optical field (see lower panel). This faster non-adiabatic,
non-local dynamical step appears generically in electron
dynamics, as shown in Ref. [12]. To distinguish between
the two steps we refer to the more gradually develop-
ing step due to charge-transfer, as the “charge-transfer
step”.

For charge-transfer between open-shells, somewhat
of the reverse picture occurs: the initial correla-
tion potential contains a step and peak [9, 10, 13,
14], that disappears in time as the charge-transfer
state is reached. When studying this process using
two electrons however, complications due to non-v-
representability arise [20]; at large separations one ap-
proaches a node in the density in the excited-state,
leading to a node in the single orbital that is doubly-
occupied, giving delta-like peaks in the potential.

The impact that the development, or loss, of the
charge-transfer step has on dynamics is severe. The
same adiabatic approximations that for local resonant
excitations showed faster but still Rabi-like oscillations
[21] fail dramatically to capture any Rabi-like oscilla-
tions between the ground and charge-transfer state.
This is illustrated by the dipole moments, d(t) =
〈ψ(t)|x̂1+ x̂2|ψ(t)〉, in Figure (4). The approximate corre-
lation functionals lack the non-local spatial-dependence
necessary to develop the charge-transfer step [25].

Given the ubiquity of charge-transfer dynamics in
topical applications of TDDFT, it is critical to de-
velop approximations with spatially non-local and non-
adiabatic dependence. None of the available function-
als today captures the peak and step structure that de-
velop in the exact correlation potential as the charge
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transfers, and they lead to drastically incorrect dynam-
ics, e.g. dipole oscillations between the ground and
charge-transfer states induced by a weak resonant field
are completely lacking. Even an exact adiabatic approx-
imation will be incorrect: a step and peak feature are
captured but of the wrong size. Superimposed on the
development of the charge-transfer step potential, are
the generic oscillatory dynamical step and peak features
recently discussed in Ref [12]: the time-scale of this fea-
ture depends on the details of how the charge-transfer
is induced, e.g. they oscillate on the time-scale of a res-
onant optical field. The performance of a self-consistent
propagation in such a potential is left for a future in-
vestigation, as is the role of the peak that accompanies
the step. The relation of these structures to the deriva-
tive discontinuities shown in the xc kernel for charge-
transfer excitations [6] will also be investigated.

Although the results have been presented here for two
electrons, we expect they can be generalized to elec-
tron transfer in real molecular systems, as many cases of
charge transfer dominantly involve the valence level. In
modeling real systems the vibronic coupling introduces

a mixture of excited states that are not, in principle, fully
populated. Still our findings apply, since for an ensem-
ble of states we would also get charge-transfer steps and
dynamical steps that would account for the population
of each excited state contributing to the wave packet.
Note that the step responsible for the charge-transfer ap-
pears as soon as the state starts to be populated. Our
work opens the path towards the development of nona-
diabatic functionals able to capture dynamical electron
transfer processes.
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