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INTRODUCTION 

Max- Planck-Instttut fUr Plasmaphysik , 
EURATOM ASSOCiation , 0-8046 Garching, F.R.G. 

Various high power heating scenarios in the ion cyclotron range of 
frequencies (ICRF) have been studied on ASDEX up to a power of PLC ~ 
2.3 MW launched by two low-field si de antennae: Hydrogen second harmonic 
heating (20CH at 67 MHz) in pure hydrogen and hydrogen-deuterium 
mixture plasmas, hydrogen minority heating in deuter ium (D(H) at 33 . 5 
MHz, nHlne ~ 0. 05) , and the combination of both with neutral beam 
i nject i on . Typical plasma data are; R - 167 cm, a - 40 cm . Ip • 380 kA , 
Ba.:!' 2. 24 T, ne .2-6 x lOll cm-3, Teo '\. 2 keV, TiO '\. 3 keV with 
double and single- null divertor configuration. -

CONFI NEMENT 
Compari ng the energy confinement of 20CH and D(H) heating at relatively 
low rf power (PLC < 0.1 MW ) the D(H) minority regime exhibits no 
signif i cant degradation of TE' which manifests itself in an enhanced 
ion heatir.g effiCiency and an increased direct power deposition to t he 
electrons /11 while the 20CH scenariO follows already an L- type scaling 
(Fig . 1). At higher rf power the data of both the DCH) a nd the 20CH 
schemes can be fitted by an offset-linear scal i ng Wp • Wp(O) + PIC 'T inc 
with i ncrement al confinement times Tine • ~WpIC/Ptot slightly hi gher 
for D(H) (Tinc ~ 110 ms) than for 20CH (Tinc ~32 ms) heating. A 
summary of the energy confinement with ICRH and NI in t he L-mocte is 
given in Fig. 2. A data base on ICR F H-mode conf i nement 121 which could 
be compared with NI heating is not yet available. 

PROF'ILE EFFECTS 
During ICRH , particularly in the D(H) scheme, the elect r on temperature 
/21 and pressure profiles are much more peaked inside the sawtooth 
reconnect ion radius er ~ r(q_1) .(2) than in case of NI: this holds in 
particular for the combination of ICRH with NI where the energy 
confinement improves by about 30 S at the same total power compared to 
pur e NI heating (Fig . 3) . As far as ne{r) is concerned the electron 
density profiles remain essenti ally unchanged at the plasma boundary 
(between separatrix and antennae) 13/ whereas ne(r) becomes s l ightly 
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peaked with ICRH in the plasma centre . Whether the peakedness of the 
profiles and the absence or reduction of plasma rotation (in case of ICRH 
+ NI) Is directly related to the slight improvement of lE with ICRH is 
not yet clear . 

The extent of temperature profile shaping has been attempted to test by 
varying the leRP power deposition by either 1) shifting the 2QCH 
resonance layer radially while keeping qa ~ 3.3· constant, or 2) working 
with two 20 CH resonance layer positions simultaneously, excited by two 
antennae operating at different frequencies (67 MHz for rres ~ 0 cm , and 
61 . 9 MHz for rres ~ a/2 - 20 cm) and variable power (pICtot • 0.9 MW), 
combined with a small amount of NI heating (PNI • O.~ MW): In case of 
primarily off- axis rf power deposition neither a significant olterat ion of 
electron temperature (Fig. 4) and pressure profiles outside q _ 1 nor a 
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Pig. 3: Elect ron temperature and pressure profiles obtained wi t h 
pure NI and ICRH+NI heating at the same total power. 

change of the gross energy confinement time with respect to on-axis 
de pos ition have been observed , i.e. the electron profiles are widely 
invariant to the rf power distribution 1n the plasma. No information ' is so 
f ar available on ASDEX of the ion temperature profiles with ICRH 1n these 
condi tions ; investigat i ons at JET I~/ indicate a relatively strong 
flattening of Tl(r) with off- axi s deposition. 

DIRECT ELECTRON HEATING 
An enhanced direct electron heating, Pe - 1.5 ne(r) dTe{r)/dt, determined 
via the initial slope of Te(t) after the sawtooth crash , is found close to 
the 2QCH resonance layer , in particular with off- axis deposition . The ob­
servat ions can be interpreted by electron heating via ion Bernstein waves 
( lBW) as predicted by theory 15/ , wh ich are weakly damped along their pro­
pagation towards the inner plasma region. This is illustrated in Pig. 5 
where direct electron heating is measured on axis and at r - , ~ cm whereas 
the resonance layers ar e located at rres • 0 cm and 20 cm . With increasing 
ratio of off-ax is to on- axis rf power di rect electron heating is enhanced 
not only 10 cn towards the plasma centre (with respect to the off - axis 
resonance) but also on-axis where Pe does not decrease, although the rf 
power is reduced there . 

SUMMARY 
High power ICRP he~ting experiments on ASDEX and their comparison with NI 
heating have shown a unique confi nement structure wh ich appears to be 
inherent to tokamak plasmas . Although profiles are much more pe~ked wi th 
ICRH , their shapes a~e found to be invar i ant to modifications ~f the ~ f 

power deposition profiles. Studies on direct elect~on heating indicate that 
ion Bernstei n waves ge nerated via mode conversion at t he 2QCH resonance 
layer(s) propagate more than 20 cm towards the i nner plasma ~egion while 
bei ng absorbed along their path. 
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Fig. 5: Direct electron heating power density at r - 0 and r .. 10 cm due to 
varying off-axis ICRF power deposition y .. Prc(a/Z)/Prc(O) , 
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