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Abstract. Selected issues of mutual influence of the energetic ions and collective
phenomena in toroidal plasmas are considered. This includes peculiarities of
energetic-ion-driven Alfvén instabilities in stellarators, fishbone instability and
MHD activity during tangential neutral beam injection in tokamaks and spherical
tori with the shearless core.

1. Introduction

Plasma in toroidal fusion devices is typically MHD active and contains energetic ions
produced by neutral beam injection, fusion reactions, and acceleration during RF
heating. Many important and interesting collective phenomena are associated with
these ions (see, e.g., [1, 2]).

In particular, these are Alfvén instabilities caused by spatial inhomogeneity
and/or velocity anisotropy of the energetic ions. Alfvén instabilities were observed
in many experiments on tokamaks, stellarators, and spherical tori. They can have
very different forms and consequences [3, 4, 5]. In stellarators, Alfvén instabilities
have a number of peculiarities. Some of them were reviewed in Ref. [6]. In this paper,
we concentrate on new results. In particular, new features of the high-frequency
eigenmodes associated with the lack of the axial symmetry in stellarators and effects
of the finite orbit width are reported.

Another important instability caused by the energetic ions is fishbone oscillations
in tokamaks. The fishbone in the conventional case of ¢ < 1 inside the ¢ = 1 radius (g
is the safety factor) and the shear § = dIlng/dInr ~ 1 is typically an m = n = 1 rigid
kink displacement of the plasma core, where m and n are the poloidal mode number
and toroidal mode number, respectively [2]. We consider fishbones with completely
different radial structure in systems with g(r) close to unity or other low-order rationals
in a wide core region surrounded by a region with large magnetic shear. This behavior
of q(r) is typical for spherical tori. In addition, this can be the case in tokamaks, in
particular, in the ITER third operational scenario, in the so-called “hybrid” regime.

The energetic ions can stabilize sawtooth oscillations and other magnetohydro-
dynamic (MHD) events which are known to occur often in tokamak plasmas. The
stabilizing effect can be due to trapped particles [7] and circulating ones [8]. Theo-
retical analysis of this phenomenon is usually relevant to plasmas with § ~ 1. The
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influence of the energetic ions on MHD activity of plasmas with the shearless core is
not considered yet; it is known only that the trapped particles play a minor role in
this case because the perturbed magnetic flux encircled by the precessional drift orbits
vanishes in the limit of 1 — ¢ — 0 [9]. This motivated us to consider the influence of
circulating energetic ions on MHD activity in plasmas with the shearless core.

2. Alfvén instabilities in stellarators

2.1. Effects of fast-ion-orbit width and the mode width

The physical mechanism responsible for the destabilization of Alfvén eigenmodes by
energetic ions is the resonant wave-particle interaction. The corresponding resonance
can be obtained as follows. An equation describing the energy exchange between an
energetic ion and an Alfvén wave is d€/dt = evp - E, where € is the particle energy,
vp is the drift velocity caused by the curvature and inhomogeneity of the magnetic
field, E is the perturbed electric field. We take

E = Z E,, »(r) exp(imid — ing — iwt) (1)

and expand the equilibrium magnetic field in a Fourier series as

oo

B=B |1+ % Z egw)(r) exp(ipt —ivNy) | , (2)
HV=—00

where 7 is the radial coordinate defined by ¢ = Br?/2 with 1 the toroidal magnetic
flux and B the average magnetic field at the magnetic axis, 1 and ¢ are the poloidal
angle and toroidal angle, respectively, IV is the number of the field periods. Then,
considering the equation for d€/dt on the particle orbit, restricting ourselves to
circulating particles, and neglecting the orbit width in the exponent (by taking
r = const, ¥ = wyt + Vo, ¢ = wyt + g, where wy = const and w, = const are the
frequencies of the poloidal and toroidal motion of a particle, respectively, wy = w,,

Yo = const, ¢y = const, and ¢ = ¢! the rotational transform), we obtain:
d&
i Z al) exp|—iwt +i(m + p)wat — i(n + vN)w,t], (3)

v, m,n

where a(*) are some coefficients. Tt follows from equation (3) that an energetic ion
can transfer a considerable part of its energy for a sufficiently long time interval At,
At > max{w; Lwy '}, when the following resonance occurs:

w—(m+ pwy + (n+vN)w, =0. (4)

In the case of the large-aspect-ratio tokamaks, |u| = 1, v = 0; therefore, for
the well-circulating particles the only possible resonance is w = (k| & ¢/Ro)v), where
ky = (mt—n)/Ro, v is the particle velocity along the magnetic field, Ry is the
radius of the magnetic axis. In particular, this leads to the resonance velocities
v|* = —opva(ry) and v® = oxva(rs)/3 [va the Alfvén velocity, 7, the radius of
the mode localization, and o3 = sgn(k))] for the well-localized Toroidicity-induced
Alfvén Eigenmodes (TAE) having w = t,v4(¢«)/(2Ro) with ¢, = ¢(rs).

Finite mode width affects this result. For instance, it can provide the interaction
of the ions with the velocity slightly smaller than v4. This is of importance when the
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injection velocity, v,, is less than v,4, so that the injected ions cannot interact with
the waves through the resonance |v||| = v in the local approximation, but the drive
through the resonance |v)| = v4/3 is weak. This explains an LHD experiment where
the finite width of the mode provided the resonance |v)| ~ v4 for the even mode but
not for the odd mode (see [6] and references therein). As a result, the growth rate
of the even-mode instability (Yeven) well exceeded that of the odd-mode instability
('Yodd): 'chcn/’YOdd ~ 10, ’chcn/w ~ 20084 (0)’ with 3, the beam beta.

It follows from equation (4) that the presence of the non-axisymmetric harmonics
in the magnetic field (v # 0) leads to additional resonances (see [6] and references
therein).

Now we take into account the particle orbit width, A, [in which case r =
T4+ Apcos?, ¥ = Jg + wyt — (€;/e)Ap(sind — sindy), ¢ = @o + wyet], where

€ = —65310) > 0 is the toroidal harmonic, €; = de;/dr. Then we can write

Enalr(@)] =) Emaa(@)e, e =% " J,(¢)e'”, (5)
l q

with ¢ = (m + [ + pu)Ape,/e;. This leads to the resonance
wRy = [kIIRO+(:u+l_(J)L—TL—VN]fUﬁes. (©)

Equation (6) shows that the finite orbit width leads to new resonant velocities, which,
however, weakly contribute to the energy exchange when ( > 1, i.e., when the orbit
width well exceeds the mode width.

A theory taking into account effects of finite Ay in stellarators was developed in
Ref. [10]. It was also applied to an experiment on Wendelstein 7-AS (the shot #34723),
where the Alfvénic activity had a bursting character, being strongest at the end of each
burst and characterized by frequency chirping down (from ~ 65 kHz to ~ 45 kHz). A
detailed study explained this [10, 11]. It was found that finite orbit width triggers a
weak instability (by providing the resonance interaction at the frequency ~ 65 kHz),
which was identified as Non-conventional Global Alfvén Eigenmode (NGAE), i.e., the
mode with a frequency above the Alfvén continuum (in contrast to the well-known
GAE modes with the frequency below the continuum). In addition, it was concluded
that the finite orbit width weakens the strong instability at the end of the instability
burst by reducing the wave-particle energy exchange due to ¢ > 1.

2.2. Poloidal structure of the high-frequency Alfvén modes

The Alfvén continuum (AC) in stellarators in the high frequency range [in the range
of the helicity-induced gaps (i # 0, = 1) and the mirror-induced gap (= 0,v = 1)]
is compressed by wide gaps into extremely thin threads, as shown for a W7-AS shot
in figure 1. Let us consider eigenmodes in this part of the frequency spectrum.

Applying the ballooning formalism described in [12] to the Alfvén wave equation
[13], we obtain the following equation, which determines the scalar potential of the
electromagnetic field of the eigenmode (®) along a field line:

d d® D
— (D— )+ Q> —® =
dso( d@) hy N @
where

D =hy" +2(p — )5y’ + (o — or)*8°°hYY, (8)
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Figure 1. High frequency part of Alfvén continuum calculated with the code
COBRA [13] in W7-AS shot No. 56936. Notations: dots, the AC at certain
radial points; solid lines, boundaries of some gaps. The gaps are labelled by the
corresponding coupling numbers (u,v).

Q = wRo/(va), (..) = $dddep(...)/(dn?), hp = B/(B), hy¥ = g*¥/(g""),
he? = g7 /{gl”), and BYY = g¥?/((g*¥)(g!]"))"/? are normalized metric tensor
components, g} = ¢"? — (b)%; ¢ with 4,7 = 9,9, are the components of the
contravariant metric tensor; b¥ denotes the corresponding contravariant component
of b = B/B, prime means differentiation in v, ¢y is a standard parameter of the
ballooning formalism, which characterizes the transversal wave number.

We consider the frequency range of two adjacent helicity-induced gaps with the
numbers (i, 1) and (p+1, 1) and assume for simplicity that each of the dimensionless
coefficients h;f”", hgﬂ, h;"ﬁ, and hp includes only the corresponding two harmonics
proportional to exp(iud — iNy) and exp[i(p + 1) — iN¢g]. The substitution ® =
D~1/2¢ transforms equation (7) into a Schrodinger-type equation:

S
d% +Q2U () =0, (9)
with the potential U schematically shown in figure 2 for the case of N > 1. The
potential possesses three characteristic scales in ¢. The smallest one, Ay ~ 27 /N, is
approximately the period of each harmonic. The second one, Ay ~ 27/, is the period
of the beatings associated with the presence of two harmonics with close periods along
the field lines. The third one, Ay ~ 2/(:§), is the characteristic scale that usually
appears in the ballooning theory. Averaging over the fast oscillations shows that the
eigenmodes of equation (9) are localized in the “pockets” of the envelope, which are
the places where the net amplitude of the two harmonics is minimum. For instance,
the Helicity-induced Alfvén Eigenmodes (HAEs) produced by the Fourier harmonics
with (p,v) = (2,1) and (3,1) are typically localized at the inner circumference of
the torus, which is determined by the signs of the corresponding harmonics of the



Magnetohydrodynamic activity and energetic ions in fusion plasmas b)

Figure 2. Sketch of the potential U in equation (9) and the bounded states.
Thin curve, U; bold curves, the envelopes of U; horizontal lines, the frequencies
[® = (2/N)(Ro/va)w] and the localizations of eigenmodes.

configuration (in general, other localizations are also possible, see [14]).

Note that the nature of this “anti-ballooning” structure of the considered HAEs
differs from the nature of the anti-ballooning structure of the odd TAE. The latter
results from approximate vanishing of the sum of two principal harmonics of the mode
at ¥ = 0. In contrast to this, the considered HAEs are poloidally inhomogeneous
because they are evanescent near the outer circumference of the torus. This implies
that the mode consists of many Fourier harmonics (much more than two) and it is
much stronger localized poloidally. This conclusion can be relevant also to the mirror-
induced Alfvén eigenmodes (MAE).

The presented results may explain an experimental observation of poloidally
inhomogeneous Alfvénic activity in W7-AS. In this experiment, the intensity of some
spectral lines in the range of 200 — 400 kHz (which corresponded to HAE frequencies)
was much higher on the Mirnov coils located at the inner circumference of the torus
than on the coils at the outer circumference (see [14]).

3. Interchange and infernal fishbone modes

In the case of the conventional m = n = 1 fishbone instability associated with trapped
particles [2], there are two radial points of local Alfvén resonance, r&) and 7'&35) Both
these points are located close to the ¢ = 1 radius, 7'52 =r,— A and 7‘52 =rs+ A,
with A <« 7, and 7, is defined by ¢(rs) = m/n. The small magnitude of A is
explained by the fact that w/wac(r = 0) < 1, where wac(r) = [¢(r) — Hva(r)/Ro is
the Alfvén continuum frequency. This implies that the finite frequency of the EPM
mode, w ~ wh, with wl, the precession frequency of the trapped particles, affects
the structure of MHD perturbations with w = 0, i.e., the internal kink mode, only in
the region where the mode amplitude is rapidly decreasing. However, when B is low,
and/or ¢ is close to unity inside the ¢ = 1 radius, the ratio w/wac(0) is not small
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Figure 3. Radial structure of a fishbone mode (&, is the radial plasma
displacement) in the NSTX spherical torus for Ba(r) = Bo(l — r2/a?)2, By =
8.82 x 1073, The calculated mode frequency is w/th = 0.485, which corresponds
to w/wac(0) = 0.998, and the growth rate is v/wt, = 0.01. The parameters used
are: A = 1.27, rs/a = 0.87, ¢ = 0.8 for r < r¢, and ¢ = 0.8 + [L.9(r — rc)/rc]t0
for r > r. with r. = 0.6a, a = 67 cm.

because w/wac(0) oc wh /wac(0) o< (19 — 1)"1B~2, with 1o = «(r = 0). Because of

this, r§§2 is shifted to the right, where the mode amplitude is much smaller than that

at r = 0, whereas the resonance point 7"5(2 may disappear. In this case, the structure

of the ideal MHD perturbations with w = 0 is again not essentially affected by the
energetic ions, but this structure has nothing to do with the rigid kink displacement,
see figure 3 [15]. This result is not surprising: it is known that the eigenfunction of the
m = n = 1 MHD mode at small shear has convective, cellular character, in contrast
to the rigid kink displacement in the finite shear case [16]. We refer to the mode with
the structure similar to that shown in figure 3 as the “interchange fishbone”.

The non-rigid character of perturbations in low-shear systems is especially
important when the energetic-ion population consists of circulating particles. In
this case, it provides a strong energy exchange between the energetic ions and
perturbations through the resonance w = kjv| in a wide region (rather than in the
region ry — Ay < r < rg, which is the case when the mode represents a rigid kink
displacement [17]). Moreover, due to this resonance a possible mode frequency is
w ~ ky(0)ve and, thus, w > wa(0) when v, > va, which implies that the Alfvén
resonance points are located at the periphery.

A detailed study shows that the threshold beta of the circulating energetic ions,
B8 for which this instability can arise is rather small. Typically, 85" is of the order
of several per cent in tokamaks and about 103 in spherical tori.

The resonance w = kv can lead also to EPM fishbones with m # 1, n # 1 in
low-shear core plasmas [18]. We refer to this instability as “infernal fishbones”, taking
into account that MHD modes in plasmas with shearless core are called “infernal” [19].
These fishbones are actually an EPM Alfvén instability with the frequency below that
of TAE modes. They differ from another mode in the Alfvén continuum region,
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Figure 4. Dependence of the growth rate of the quasi-interchange mode on
the central safety factor go (Ag = 1 — go) without fast ions (thick solid line)
and in the presence of these ions with 34 (0) = 1% and 5%. Dashed/dash-dotted
lines correspond to co/counter-injected ions. The following parameters were used:
a/Ro=0.3,80 =0.1,l1 =2,l2 = 4,94 = 4,70/a = 0.5, v /(awp) = 0.05 with wp
the ion gyrofrequency.

GAE, whose frequency is determined by the bulk plasma and lies below the Alfvén
continuum branch corresponding to a dominant Fourier harmonic of the mode (the
GAE frequency intersects the Alfvén continuum of satellite harmonics only).

The considered instabilities involve most energetic ions, &€ < &,, with &,
the injection energy. Therefore, they may be responsible for strong drops of the
neutron emission observed in NSTX during fishbones with multiple mode numbers,
n =1-+4 [20]. In this experiment, the modes with higher n had higher frequencies,
which agrees with the theory prediction, w ~ n(tg — 1)va/Ro for n = m.

4. Stabilization of sawteeth in low-shear core tokamaks by circulating
energetic ions

Like in Sec. 3, here we consider an axisymmetric configuration with shearless plasma

core and strong shear at the periphery but, in contrast to Sec. 3, here we are interested

in perturbations with vanishing frequency. We use the energy functional, &, given by
R

2
B _ v 1 3. £)2
5E = @[5WMHD+5Wf+5Wk(w—O)]+w?4 27r2R_/d rl€|°, (10)

where 6Wys g p is the ideal MHD potential energy [21] extended to include the effect of
the fast ions on the Shafranov shift, §W; and §Wj, are the fluid response of energetic
ions and their kinetic response, respectively, the last term represents the kinetic energy,
wa =va/Rp, & the plasma displacement, and v = Im w.

We assume that 3(r) = 8mp/B? = 3 (1—7"2/c12)l17 Ba(r) = 87ps/B? =
Bao (1 —T2/a2)l27 ly > 1y, and ¢(r) = qo for 0 < 7 < 7o, q(r) = qo — (o — qo) (7 —
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10)%/(a —1g)? for rog < r < a, a is the plasma radius. With these assumptions, the
Euler equations for the energy functional were solved numerically, neglecting 6Wj
[0Wi(w = 0) is small in the shearless case]. The results are shown in Fig. 4. We
observe that the fast ions produce a stabilizing effect in the case of co-injection and
balanced injection, the effect being sufficiently strong when gq is not too close to unity.
The stabilization (destabilization) by co- (counter-) injected ions is due to the fact that
the radial displacement, &,.(r), of the dominant m = 1 harmonic is a monotonically
decreasing function (in contrast to the internal kink mode): the co- (counter-) injected
ions with their orbits shifted outward (inward) “feel” smaller (larger) perturbation
when passing through the region with unfavourable curvature.

5. Summary and conclusions

We revealed that the high-frequency Alfvén eigenmodes (HAEs and MAEs) in
stellarators can be localized at the inner circumference of the torus and showed that
the finite orbit width of fast ions can lead to additional resonant velocities playing an
important role in a W7-AS experiment. We predicted the existence of new fishbone
modes of the EPM type and found the stabilizing influence of the beam ions on
sawtooth instability in axisymmetric devices with shearless core and strong shear at
the periphery in the cases of co-injection and balanced injection.
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