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We study the momentum and frequency dependence of the dynamical spin susceptibility in the
superconducting state of bilayer cuprate superconductors. We show that there exists a resonance
mode in the odd as well as the even channel of the spin susceptibility, with the even mode being
located at higher energies than the odd mode. We demonstrate that this energy splitting between the
two modes arises not only from a difference in the interaction, but also from a difference in the free-
fermion susceptibilities of the even and odd channels. Moreover, we show that the even resonance
mode disperses downwards at deviations from Q = (π, π). In addition, we demonstrate that there
exists a second branch of the even resonance, similar to the recently observed second branch (the
Q∗-mode) of the odd resonance. Finally, we identify the origin of the qualitatively different doping
dependence of the even and odd resonance. Our results suggest further experimental test that may
finally resolve the long-standing question regarding the origin of the resonance peak.
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I. INTRODUCTION

Magnetic excitations in the high-temperature super-
conductors are of fundamental interest. While it is cur-
rently still a topic of intense debate whether a contin-
uum of magnetic excitations is responsible for the oc-
currence of superconductivity in the cuprates, the feed-
back effect of dx2−y2 -wave superconductivity on the mag-
netic excitation spectrum has been well established in the
context of the “resonance peak”. This peak has been
observed by inelastic neutron scattering (INS) experi-
ments in three different families of the high-temperature
superconductors1–4. The doping dependence of the peak
frequency, Ωres(Q), the downward dispersion of the res-
onance, which tracks the momentum dependence of the
particle-hole continuum, and the emergence of a second
resonance branch further away from Q are at least quali-
tatively consistent with the idea that the resonance peak
is a particle-hole bound state (i.e. a spin exciton) be-
low the particle-hole continuum. According to theory5,
this excitonic resonance is a fundamental property of a
dx2−y2 superconductor. (For a review of other theoretical
scenarios, see Refs.6–8).

Recent INS experiments in overdoped YBa2Cu3O6+x

(YBCO) revealed the formation of two resonance modes
that differ by their symmetry with respect to the ex-
change of adjacent copper oxide layers9,10. The original
resonance mode observed in the bilayer cuprate possesses
an odd (o) symmetry while the new one exhibits an even
(e) symmetry. The frequency of the even mode is larger
while its intensity is smaller than that of the odd mode.
Moreover, while the doping dependence of the odd mode
is non-monotonic and roughly follows Ωo

res ∼ 5kBTc
11,

the frequency of the even mode increases monotonically

with decreasing doping12,13. Furthermore, a similar be-
havior has been found recently in Bi2Sr2CaCu2O8+δ,
Refs. 13,14, indicating universal features of the spin re-
sponse of superconducting cuprates.

The spin susceptibility in bilayered cuprates have been
analyzed theoretically in the past within the random
phase approximation (RPA)15–18 and the splitting in
energy between odd and even resonances has been at-
tributed to the difference in the strength of the residual
interaction leading to the bound state15–17. The larger
the interaction, the more the resonance is shifted down-
wards from the lower edge of the particle-hole (ph) con-
tinuum. Such a difference in the interaction can easily
be obtained from the t−J model, where the interactions
in the even and odd spin channels are given by

Jo,e(q) = J‖(q)± J⊥ (1)

with J‖, J⊥ > 0 being the in-plane and out-of-plane ex-
change interaction, respectively. Thus Jo > Je, and the
odd resonance occurs at a lower energy than the even
one. Moreover, since the even mode lies closer to the ph
continuum its intensity is lower than that of the odd one.
These two theoretical results15–17 are in good agreement
with the experimental observations9,10,12,13.

In this article, we address three issues which have not
yet been considered in earlier studies on the spin reso-
nance in bilayer systems. First, we argue that the dif-
ference between the even and odd modes comes from
two factors. One is the difference in the interaction,
which was taken into account in earlier studies, another
is the difference in the free-fermion susceptibilities of the
even and odd channels which has been neglected. We
show that the two factors are generally comparable to
each other and depend on the same combination of pa-
rameters. Numerically, the difference in the interactions
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leads to a larger splitting between the even and odd reso-
nances than the difference between the even and odd free-
fermion susceptibilities. Second, we extend our previous
analysis of the odd resonance’s dispersion19 to the even
channel, and show that the even resonance mode also
disperses downwards at deviations from Q. Moreover,
we show that the downward dispersion of the even mode
is more parabolic than that of the odd channel. Third,
we demonstrate that there exists a second branch of the
even resonance, similar to the recently observed second
branch (the Q∗-mode19) of the odd resonance,20,21. We
show, following the approach of Ref.19, that in the even
channel, this second branch is much narrower in energy
than in the odd one. These results suggest further exper-
imental test that may finally resolve the long-standing
question regarding the origin of the resonance peak.

Finally, we analyze the doping dependence of the even
and odd resonances. In the overdoped region, both
modes decrease due to a decreasing superconducting gap.
In the opposite limit of zero doping even and odd res-
onances very likely evolve into the acoustic and opti-
cal spin wave modes of the bilayer Heisenberg antifer-
romagnet. We show, however, that, while plausible, the
crossover from one regime to the other cannot be ob-
tained within a simple RPA scheme chiefly because of the
incorrect doping dependence of the free-fermion suscep-
tibilities: the real part of both, the even and odd suscep-
tibility decreases with decreasing doping at half-filling22.
This behavior is a direct consequence of the fact that the
even susceptibility diverges at the van-Hove singularity,
and the odd susceptibility possesses a maximum near the
van-Hove point.

The rest of the paper is organized as follows. In Sec. II
we introduce our theoretical model and discuss the origin
of the splitting between the even and odd resonance at
Q = (π, π). In Sec. III we present the dispersion of the
two resonances away from Q and show that a Q∗-mode
also arises in the even channel. In Sec. IV we discuss the
doping dependence of the resonances. Finally, in Sec. V
we summarize our results and conclusions.

II. EVEN AND ODD RESONANCES AT
Q = (π, π)

The coupling between two CuO2-planes in a unit cell
of YBCO is described by the interlayer hopping matrix
element t⊥(k) = 1

4 t⊥ (cos kx − cos ky)2, Ref. 23. This
coupling leads to the formation of bonding (b) and an-
tibonding (a) energy bands whose dispersion are given
by

εa,b
k = −2t (cos kx + cos ky) + 4t′ cos kx cos ky

±1
4
t⊥ (cos kx − cos ky)2 − µ , (2)

with t = 250meV, t′/t = 0.4, t⊥/t = 0.2, and µ being the
chemical potential (these parameters provide a good fit
to the Fermi surface of the bilayered Bi2Sr2CaCu2O8+δ

(BSCCO)24). The resulting Fermi surfaces for the bond-
ing and antibonding bands are shown in Fig. 1.

The bonding and antibonding creation and annihila-
tion operators are related to the fermionic operators, c1,2

in the two layers via

ca =
c1 + c2√

2
, cb =

c1 − c2√
2

, (3)

It is also convenient to introduce even and odd compo-
nents of the spins at site i, which are given by

Se(i) =
S1(i) + S2(i)

2

=
1
2

(
c†a,α(i)σα,βca,β(i) + c†b,α(i)σα,βcb,β(i)

)
,

So(i) =
S1(i)− S2(i)

2

=
1
2

(
c†a,α(i)σα,βcb,β(i) + c†b,α(i)σα,βca,β(i)

)
.

(4)

The experimentally measured susceptibility is related to
the even and odd susceptibilities, χe =< SeSe > and
χo =< SoSo > via25

χ(q, ω) = χe(q, ω) cos2
qzd

2
+ χo(q, ω) sin2 qzd

2
, (5)

where d is the separation between the layers. For non-
interacting electrons, the susceptibilities in the even and
odd channels are given by χe

0 = χaa
0 + χbb

0 and χo
0 =

FIG. 1: (color online) Calculated Fermi surface(FS) for
the bilayered cuprates as obtained from Eq.(2). The ar-
rows indicates the transition between bonding-bonding (bb),
antibonding-antibonding (aa) and antibonding-bonding (ab,
ba) states for antiferromagnetic wave vector Q= (π, π).
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χab
0 + χba

0 , respectively, where χaa
0 and χbb

0 represent in-
traband particle-hole excitations, and χab

0 and χba
0 rep-

resent interband excitations. The free-fermion suscepti-

bilities in the superconducting state at T = 0 are given
by5,26

χij
0 (q, ω) =

1
4

∑

k

(
1− εi

kεj
k+q + ∆i

k∆j
k+q

Ei
kEj

k+q

)(
1

ω + Ej
k+q + Ei

k + iΓ
− 1

ω − Ej
k+q −Ei

k + iΓ

)
, (6)

with i, j = a, b, Ei
k =

√(
εi
k

)2 +
(
∆i

k

)2, and ∆i
k is the

superconducting gap in the bonding (i = b) and anti-
bonding (i = a) band. In the following we assume that
the pairing part of the Hamiltonian is symmetric with
respect to the bilayers and given by

Hpp =
∑

k

∆(k)
(
c†1,↑(k)c†1,↓(−k) + c†2,↑(k)c†2,↓(−k)

+h.c.)

=
∑

k

∆(k)
(
c†a,↑(k)c†a,↓(−k) + c†b,↑(k)c†b,↓(−k)

+h.c.) , (7)

where ∆(k) = ∆0
2 (cos kx − cos ky). It then follows that

the pairing gap is the same for bonding and antibonding
bands, implying ∆a

k = ∆b
k = ∆k. However, the respec-

tive Fermi surfaces in both bands are located at different
momenta k in the Brillouin zone. In order to obtain the
full χe,o, we use the random-phase approximation (RPA).
Within RPA the even and odd parts of the full spin sus-
ceptibility are given by

χα
RPA(q, ω) =

χα
0 (q, ω)

1− gα(q)χα
0 (q, ω)/2

, (8)

where α = o, e and ge,o(q) are the fermionic interac-
tion vertices in the even and odd channels. To repro-
duce the experimentally measured frequency splitting be-
tween both resonances at Q, and the dispersion of the two
modes (see below), we use

go,e(q) = g0 {1− 0.1 [cos(qx) + cos(qy)]} ± 0.027g0. (9)

According to Eq.(1), the first (second) term on the r.h.s.
of the above equation can be interpreted as arising from
the in-plane (out-of-plane) exchange interaction J‖(q)
(J⊥). Here we use g0 = 0.55 meV in accordance with
our previous study19.

We first consider the spin susceptibility at momenta
close to Q = (π, π). The dominant contribution to
the susceptibilities comes from fermions near the hot
spots, where both k and k + Q are close to the Fermi
surface. In a dx2−y2 -wave superconductor with the
above ∆(k) one has ∆(k + Q) = −∆(k). As a con-
sequence, Imχe,o

0 exhibits discontinuities due the open-
ing of the superconducting gap27. For the odd sus-

ceptibility, Imχab
0 and Imχba

0 exhibit a single disconti-
nuity at Ωab

c (Q) = |∆a
k| + |∆b

k+Q|, where k is chosen
such that εa(k) = εb(k + Q) = 0 (see Fig.1). Be-
low this frequency, Imχab

0 = 0 (at T = 0). At the
same time, Imχe

0 possesses two discontinuities located at
Ωaa

c (Q) = |∆a
k| + |∆a

k+Q| and Ωbb
c (Q) = |∆b

k| + |∆b
k+Q|,

where k is again chosen such that both fermions are at
the Fermi surface (see Fig. 1). Imχe

0 is zero below the
lower discontinuity, and jumps between two finite values
at the higher discontinuity. Analyzing Eq. (6), we find
Ωbb

c (Q) < Ωab
c (Q) < Ωaa

c (Q).
Hence, in the even and odd channel, the susceptibility

at low frequencies is purely real and, according to Eq.(6),
one finds that the bare χα

0 (Q, ω) (α = a, b) behaves as

χα
0 (Q, ω) = χα

0 (Q, 0)−Aαf(ω/Ωij) , (10)

where Aα > 0, and f(x) ∝ x2 at small x, and f(x) ∼
| log(1−x)| near x = 1. Substituting this result in Eq.(8),
one finds that since f(x) changes between 0 and ∞ when
x changes between 0 and 1, the susceptibilities in both
the odd and even channel develop resonances below the
thresholds of the particle-hole continuum, at frequencies
Ωe,o where 1 = ge,o(Q)χe,o

0 (Q, Ωe,o)/2.
As we said above, there are two reasons why the res-

onances in the even and odd channels occur at different
frequencies. One is that the even and odd free-fermion
susceptibilities, χe,o

0 (Q, ω) are different, another one is
that the interactions are different in the even and odd
channels. Below we consider these two effects separately.

The difference in χe,o
0 (Q, ω) arises predominantly from

the fact that the (dimensionless) magnetic correlation
length ξ−2

e,o = 1 − ge,o(Q)χe,o
0 (Q, 0)/2 is different in the

two channels already in the normal state. Additional
differences between χe,o

0 (Q, 0) which arise in the super-
conducting state scale as ∆0/EF , are small and can be
neglected. Assuming that the relative difference between
the even and the odd resonances is small, and that the
resonance frequencies are sufficiently low, such that f(x)
in Eq.(10) scales as x2, we find that at the antiferromag-
netic momentum Q

Ωe − Ωo

Ωo
=

ξ−1
e − ξ−1

o

ξ−1
o

, (11)

The r.h.s. of the above equation is in turn related to the
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difference in the normal state static χ via

ξ−1
e − ξ−1

o

ξ−1
o

≈ g0(Q)
2

ξ2
o×

[
χab

0 (Q, 0) + χba
0 (Q, 0)− χaa

0 (Q, 0)− χbb
0 (Q, 0)

]
.(12)

The dominant contributions to the r.h.s. of Eq.(12) come
from fermions in hot regions near (0, π) and (π, 0), for
which the term proportional to t⊥ in the dispersion,
Eq.(2), reduces to ±t⊥. Expanding the r.h.s. of Eq.(12)
to leading order in t⊥, we obtain

ξ−1
e − ξ−1

o

ξ−1
o

≈ t2⊥
g0ξ

2
o

2π3

∫
dωd2k

(εk − iω)2(εk+q − iω)2
,

(13)
where εk is the in-plane dispersion (i.e., Eq.(2) with t⊥ =
0). Linearizing εk and εk+Q in the hot regions as vF (kx+
ky)/

√
2 and vF (kx − ky)/

√
2, respectively, substituting

this expansion into the susceptibilities, and performing
the integration, we obtain

ξ−1
e − ξ−1

o

ξ−1
o

≈ t2⊥
8g0ξ

2
o

π2v3
F kmax

, (14)

where kmax ∼ kF is the upper limit of the integration
over momentum and kF = 0.4

√
2π. Observe that the

r.h.s. of Eq.(14) is positive, implying that the resonance
in the even channel occurs at a larger frequency than the
resonance in the odd channel. To estimate the strength
of the effect, we use vF kF ∼ 1eV ∼ 4t, g0 ∼ 0.5eV,
and define J⊥ = 4t2⊥/U , J = 4t2/U with U being the
initial unrenormalized Coulomb potential for the single-
band Hubbard model28. We then have

ξ−1
e − ξ−1

o

ξ−1
o

∼ 0.1ξ2
o

J⊥
J

. (15)

The second source for the difference between Ωe and
Ωo is the difference in the interaction strength between
the two channels. As mentioned above, within the t− J
model, the two interactions are given by Jo,e = J‖(q) ±
J⊥. At q = Q, this effect alone leads to

ξ−1
e − ξ−1

o

ξ−1
o

∼ J⊥
J

. (16)

We see that both effects described by Eqs.(15) and (16)
are in fact of the same order, and both lead to a larger Ωe

compared to Ωo. Moreover, the effect of the t⊥ depen-
dence of the interaction is larger, at least near optimal
doping, where ξo ∼ 1. However, with decreasing doping,
and hence increasing ξo, the role of the difference in the
even and odd free-fermion susceptibilities may become
more dominant.

In Fig. 2, we present the results for the bare and full
susceptibilities at optimal doping (δ = 0.15 per CuO2-
plane, corresponding to µ = −1.195t) obtained from a
numerical evaluation of Eqs.(6) and (8). We see that
Reχ0 in the even and odd channels are almost identical
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FIG. 2: (color online) (a) Imχe,o
0 , (b) Reχe,o

0 and (c) Imχe,o
RPA

as a function of frequency at the antiferromagnetic wave
vector Q = (π, π) at the optimal doping. Here, we use
g0 = 0.55eV.

below 2∆0, i.e. the difference in the susceptibilities is
too small to give rise to an observable difference between
Ωe and Ωo. This agrees with our analytic treatment.
Hence, the difference between Ωe and Ωo arises from the
difference in the effective interactions ge and go.

We present the RPA susceptibilities χe,o
RPA at Q in

Fig. 2(c). We see that both even and odd susceptibil-
ities show resonance behavior. By construction, the res-
onance in the even channel occurs at a larger frequency
than the odd resonance. Accordingly, the intensity of
the even resonance is smaller, which agrees well with the
experimental observations9.

Regarding the temperature evolution of the resonance
peak, it has been found previously29 via a self-consistent
solution of the Eliashberg equations that after the res-
onance peak develops rapidly below Tc, its energy po-
sition remains unchanged with decreasing temperature.
This behavior mirrors that of the superconducting gap
obtained within strong-coupling theory, which reaches
its maximum already at temperatures slightly below Tc

and then becomes practically temperature independent,
in contrast to the BCS weak-coupling approach. If we
use a fit to the temperature dependent maximum SC
gap obtained from the Eliashberg approach, ∆0(T ) =
∆0 tanh

[
1.76

√
Tc/T − 1

]
, we find that the resonance

frequency remains practically unchanged below T ≈ 70K,
for a system with Tc = 92K.
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FIG. 3: (color online) RPA results for magnetic excitations in
a bilayered dx2−y2 superconductor at optimal doping. Calcu-
lated Imχo and Imχe obtained from Eq. (8) for g0 = 0.55eV as
a function of momentum along the diagonal [q = η(π, π)] and
bond [qx(qy = π)] direction and frequency in the SC state.

III. THE DISPERSION OF THE RESONANCE
PEAK

We next consider the dispersion of the even and the
odd resonances and present in Fig. 3 an intensity plot
of Imχe,o

RPA(q,Ω) at optimal doping as a function of fre-
quency and momentum along the diagonal q = η(π, π)
[Figs. 3(a) and (c)] and along the bond direction q =
(ηπ, π) [Figs. 3 (b) and (d)]. The momentum depen-
dence of the odd mode’s frequency and intensity, shown
in Figs. 3(a) and (c), is quite similar to that of the res-
onance mode in the single-layer model19. In particu-
lar, away from Q three discontinuities in Imχo

0 emerge,
corresponding to scattering channels with momenta q,
(2π, 0) − q, and (2π, 2π) − q. The first momentum cor-
responds to a direct transition, while the last two mo-
menta describe scattering processes involving Umklapp
scattering19. As discussed before, the resonance can oc-
cur only at frequencies below the lowest discontinuity in
Imχo

0
5,19. Since the superconducting gap decreases to-

wards the diagonal of the Brillouin Zone (BZ), the reso-
nance dispersion follows the momentum dependence of
the ph continuum, forming a parabolic-like shape5,19.
Upon reaching Q0 ≈ (0.8, 0.8)π corresponding to the
wave vector connecting the nodal points of the supercon-
ducting gap on the Fermi surface, the spin gap vanishes,
and no resonance is possible. For even smaller q one finds
that another resonance branch emerges, the so called Q∗
mode, arising from an umklapp transition19.

In contrast, the even part of the spin susceptibility ex-
hibits six discontinuities in Imχe

0 away from Q = (π, π).

Intraband scattering within the bonding and antibond-
ing bands each gives rise to three of these discontinuities.
Similarly to the odd susceptibility, we find that a gen-
uine resonance occurs only below the lowest discontinu-
ity in Imχbb

0 due to the direct transition with momentum
q. This transition is again responsible for the parabolic-
like shape of the even mode’s dispersion, as shown in
Figs. 3(b) and (d). However, we find that the intensity
of the even resonance falls off much faster as one moves
away from Q than that of the odd one. Since the super-
conducting gap and the splitting of the Fermi surfaces
is zero along the diagonal of the BZ, the position of the
so-called “silent band” is the same for the odd and for
the even channel. Thus, both resonances merge together
at Q0 ≈ (0.8, 0.8)π (see also Fig. 4(c)). Similar to the
resonance in the odd channel, we find that for momenta
smaller than Q0, an umklapp transition leads to the for-
mation of a Q∗ mode in the even channel. However, its
energy range is much smaller than that of the odd Q∗

mode due to the proximity to the ph continuum.
As previously discussed19 and also visible by compar-

ing Figs. 3 (a) and (c) for the odd mode, and Figs. 3
(b) and (d) for the even mode, the Q and Q* modes
are not only separated in frequency, but their intensity
maxima are also located in different parts of the zone;
this represents a major qualitative distinction between
the two modes. For the odd as well as the even resonance
mode we find that while the intensity of the Q mode (i.e.,
the mode originating at Q) is largest along q = (π, ηπ)
and q = (ηπ, π), the Q∗ mode has its largest intensity
along the diagonal direction, i.e., along q = η(π, π) and
q = [(2− η)π, ηπ]. This rotation of the intensity pattern
by 45◦ reflects the qualitative difference in the origin of
the two modes19. The intensity of the Q mode is at a
maximum along q = (π, ηπ) and q = (ηπ, π), since in
this case the fermions that are scattered by q are located
farther from the nodes than for diagonal scattering. In
contrast, the Q* mode arises from the rapid opening of
a gap in the p-h continuum below Q0, which is most
pronounced along the diagonal directions of the zone.

IV. DOPING DEPENDENCE OF THE EVEN
AND ODD RESONANCES

Next, we consider the doping dependence of the res-
onance modes in the odd and even channels. In order
to describe the doping dependence, it is necessary to
know that of the superconducting gap as well as that
of go,e(q). The doping dependence of the superconduct-
ing gap, which is shown in Fig. 4(b), is taken from recent
ARPES experiments30 which suggest that the supercon-
ducting gap increases by about 10÷ 20% going from the
optimally doped to the underdoped cuprates. In order to
describe the doping dependence of go,e(q), we leave the
momentum dependence of go,e(q) unchanged, and only
change the overall prefactor, g0, in Eq.(9), as a function
of doping, by fitting the frequency of the resonance in
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FIG. 4: (color online) (a) Doping dependence of (a) the res-
onance frequency at Q in the odd and even channel, and (b)
the superconducting gap ∆0 and g0. (c)-(f) Dispersion of the
even and odd modes for various doping concentrations in the
(c) underdoped, (d) optimally doped, and (e) and (f) over-
doped regime.

the odd channel. The doping dependence of g0 is also
shown in Fig. 4(b). We find that this procedure provides
a satisfactory fit to the experimentally measured disper-
sion of both resonance modes over a considerable range
of doping.

In Fig. 4(a) we present the doping dependence of the
resonance in the even and odd channels at Q = (π, π). As
expected from the discussions above, we find that with in-
creasing doping, the energy splitting between both modes
decreases, and for δ = 0.21 is only about ∆ωres ≈ 1
meV at Q, while for δ = 0.15 one has ∆ωres ≈ 12 meV.
This decrease in the splitting is observed over the entire
dispersion of the resonance modes in the even and odd
channels, which we present in Figs. 4(c)-(f) for several
different doping levels. In addition, we find that the dis-
persion of the even mode exhibits a continuous downshift
with increasing doping, while that of the odd mode first
shifts upwards with increasing doping in the underdoped
systems, but shift downwards in the overdoped regime.
In order to understand this qualitative difference between
the underdoped and overdoped region, we note that in
general, the doping dependence of the resonance modes
is determined by that of the superconducting gap (which
in turn determines that of the ph continuum) as well as
that of go,e(q). While a decrease of the superconducting
gap, and hence a downward shift in frequency of the ph
continuum leads to a downward shift of the resonances, a
decrease of go,e(q), in contrast, leads to an upward shift
of the modes’ dispersion.

Since the dispersion of the even resonance is located
in frequency close to the ph continuum, and Reχe

0 varies
strongly in the vicinity of the ph continuum due to its
logarithmic singularity, it follows that the dispersion of

the even resonance is rather insensitive to changes in
ge(q). As a result, the doping dependence of the even
resonance is predominantly determined by that of the
ph continuum, exhibiting a continuous downward shift
in energy with increasing doping. In contrast, in the un-
derdoped regime, the energy difference between the ph
continuum and the odd mode’s dispersion is rather large,
and Reχo

0 varies only weakly around the resonance fre-
quency. As a result, the resonance frequency is very sen-
sitive to changes in go(q). Therefore, it is the decrease
in go(q) with increasing doping (and not the decrease
in the superconducting gap) that determines the dop-
ing dependence of the odd mode’s dispersion and leads
to its upward shift in energy in the underdoped regime.
Around optimal doping, the odd mode’s dispersion has
become sufficiently close to the ph continuum, that the
mode’s further doping dependence is now determined by
that of the ph continuum, and not any longer by that of
go(q), similar to the case of the even mode. Hence, the
two opposite effects arising from a decrease of the super-
conducting gap and that of go(q) lead to the qualitatively
different doping dependence of the odd mode’s dispersion
in the underdoped and overdoped regime. Note that with
increasing doping, and the resulting downward shift of
the ph continuum, the momentum range over which the
Q∗-mode can be observed, decreases.

Defining the momentum the lowest energy spin reso-
nance along the bond (antinodal) direction as qmin =
(1 ± δ0, 1)π, we find within our approach that δ0 (and
hence qmin) increases linearly from δ0 = 0.31 at 11%
doping to δ0 = 0.44 at 21% doping which is simply a
result of the doping-dependent changes in the Fermi sur-
face. At the same time, INS experiments reported that
the incommensurability, δ0, increases linearly at low dop-
ing and saturates at higher doping concentrations (see
Fig. 24 in Ref. 2). At present, this saturation cannot
be explained within the spin exciton scenario. We note,
however, that the intensity of spin resonance decreases
(a) as one moves away from Q = (π, π) along the bond
direction, and (b) with increasing doping. As a result,
it becomes experimentally increasingly difficult to deter-
mine qmin with increasing doping. As the dispersion of
the resonance is also rather steep in the vicinity of qmin,
an exact experimental determination of qmin also requires
fixed energy scans with small energy intervals between
them. Hence, we believe that higher resolution INS ex-
periments are required in order to determine the precise
doping dependence of qmin.

Finally, we briefly discuss the doping dependence of
χe,o(Q, ω = 0). If indeed, the suggested above, the odd
and even resonance are transformed into the acoustic and
optical branches of the spin wave dispersion in the anti-
ferromagnetically ordered phase, one would expect that
χo

0(Q, ω = 0) increases with decreasing doping. As a re-
sult, one would see a downward shift in the odd mode’s
dispersion even for a doping independent g0. One finds,
however, that the doping dependence of χo

0(Q, 0), which
is obtained from Eq.(6) by simply changing the chemi-
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cal potential, µ, defies this expectation. This is shown
in Fig.5, where we present the doping dependence of
χo,e

0 (Q, 0). Note that the even susceptibility possesses
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FIG. 5: (color online) Reχe,o
0 (Q, 0) as a function of doping

concentration in the normal state.

two logarithmic divergences as a function of doping which
occur when either the bonding or antibonding Fermi
surfaces touches the van Hove (vH) points (±π, 0) and
(0,±π) and undergo a topological transition from a hole-
like to and electron-like Fermi surface indicating an insta-
bility towards a spin density wave (SDW) phase. These
transitions occur at a doping level of x ≈ 0.23 for the
antibonding band and at x ≈ 0.55 for the bonding band
(not shown). In contrast, the odd susceptibility, which
arises from scattering transitions between the bonding
and antibonding bands does not exhibit a logarithmic
divergence, but is simply enhanced and exhibits a finite
maximum. If we define the minimum distance (in mo-
mentum space) of the bonding and antibonding Fermi
surfaces to the vH point (0, π) by ka(µ) and kb(µ), re-
spectively, then Reχo

0(Q, 0) exhibits a maximum at that
doping level for which the smaller of ka(µ) and kb(µ) pos-
sesses a maximum. Defining kmin(µ) = min[ka(µ), kb(µ)]
one finds

Reχo(Q, 0) ∼ const. +
1

2πt
arcsin

[
k2

min(µ)
t

t⊥

]
(17)

Note that for doping levels below at which the van Hove
singularity in Reχe

0(Q, 0) or the maximum in Reχo
0(Q, 0)

occurs, the susceptibilities decrease monotonically with
decreasing doping, as shown in Fig. 5. This doping
dependence clearly reflects a shortcoming of the weak-
coupling approach used above, which fails to capture the
strong correlation effects that are not only responsible for
the occurrence of antiferromagnetism, but are very likely
also the key ingredients in the explanation of the pseudo-
gap region in the underdoped cuprates. It is interesting
to note in this context that recent studies of the doping
dependence of χ0(Q, 0) for a single layer system within
the FLEX approach find that the vH singularity is elim-
inated by interaction effects, and that starting from the

overdoped region χ0(Q, 0) increases monotonically with
decreasing doping31. This shortcoming of the approach
used above is effectively compensated by a phenomeno-
logically introduced doping dependence of ge,o which in-
creases with decreasing doping. This phenomenological
approach, however, does not allows us to fully explain
the doping dependence of the resonant excitations in the
underdoped cuprates. In particular, it leaves open the
question how the downward dispersion of the resonance
mode observed in the optimally doped cuprates is trans-
formed into the upward dispersion of the acoustic spin-
wave branch.

V. SUMMARY

In this study, we have investigated the form of mag-
netic resonance excitations in the even and odd spin
channel of the bilayer cuprates in the superconducting
state. We obtain a number of new results suggesting fur-
ther experimental test that may finally resolve the long-
standing question concerning the origin of the resonance
peak. First, we show that the energy splitting between
the even and odd resonances arises not only from a differ-
ent interaction strength in both channels, but also from
a the difference in the free-fermion susceptibilities in the
even and odd channels. Both effects scale as ∼ J⊥/J
and lead to a frequency for the even resonance that is
larger than that of the odd resonance. However, at least
at optimal doping, the numerical prefactors are such that
the energy splitting is dominated by the difference in the
interaction strength and not by the difference in the free-
fermion susceptibilities. Since the latter scales with ξ2

o ,
the relative importance of these two effects might change
in the underdoped cuprates. In agreement with previous
results15–17 we also find that the intensity of the even
resonance is weaker than that of the odd resonance. Sec-
ond, we computed the dispersion of the even resonance
and showed that the even resonance also disperses down-
ward as one moves away from Q = (π, π). Moreover, we
demonstrated that the downward dispersion of the even
mode is more parabolic than that of the odd channel.
Third, we showed that there exists a second branch of
the even resonance, similar to the recently observed sec-
ond branch (the Q∗-mode19) of the odd resonance,20,21.
We find, however, that in the even channel, this second
branch is much narrower in energy than in the odd one.
Fourth, we studied the doping dependence of the both
resonance modes, and find that that of the even mode
is determined by the downward shift of the ph contin-
uum with increasing doping. In contrast, the upward
shift in frequency of the odd resonance in the under-
doped cuprates is determined by the decrease in go with
increasing doping, while in the overdoped regime, the
odd resonance follows the doping dependence of the ph
continuum. Our results demonstrate that the structure
of magnetic excitations in the superconducting state of
the bilayered cuprates is dominated by the topology of
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the Fermi surface, the interaction strength in the even
and odd channel, and the dx2−y2-wave symmetry of the
superconducting gap.

Finally, we note that the experimental situation has
recently been complicated by the report that an even
resonance exists at incommensurate wave vectors only10.
This result contradicts earlier studies which have found
that the even resonance exhibits the largest intensity at
Q = (π, π)12. The origin of this experimental discrep-
ancy is currently unclear.

The issue left for further studies is the evolution of
the dynamic spin resonance in the strongly underdoped
cuprates. To properly treat the underdoped case and the
evolution towards nonsuperconducting systems, such as
La1.875Ba0.125CuO4

32 which show a remarkable similar-
ity to the spin response of the superconducting cuprates
will require to take into account the pseudogap, the con-

tribution of the localized magnetic moments, and Mott
physics omitted in the present study. Recently, some at-
tempts have been made to discuss the evolution of the
resonance peak in the pseudogap region of underdoped
cuprates33,34. We also note in this regard that the RPA
reproduces the observed spin waves in the undoped ma-
terial only if the Mott gap is taken into account35.
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