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Abstract:  For the modelling of hot reactor-grade plasmas a way to compute local electron 

cyclotron wave losses efficiently and with good accuracy is required. Thereby the approach to 

calculating the electron cyclotron absorption coefficient is an essential element. A comparison 

of three available analytical forms (a “quasi-exact” one and the asymptotic forms due to 

Trubnikov and to Robinson) shows that, overall, the use of Robinson’s formula is the most 

suitable choice. 
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1. Introduction 

In the hot core of fusion plasmas electron cyclotron wave losses are known to be an essential 

contribution to the electron power balance and, hence, affect the electron temperature profile (see, e.g., 

Refs. [1,2]). For plasma modelling purposes it is therefore important to be able to calculate the local 

net electron cyclotron (EC) wave power loss dP(r)/dV from the plasma efficiently and with good 

accuracy. This implies solving a non-local problem, viz., one has to integrate the equation of radiative 

transfer (see, e.g., Ref. [3] and in particular Section 2.2.1) to obtain the specific intensity 
( ) ˆ( , , )I
σ ωr s  

of the ordinary (σ = O) and of the extraordinary (σ = X) radiation mode as a function of position r , 
frequency ω  and propagation direction ŝ  of the ray, to be used in the expression  

( ) ( ) ( ) ( ) ( ) ( )
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for the local net EC wave power loss as valid for plasmas in thermodynamic equilibrium [1]. In 

Eq. (1), the lower limit of the ω -integration, min
σω , accounts for the frequency cut-off of the mode σ, 

2
ˆd Ωs  denotes the element of solid angle around the ray direction ŝ , 

( ) ( )ˆ, ,
σα ωr s  is the absorption 

coefficient and 
( ) ( ) ( )( ) ( )

2
2 3 2

, /8rbbI N T c
σ σω ω π≡r r  is the blackbody intensity for the (local) electron 

temperature ( )T r  with 
( )
rN
σ
 the ray refractive index. 

 

In order to calculate dP/dV according to Eq.(1), an iterative numerical approach is required in which, 

to achieve satisfactory efficiency and accuracy, the determination of the absorption coefficient must be 

done in an appropriate way. While a numerical solution of the (quasi-exact) local dispersion relation 

[4] provides 
( )σα  with excellent precision, this method is very computer time-consuming. Using 

instead an explicit analytic expression for 
( )σα  appears therefore attractive. In Ref. [5] the accuracy of 
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a quasi-exact (QE) analytical form for 
( )σα  (obtained using Bateman’s expansion for the product of 

two Bessel functions and containing a sum over cyclotron harmonics) and of the quite compact 

asymptotic expressions given earlier by Trubnikov [6] and by Robinson [7] has been assessed. As a 

result, the QE form turned out to provide an excellent approximation to 
( )σα  but still requires 

considerable computation time; on the other hand, Trubnikov’s and Robinson’s less accurate, but 

simpler expressions, allow for a significantly shorter calculation time. Overall, it was found that 

Robinson’s asymptotic form yields a reasonable approximation to the EC wave absorption coefficient 

(significantly better than Trubnikov’s) in most of the parameter range of importance for evaluating the 

EC wave power loss in large hot fusion plasmas.  

 

In this paper a comparison of the three above forms for the absorption coefficient in view of the 

accuracy achieved and of the computer time needed when calculating the local net EC wave power 

loss dP/dV in ITER-like plasmas is presented, using in Eq. (1) the exact analytical solution of the 

equation of radiative transfer for 
( ) ˆ( , , )I
σ ωr s  valid for a system of circularly cylindrical symmetry 

with specular wall reflection properties as given in Refs. [1,8]. The numerical scheme adopted (the 

code EXACTEC) is the one devised for the analysis reported in Ref. [1]. For reference, Robinson’s 

expression for the EC absorption coefficient is reproduced in an Appendix. 

 

2. Model Comparison 

We adopt ITER-like device parameters, viz., an effective plasma minor radius aeff = 2.6 m and a 

toroidal magnetic field B = 5.3 T. Various fixed plasma conditions (temperatures, densities and radial 

profiles) have been considered. The profiles of the electron density and temperature were taken in the 

form n2
0 (1- )n n γρ=  and T T

0 (1- )T T β γρ= , respectively, with ρ = r/ aeff  the normalised radial 

coordinate; for the peak density 0n  typical values as anticipated for ITER operation, viz., 
200.7 10×  or 

201.1 10×  m
-3 
 were adopted, while the peak temperature T0 was varied between 5 and 45 keV. The 

density profile was assumed to be flat over most of the plasma radius ( n 0.1γ = ). For the temperature 

profile mainly two cases were considered: a profile flat in the core plasma with a quite steep gradient 

around ρ = 0.6 which simulates conditions as anticipated for steady-state operation using non-
inductive current drive ( T 8.0γ = , T 5.4β = ; in the following referred to as “advanced” profile) and a 

“parabola-like” profile (characterized by T 1.5γ = , T 2.0β = ). For further analysis, flat profiles of both 

temperature and density ( T 0n Tγ γ β= = = ) were also addressed. The wall reflection coefficient Rw 

was varied between 0 and 0.98 with most of the assessment done for Rw = 0.8.  

 

Figures 1 to 4  illustrate the results obtained presenting four typical cases, viz., peak electron 

temperatures of 45 and 22.5 keV both for the “advanced” and the “parabola-like” profile fixing 
20

0 0.7 10n = ×  m
-3
 and Rw = 0.8. Part (a) of each figure shows the radial dependence of the net EC 

wave power loss dP/dV as calculated using the quasi-exact (QE), Robinson (R) and Trubnikov (T) 

expressions for the absorption coefficient as well as, for the most significant hot inner plasma 

(typically for  0.6 ρ ≤  <Note to the Editor: the correct sign should be “smaller than about “>), the 

relative deviation 

( ) ( )
( )

/ /

/

A QE

QE

dP dV dP dV

dP dV

−
∆ ≡    (2) 

of dP/dV as obtained applying the Robinson (A = R) and the Trubnikov (A = T) asymptotic 

expressions from the quasi-exact value. In Part (b) the comparison (in relative terms) of the computer 

times required to calculate dP/dV at a given radial position is presented for each of the three models, 

together with the average <τ> over all iteration steps, necessary for the computation of the triple 
integral of Eq. (1) with a given accuracy at that position, of the times τ required to do the intervening 

recalculations of the values of the absorption coefficients 
( )σα  (<τ> being obtained by dividing the 

total calculation time by the total number of iterations carried out; note that, effectively, iterations are 

necessary not only for computing the triple integral as such but also to evaluate the specific intensities 
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( ) ˆ( , , )I
σ ωr s  as well as to calculate the optical distances intervening in this latter evaluation) for the 

three models.  

 

3. Discussion and Conclusions 
As a result, from Figures 1(a) to 4(a) it is seen that also for the evaluation of the profile of the net EC 

wave power loss dP/dV Robinson’s asymptotic form, in fact, yields a significantly more accurate 

result than Trubnikov’s expression. Effectively, in the hot inner plasma (where dP/dV is large) using 

Robinson’s form leads to an overestimate of dP/dV by less than 5% whereas Trubnikov’s 

approximation underestimates dP/dV by about 15%. This applies as long as the local electron 

temperature is larger than about 15 keV (that is, for all temperatures for which EC wave power losses 

may matter in the electron power balance). Therefore, if the plasma is hotter, the above quantification 

is valid for a wider radial range (e.g., for  0.6ρ ≤  <Note to the Editor: the correct sign should be 

“smaller than about”> for a peak temperature T0 of 45 keV, and for  0.4 ρ ≤  <Note to the Editor: the 

correct sign should be “smaller than about”> for T0 = 22.5 keV), independently of details of the 

temperature profile. In cooler plasmas, and specifically in the cooler outer layers, the relative 

deviation, from the QE result, of dP/dV obtained with Robinson’s form tends to increase and to 

become larger than that caused by applying Trubnikov’s approximation. It must be noted, however, 

that in absolute terms these deviations remain small and the profile of dP/dV is quite well reproduced 

using the approximate expressions also in the outer plasma. The impact of changing the plasma 

density and/or the wall reflection coefficient is negligibly small. 

 

As far as the total computer time necessary for the calculation of dP/dV at a given radial position is 

concerned, Figures 1(b) to 4(b) show that this is typically reduced by two orders of magnitude when 

using the approximate forms rather than the QE formula for the absorption coefficients. There is no 

significant difference between Robinson’s and Trubnikov’s approximation in this respect although 

there is a slight tendency of Trubnikov’s model to be faster in the hot plasma core (typically up to a 

factor of about 1.5). The radial structure of the total computation time, to a large extent (see below), is 

due to the number of iterations necessary to reach the required accuracy in calculating the integral of 

Eq. (1) for dP/dV at a given position. A more direct measure for the computer time requirements of the 

different models for the absorption coefficients is provided by the average computer time <τ> spent 
per iteration step. A striking result is that <τ> for both Robinson’s and Trubnikov’s approximation is 
independent of all local and global plasma parameters with Robinson’s form necessitating on average 

25 to 30% more time per iteration step than Trubnikov’s. If the QE expression for the absorption 

coefficients is employed, on the other hand, there is a clear dependence of <τ> on electron temperature 
T: the higher is T the longer is the average computer time per iteration step and that time exceeds the 

one using Robinson’s form by about a factor of 5 for low temperatures (in the 5 keV range) and by 

about a factor of 30 for temperatures approaching 45 keV. Also, there is a non-local effect of the 

temperature profile: the wider is the hot core of the plasma the larger is <τ> overall as seen, e.g., from 
comparing the results for the “advanced” profile with those of the parabola-like one. This tendency 

reflects the fact that for higher temperature the EC wave spectrum is broader and, hence, in the QE 

expression a larger number of harmonic contributions have to be summed up. Inversely, the plasma 

density and the wall reflection coefficient do not have a sizeable effect either in this case.  

 

In comparing the results for <τ> with those for the total computation time it is apparent that both the 
radial position and the model employed for the absorption coefficients influence the total number of 

steps necessary in the iteration schemes used to calculate dP/dV according to Eq. (1): with increasing 

ρ the growing geometrical complexity of the ray paths (that tends to increase the number of iterations) 
and, for realistic profiles, the reduced interaction of the wave field with the electrons for lower 

temperature (which facilitates the computation) do compete with specific problems related to the 

profile of dP/dV appearing at particular positions (e.g., where dP/dV changes sign), whereas using the 

QE formula generally causes a considerable enhancement of the number of iteration steps required due 

to the more complex structure of the wave spectrum present in this model. 
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In conclusion, Robinson’s asymptotic form for the EC absorption coefficients is, overall, the best 

available for the modelling of EC wave power losses in fusion plasmas: it provides, in fact, good 

accuracy at significantly reduced time for computation. 

 

Appendix A: Robinson’s asymptotic form for the EC absorption coefficients 

Robinson’s asymptotic form for the EC absorption coefficients [7], normalised to 2 /p ccω ω , that is 

( ) ( ) ( )2/ /p cc
σ σα ω ω α≡  with pω  and cω  being, respectively, the electron plasma and the EC 

frequency, can be written [9] 

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )0

5 / 2
3/ 2 , ,2

0 02
, , sin 1 ,

2

a
d p e

γ ω θσ σµ µ
α ω θ π γ θ θ γ ω θ

ω

−Φ= − ;   (A.1) 

it is assumed here that both / cω ω ω=  and 2 /mc Tµ =  (where m is the electron rest mass) are large 

compared to 1; θ is the angle of wave propagation with respect to the magnetic field;  

( ) ( ) ( )1/ 2
2/ 2 /a e Kµµ π µ µ−≡      (A.2) 

where ( )2K µ  is the MacDonald function;  

( ) ( )1/ 22 2
0 0, 1 cot /d γ θ θ γ= + ;     (A.3) 

0γ  is the effective Lorentz factor defined by 

( )( ) ( )( )
1/ 2

1/ 3

0 0 / , 2 1 1
ω

γ γ ω µ θ χ θ
µ

− 
≡ = + + 

 
 where ( ) 29

sin
2

ω
χ θ θ

µ
≡ ;  (A.4) 

( )
p

σ
 describing the effects of wave polarisation on the absorption is given by  

( ) ( )
( )( )

( ) ( ) ( ) ( )( )
2 2 2

30
0 02

0

11 cot
, , sin ,

2
1

p d T d T

T

σ σ σ

σ

γθ
ω θ γ θ θ γ θ

γ ω

   − 
= + +  

  +  
 (A.5)  

with  

( )
( ) ( )

1
1/ 2

21
1

X

O
T b b

T

−
 = − = + +  

 where 
2sin

2 cos
b

θ
ω θ

≡ ;  (A.6)  

and  

( ) ( )
( ) ( )

0 0 0 2 1
2 0 0

1
, , 1 2

2 1 sin ,
k

k k d
γ ω θ µ γ ωγ

γ θ γ θ

∞

−
=

Φ ≡ − +
 −  

∑ .  (A.7) 
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Figure 1. “Advanced” temperature profile, peak electron temperature of 45 keV, peak plasma density 

of 
200.7 10×  m

-3
 and wall reflection coefficient Rw = 0.8 : (a) radial profile of the net EC wave power 

loss dP/dV of the plasma electrons (full curves) for the quasi-exact (QE), Robinson (R) and Trubnikov 

(T) forms of the EC absorption coefficient, and relative deviations ∆  of dP/dV as evaluated with the 
Robinson and the Trubnikov forms from the QE result (dashed curves); (b) total calculation times 

necessary to evaluate one radial value of dP/dV in arbitrary units (full curves) as a function of radial 

position and average <τ> of the times employed for the computation of the values of the absorption 
coefficients in each of the iteration steps necessary in the evaluation of that value of dP/dV (see text; 

dashed curves), for the three models. 
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Figure 2. Same as Figure 1 for a parabola-like temperature profile. 
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Figure 3. Same as Figure 1 for a peak electron temperature of 22.5 keV. 
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Figure 4. Same as Figure 1 for a parabola-like temperature profile with a peak temperature of 

22.5 keV. 

 


