Curvature particle pinch in tokamak
and stellarator geometry

Alexey Mishchenko, Per Helander, Yuriy Turkin

ABSTRACT

A study of the curvature pinch effect in various fusion devices (both tokamaks
and stellarators) is presented. Canonical density profiles are calculated employ-
ing the theory developed in [M. B. Isichenko, A. V. Gruzinov, P. H. Diamond,
and P. N. Yushmanov, Phys. Plasmas 3, 1916 (1995)]. In tokamaks, it is found
that the curvature pinch is relatively strong (especially in a spherical tokamak)
and usually but not always leads to a peaked density profile. In stellarators, the
curvature pinch is weaker and can have either sign.

1 Introduction

The density profile is usually peaked in tokamaks. To explain this peaking
in absence of particle sources in the plasma core the existence of an inward
particle pinch (convective flux not directly associated with a density gradient)
is often invoked. In neoclassical theory, such an inward pinch effect appears
as an off-diagonal flux proportional to the toroidal loop voltage (the so-called
Ware pinch, see Ref. [1]). This neoclassical pinch effect is typically too small to
explain the experimental observations although it can be made stronger by ar-
tificially enhancing the electron-electron collision frequency [2]. Also, turbulent
mechanisms can drive an anomalous pinches. Thus, so-called thermodiffusion
(see Refs. [3, 4, 5]) driven by microinstabilities in a fusion plasma can lead to
an inward particle flux proportional to the temperature gradient. However, this
mechanism may not be strong enough to explain the experimentally observed
density peaking (see Ref. [6]).

Another anomalous mechanism, labeled “turbulent equipartition”, has been
suggested (see Ref. [7]). This mechanism is associated with the adiabatic invari-
ance of trapped electron motion. The basic physical argument is that collision-
less trapped electrons experience anomalous transport through interaction with
electrostatic turbulence while conserving the second adiabatic invariant constant
(assuming that the characteristic frequencies of the turbulence are much smaller
than the electron bounce frequency). Under such conditions, the trapped elec-
trons which gain energy from the wave must move inwards (in a tokamak) and
are adiabatically compressed to give peaked profiles. This mechanism has been



called the curvature pinch effect [8, 9] (another name is turbulent equipartition
pinch).

The curvature pinch has been addressed in a tokamak geometry using the
large-aspect-ratio approximation [8] within a phenomenological description of
the turbulent diffusion. Results valid in general tokamak geometry have also
been obtained [9]. The curvature pinch has been calculated more quantitatively
in a tokamak using quasilinear theory [3, 4, 10]. In stellarators, there is exper-
imental evidence of anomalous pinches, too [11]. In Ref. [12], the possibility of
a negative anomalous particle flux in a stellarator has been found numerically.
There is clearly a need to gain more physical insight into the basic mechanisms
which can drive stellarator pinches.

In this paper, we point out that the theory of Ref. [8] applies to stellarators
as well as tokamaks and study the curvature pinch in various fusion devices,
both existing and planned ones. We compute the so-called “canonical density”
profile driven by the curvature pinch (see Sec. 2 for details). The results of the
computations employing true geometry are compared with the corresponding
large-aspect-ratio approximation.

The paper is organized as follows. In Sec. 2, we describe briefly the theory
underlying our calculations and present the numerical tool that is used to cal-
culate the canonical density in various devices. In Sec. 3, we discuss results of
our calculations in a tokamak geometry, while calculations for stellarators are
presented in Sec. 4. The final discussion and conclusions are given in Sec. 5.

2 Basic theory of the curvature pinch

In this section, our presentation and notation closely follow Ref. [8]. If the
electron bounce frequency is larger than the turbulence correlation frequency,
wp > w, the single-particle motion can be averaged before introducing the
kinetic description. Using the Clebsch coordinates ¢ (poloidal magnetic flux)
and a (corresponding angle) defined locally for a general magnetic field B(x) =
Va x Vi /(2r), one can write the equations of bounce-averaged guiding center
motion in the canonical Hamiltonian form:
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Here ¢ is the fluctuating part of the bounce-averaged electrostatic potential (tur-

bulence) and Hy = <mvﬁ /24 uB+ eq§0>b is the bounced-averaged unperturbed

particle Hamiltonian function with ¢¢ being the background electric field.
These equations can be interpreted as Langevin equations with the stochas-
tic part coming from the turbulence. According to the theory of stochastic
processes, these Langevin equations for the particle motion can equivalently be
rewritten as the Fokker-Planck equation for the particle distribution function:
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where the derivatives are taken at constant values of the first and second adia-
batic invariants, 4 = v} /(2B) and J = ¢ vjdl. Note that the collision integral
C(f) has been included in Eq. (2). One can further reduce the description of
the system by averaging over « [which annihilates all terms of the type 94(. . .)].
Thus, the reduced Fokker-Planck equation takes the form:
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Note that in addition to a pure diffusion in the v-space (as it is the case in
the theory developed in Ref. [8]), a drift term appears in Eq. (3). This term
matters only in non-axisymmetric configurations [otherwise the drift coefficient
AY = (27c/e) 8, Hp vanishes].

Formally, one seeks the solution of Eq. (3) by successive approximations in
the smallness of D¥¥ (turbulence energy is smaller than thermal energy) and
AY (neoclassical ordering). The zeroth-order solution follows from the condition
C(fo) =0 and is given by the expression:
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where B = (e —edy)/(mu) is the maximal magnetic field on a flux surface which
is available for an electron with energy € = mv?/2 + e¢y and magnetic moment
p=v1/(2B).

In first order, Eq. (3) can be written as follows:
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The first two terms in Eq. (5) lead to neoclassical fluxes (their effect should
be relatively small in a tokamak). The last term corresponds to anomalous
diffusion and pinch.

We can construct an equation for the density moment integrated over the
flux surface, using the relation:
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where (...) is the flux-surface average, (...)o = §da(...) corresponds to the
average over the toroidal angle, V' = dV/d¢ is the derivative of the magnetic
volume inside the flux surface, and ¢ = £1 corresponds to the direction of
the parallel velocity of a passing particle. For passing particles, we define J =

\% <27rB |v|||>. For trapped particles, J = § v dl where the integral is taken

along the magnetic field line between the bounce points (forth and back). The
magnetic moment is p = v2 /(2B).



The resulting continuity equation takes the form:
6tNe = - aw(rneo + Fanom) ) (7)

where N, = V' f fod3v is the per-unit-flux density, neo is the neoclassical
particle flux which results from the first two terms in Eq. (5), and the anomalous
flux is given by the expression:
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In Eq. (8), only the trapped-electron anomalous flux is included (see the com-
ment on passing electrons below). Following Ref. [8], we introduce the bounce-

invariant pitch-angle variable j = J/\/p = [dl /(B — B)/2 and expand the
p-dependence of the turbulent-diffusion coefficient in a Taylor series:
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Taking the derivative of the zero-oder distribution function Eq. (4) with respect
to ¢ at constant j and u, one can rewrite the anomalous flux as follows:
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This equation is valid in stellarators as well as in tokamaks. One sees that
different contributions to the anomalous flux include diffusion driven by the
density gradient, thermodiffusion driven by the temperature gradient and the
curvature pinch, which is an effect of magnetic geometry. In contrast with
Vn and VT, the magnetic geometry is not a thermodynamic force and the
corresponding flux is not constrained by Onsager symmetry. Note that as a
result of the curvature pinch, the plasma relaxes toward some profiles ncan (1)
and Tean(v) (called “canonical profiles” in this context) instead of flat profiles,
which would result from fluxes proportional to the temperature and density
gradients only. In Ref. [10], it is shown that the true thermodynamic forces
which have to be used in the transport calculation are the gradients of the
density and temperature normalized to their canonical values. It has been shown
that for such a formulation Onsager symmetry holds (at least in the quasilinear
approximation) and the corresponding transport matrix is consistent with the
second principle of thermodynamics (positivity of the entropy production rate).

Here, we study the curvature pinch using the canonical density profile as its
main characteristics. This is determined by the magnetic configuration only, so



that we can compare curvature pinches in various fusion devices (tokamaks as
well as stellarators). Following Ref. [8], we truncate the series Eq. (10) at zero
order [ = 0. Then, the anomalous particle flux takes the form:
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where the anomalous diffusion coefficient and the pinch velocity are given by
the expressions:
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The canonical density results from the condition I'y;0;m = 0 and can be written
as follows:
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The form of the canonical profile defines if the direction of the pinch is inward

(peaked canonical profile dnca,/dy > 0) or outward (hollow canonical profile
dnean/dy) < 0).

In Ref. [8], a simplified assumption for the turbulent diffusion coefficient was

made:
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where O(z) is the Heaviside function and the quantity j.(¢) = j(%, Bmax) =
J di\/(Bmax — B)/2 defines the boundary between the trapped and passing elec-
trons on a given flux surface [Bpax(?) is the maximal magnetic field on the sur-
face 9]. The assumption Eq. (14) implies that all trapped electrons react on the
turbulence in the same way, whereas passing electrons are not included into the
consideration. The basic physical argument is as follows. The passing electrons
are assumed to have, on average, a weaker interaction with the electrostatic tur-
bulence since they have no turning points and instead average over all phases of
the waves as they complete multiple circuits around the torus. The intention of
this paper is to study the canonical density profile driven by the curvature pinch
(recall that this profile corresponds to the case where the diffusion is exactly
balanced by the pinch). However, this mechanism acts neither on the ions nor
on the impurities (whose second adiabatic invariant is not conserved by the tur-
bulence). Thus, anomalous transport of the trapped electrons is the dominant
factor which determines the canonical density profile whereas passing electrons,
ions and impurities adjust their transport to follow and ensure ambipolarity. Of
course, one may raise various objections against these arguments. However, it is
not the intention of the present paper to delve into this issue further, but simply
to accept this approximation as reasonable enough (following Refs. [7, 8, 9]) and
instead explore how its consequences depend on the magnetic geometry.
Employing Eq. (14) for the particle diffusion coefficient Dy (j,%) one can
explicitly calculate the integrals appearing in Eq. (12). The canonical density



resulting from this calculation can be written as follows:
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Here, we use the quantity p = /s as the flux surface label with s = x/x, being
the normalized toroidal flux through given flux surface (x is the toroidal flux
on a given flux surface, x, is the toroidal flux on the edge). Also, we have
introduced the following notations:
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with () being the flux-surface average. Other quantities are the rotational trans-
form «(p) = dyp/dx (¢ is the poloidal flux), maximal magnetic field on a given
flux surface Bpax(p) and the volume inside the flux surface V(p). Note that
Eq. (15) includes only flux functions and can be used in tokamaks as well as in
stellarators.

The derivative V" (p) appears in the first term of Eq. (15). We shall see that
this quantity is important for the form of the canonical density profile. Thus,
configurations with a magnetic well (V" > 0) tend to have peaked canonical
density profiles whereas configuration with a magnetic hill (V" < 0) may have
hollow profiles. Note also that diamagnetic effects due to finite beta may influ-
ence the density profile [affecting both V" and the maximal magnetic field on
a flux surface Bmax(p)]. Flux-surface shaping and effects of 3D geometry enter
into the canonical density profile through the quantities I; /5 and I3/5.

For a large-aspect-ratio tokamak with unshifted circular flux surfaces one
can simplify Eq. (15). In this case, the magnetic field strength can be written
as follows:
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with Ry the major radius, r, the minor radius and p = r/r,. Substituting
this expression into Eq. (15), one can derive the large-aspect-ratio limit for the

canonical density:
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This result is sometimes used in fluid turbulence simulations of particle transport
(see Refs. [10, 3, 13]), although it tends to overestimate the curvature pinch, as
we shall see. In fact, Eq. (18) can lead to negative densities, if the magnetic
shear is large. Thus, it is more reasonable to define the large-aspect-ratio limit




for the canonical density as follows:

P
4r, dlng 3 r2
Ncan(p) & no(0) exp | — 3R, dp (dlnp + g) +0 (ﬁ) (19)
0
0

To compute the flux-surface averages appearing in Eq. (15) we use the equi-
librium code package MConf (standing for Magnetic CONFiguration). The
main purpose of this package is to provide fast and convenient tool for coordi-
nate transformations between Boozer magnetic coordinates and real space co-
ordinates. Furthermore, MConf calculates various information about the mag-
netic configuration of a stellarator or a tokamak, such as the magnetic field,
the Jacobian, rotational transform (1), trapped particle fraction, minimum and
maximum magnetic field on a flux surface, the volume inside each flux surface,
etc.

3 Tokamak results

ITER (International Thermonuclear Experimental Reactor [14]). The canon-
ical density profile for ITER has been calculated in Ref. [9], which provides a
useful benchmark on our numerical tool. Note that the strength of the curva-
ture pinch is much weaker than one would expect from the large-aspect-ratio
approximation (see Fig. 1).

MAST (Mega-Ampere Spherical Tokamak [15], operated at Culham, UKAEA).
This configuration is of particular interest in this context because the canonical
density driven by the diffusion of trapped electrons [see Eq. (15)] is an effect
of order € = r,/Ryp, which should be of order unity in a spherical tokamak (in
MAST € =~ 0.68). In Fig. 2 one sees that the density profile is indeed much
more peaked than in ITER (which implies a stronger curvature pinch). The
large-aspect-ratio approximation Eq. (19) cannot be used as it overestimates the
strength of the pinch. The canonical density even becomes negative if Eq. (18)
is used (MAST has very high magnetic shear at the plasma edge).

NSTX (National Spherical Torus Experiment [16], Princeton). In Fig. 3,
one can see that, in contrast with other tokamaks, the canonical density profile
corresponding to this configuration is non-monotonic and shows off-axis peaking.
The reason is that the case considered here is characterized by high pressure and
large pressure gradient which lead to appearance of a magnetic well off-axis (at
p =~ 0.5) and a magnetic hill in the center (p = 0). We have here an example of a
finite-beta effect on the curvature pinch in a tokamak. In the following, we will
see that there are finite-beta effects on the curvature pinch in stellarators, too.
It is not surprising, that the large-aspect-ratio approximation Eq. (19) leads to
a qualitatively wrong form of the canonical density profile.



4 Stellarator results

NCSX (National Compact Stellarator Experiment [17], under construction in
Princeton). This quasi-axisymmetric stellarator exhibits a hollow canonical den-
sity profile (see Fig. 4), corresponding to an outward curvature pinch, which is
in contrast to the inward curvature pinch observed in tokamak configurations.
One can see that the curvature pinch is relatively weak, but still stronger than
that in other stellarator devices, see below. This is caused by the relatively small
aspect ratio of NCSX. Note that the “equivalent tokamak” (a circular tokamak
with the same aspect ratio and rotational transform as the stellarator) would
have a nearly flat (slightly peaked) canonical density profile (see Fig. 4). Thus,
the appearance of a hollow profile cannot be explained by the stellarator shear
reversal only but incorporates effects of flux-surface shaping and 3D geometry,
too.

LHD (Large Helical Device operated at NIFS, Japan, see Ref. [18]). One
of the attractive characteristics of LHD is that different configurations can be
realized by changing coil currents. These configurations can be characterized by
the position of the vacuum magnetic axis. In typical LHD plasmas (standard
inward shifted configuration with R, = 3.75 m), the experimentally observed
density has a hollow profile (see Ref. [11]) whereas the density profiles tend to
be flat [11] in a configuration with Rax = 3.53 m, which is the neoclassically op-
timized configuration (see Ref. [19]). This effect has been addressed in Ref. [12],
where the existence of both positive and negative anomalous particle fluxes was
obtained depending on the choice of parameters.

In Fig. 5, we consider the curvature pinch effect in the standard inward
shifted configuration (R.x = 3.75 m). This configuration shows nearly flat den-
sity profile. The hollow profiles observed in this configuration experimentally
can be attributed to neoclassical fluxes as stated in Refs. [11, 12]. The neoclas-
sically optimized configuration (Ra.x = 3.53 m) has a canonical density profile
which is peaked in the center and hollow at the edge (see Fig. 6). Thus, an
inward curvature pinch becomes effective only for particles with p < 0.7.

Note that this feature may have a positive influence on impurity transport.
In Ref. [13], it was concluded on the basis of a fluid model that impurity ions
respond to the curvature pinch in much the same way as do the bulk ions. Thus,
impurities accumulate in the center of the device if the curvature pinch is in-
ward for all radial positions (as it is usually the case in a tokamak). In the case
shown in Fig. 6, however, impurities have to penetrate well inside the device
due to some additional mechanism before they are pushed further inwards by
the curvature pinch. Thus, the curvature pinch could perhaps prevent impurity
accumulation in the center while still allowing density peaking in stellarators.
This is in contrast with tokamak case where the curvature pinch is always a
driving factor for the impurity accumulation in the plasma core (see Ref. [13]).

W7-AS. Next, we consider the stellarator Wendelstein 7-AS (see Ref. [20])
which was operated in Garching, Germany. This stellarator has been partially



optimized (strong reduction of Pfirsch-Schliiter current). In Fig. 7, we plot the
canonical density corresponding to the so-called standard configuration (low 3,
t =1/3). One sees that the density is slightly peaked but the curvature pinch
is very weak (which can be explained by the very low shear and large aspect
ratio of the device). Note that, as usual, the density profile corresponding to
the “equivalent tokamak” [i.e. computed using Eq. (19)] deviates considerably
from the actual canonical density profile [computed using Eq. (15)], which again
demonstrates the role of the flux-surface shaping and 3D geometry in the for-
mation of the canonical density profile in stellarators.

In Fig. 8, the canonical density corresponding to the W7-AS configuration
with 8 = 0.0165 is plotted. One can see that a magnetic well appears as a
finite-beta effect. The density profile becomes hollow (5% density increase on
the edge), which indicates an outward curvature pinch. Note that the pinch is
now stronger than in the previous (low-beta) case. Thus, finite-beta effects may
influence the strength of the curvature pinch and even change its direction.

WT7-X. The last device to be considered is the fully optimized stellarator
Wendelstein 7-X (under construction in Greifswald, see Ref. [21]). In Fig. 9, the
so-called standard (low-beta) configuration is studied. One sees that the density
is nearly flat (slightly hollow). The curvature pinch becomes much stronger in
the case of the high-beta configuration (see Fig. 10 where 8 = 0.0448). The
resulting canonical density profile is hollow (as in the high-beta W7-AS) which
may inhibit the impurity accumulation in the core plasma.

5 Conclusions

In this paper, we have shown that the curvature pinch affects both tokamaks
and stellarators. This pinch effect can be characterized by the corresponding
canonical density profile, which has been computed for various fusion devices.

The curvature pinch is usually inward in tokamak geometry and its strength
is proportional to the inverse aspect ratio. The effect is therefore much larger in a
spherical tokamak such as MAST than in ITER. An especially interesting result
is obtained from NSTX where the canonical density profile is non-monotonic and
exhibits off-axis peaking (caused by the off-axis magnetic well which appears as
a finite-beta effect). Hence, turbulent equipartition does not always lead to a
central density peaking in tokamak geometry which contrasts with widespread
believe.

In stellarators, the curvature pinch is rather weak. The main reason for
this is the large aspect ratio and negative magnetic shear characterizing most
stellarators. Nevertheless, the curvature pinch may play a role in stellarators,
too. A qualitative difference to tokamaks is that the curvature pinch in most
cases leads to hollow density profiles. This may inhibit impurity accumulation
in the core. Clearly, one has to take into account also the neoclassical particle
transport of electrons which is non-negligible in stellarators.

Note that the computation of the canonical density profile (as the “quantity



of reference” which has to be used in the transport equations, see Ref. [10]) is
important in its own right. We have limited ourselves to this effect only, leaving
aside the possible role of thermodiffusion. In tokamak geometry, the relative
importance of the thermodiffusion is a question of debate (see Refs. 3, 10, 5, 13]).
In stellarators, the role of thermodiffusion merits further study. It is of course
possible that it is more important than the curvature pinch, which, as we have
seen, is rather weak in most stellarators.

We have summarized our results in Figs. 11 and 12, where the density-
peaking factor, defined as the normalized difference between the maximal and
minimal values of the canonical density, is plotted as a function of the inverse
aspect ratio. One sees that the peaking in tokamaks increases with the inverse
aspect ratio, whereas the peaking in stellarators does not. In Fig. 12, one sees
that the curvature pinch leads to different density profiles in the same stellarator
device depending on the particular magnetic configuration used. An interesting
feature is the beta-dependence of the curvature pinch strength and even its
direction (both in tokamaks and stellarators).

The curvature pinch appears because collisionless trapped electrons expe-
rience anomalous transport through interaction with electrostatic turbulence
while maintaining their second adiabatic invariant. This assumes that the
characteristic frequencies of the turbulence are much smaller than the electron
bounce frequency. Note that this condition can be satisfied for fast ions, too,
so that one may expect a fast-ion curvature pinch in addition to any anoma-
lous diffusion that may arise from the interaction between the fast ions and the
turbulence fluctuations. This may be of importance in view of recent numerical
results [22, 23] indicating finite levels of anomalous fast-ion transport.
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Figure captions

Fig. 1: ITER (inverse aspect ratio € ~ 0.38). Left: rotational transform ¢,
normalized flux derivative of the magnetic volume (V' = dV/dy where ¢ is the
poloidal flux), normalized maximal magnetic field on a surface By,x as functions
of p = \/x/Xa With x being toroidal flux. Right: canonical density computed
using Eq. (15) (solid line) vs. large-aspect-ratio limit given by Eq. (19) (dashed
line). Color online.

Fig. 2: MAST (inverse aspect ratio € ~ 0.68). Curves as in Fig. 1. Color online.
Fig. 3: NSTX (inverse aspect ratio € ~ 0.6). Curves as in Fig. 1. Color online.
Fig. 4: NCSX (inverse aspect ratio € & 0.22). Curves as in Fig. 1. Color online.

Fig. 5: LHD (inward-shifted configuration with position of magnetic axis Rayx =
3.75 m, inverse aspect ratio € & 0.15). Curves as in Fig. 1. Color online.

Fig. 6: LHD (neoclassically optimized configuration with position of magnetic
axis R,y = 3.53 m, inverse aspect ratio € =~ 0.17). Curves as in Fig. 1. Color
online.

Fig. 7: W7-AS (standard configuration, inverse aspect ratio € & 0.09). Curves
as in Fig. 1. Color online.

Fig. 8: W7-AS (finite-beta configuration, inverse aspect ratio € ~ 0.09). Curves
as in Fig. 1. Color online.

Fig. 9: W7-X (standard configuration, inverse aspect ratio € ~ 0.09). Curves as
in Fig. 1. Color online.

Fig. 10: W7-X (finite-beta configuration, inverse aspect ratio € ~ 0.09). Curves
as in Fig. 1. Color online.

Fig. 11: Peaking factor (nmax —Tmin)/Mmax as a function of inverse aspect ratio,
both tokamak and stellarator results. Note that a large-aspect-ratio tokamak
(inverse aspect ratio e = 0.05) with circular unshifted flux surfaces has been
considered in addition to the cases described in the text. Color online.

Fig. 12: Peaking factor (nmax — min)/Mmax as a function of inverse aspect ratio,
stellarator results. Note that a classical | = 2 stellarator WEGA [24], the LHD
configurations with R,x = 4.05 m and R,x = 3.90 m, low- and high- mirror W7-
X configurations have been considered in addition to the stellarators described
in Sec. 4. Color online.
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