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Introduction

The PIES code [1] is a 3-dimensional finite beta equilibrium code developed without a
priori assumption of nested magnetic surfaces. This code represents the magnetic field
in real space coordinates taking into account a finite plasma pressure as well as external
currents. Here, results from PIES for the Wendelstein 7-X (W7-X) configuration are
used to compute neoclassical transport in the 1/ν regime. For this purpose, a technique
[2] based on the integration along magnetic field lines in a given magnetic field is used.

Magnetic field presentation

In cylindrical coordinates R,ϕ, z, the magnetic field calculated by the PIES code can
be presented in the following form:

BR =
mmax
∑

m=0

nmax
∑

n=−nmax

BRmn(s)sin(nnpϕ−mθ) (1)

Bz =
mmax
∑

m=0

nmax
∑

n=−nmax

Bzmn(s)cos(nnpϕ−mθ) (2)

Bϕ = R
mmax
∑

m=0

nmax
∑

n=−nmax

Bϕ
mn(s)cos(nnpϕ−mθ) (3)

R =
mmax
∑

m=0

nmax
∑

n=−nmax

Rmn(s)cos(nnpϕ−mθ) (4)

z =
mmax
∑

m=0

nmax
∑

n=−nmax

zmn(s)sin(nnpϕ−mθ). (5)

Here, s, θ and ϕ give the background coordinate system in which all quantities computed
by the PIES code are given, np is the number of field periods (for W7-X np = 5). The
coordinates s, θ and ϕ are real space coordinates. In contrast to magnetic coordinates,
the s value is not constant on a magnetic surface. The decomposition coefficients BRmn,
Bzmn, Bϕ

mn, Rmn and zmn of the spectra (1) - (5) are given in sets of data obtained as
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results of a PIES run. The radial dependencies of these coefficients are given in a set
of discrete radial mesh points sj = j/jmax, j = 1, 2, ..., jmax. Between mesh points, the
decomposition coefficients are computed using cubic splines. The use of splines is also
necessary for the computation of spatial derivatives of the magnetic field.

Computations of all quantities considered in this work are carried out in the background
coordinate system s, θ and ϕ. The necessary coordinate vectors as well as the quantities
∇s and ∇θ are calculated on the basis of formulas (4) - (5). For the integration along
magnetic field lines, the contra-variant components of B, Bs and Bθ, are necessary.
These components can be calculated as Bs = B ·∇s and Bθ = B ·∇θ. It is necessary to
note that the contra-variant components of B are also obtained directly from the PIES
data. In particular, the Bϕ

m,n(s) decomposition coefficients in formula (3) represent the
contra-variant component Bϕ.

Effective ripple and 1/ν neoclassical transport

It is well known that for the 1/ν transport regime the characteristic features of the
specific magnetic field geometry manifest themselves in particle and heat fluxes through
the factor ε

3/2

eff
, where εeff is the so-called effective ripple. For a conventional stellarator,

εeff coincides with the helical ripple εh. For the magnetic field of an arbitrary stellarator,
the quantity ε

3/2

eff
can be calculated [2] with the help of the following expression:

ε
3/2
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=
πR2
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Îj
, (6)
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. (7)

Here, R0 is the major radius of the torus, B0 is a reference magnetic field, ψ is the
magnetic surface label, kG = (h × (h · ∇)h) · ∇ψ/|∇ψ| is the geodesic curvature of a
magnetic field line with the unit vector h = B/B, s is the magnetic field line length
(and not the radial coordinate s of the background coordinate system in formulas (1) -
(5)).

The quantity εeff is calculated by integration over the magnetic field line length, s, over
the sufficiently large interval 0÷Ls, and by integration over the perpendicular adiabatic
invariant of trapped particles, J⊥, by means of the variable b′. Here, Babs

min and Babs
max are

the minimum and maximum values of B within the interval 0÷Ls. The quantities smin
j

and smax
j within the sum over j in (6) - (7) correspond to the turning points of trapped

particles.

In accordance with [2], formulas (6) - (7) must be supplemented with the magnetic field
line equations as well as with equations for the vector P ≡ ∇ψ

dPi

ds
= − 1

B

∂Bj

∂ξi
Pj , (8)

where Bj are the contra-variant components of B in real-space coordinates ξi, and
Pj = ∂ψ/∂ξj are the covariant components of P.
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Computational results

Here, results for three different cases are presented. The reference case is a free boundary
equilibrium for the W7-X standard high-mirror configuration with < β >=1% (mmax =
20, nmax = 18 and jmax = 100 in Eqs. (1) - (5)). For comparison, a zero β case is also
considered using both, PIES data (mmax = 18, nmax = 16 and jmax = 80) as well as
currents in modular coils where the magnetic field is computed with the help of the
Biot-Savart law.

Figure 1 shows some results for magnetic surfaces in the ϕ = 0 plane obtained as results
of PIES runs. For the β = 0 case, curves 1 and 3 show results for the outermost
magnetic surface and for some inner magnetic surface, respectively. In the region inside
curve 1, magnetic surfaces for this case practically coincide with magnetic surfaces for
the vacuum magnetic field. For the β = 0.01 case, the outermost magnetic surface
(curve 2 in Figure 1) is a little smaller than the corresponding surface for the β = 0
case. In addition, magnetic surfaces for the β = 0.01 case are somewhat shifted to the
outside of the torus. Also note that the outermost magnetic surfaces obtained with the
PIES code differ from the starting boundary surface for the free-boundary run (curve 5
in Figure 1).

Results of ε
3/2

eff
computations are shown in Figure 2. These results are presented as

functions of the ratio r/a where r is the mean radius of a given magnetic surface and
a is the mean radius of the pertinent outermost magnetic surface shown in Figure 1.
From Figure 2 follows that in the region where both data exist, ε

3/2

eff
values are almost

identical for both β = 0 cases (PIES and modular coils). Computations for the β = 0.01

case reveal a small decrease of ε
3/2

eff
as compared to the β = 0 case.

For a conventional stellarator with an equivalent size, the ε
3/2

eff
value is within the limits

0.01 ÷ 0.03. For significant parts of the magnetic configurations produced by the PIES
code, ε

3/2

eff
turns out to be in the limits of 0.0022 ÷ 0.0035. These values are essentially

smaller than those for a conventional stellarator. However, it should be noted that these
values are approximately two times bigger than the corresponding values of ε

3/2

eff
which

were found for the W7-X configurations obtained as results of equilibrium runs with a
fixed boundary [3].

Summary

The evaluation of neoclassical transport coefficients in the 1/ν regime is an important
task in stellarator optimization. The technique based on integration along magnetic
field lines [2] can be efficiently used to study transport properties of different equilibria.
One unique feature of the method is the possibility of a direct evaluation of magnetic
configurations.

In this paper, results of effective ripple computations are given for two free boundary
equilibria resulting from PIES runs and for a vacuum magnetic field directly produced
by modular coils. As expected, the results for the zero β PIES case are almost identical
to the results for the vacuum magnetic field computed from coil currents. In almost the
whole confinement region the values of the ε

3/2

eff
parameter turn out to be in the limits of

0.0022÷ 0.0035. This gives εeff values in the range from 1.7% to 2.3%. The presence of
a plasma in the finite β = 1% case improves the results slightly throughout the whole
region. Compared to a conventional stellarator with equivalent size, the results for ε

3/2

eff
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turn out to be significantly smaller. Compared to prior results for a W7-X equilibrium
with a fixed boundary, ε

3/2

eff
results for the free boundary equilibria turn out to be roughly

a factor 2 higher. Another interesting fact is the big and rather sharp increase of ε
3/2

eff
in

the close vicinity of the outermost magnetic surface.
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Fig. 1: Outermost and inner magnetic
surfaces for magnetic fields obtained as
results of PIES runs for β = 0 (curves
1 and 3) and for β = 0.01 (curves 2 and
4), resp.. Curve 5 shows the starting
boundary surface for the free boundary
run in the β = 0 case.

Fig. 2: Parameter ε
3/2

eff
for a magnetic

field produced by modular coils (curve
1 marked by triangles) and for fields
produced as results of PIES runs for
β = 0 (curve 2 marked by circles) and
β = 0.01 (curve 3).
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