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Abstract 

With increasingly detailed physics questions to ask, and with more advanced diagnostics 

available, there is a strong case for trying to generalise the way analysis of diagnostic data, 

and connection to underlying physics models, is done in today’s experiments. With current 

analysis chains, it is difficult, verging on impossible, to fully grasp the exact assumptions, 

hidden in different legacy codes, that goes into a full analysis of the main physics parameters 

in an experiment. We show that by using Bayesian probability theory as the underlying 

inference method, it is possible to generalise scientific analysis itself, and therefore build an 

effective and modular scientific inference software infrastructure. The Minerva framework 

[1,2] uses the concept of Bayesian graphical models [3] to model the full set of dependencies, 

functional and probabilistic, between physics assumptions and diagnostic raw data. Using a 

graph structure, large scale inference systems can be modularly built that optimally and 

automatically use data from multiple sensors. The framework, used at the JET, MAST, H1 

and W7-X experiments, is exemplified by a number of JET applications, ranging from 

inference on the flux surface topology to profile inversions from multiple diagnostic systems. 

  

Introduction 

Probability theory in the Bayesian interpretation is often used as an alternative to standard 

least squares, or heuristic analysis methods to increase the understanding of how different 

types of uncertainties influence the inference of underlying physics parameters. What is not 

always emphasised, is the fully generic way in which this is actually done: a scientific 

inference problem, whether the width of a spectral line is measured, or a tomographic x-ray 

inversion is done, is always fully defined by the specification of two quantities: an 

assumption of the range and a priori likely values of the parameters of the model, and a 
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probabilistic measure of the misfit between model and observations, which together form a 

joint probability distribution over observations and free parameters.  This identity, through 

the joint probability distribution, of all types of inference problems, creates the possibility of 

a general data analysis software infrastructure. The Minerva framework [1,2], used for the 

analysis in this paper, is a generic scientific inference system where models are modularly 

built using Bayesian Graphical Models [3], through which complex networks of probabilistic 

dependencies can be handled effectively. Minerva allows the connection between physics 

models, parameterisations, nuisance parameters (such as calibration factors, instrument 

functions), experimental constraints (such as line of sight geometry), and observed raw data 

for different diagnostic systems to be fully specified in generic probabilistic graph structures. 

These can subsequently be analysed using standard inversion methods, such as linear and 

nonlinear optimizers, and different Markov Chain Monte Carlo (MCMC) samplers. Using 

graph models, the analysis of diagnostic data can be done with a high level of transparency 

and modularity, where physics models and diagnostics can be modularly replaced without 

changing legacy codes (fig 1). It also creates the possibility of optimal utilisation of data from 

multiple diagnostics, by combining different diagnostic observations for joint inference on 

common physics parameters, as done in [4-7]. 

 

Figure 1. Minerva Bayesian graph model for joint inference on a common physics model from data from two 

diagnostics. Blue ovals are free parameters (n is a diagnostic nuisance parameter), gray ovals observations. The 

graph defines the joint distribution p(a,b,c,n,d1,d2) which is proportional to the posterior distribution of the free 
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parameters. Top figure shows the generative aspect of Minerva models; by sampling from an observation node, 

synthetic observations given the current state of the ancestors can be done, which can be used for experimental 

design etc. Bottom figure: the same model can be used for different types of inference on the free parameters, by 

storing actual observations at the observation nodes and dropping the graph in one of a number of generic 

inversion methods. Currently a range of nonlinear optimizers for finding Maximum Posterior (MAP) points, 

Markov Chain Monte Carlo (MCMC) samplers, and automatic graph linearisation can be applied. 

 

Applications 

By developing stand-alone Minerva graph models for individual diagnostic systems, it is 

possible to do analysis with different combinations of those diagnostics under changing 

model assumptions. Figure 2a shows a direct inference, in this case without an imposed force 

balance assumption, on the JET flux surface topology using a Minerva graph that includes 

increasingly more diagnostic systems. The system also delivers the uncertainties of the 

inferred positions of flux surfaces for the different cases, using up to six diagnostic systems 

[6]. A force balance assumption can be built into the graph structure by adding nodes that 

implements a Grad-Shafranov force balance constraint [8]. For the latter case, it has been 

shown that small scale features can be resolved from the magnetic sensors alone (figure 2b), 

although the precise uncertainties are still under investigation. Figure 3 shows the results of 

ne and Te profile inversion using the JET core and edge LIDAR diagnostics, and an 8-

channel interferometry system jointly, which have been fully remodelled and installed as 

Minerva graphs. The latter system delivers substantially higher resolution, also for the 

pedestal region, than any of the diagnostic systems used individually [7]. The generic 

architecture of Minerva allows graphs and models to be transferred between laboratories, and 

is also being applied at the MAST, H1 and W7-X experiments [9-10]. The successes so far of 

this approach seems to indicate that it could scale to include all main diagnostics of an 

experiment, which would then lead to a highly transparent and modular, centralised analysis 

system that would also deliver substantial improvements in accuracy and internal consistency 

of inferred physics parameters. 
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Fig 2 a) Samples from posterior current distribution including progressively more diagnostics: (pickup coils, 

saddle coils and flux loops), (added MSE), (added interferometry and polarimetry), b) toroidal current 

distribution using magnetics and an imposed force balance assumption. 

 

Figure 3. a) Beam paths for the JET core and edge LIDAR systems. b) ne and Te profiles as a function of 

normalised poloidal flux comparing the joint inversion of the JET core LIDAR, edge LIDAR, and 

interferometry diagnostics (colored thick lines – red color is high posterior probability, blue low), edge LIDAR 

analysed on its own (violet), core LIDAR analysed on its own (white), and the independent high resolution 

Thomson scattering measurements (orange). [7]. JET Pulse 75656, t=59.13s 
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