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Abstract 

 

The modular ITER shielding blanket is the innermost part of the reactor directly 

exposed to the plasma. Its high thermal and nuclear loaded blanket modules (BMs) are 

water-cooled components. The cooling water is supplied to the BMs by a set of stiff 

inlet and outlet manifolds mechanically attached to the inner wall of vacuum vessel 

(VV). The ITER reference design of the blanket cooling manifold (BCM) presents some 

concerns namely: huge reaction forces at the end supports on the VV, high operating 

stresses at certain locations on the manifolds the difficulty of localizing possible water 

leakages and the inability to repair the components remotely in a case of manifold 

damage. 

To overcome these problems, a proposal for a new manifold concept has been 

developed within the European Fusion Development Agreement – Central Support Unit 

in Garching in the frame of the ITER design review. 

The original stiff welded structure has been replaced by a bundle of elastic single 

seamless pipes supplying the cooling water to each module. 

Based on FEM and CFD calculations the shape and diameter for the pipes were chosen 

to cope with thermal differential expansion as well as with electro-magnetic (EM) loads 

and pressure drop requirements. An attachment system was developed to enable precise 

positioning and fixing of the manifold segments onto the inner wall of the VV. 

Additionally a remote handling (RH) procedure for the removal and installation 

sequences was created for the case of manifold damage during operation. This 

procedure is based on the currently planned RH equipment such as the maintenance 

cask and the in-vessel transporter (IVT).  
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1. Introduction 

 

The ITER reference BCM system [1, 2] is a set of welded steel profiles forming 

multiple poloidal channels and toroidal segments attached mechanically onto the inner 

wall of VV. The entire manifold system consists of 20° toroidal sectors located around 

the plasma chamber. In each sector there is an inlet and outlet manifold in 10° spacing 

with two main parts – the inboard and outboard one. Due to the 20° toroidal 

segmentation of the inboard blanket there are recesses in the back side of these blanket 

modules for the inboard manifolds. The outboard manifolds are routed between the 10° 

poloidal rows of blanket modules but the triangular voids there are to narrow and 

additional cut-outs in the modules are necessary.  

Each single poloidal channel in the manifold is connected on its upper end with a 

separate feeder pipe. All the pipes are routed out from the VV through the upper port 

(UP) and channeled on its end upwards from the port duct through special twin 



chimneys. The manifold channels supply the modules with cooling water through 

elastic S shaped branch pipes routed in corresponding recesses in the back part of the 

BMs. Every manifold channel feed a group of 2-4 modules.  

To allow the replacement of modules there are toroidal voids in the blanket located in 

the vicinity of the equatorial and upper ports. The manifold toroidal segments - so called 

filler shields (FSs) - fill this space between the blanket modules. 

Due to the inconsistency between the regular 10° outboard blanket segmentation and the 

size of the equatorial port openings, it is necessary to have at these openings a joggle in 

the outboard manifolds and the FSs are making this offset possible. Fig. 1 shows the 20° 

standard manifold sector. 

 

 

 

 
 

 

Fig.1 Reference design of a 20° blanket cooling manifold sector  



 

 

The poloidal parts of the manifolds are stiff fastened at the base and the endings of the 

FSs are elastically anchored onto the VV.  

Due to the temperature differences between the manifold and the VV there are axial 

forces of 90 tons in each of the 9 outlet manifold profiles and corresponding reactions 

on the VV. The stresses in the manifold caused by axial forces are on an acceptable 

level; however, as indicated in [3], the non-axial force transition in the joggles creates 

higher stresses in the connection with the FSs. The stresses are particularly concerning 

in their end anchors and could cause fatigue failure, in spite of using materials stronger 

than the ITER standard grade 316 SS for each of the 108 elastic FS endings. The 

manifold curvature induces forces normal to the VV wall, thus sliding supports in 

between are necessary. In the top region, despite installing them every 25 cm, there are 

reaction forces up to 25 tons per support. This can change dramatically if sliding in the 

supports does not occur. In-plane forces up to 33 tons may result from unwanted 

friction.  

Due to the large cross section of the massive welded manifold structure there are large 

EM radial forces (perpendicular to the manifold axis) in the range of 12 ton/m during 

certain events. Thus, manifold supports are necessary every 33 cm for the inboard and 

outboard region. 

In the case of a leak during plasma operation it would be problematic to localize a leak 

in the cooling system due to the restricted access for leak testing and because one single 

manifold channel is connected with a group of 2-4 BMs. In addition in such a parallel 

cooling circuit it is also challenging to control the required cooling water mass flow rate 

in each separate module supplied from the one single inlet manifold channel. 

There is an additional issue that the highest loaded filler shields are subject to extreme 

neutron irradiation and corresponding material damage, thus it will be difficult or 

impossible to repair them in situ after a certain period of operation. Also it will be 

impossible to access some welds particularly on the back site of the manifold for repair 

with RH tools. After a detailed analysis it was found [4], that the reference design of 

ITER cooling manifold can not be maintained by RH methods.  

Considering all of the concerns above an ITER Issue Card was launched [5] with some 

proposals for optimization or redesign of the ITER BCM system. 

 

2. Modified manifold concept 

 

In the frame of the ITER Design Review the development work has been undertaken in 

Europe with the objective of demonstrating viable solutions and decreasing the 

fabrication and maintenance costs for the BCM system. The work conducted aimed at 

developing a design that eliminates the disadvantages of the reference BCM system and 

at the same time has no or minimal impact on the other components of the reactor. To 

replace the stiff welded structure a bundle of separate seamless pipes located parallel in 

the existing recesses of the BMs and fastened mechanically onto the inner wall of VV 

using a number of sliding supports has been proposed. Every pipe is designed to feed 

one single BM and is routed all the way from the chimney bulkhead to the coaxial 

connector (CC) on the module.  

Two bundles of 24 pipes with two branches, with 9 and 15 pipes feeding the inboard 

and outboard modules, respectively, form each of the single 20° standard sectors of the 

modified BCM system. One of the bundles acts as the inlet and the second one as the 

outlet part of the manifold sector. To allow unrestricted thermal differential expansion 



between the manifold pipes and the VV the end regions of the pipes are bent. In 

addition the routing of the outboard manifold pipes from the VV into the UP duct 

includes an additional bend which allows simplified bending in the module region. The 

design of the modified BCM is shown in the Fig. 2. For the installation and maintenance 

reasons each pipe consists of two parts joined smoothly together using an orbital weld 

in the vicinity of the UP opening. The routing of the pipes in this region ensures an 

access for the RH welding and cutting tools. 

 

 

 

 

 

 
 

 

Fig. 2 Modified design of the blanket cooling manifold  



 

One of the issues during the development process of the modified BCM was finding a 

good balance between the mechanical (e.g. stiffness) and hydraulic (e.g. pressure drop) 

properties of the manifold components. For this reason, some iterations of the EM loads 

assessment [6] the FEM computations [7] and the hydraulic analysis have been 

performed, to find the proper cross section for the manifold pipes and the right spacing 

and size for the manifold sliding supports. 

For the EM loads analysis the worst case scenarios for the off-normal events were 

considered as follow: plasma thermal quench during a type II fast downward vertical 

displacement event (VDE), current quench during centered disruption of type II and 

toroidal field coil fast discharge with the time constant of 10 s. 

For the EM calculations a 10° model of the ITER toroidal sector with the shielding 

blanket modules and modified manifold was created. In the last iteration the results 

obtained for the 44,5 x 38,7 mm dia. ISO standard pipes show, that the highest EM 

loads in the range of 11 kN/m occur during the thermal quench and act on the inboard 

pipes supplying the blanket modules in the equatorial region.  

For the FEM calculations the following mechanical, thermal and EM loads parameters 

acting on the longest inboard and outboard manifold pipes have been considered: 

- sliding support every 60 cm, 

- 1 mm displacement in all directions applied at the bottom end of pipe 

(inaccurate assembling) 

- 4,4 MPa pressure acting on the internal surface of the pipe, 

- 50° C temperature difference between the pipe and the support, 

- 11 kN/m for the inboard and 5 kN/m for the outboard pipe (evenly distributed 

EM load for conservative calculation). 

 

In the results presented in Table 1 the maximum peak stresses are below the membrane 

stress limit Sm for the ITER standard grade 316 SS and the analyzed structure can be 

considered safe with margin. 

 

LOAD CASE 
Support 

spacing Inaccurate assembling 

(mm) 
PR TH EM EM ALL  

60 cm 

R
es

u
lt

s 

1,0,0 0,1,0 0,0,1 1,1,1 p =  
4.4 MPa 

∆T = 

50°C 

q =  
11kN/m 

q =  
5kN/m 

p, ∆T, q,  

[1,1,1] 

max 

usum 
(mm) 

1.03 1.1 1.00 1.8 0.60 10.1 1.4 - 10.9 
Inboard 

pipe max 

σeqv 
(MPa) 

33.6 21.2 6.1 44.7 45.0 28.6 73.0 - 89.8 

max 

usum 
(mm) 

1.0 1.0 1.0 1.7 0.43 7.2 - 0.8 6.8 
Out- 

board 

pipe 
max 

σeqv 
(MPa) 

14.6 19.4 9.4 37.8 38.7 35.0 - 83.9 136.3 

 

Table 1. FEM calculation results for the longest inboard and outboard pipes 



 

The main hydraulic requirement for the in-vessel cooling circuit is to keep the pressure 

drop low. For this reason the hydraulic analysis of 3 pipes with the highest pressure 

drop from the inlet part of manifold has been performed. The longest inboard and 

outboard pipe feeding the modules No.1 and No.18 respectively and the pipe with the 

highest mass flow rate of cooling water which feeds the outboard module No.15 have 

been analyzed. In the last iteration an inner diameter of 38,7 mm was considered.  The 

calculation results are shown in Tab. 2. 

 

Pipe for 

module No. 

Mass flow rate 

[kg/s] 

Average velocity 

[m/s] 

Pressure drop 

[MPa] 

1 6,365 5,64 0,078 

15 8,86 7,85 0,1122 

18 7,39 6,55 0,0944 

 

 

Table 2. Hydraulic analysis parameter and results 

 

 The computed values of cooling water velocity and pressure drop in the worst case 

pipes are similar to the average numbers agreed for the reference manifold design [2]. 

Due to the smooth curvatures of the streaming and the finally considered pipe inner 

diameter the pressure drop for both inlet and outlet branches is in the range of 20 % of 

the pressure drop limit of 1 MPa for the whole in-vessel circuit. Taking into account the 

suggested 0,5 MPa pressure drop in the cooling system of a BM, the proposed solution 

provides a substantial engineering margin. 

In spite of keeping the joggles in the routing of the pipes the proposed BCM system 

eliminates the disadvantages of the reference solution and the only impacts of the 

modified design on the other components are smaller and less complicated recesses 

behind the BMs and reduced number and size of manifold supports on the VV. 

 

3. Manifold attachment system 

 

To ensure precise positioning of the modified BCM onto the inner VV wall a special 

attachment system with an installation and removal sequence has been developed. The 

primary objective for the attachment system was to ensure that the maximal positioning 

inaccuracy for the CC does not exceed 1 mm in all directions [2]. Due to the welding 

tolerance for VV of ± 10 mm the attachment points for all the In-Vessel components 

have to be customized on the base of a laser survey, where a final precision of 0,2 mm is 

achievable.  

The proposed attachment system uses a number of supports along the pipe bundles for 

the manifold fastening onto the VV wall. The attachment sockets for the blanket 

electrical straps are used as the reference points for positioning of CCs during the 

attachment process. These components themselves have to be customized or 

corresponding attachment pads for them have to be fastened (screwed or welded) onto 

the VV wall. Fig. 3 shows the design of a single manifold support fastened to the 

attachment pad on the VV wall.  

 



 
 

Fig. 3 Manifold sliding support 

 

For the precise positioning of the CC a special CC holder has been proposed (refer to 

Fig. 4) with attachment interfaces to the neighboring sockets for the electrical straps.  

 

 
 

Fig. 4 Coaxial connector holder 

 

In addition, carrying frames have been designed to allow the attachment of the inboard 

and outboard manifold assemblies during installation. The carrying frames have 

identical RH gripping interface (size and position) to the BMs and so they can be used 

for the installation and maintenance of damaged manifolds using IVT (developed for the 

RH of the BMs). Fig. 5 illustrates such frame with the inboard manifold sector.  



 
 

Fig. 5 Carrying Frame with the inboard manifold assembly 

 

The installation sequence using the carrying frame is as follow: 

- the manifold sector with CCs and supports is mounted in the workshop on the 

carrying frame using bolts and CC holders, 

- this assembly is positioned correctly on the VV using guiding sheets on the 

frame that slide on the electrical strap sockets (ESS), 

- the CC holders are bolted to the ESS bringing the CCs into the correct position, 

- the two parts of manifold pipes (VV and UP parts) are joined using an orbital 

welder, 

- the manifold supports are bolted to the attachment pads on the VV, 

- the carrying frame is unscrewed from the CC holders and removed from the VV, 

- the CC holders are unbolted from the ESS and retracted from the VV. 

The described above attachment system and installation method ensure that the 

positioning of the CCs is accomplished with a precision not exceeding the required 1 

mm tolerance in all directions. 

 

4. Manifold remote handling 

 

The ITER BCM is a RH Class 3 component, which means that it is not expected to be 

replaced remotely however it should be possible. 

 The recommendations for the development of a modified manifold from the RH study 

[4] are as follow: 

- the manifold should withstand the worst foreseeable loads to exclude the need 

for its full replacement, 

- its design should utilize circular pipes with reduced number of fully accessible 

welds for the RH tools. 

The presented above design of the modified BCM fulfills all the recommendations and 

in addition it is designed to facilitate RH replacement. The preliminary study shows that 



the RH replacement for the full length manifold sectors would require a maneuverability 

of the currently developed RH equipment (the in-vessel transporter, IVT) that is 

probably not achievable. Therefore, the manifold can be designed in two poloidal 

segments which will allow simpler trajectories for the IVT manipulator. 

 

 

 
  

 

Fig. 6 RH study of the inboard manifold sector in the VV and transfer cask  

 



5. Conclusions 

 

The modified design of the BCM developed in Europe utilizes separate elastic seamless 

pipes to supply of BMs with cooling water. The pipes form bundles located in existing 

recesses behind the BMs and are mechanically attached to the inner wall of the VV 

using sliding supports. The size and geometry of the pipes was determined to fulfill the 

hydraulic requirements and to cope with the worst load cases. The proposed attachment 

system with suitable equipment ensures precise positioning and proper fastening of the 

manifold onto the VV wall. In the very unlikely case of the manifold leakage the 

currently planned RH equipment can be used for the replacement of the damaged BCM 

sectors. Utilizing of standard seamless pipes contributes to keeping the fabrication costs 

down. 
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