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Abstract

A time-dependent, hierarchical multi–scale model to simulate reactive-diffusive transport

in a 3-dimensional, porous structure, using a combination of molecular dynamics (MD),

kinetic Monte Carlo (KMC) and Monte Carlo diffusion (MCD) methods has been devel-

oped. The parameters that are passed from the models at the lower spatial and temporal

scales (MD,KMC) to those at the higher scales (KMC, MCD respectively) are identified.

The advantages and disadvantages of the different methods are discussed with respect to

reactive-diffusive transport simulations of atoms in porous 3D structures. The model is

illustrated by simulating hydrogen transport, reactions, inventory and re–emission from

a porous hydrocarbon layer.
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1 Introduction

Study and quantification of reactive diffusive transport of atoms in a porous media has

innumerable applications like:

• hydrogen recycling and inventory in fusion plasma facing materials [1],

• hydrogen storage for fuel cells [2],

• diffusion along grain boundaries and defects by atomic species [3],

• tritium recovery from porous ceramic pebbles in a solid breeder reactor blanket [4],

• growth of atoms deposited on a substrate [5], etc.

In order to understand the reactive–diffusive transport of atoms in a porous media, and

to quantify it, a multi–scale model has been developed [6–11]. The model is a hierar-

chical multi–scale model, wherein simulations at the lower scales or experimental results

wherever available are used as inputs to the simulations at higher scales. It is a very

general method and is widely applicable for atomic and molecular reaction–diffusion in

porous geometries. The simulation methods used are molecular dynamics (MD) [12,13] at

the atomic scales (few nanometers in length, hundred pico–seconds in time and around
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a thousand atoms), Kinetic Monte–Carlo (KMC) [14] at the meso–scales (few tens of

microns in length, and time scales from picoseconds to a few seconds for millions of dif-

fusing particles) and a combination of KMC and Monte–Carlo Diffusion (MCD) at the

macro–scales [15]. We demonstrate a method to couple KMC and MCD as part of our

macro–scale simulations.

In the next section a multi–scale model for reactive-diffusive transport in porous geometry

will be presented. In sections 3–6 various computational aspects in implementing the

model are presented with an example of reactive–diffusive transport and inventory of

hydrogen in tokamak co-deposits. Finally we present the summary and conclusions.

2 The multi–scale model

The multi–scale scheme developed belongs to a class of multi–scale methods known as

heterogeneous multi–scale methods [16], wherein different simulation methods are used

at different scales. The larger scales take inputs from modeling at the lower scales and

also from experiments. The scheme is illustrated in Fig. 1. At the bottom left side of Fig.

1, PorousGeometry represents an algorithm to create a porous medium of specified

void–fraction and sub–structure sizes using a statistical distribution for the sub–structure

size (Section 3). The substructures can also be given an orientation. Using this algorithm

granules separated by voids or randomly oriented crystallites separated by micro–voids

can be generated.
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At the microscopic scales, molecular dynamics (MD) is used to simulate atomic diffusion

in crystallites. The length scale for this process is a fraction of a nanometer and the time

scale is a few hundred picoseconds and is limited to a few hundreds of atoms. Reactive-

diffusive atomic transport is represented as a thermally activated diffusive process with

characteristic jump attempt frequencies (ωo), migration energies (Em) and jump lengths

(L). The minimum distance of approach of two diffusing atoms which ensures molecule for-

mation, Ro, is used to parametrize reactions. This is known as the Smoluchowski boundary

condition [17,18]. In Section. 4.3 we will illustrate the method of parametrizing diffusion

such that the parameters can be used to scale up in a Kinetic Monte–Carlo (KMC) ansatz.

Due to limitations in number of atoms that can be simulated using MD, we use Kinetic

Monte–Carlo (KMC) [14,19] to simulate reactive–diffusive transport in a granule. In or-

der to scale up and model trans–granular diffusion (TGD), the internal structure of the

granule must be taken into consideration. The granule consists of randomly oriented crys-

tallites separated by micro–voids. The Kinetic Monte Carlo (KMC) scheme, (represented

by DiG TGD in Fig. 1), uses

• the parametrized MD simulation results (ωo, Em, L and Ro) at the microscale to simulate

the transport inside randomly oriented crystallites,

• experimental results for thermally activated processes at the microvoid–crystallite in-

terfaces (MCI) and for recombination and dissociation reactions.
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• simple line of sight transport for atoms within the voids.

KMC is best suited to model reactive–diffusive transport with diverse migration energies

corresponding to different processes. This yields the trans–granular–diffusion coefficient

DTGD and the rates of various reactions RTGD. The mesoscale simulation is described

in Section 5.2 where hydrogen transport and inventory in porous hydrocarbon deposits

found in fusion machines is studied.

DTGD and RTGD, from the mesoscale simulations is used to implement reaction–diffusion

in the granules using a Monte-Carlo diffusion (MCD) ansatz [15] at the macro–scales.

KMC is used to model surface diffusion, adsorption–desorption, trapping–detrapping,

dissociation and recombination at the void–granule interface (VGI). A novel method of

coupled MCD in granules, and KMC in voids and the VGI, is implemented at the macro–

scales (DiG Bulk in Fig. 1) for the macroscale simulations. This is described in Section

6.1.

3 Algorithm used to produce the 3D porous structure

An algorithm to generate a 3-D rectilinear parallelepiped with a specified void fraction

and sub–structures (granules/crystallites) separated by gaps (voids/micro–voids) is pre-

sented. The algorithm allows specification of a mean size, random orientation (to model

crystallites) and a degree of smoothness for the sub–structures.

The idea behind the algorithm is inspired by the one presented by Graziani [20] for
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creating mixtures of alloys. A porous structure can be described by specifying regions of

the volume that are occupied by sub–structures (granules or crystallites) and gaps (voids

or micro–voids). The volume is broken down into equal sized cubes (hitherto called cells

with dimension CLx, CLy and CLz in X, Y and Z directions respectively). The cell size

must be chosen such that it is much smaller than the smallest structural detail that needs

to be simulated. Each cell is assigned a value, OccFlag equal to 0, 1, or 2 depending on

whether it lies in a void, bulk or surface respectively. The Poisson distribution is used

to specify the mean size of a sub–structure that has a random shape and a mean width.

The smoothness of the sub–structure is adjusted by accepting only those values from

the sampled Poisson distribution for adjacent planes, that lie within a certain acceptable

length difference. If the sub–structures are crystallites, orientations are specified using

Euler angles [21].

Fig. 2 shows a porous structure of a micron sized cube created with the above scheme

using a mean element–size of 10−7 meters and a mean cell–size of 5 × 10−8 meters for

a void fraction of 10 %. The two perpendicular planes cutting across the volume is to

give an idea of the internal structure with the differently shaded regions on the planes

signifying unoccupied cells (micro–voids in this case).

In the above description of the porous geometry, it is trivial to identify the cell in which

a particle is present from the X, Y, Z co–ordinates of the particle: Let i, j, and k, be

the cell indices that can take values from 0 to nx − 1, 0 to ny − 1, and from 0 to nz − 1

respectively. The cell indices i, j, k, for a particle at (rx, ry, rz) is given by the greatest in-
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teger less than or equal to rx/CLx, ry/CLy, and rz/CLz, respectively. The cell numbering

convention followed is such that the x index i, goes from 0 to nx − 1, for each y index j,

which goes from 0 to ny − 1. This numbering in the X-Y plane continues for each z index

k, which goes from 0 to nz − 1. In such a numbering scheme, a particle with cell indices i,

j, k, has a cell number nx × ny × k + nx × j + i. The cell number gives information about

the local structure (occupied, unoccupied and orientations), which decides the transport

behavior of the particle.

Using such a method to describe a porous structure with volume Lx × Ly × Lz, the

region (voids, bulk or surface) where the particle resides is quickly obtained. The RAM

requirement when using the above description scales as Lx/CLx × Ly/CLy × Lz/CLz

since the geometry details have to be stored in the RAM for quick access. The volume

simulated must be chosen such that it is sufficient to represent a sample bulk and the

cell–sizes must be chosen such that the smallest relevant microscopic structural detail is

simulated. This requirement can at times lead to maximum RAM requirements of 500 GB

for some graphite structures and such a description of structure needs to be optimized;

in many cases however, realistic simulations which lead to new physics insights can be

carried out with 1-2 GB RAM on a single PC with the above description of structure.

We now describe the various methods used in the multi–scale model using hydrogen

diffusion and inventory in porous co–deposited layers of tokamaks as an example. The

deposits on the leading edge of the neutralizer plate of Tore Supra were analyzed [22]
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using adsorption isotherm measurements and electron microscopy. It was found that the

neutralizer deposits show an ovoid shape structure. They consisted of small graphite

like crystallites of size 2–4 nm and 7–9 nm parallel and perpendicular to the graphene

planes respectively. The porosity of these deposits was multi–scale in nature consisting of

micropores (lower than 2 nm, ∼ 11%), mesopores (2 and 50 nm, ∼ 5%) and macropores

(more than 50 nm).

4 Molecular dynamics simulations at the micro–scales

Molecular dynamics (MD) [12,13] is used to study atomic transport in crystalline materi-

als. As a first approximation, we use the Brenner potential [23] with Nordlund’s extension

[24] to simulate hydrogen isotope diffusion in crystalline graphite.

4.1 Setting up the simulation

The crystalline graphite samples are prepared by initializing 960 carbon atoms at the

graphite crystal locations with 10 unit cells along the X direction, 12 along the Y direc-

tion and 2 in the Z direction of the graphite crystal. This results in 4 graphene layers as

shown in Fig. 3 (the graphene layer lies along the X-Y plane with the Z direction being

perpendicular to the graphene layers). The initial velocities are set by using Gaussian

distributed random numbers multiplied by a mean square velocity given by
√

2kBT/m in

each of the three directions and making sure that the system has total momentum equal

to zero. The temperature and pressure are maintained by the Berendsen temperature and

8



pressure control [25]. We carry out simulations at zero pressure at the temperatures of

interest so that the atomic positions relax to their minimum potential energy states con-

sistent with the interaction potential used. A single hydrogen atom having zero velocity

is introduced in between the graphene layers of a graphite crystal so produced. Periodic

boundary conditions in the three directions are applied. The temperature of graphite was

maintained at 150K, 300K, 450K, 600K, 750K and 900K and the trajectory of the inter-

stitial hydrogen atom was written out for analysis of the diffusion co–efficient as described

in [6].

4.2 Observations

We observe that the interstitial does not show any cross graphene layer diffusion at any

of the graphite temperatures simulated. The position of the interstitial is output at every

time step of the MD code and the trajectory is analyzed to verify the diffusive nature of

the hydrogen isotope transport. Fig. 4 shows hydrogen interstitial trajectories (in yellow)

at 150K and 900K of the graphite crystal. The view is along the Z axis and all atoms

having the same color are carbon atoms belonging to the same graphene layer. One can

easily identify the hexagonal structures typical of the graphene layer. Diffusion with a

short step-size is seen at all target temperatures, with a long step-size diffusion making

its appearance at higher temperatures (≥ 450K).

The hydrogen isotope equilibrates with the graphite crystal in a couple of picoseconds. It

moves around in the potential well of the vibrating carbon atoms and makes a jump from
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one potential well to another depending on the migration energy barrier and the graphite

temperature. It is seen that typically 100 such jump events occur during the course of

a 100 picoseconds simulation at 150K and more than 400 jumps occur at 900K. This is

sufficient to provide equilibration and statistics to analyze the interstitial diffusion in the

graphite crystal.

4.3 Scaling up to meso–scales

Analysis of the diffusion must be done from a point of view of scaling up in time, length and

number of particles simulated. There exist various methods to overcome the limitations

of MD (see [26] for a review of these methods). Molecular dynamics gives a microscopic

insight into the physical process of diffusion of a hydrogen isotope in crystalline graphite.

The hydrogen isotope vibrates in a potential well formed by the vibrating carbon atoms

and wanders in the X–Y plane which is the plane parallel to the graphene layers (Fig.

4). During the vibrations it exchanges energy with the vibrating carbon atoms around it.

At some point in the simulation, due to interaction with its neighboring atoms, it gains

enough energy to exit the potential well it is trapped in and enters a new potential well at

a new location within the graphite crystal. Most of the simulation time is spent in these

vibrations in a potential well. Note that the hydrogen isotope also loses information about

its entry pathway into the potential well within a few vibrations. Its exit route from the

potential well is independent of its entry path. This implies that each consecutive jump

is independent of its past history. Therefore if we can reformulate the above diffusion

phenomena as probabilities for jumping out of the potential traps, with probable lengths
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and directions for the jumps, we can scale up a lot in the time and in the number of

particles simulated using Kinetic Monte Carlo (KMC) [14] described in the next section.

We obtain the diffusion coefficient of the hydrogen isotope by using the Einstein relation:

D = lim
t→∞

1

2dt
[r(t) − r(0)]2 (1)

where D is the diffusion coefficient, d is the dimensionality of the system and < r(t) > is

the position of the atom at time t. This is proportional to the slope of the mean square

displacement of a single particle undergoing Brownian motion at the long time limit and

is also known as the ”tracer diffusion coefficient” [27].

Specifically what is needed for scaling up is to characterize the diffusion in terms of the

jump attempt frequency ωo, the migration energy Em, and the jump distance L.

ω = ωo e
−Em
kbT (2)

where, ω is the jump frequency (the frequency with which the interstitial jumps a distance

L in a specified direction), and kB is the Boltzmann’s constant. Such a characterization

assumes that the diffusion process is Arrhenius like

D = Do e
−Em
kbT (3)

with Do = wo × L2.

Analysis of the hydrogen isotope trajectories as described in [6] suggest the existence of

two different diffusive processes, one with a low ωo = 6.8 × 1012s−1, that varies as the

11



inverse square root of isotope mass, and small Em = 0.015eV with short jump lengths

(L ≃ 2.5 − 3 Å), and the other with a higher ωo = 2.7 × 1013s−1, independent of the

isotope mass, larger Em = 0.27eV and longer jump lengths (L ≃ 10 Å). Note that such a

parametrization fits well with our observations of short and long jumps in the MD simu-

lation.

5 Meso-scale simulations using Kinetic Monte Carlo

Fichthorn and Weinberg [14] established that Monte Carlo simulations can be used to

simulate the dynamics of a Poisson process if

• Transition probabilities between different states of the system are created such that

a dynamical hierarchy of transition rates to correctly model the microscopic barrier

crossings (events) is established;

• Detailed balance is satisfied at equilibrium, which means that all the equally probable

eigen states of a system at equilibrium can be accessed with the same probability;

• The various events are independent, and

• Time increments are calculated appropriately as defined by Eqn.4.

∆t = − ln(U)
∑

i niri

(4)

where, ni is the number of atoms capable of undergoing a transition labeled i, U is a

uniform random number between zero and one, and ri the transition rate.
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The time calculated in this manner corresponds to the real time evolution of the system.

In principle the time evolution of the system can be followed self–consistently. But com-

putationally this is efficient only when the different possible thermally activated processes

do not have vastly different migration energies.

5.1 The Bortz-Kalos-Lebowitz algorithm

All thermally activated processes taking place in the system are characterized by their mi-

gration energy, Em. The number of detrapping events from the trap follows an Arrhenius–

like relation (Eqn. 2). Let there be j possible jumps for a particle belonging to the species

i. let ωj
i be the jump rate of the jth jump and ni be the number of particles, then one can

define a cumulative rate, Ri, where

Ri =
NJumps

∑

j=0

niω
j
i

In the Bortz-Kalos-Lebowitz (BKL) algorithm [19,28]during each simulation step a parti-

cle is picked with a probability proportional to its jump rate using the following procedure:

(1) Initialize the system at t = 0

(2) Form a list of all the rates rj of all possible transitions (jumps) in the system
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(3) Calculate the cumulative rate:

R =
NSpecies

∑

i=0

Ri =
NSpecies

∑

i=0

NJumps
∑

j=0

niω
j
i

(4) Get a uniform random number U ∈ [0, 1].

(5) Find the event to carry out, i by finding the i for which

Ri−1 < UR < Ri

(6) Carry out event i.

(7) Check for reactions and update sources and sinks.

(8) Get a new uniform random number U ∈ [0, 1]

(9) Update the time with t = t + ∆t where

∆t = − ln(U)

R

and update the KMC step count

(10) If maximum number of KMC steps is not reached go to step (2), else exit.

The above algorithm allows us to simulate reaction–diffusion of millions of particles dif-

fusing in a porous geometry. We initialize the atomic positions (step-1). Step 2-5 help in

picking an atom with a probability proportional to its jump rate. Step 6 involves imple-

menting what happens to an atom once it is detrapped. For example in the simulated

MD problem of diffusion in a graphite crystal, the detrapped atom can move in a ran-
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dom direction in the 2D plane of the crystallite by a distance equal to its jump length.

Step 7 involves implementation of the Smoluchowski boundary condition [18] to simu-

late recombination. This is achieved by checking the distance between the atoms. If the

distance between two atoms gets smaller than a certain distance ro they recombine to

form a molecule. This is equivalent to having a step potential well for interaction of the

species at a radial distance ro. Such boundary condition is valid for the cases with strong

binding energies (like hydrogen recombination or hydrogen trapped at the open bond site)

where reflection becomes a rare event once the atom gets closer than a cutoff distance

[17]. Step 9 updates the time and step 10 is a check for stopping the simulation. Using

the above algorithm, we have verified the parametrization of the MD simulations and also

with analytic formulas in the pure diffusion limit [6,8].

We want to implement a continuous influx of hydrogen atoms from the plasma incident on

the co-deposits. The average number of atoms introduced per second is: (S×Γ×Lx×Ly),

where S is the sticking coefficient of the incoming atoms for the given surface, Γ is the

incident flux and Lx × Ly is the surface area of the sample. All thermally activated

processes and the incident flux of atoms too can be viewed as Poisson process and the

BKL algorithm can be used to decide which event will happen in the given ∆t. Particles are

introduced in the system according to a Gaussian distribution with a range of penetration

of 7.5 × 10−9 m and a standard deviation of 6.0 × 10−9 m along the z–direction. For high

fluxes seen in fusion plasma facing materials (1020 − 1024 H m−2s−1) a lot of particles are

introduced into the system using this ansatz. This leads to a high cumulative rate and

eventually very small ∆t (Eq. 4). High migration energy processes like detrapping does
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not occur and it becomes very difficult to sample the high migration energy events within

the possible simulation times. We therefore do not treat the incident flux of particles as

a Poisson process within the BKL Algorithm. Based on the thermally activated events

we calculate the cumulative rate and find the ∆t and introduce ∆N particles in the

simulation given by

∆ N = S × Γ × ∆t × Lx × Ly (5)

A quasi steady–state is said to be achieved when the incoming flux of the ions is equal to

the outgoing flux.

The above scheme used to make the problem computationally tractable has one disad-

vantage. For problems that have a wide variation in the activation energies, the higher

activation energy events can occur when the species that contribute to the low-activation

energy events become absent. Occurrence of such high activation energy events (rare

events) leads to a large value for ∆t. This implies that the number of particles introduced

during the occurrence of a rare event is unrealistically large and the problem may not

be computationally tractable due to large RAM (Random Access Memory) requirements.

Introducing a large number of particles is also unrealistic because low activation energy

events can now take place preferentially even if a few particles are introduced. To over-

come this problem, the total number of particles that are introduced during the rare event

case is distributed over many steps (e. g. 100 particles per simulation step). In this work

we have only diagnosed quasi steady–state quantities where the measured quantities are
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practically constant over a period of time. The number of particles introduced in such

cases must be varied to verify the repeatability of results.

5.2 Example of KMC simulation at the mesoscales

Based on the experimental structural analysis [22], the hydrogen retention and re-emission

of the deposits found on the leading edge of the neutralizer (named N-LE) of Tore Supra

is simulated. The typical plasma flux near this region is about 1016 − 1017 D+cm−2s−1

and the temperature can reach up to 1500 K. The incident ion energy near the neutralizer

region is typically 50 – 300 eV.

In order to scale up, we must now include the realistic structure of porous graphite. Addi-

tional physics mechanisms like trapping/detrapping at traps, recombination, dissociation,

etc of the hydrogen isotopes must be added to extend the model to simulate TGD of

hydrogen isotopes. The input parameters have been taken from molecular dynamics sim-

ulations and experiments. The following processes have been included into the model for

a hydrogen atom inside a granule of graphite.

• Diffusion within the crystallites: short (0.015 eV , 0.38 nm, 6.8·1012 s−1) or long (0.27 eV ,

0.1 nm, 2.74 · 1013 s−1) jumps [6,10].

• Surface diffusion (0.9 eV, 3.46 nm, 1.0 · 1013 s−1) [1,7,29]

• Trapping (based on predefined trap site distribution or trapping probability)

• Detrapping (2.6 eV, 0.3 nm, 1.0 · 1013 s−1) [1]

• Going into the bulk (2.67 eV, 0.3 nm, 1.0 · 1013 s−1) [30]
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• Desorption (1.91 eV, 0.2 nm, 1.0 · 1013 s−1) [31]

• Recombination (Not a thermally activated process. Treated using Smoluchowski bound-

ary condition [17,10,18]).

A hydrogen molecule can undergo following processes

• Diffusion (0.06 eV, 0.2 nm, 1.0 · 1013 s−1)

• Dissociation (4.48 eV, 0.2 nm, 1.0 · 1013 s−1)

• Desorption (H2 is chemically inactive species, so it gets desorbed as it reaches the

geometrical surface)

• Detrapping (detrapping of two trapped hydrogen atoms close enough to form molecule):

(2.3 eV , 0.4 nm, 1.0 · 1013 s−1) [32].

5.3 Setting up the simulations at meso–scales

At meso–scales, the geometry was implemented in our simulations by creating a porous

structure of 3× 10−7 m, 3× 10−7 m, 1× 10−7 m in X, Y and Z direction respectively, rep-

resenting a typical granule with periodic boundary conditions in X and Y direction. The

basic cell size was 1 × 10−9 m. The sample was composed of micropores having 11% void

fraction with void size 1× 10−9 m, 1× 10−8 m, 1× 10−8 m and mesopores having 5% void

fraction with void size 1 × 10−8 m, 1.8 × 10−8 m, 1.8 × 10−8 m in X, Y and Z directions

respectively. Out of the total 9 × 106 cells in the simulation box ∼ 21% are surface cells.

We are interested in the analysis of thermalized hydrogen. The ion beam energy we have

considered in our simulation is 300 eV. We approximate the profile of the ions given by
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TRIM calculations to a Gaussian distribution with a range of penetration of 7.5 × 10−9 m

and a standard deviation of 6.0 × 10−9 m along the z–direction. The deposits have 0.75

% active carbon sites, therefore, in our simulation, every time an atom jumps, a trapping

probability of 0.0075 is used.

A 2D schematic view of such a structure is shown in Fig. 5. First the simulations are done

using KMC at the meso–scale where only one granule containing micro–pores and meso–

pores is simulated. Then the diffusion coefficient and the recombination rate calculated at

the meso–scales is used to scale up to macro–scales where a bunch of granules separated

by macrovoids are simulated using a Monte Carlo Diffusion method described in Section

6.

5.4 Parametrizing results at the mesoscopic length scales

Haasz et al. [33] treated recombination as thermally activated process and have parametrized

it using the classical equation for recombination

κss = 8π∆sRssNc. (6)

where κss is the recombination rate, ∆s is the surface diffusion coefficient, Nc is the atomic

density of the graphite crystallites (of the order of 1029 C/m3) and Rss is the radius of

recombination. Deusing et al. [34] reported Rss ∼ 0.2 nm. In the KMC parametrization

presented here recombination is not treated as a thermally activated process. The tem-
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perature dependence on recombination rates comes through the diffusion coefficient of

atoms, which is temperature dependent.

It has been observed that the recombination rate depends on the internal structure of the

sample and is facilitated by the higher internal porosity, along which the atoms can diffuse

and eventually recombine to form molecules. Eq. 6 does not include any dependence of

the recombination rate on the internal structure of the sample. In the present work the

recombination process was parametrized for a given internal structure of the sample at

the meso–scale and was used as an input parameter for scaling up to macro–scale.

In order to quantify the recombination rate, each particle is followed and assigned an

average time. When a recombination event takes place the maximum of the times of

the two recombining particles is taken (trecomb., the time spent by the particle in the

system before it recombines). The quantity 1/trecomb. gives the recombination rate for one

recombination event. Similar procedure is followed for the other recombination events too

and finally an average is taken of all 1/trecomb.’s. This quantity was used as the average

recombination rate (κss).

Fig.6 shows the recombination rate for different incident fluxes ranging from 1017 H/m2/s

(ion beam experiments) to 1024 H/m2/s (plasma fusion devices) as a function of target

temperature. Note that for the lower fluxes, there is a peak recombination rate and this

peak shifts to higher temperatures as the flux increases. It is also seen that on an average,
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the recombination rate increases with increasing flux. At higher incident fluxes there is no

peak. At a given incident flux, the density decreases with temperature tending to decrease

the recombination rate, whereas, the diffusion coefficient increases with temperature tend-

ing to increase the recombination rate. This balance is what leads to a maximum in the

recombination rates as the temperature is increased [35].

6 Scaling up to Macroscales

A schematic for bulk diffusion in porous graphite is shown in Fig. 7. Using the algorithm

described in Section.3, a typical bulk co–deposit structure with macropores is generated.

The orientations of the sub–structures are switched off in this case. The incident hydro-

gen deposition profile, damage profile, etc., can be obtained from TRIM, TRIDYN [36,37]

simulations which simulate the momentum transfer processes in a isotropic solid. At the

end of the TRIM and TRIDYN simulations, the incident atoms lose their energy and

thermalize with the target. Our simulations start from the point where the momentum

transfer processes end. The thermalized hydrogen atom positions are initialized to have

a uniform distribution along X and Y. Along Z, a Gaussian distribution with a specified

standard deviation, centered at a depth R (mean penetration depth) is used to distribute

the hydrogen atoms (Fig. 7). The particles are then classified as belonging either to the

internal surface facing a macropore or belonging to the bulk of the co–deposit, depending

on their locations within the structure.
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In order to simulate a sample having macropores the system dimension should be sev-

eral micro–meters. Using KMC alone in this case is very inefficient, therefore, KMC has

been coupled with Monte-Carlo Diffusion (MCD). A Monte Carlo diffusion algorithm

[15] (briefly described in Section. 6.1) is implemented for bulk diffusion in co–deposits.

MCD method is very fast but it needs diffusion coefficients and reactions rates as input.

Therefore, first, at meso-scale KMC is used to calculate diffusion coefficient DTGD and

reaction rates within a granule (bulk co–deposit having only micropores and mesopores).

This was done in Section 5. Then at macroscale this information is used as input in

MCD algorithm. Fig. 8 shows the coupling scheme of KMC and MCD at macroscale. The

atoms at the void–granule interface and within the voids are transported using KMC,

which also provides the time step ∆t for the MCD. The diffusing particles in the voids

recombine if they come closer than a minimum distance. Particles reaching the surface

have a probability of being desorbed. This is also handled within the KMC algorithm. For

transport and reactions within the granules MCD is used. Recombination rate depends

on the incoming flux, temperature and the internal structure of the sample. The diffusion

coefficient depends on the sample temperature and internal structure. Therefore the input

parameters for scaling up to macro–scales are taken from the meso–scales for a given flux,

temperature and the internal structure.

6.1 Brief introduction to Monte Carlo–Diffusion simulation

The Monte–Carlo diffusion methods are efficient when a large number of dimensions

or complex geometries are involved. It is especially suitable to solve diffusion of a large
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number of particles in a complex geometry with independent jumps classified as a standard

Wiener process in literature [15].

The fluid continuum diffusion equation is given by

∂n

∂t
= ∇(D∇n) + S (7)

where n is the density, D is the diffusion coefficient of the particles, t is the time variable,

S is the sources or sinks in the system during the diffusion, and ∇n stands for the density

gradient. n is determined by the distribution of the N atoms in the simulation volume.

For a known value of D, the above diffusion can be represented as a random walk of the

N particles with the jump size given by

∆r =
√

2 D ∆t ζ (8)

where ∆t is the time step and ζ is sampled from a random number distribution satisfying

< ζ > = 0 and < ζ2 > = 1 (we use a Gaussian distribution for ζ). This representation

is valid for D
∇D

>>
√

2 D ∆t. Interactions are included by increasing or decreasing the

number of particles diffusing at each time step by a fraction e−
∆t
τ where τ is the charac-

teristic time for the interaction to occur.

The time step ∆t calculated within the KMC scheme is used to decide the number of

recombination events (NRecomb) that should take place in the time ∆t

NRecomb = κss × ∆t. (9)
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MCD algorithm is used to carry out particle transport and reactions (recombination)

within the granules (using the diffusion coefficient and reaction rates obtained at meso–

scale). The following algorithm is used to implement this concept.

(1) Input D, ∆t, NRecomb, NSteps (number of MCD steps)

(2) Initialize positions of the N particles and set t = 0;

(3) Set Nnow = N.

(4) Loop over NSteps

(a) Loop over the Nnow particles

(b) Sample a Gaussian distribution, distributed around 0, with a variance = 1, to

obtain ζ and use Eqn. 8, to obtain the jump length (∆r) of the particle.

(c) Sample points uniformly distributed on a sphere of unit radius to obtain a di-

rection for the jump in 3D. Each sampling results in 3 components, say dx, dy

and dz such that dx2 + dy2 + dz2 = 1.

(d) Change the particle position rx = rx + ∆r × dx, ry = ry + ∆r × dy, and

rz = rz + ∆r × dz.

(e) Choose 2 × NRecomb particles randomly and carry out NRecomb recombination

events

(f) Update the number of particles of different species

(g) End loop

(5) t = t + ∆t

(6) End loop over NSteps
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6.2 Setting up the simulation at macro–scales

At macro–scales, the geometry was implemented in our simulations by creating a porous

structure of 2× 10−6 m, 2× 10−6 m, 2× 10−6 m in X, Y and Z direction respectively. The

basic cell size was 1 × 10−8 m. The target is composed of macropores having 10% void

fraction with void size 1 × 10−7 m, 1 × 10−7 m, 6 × 10−7 m. For the hydrogen atom and

molecule transport, KMC was used in the voids and MCD was used in the co–deposit

bulk. Periodic boundary conditions are applied along the X and Y directions, which are

the directions parallel to the target surface. Along the Z direction, which lies perpen-

dicular to the surface, the structure is replicated for Z > 0. The target surface lies at

Z = 0 and faces the plasma located in the negative Z direction. Fig. 9 shows the void size

distribution in X, Y and Z directions created from the simulation.

6.3 Results of the macroscale simulation

Fig. 10 shows the retained amount of hydrogen at meso–scales (sample having micro–

pores and meso–pores together) and macro–scales (sample having macropores) from the

simulations of typical structures corresponding to Tore Supra deposits subjected to flux

of 1020 H/m2/s. It must be noted that the fraction of hydrogen retained by micropores

and mesopores till 1600 K is ≃ 90% whereas for macropores it is around 60 %. Fig. 11

view of the X–Y plane located at Z = 5.5 × 10−8 m. All the atoms having their Z-position

between 50 to 60 nm have been projected on the X–Y plane. It clearly shows that the
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hydrogen which is released from the mesopores get trapped at the macropore surfaces.

This gives rise to an internal inventory (or deposition) on macropore surfaces. This value

is in good agreement with the experiments where during long pulses, particle balance

gives evidence that a constant fraction of the injected gas (typically 50% of the injected

fuel) is retained in the wall for the duration of the shot, showing no sign of wall saturation

after more than 6 minutes of discharge [38].

Fig. 12 shows the hydrogen release behavior for mesopores and macropores. From the

total released amount the fraction contributed by atoms and molecules is plotted on the

Y–axis. The retained amount for these two cases are given in Fig. 10 and one can find

for each temperature the exact amount of hydrogen released from the retained amount

(100 % − retained amount (%) ). At meso–scales, the hydrogen release curve follows the

experimental results of [39] and the model calculation of [33], i.e. the released flux is mainly

molecular hydrogen at lower temperatures and atomic hydrogen at higher temperatures.

At macro–scales, all the hydrogen atoms which are distributed on the macropore surfaces,

are trapped (high trapping probability of 0.0075) or they diffuse deep into the bulk. The

hydrogen atoms which land up in the granules diffuse within it (MCD, using TGD coeffi-

cient) and get recombined to form hydrogen molecules (determined by the recombination

rate calculated at meso–scales). As explained above, all the hydrogen released as atoms

from the mesopores get trapped again at the macropores surfaces. The hydrogen which is

released in the molecular form from the mesopores, due to its chemical inactivity is able

to reach the geometrical surface and get released from there. Therefore, at macro–scales
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even at very high temperatures hydrogen is released mainly in the molecular form.

7 Limitations and future directions

As discussed in previous sections for a system where different possible thermally acti-

vated processes have comparable migration energies, the time can be calculated using

Eq. 4 and a Global time for the system can be calculated with good statistical accuracy.

Note that the probability of occurrence of an event is given by ωj = ωj
o e

−E
j
m

kbT and

even small differences in the migration energy, Em, can lead to huge difference in the

occurrence probability of the events and the resulting ∆t. In that case the definition of

a Global time for the system where the high migration energies (or rare events) are also

sampled statistically well enough needs very long computational run time. So, if one aims

to follow the time evolution of the system, the inability to define a Global time for a

system having very different migration energies is a major limitation of KMC in such a

scenario. However other steady–state quantities can be calculated with sufficient accuracy.

As discussed before, in the present work the reactions rates calculated at the meso–scales

for a given internal structure, flux and temperature were used to scale up. In future,

another good approach could be to parametrize the reaction rates in terms of the local

number density of the atoms and the diffusion co–efficient (the later presently includes

the effect of the temperature and the internal structure).
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8 Conclusion

We have developed a multi–scale scheme to simulate reactive–diffusive transport in a

porous media. The model reproduces experimental results for hydrogen retention and re–

emission in porous co–deposits in fusion machines and gives new insight into the effect of

internal structure on the transport of hydrogen. New methods of scaling up the diffusion

and reactions from micro–scales to meso–scales to macro–scales have been devised. To our

knowledge this is the first time a KMC and a ’diffusion MC’ ansatz has been combined,

with the KMC deciding the time step for the simulation. An algorithm to create a porous

geometry has been developed. It needs further development to be able to produce specific

properties like tortuosity of the pores and the BET surface area of the porous media being

modeled. We have till now scaled up in lengths and time to fusion relevant values and can

also accommodate fusion relevant densities and fluxes.
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Fig. 1. Multi–scale schematic: The porous geometry creating ansatz on the bottom left side can
be used to create both, granules separated by voids and crystallites separated by micro–voids;
molecular dynamics (MD) is used to study hydrogen transport in crystallites; DiG TGD is the
version of the multi–scale code that handles trans–granular–diffusion (TGD) and DiG Bulk is
the version that handles bulk diffusion; Note that various parameters (explained in the text) are
transferred from MD to DiG TGD and from DiG TGD to DiG Bulk.
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Fig. 2. Porous Graphite structure created using the algorithm described in Section 3.
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Fig. 3. Initial configuration of hydrogen in crystal graphite used in our MD simulations.
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(a) (b)

Fig. 4. Interstitial trajectory at (a) 150 K, (b) 900 K. from MD.
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Fig. 5. Schematic of the macro–scale geometry.
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Fig. 6. Recombination rates from meso–scales as a function of temperatures for different incident
fluxes.
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Fig. 7. The Bulk simulation model schematic.
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Fig. 8. Macroscopic bulk diffusion scheme (Note that it takes DTGD as input from the simulations
at the mesoscale).
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Fig. 9. Void size distribution for the macropores created from the simulation.
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Fig. 10. Retained amount of hydrogen for mesopores and macropores. The incident flux was
1020 H/m2/s.
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Fig. 11. A view of the X–Y plane located at Z = 5.5 × 10−8 m. The white, grey and pale colored
regions correspond to void, surface and the bulk of the graphite respectively. Open green circle:
adsorbed hydrogen atom, red dots: trapped hydrogen atom, cyan dots: H2 molecules in the
crystallites, magenta: H2 molecules in the void and blue dots: two trapped hydrogen atoms close
enough to form a molecule.
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Fig. 12. Released amount of hydrogen atoms and molecules as a function of temperature for
mesopores and macropores.
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