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MANY FACES OF D-BRANES: FROM FLAT SPACE, VIA

ADS TO PP-WAVES∗
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14476 Golm, GERMANY

We review recent studies of branes in AdS× S and pp-wave spaces using effective

action methods (probe branes and supergravity). We also summarise results on an
algebraic study of D-branes in these spaces, using extensions of the superisometry
algebras which include brane charges.

1. Introduction

Since the discovery in 1995, D-branes have become a center of intensive re-

search of the string theory community. In this process a lot has been learnt

about various manifestations of these objects. It has become clear that,

depending on the regime in which one works, D-branes can be described

using a variety of techniques. In situations with a small number of branes

and weak string coupling, methods of open string conformal field theory

are appropriate. These techiques however, have been applied mainly to

the study of D-branes in very restricted classes of backgrounds, the main

obstacle beeing one’s inability to quantise strings in arbitrary backgrounds.

This problem can be partially circumvented by restricting one’s interest

to low-energy processes in the target space and the worldvolume of branes.

In this case a description of branes using effective actions becomes viable.

The low-energy dynamics of the closed strings is governed by various su-

pergravity actions (which are just various supersymmetric generalisations

of the Einstein-Hilbert action). The effective action for open strings is the

Dirac-Born-Infeld action, which (as the name suggests) is a generalisation

of the Dirac action for the relativistic membrane to higher dimensional ob-
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jects, modified to include the brane’s “inner” degrees of freedom, i.e. gauge

fields. The latter are included in a fashion proposed a long time ago by

Born and Infeld in order to regularise the infinite electromagnetic energy

of a classical electron. The total (bulk plus brane) effective action is quite

complicated due to the non-trivial coupling between the brane and super-

gravity fields. Hence, in order to use this action, one is often forced to

simplify the problem further. Increasing the number of branes, for exam-

ple, leads to the regime where gravitational back-reaction of the branes

cannot be neglected, while the gauge theory on the worldvolume of the

branes becomes strongly coupled. In this regime branes can be described

as purely gravitational solutions, using only the bulk effective action. On

the other side, when the number of branes is very small, the probe brane

approach is appropriate: only the worldvolume excitations (i.e. scalars and

gauge fields) are dynamical fields, while the background is “frozen”. In the

first two parts of this report we will partially survey our recent study of D-

branes in AdS and plane-wave (pp-wave) geometries using the supergravity

and Dirac-Born-Infeld effective actions.

Finally, a very powerful method for classifying possible brane config-

urations in arbitrary backgrounds is the so-called algebraic method. The

full information about the non-perturbative spectrum of string theory (in a

given background) is encoded in the “central” extensions of the appropriate

superisometry algebra of the background. Unfortunately, the explicit forms

of the algebras are essentially not known beyond flat space. Recently, how-

ever, we have made an important step in understanding the construction

of central extensions of AdS and pp-wave superisometry algebras. In the

last part of this survey we report on these results.

2. The probe brane approach

2.1. From flat space to AdS

The problem of understanding the full brane-background system is simpli-

fied dramatically by making a restriction to the effective actions, and by

further restricting to the probe brane approach. However, this still leaves

one with a generically complicated action which has to be solved in order

to find the exact embedding of the brane surface in the target space. In

generic backgrounds, and in cases of supersymmetric brane configurations,

one often uses kappa-symmetry or calibration methods in order to replace

the second-order differential equations with first order, BPS-like equations.

In practice however, both of these methods are ad hoc, since they both
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require good intuition about the ansatze for the brane embeddings.

In special backgrounds, such as AdS or pp-waves, the situation is sim-

pler: supersymmetric brane configurations can be “derived” from the con-

figurations of branes in flat space. Namely, given a brane configuration

in flat space one first replaces some of the branes in the configuration by

their supergravity solutions and subsequently focuses on the correspond-

ing near-horizon geometries, while keeping the remaining branes as probes.

The actual equations for the embedding of the probe brane can usually be

deduced directly from the flat space equations, using Poincaré coordinates

for the AdS background. This is due to the fact that in this coordinate

system, the relation of AdS coordinates to flat space Cartesian coordinates

is direct. Moreover, it turns out that the equations that describe the em-

bedding of the brane in flat space also describe the solutions of the DBI

equations of motion in the near horizon geometry in Poincaré coordinates.

The essential reason why this inheritance property holds is that the brane

configurations in question are supersymmetric. In contrast, if the brane sys-

tem is non-supersymmetric, this logic does not hold. For example, consider

a circular D1 string in the space transverse to a D3 brane. In flat space

one can easily derive the solution that describes shrinking of the string,

and then one can show that this solution (in Cartesian coordinates), when

interpreted in Poincaré coordinates, does not solve the DBI equations of

motion of the D1 string in the AdS5 × S5 space.

Instead of listing all possible brane configurations which one can derive

using this method, lets us illustrate it on a very simple example of two

D3 branes intersecting over a string,

D3 0 1 2 3 − − − − − −

D3 0 1 − − 4 5 − − − − .
(1)

We take the first brane to create the background, while the second brane

is treated as a probe. In flat space the embedding equations of the second

brane are given by

xi = ci = const. , (i = 2, 6, 7, 8, 9) . (2)

Next, we replace the first brane with the near horison limit of its super-

gravity solution ( i.e. the AdS5 × S5 space), which in Poincaré coordinates

yields

ds2 = R2u2
(

− dt2 + dx2
1 + dx2

2 + dx2
3

)

+
R2

u2

(

dx2
4 + . . . + dx2

9

)

,

u2 = x2
4 + ... + x2

9 ⇒ dx2
4 + . . . + dx2

9 = du2 + u2dΩ2
5 .

(3)
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When all coefficients ci in (2) are zero, we see that the equations (2) define

a maximal-curvature AdS2 × S1 submanifold of (3) 1,2. In the case when

some of the ci 6= 0, the equations (2) solve the D3 DBI action in the

(full) D3 brane supergravity background. However, when taking the near

horizon limit, one additionally needs to scale the parameters ci to zero in

order for the solution to survive this limit. As we focus on the region near

the D3 brane that becomes the background, we simultaneously have to

bring the probe D3 brane closer and closer to the horizon. The resulting

geometry of the D3 brane probe describes a brane which starts at the AdS

boundary, extends in the u-direction up to some point and then folds back

to the boundary 3.

Recently, 4 we have extended this analysis to the cases of supersymmet-

ric brane configuration intersecting under an angle in flat space. As in the

previous situation, the inheritance property goes through due to supersym-

metry. However, the resulting brane geometries are qualitatively different

from the one previously discussed, since the branes now non-trivially mix

the AdS and sphere submanifolds: the worldvolume surfaces are not fac-

torisable into a product of AdS and sphere submanifolds.

Another new type of brane that has appeared in 4 is a brane with mixed

worldvolume flux (i.e. where the worldvolume two-form has one index in

the sphere part and one index in the AdS part). This brane wraps non-

supersymmetric target space cycles and is stabilised only after the mixed

worldvolume flux is turned on. To construct this brane, one starts from the

flat space configuration of branes intersecting under an angle and performs

a T-duality transformation in such a way that the brane which will be

replaced with the background does not carry any worldvolume flux, while

the brane which will become a probe carries flux. Then, as before, one

takes the near horizon limit of this configuration.

2.2. From AdS to pp-waves

It was realised a long time ago by Penrose that an infinitely boosted observer

in an arbitrary spacetime, in a neighborhood of its geodesic, observes a very

simplified background geometry: the geometry of a gravitational wave. This

dramatic simplification has recently been used extensively for a direct check

of the gauge-gravity (AdS/CFT) correspondence 5, avoiding the standard

strong-weak coupling problems.

On the gravity side, the Penrose limit amounts to a suitable rescaling

of the coordinates and parameters characterising the (super)gravity solu-



February 7, 2008 12:39 Proceedings Trim Size: 9in x 6in brane-faces-net

5

tion, in such a way that one focuses on the region close to an arbitrary null

geodesic. In the same way in which the background undergoes simplifica-

tion, so do different objects present in the initial space. The geometry of

the resulting branes can easily be derived by rescaling the embedding equa-

tions of the branes in the same way as the target space coordinates. Since

the pp-wave space is homogeneous but not isotropic, there are three basic

families of D-branes which appear in the limit, depending on the relative

orientation of the brane and the wave: 6 longitudinal D-branes for which

the pp-wave propagates along the worldvolume of the D-brane, transver-

sal D-branes for which the pp-wave propagates in a direction transverse

to the D-brane but the timelike direction is along its worldvolume, and

instantonic D-branes for which both the direction in which the pp-wave

propagates and the timelike direction are transverse to the D-brane. The

first class of branes originates from AdS branes for which the geodesic along

which the boost was performed belongs to the worldvolume of the brane

(before the limit). For the second class, the brane is co-moving with the

observer along the the geodesic (i.e. it was infinitely boosted). The third

class of branes can be obtained from the first class by a formal T-duality

in the timelike direction of the wave.

Based on isometries, the pp-wave coordinates can be split into three

groups: the “lightcone coordinates” u and v, and two four-dimensional

subspaces with SO(4)× SO(4) isometry group. The split of the transverse

coordinates is due to the nonvanishing 5-form flux. In the case of longitu-

dinal branes, the worldvolume coordinates split accordingly into three sets:

the “lightcone coordinates” u and v, m coordinates along the first SO(4)

subspace and n along the second SO(4). A Dp brane (m +n = p− 1) with

such orientation is denoted with (+,−, m, n). The number of preserved

supersymmetries depends on the values for (n, m):6

• 1/2-BPS D-branes with embedding (+,−, m + 2, m),

for m = 1, . . . , 4,

• 1/4-BPS D-string with embedding (+,−, 0, 0),

• non-supersymmetric D-branes with embedding (+,−, m, m),

for m = 1, 2, 3.

All these results are valid for the brane placed at the “origin” of the pp-

wave. If we rigidly move the first or second type of brane outside the

origin (without turning worldvolume fluxes), supersymmetry is always re-

duced to 1/4.

However, the previous three classes do not capture all the branes which
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can appear in pp-waves 4,7. In the process of Penrose rescaling, not all

objects of the initial space will be inherited by the final wave geometry. It

is usually said that in order to have a nontrivial Penrose limit of a brane

in some background, one needs to take the limit along a geodesic which

belongs to the brane. This statement is intuitively understandable: in the

Penrose limit an infinitesimal region around the geodesic gets zoomed out.

Hence, those parts of the brane which are placed at some nonzero distance

from the geodesic get pushed off to infinity. However, this reasoning can be

circumvented if the distance between the geodesic and the brane is deter-

mined by free parameters of the solution 4. In that case one can take the

Penrose limit along a geodesic that does not belong to the brane, as long as

the parameter labeling the brane in a family of solutions is appropriately

scaled.

For example, let us consider the family of solutions corresponding to

two intersecting D-branes and let us take the Penrose geodesic to lie on the

first of the two branes. Then the Penrose limit of the second brane can be

nontrivial if, while taking the Penrose limit of the target space metric, we

simultaneously scale the angle between the two branes to zero. It should

be emphasized that the final configuration obtained in this way is different

from the one which is obtained by first sending the angle to zero and then

taking the Penrose limit of the metric. Namely, if we first set the angle

to zero, the problem will reduce to taking the limit along a geodesic that

belongs to the worldvolume of the brane, which has been discussed already.

However, if we follow the procedure outlined above, the Penrose limit of

the second D-brane is a brane with a relativistic pulse propagating on its

worldvolume (i.e. with some of xi = const. getting replaced by xi(x
+)).

The precise form of this worldvolume wave carries information about the

position of the brane with respect to the geodesic before the limit was

taken 4.

3. The supergravity approach

When the number of branes in some space becomes very large, the probe

brane approach is inadequate and a supergravity description takes over.

Finding supergravity solutions for D-branes in AdS spaces is, however, still

essentially an open problem; the explicit constructions have been carried

out only in a few specific cases. One of the reasons for this is that fully

localised supergravity solutions for D-brane intersections in flat space are

generically not known. Hence in order to construct the brane solutions in
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asymptotically AdS and pp-wave spaces, one has to start from scratch. We

will present here the construction of the (extremal) D-brane solutions in

asymptotically pp-wave spaces.

The main difficulty in constructing these solutions consists of identifying

a coordinate system where the description of the D-brane is the simplest.

This is similar to the problem that one would face if one would only know

about Minkowski space in spherical coordinates and would try to describe

flat D-branes in these coordinates. Cartesian coordinates are the natural

coordinates to describe infinitely extending D-branes in flat space. So the

question that one should first ask is “what are the analogues of the Cartesian

coordinates for D-branes in pp-wave backgrounds?”. The answer to this

question is more complicated than in flat space, as it depends very much

on what kind of D-branes one considers. It was shown 8,9 that Brinkman

coordinates are the natural coordinates for a description of 1/4-BPS and

nonsupersymmetric D-branes, while the natural coordinates for the 1/2-

BPS D-branes are the Rosen coordinates.

For the metric part of the ansatz, one writes a simple standard metric

for a superposition of D-branes with waves,

ds2 = H(y, y′)−
1

2

(

2du
(

dv + S(x, x′, y, y′)du
)

− d~x 2 − d~x′ 2
)

− H(y, y′)
1

2 (d~y 2 + d~y′ 2) . (4)

The metric is given in the string frame, and the D-brane worldvolume co-

ordinates are (u, v, xi = x1, . . . , xm, x′I = x′1, . . . , x′n), while the directions

transverse to the D-brane are (ya = y1, . . . , y(4−m), y′A = y′1, . . . , y′(4−n)).

The function H characterising the D-brane is at this stage allowed to depend

on all transverse coordinates y, y′. The ansatz for the RR field strength

and the dilaton reads

F[p+1] = du ∧ dv ∧ dx1 ∧ · · · ∧ dxm ∧ dx′1 · · · ∧ dx′n ∧ dH−1 , (5)

Fw
[5] = F

(1)
[5] + ∗F

(1)
[5] ,

F
(1)
[5] =W (zµ) du ∧

(

dx1 ∧ · · · ∧ dxm ∧ dy1 ∧ · · · ∧ dy(4−m)
)

, (6)

eφ = H
3−p

4 , (7)

where ‘∗’ in F[5] denotes Hodge duality with respect to the metric (4) and

W (z) is an undetermined function which can depend on all directions trans-

verse to the pp-wave. In the case of the D3 brane, one also has to add to

the form (5) its Hodge dual.
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One of the main characteristics and perhaps limitations of this ansatz is

that the metric is diagonal in Brinkman coordinates. This property forces

one to delocalise the supersymmetric solutions along some directions trans-

verse to the brane when solving the equations of motion.a The smearing

procedure physically means that one is constructing an array of D-branes

of the same type with an infinitesimally small spacing. However, as we

have seen before, the probe brane results tell us that, unless we turn on

additional bulk fluxes (sourced by the worldvolume fluxes of the 1/2-BPS

D-branes), a periodic array of rigid D-branes in Brinkman coordinates with

orientation (+,−, n + 2, n) is only one quarter supersymmetric. Hence the

supersymmetric solutions that we find due to the smearing procedure are

only 1/4 BPS. However, these restrictions have to be imposed only on the

harmonic function characterising the D-brane, and not on the function char-

acterising the pp-wave. Hence, all our solutions asymptotically tend to the

unmodified Hpp-wave. Also, despite the simplicity of the ansatz, the non-

supersymmetric solutions, describing branes with (+,−, m, m) orientation,

are fully localised.

Plugging the ansatz (4)-(7) into the equations of motion and the Bianchi

identities, one obtains solutions with the following characteristics, which

depend on the orientation of the branes. The presence of the D-brane mod-

ifies the function S which characterises the pp-wave, while the function H

(which specifies the D-brane) is completely unmodified by the presence of

the wave. Therefore, this ansatz does not catch the back-reaction of the

pp-wave on the D-brane. For a generic embedding of the D-brane, one

expects that the (fully localised) D-brane is modified by the wave. How-

ever, as our fully localised, nonsupersymmetric solution demonstrates, this

does not have to hold for specific embeddings. By examining the behavior

of the radially infalling geodesics, one discovers that if the pure pp-wave

was focusing the geodesics, this attractive behaviour is strengthened in the

presence of a supersymmetric brane, as one would expect. Surprisingly,

however, the non-supersymmetric geometries exhibit repulsion behavior.

4. The algebraic approach

Rather surprisingly, a modification of the superalgebra of anti-de-Sitter

backgrounds which accounts for the presence of D-branes in the string

aThis is the same type of restriction that one faces when constructing supergravity
solutions for intersecting D-branes, with a simple diagonal ansatz.
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spectrum is still unknown. At an algebraic level, D-branes manifest them-

selves through non-zero expectation values of bosonic tensorial charges.

There exists a widespread, but incorrect, belief that the inclusion of these

brane charges into the anti-de-Sitter superalgebras follows the well-known

flat-space pattern. In flat space, the inclusion of brane charges leads to

a rather minimal modification of the super-Poincaré algebra: the bosonic

tensorial charges appear on the right-hand side of the anti-commutator of

supercharges, transform as tensors under the Lorentz boosts and rotations,

while they commute with all other generators. The brane charges are there-

fore often loosely called “central”, and the resulting algebra is referred to

as the maximal bosonic “central” extension of the super-Poincaré algebra.

However, despite several attempts to construct a similar modification of

anti-de-Sitter superalgebras, a physically satisfactory solution is as of yet

unknown.

There are two basic physical requirements which have to be satisfied by

an anti-de-Sitter algebra which is modified to include brane charges. The

algebra has to include at least the brane charges which correspond to all

D-branes that are already known to exist, and it also has to admit at least

the supergraviton multiplet in its spectrum. Mathematically consistent

modifications of anti-de-Sitter superalgebras can be constructed, but all

existing proposals fail to satisfy one or both of these physical criteria. 10

In 11 we have identified a simple reason why previous attempts to extend

anti-de-Sitter superalgebras with brane charges have failed: such extensions

are only physically acceptable when one adds new fermionic brane charges

as well.

The necessity of including new fermionic brane charges into the modified

algebra can be understood from a very simple argument based on Jacobi

identities, in combination with the two physical requirements just men-

tioned 11. Consider an anti-de-Sitter superisometry algebra, or a pp-wave

contraction of it. The bracket of supercharges can, very symbolically, be

written in the form

{Qα, Qβ} = (ΓAB)αβMAB , (8)

where Q and M are the supercharges and rotation generators respectively

(we have grouped together momentum and rotation generators by using

a notation in the embedding space). Suppose now that we add a bosonic

tensorial brane charge Z on the right-hand side of this bracket. This exten-

sion has to be made consistently with the Jacobi identities. Consider the
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(Q, Q, Z) identity, which takes the symbolic form

(Qα, Qβ, Z) = [{Qα, Qβ}, Z]−
{

[Qα, Z], Qβ

}

−
{

[Qβ, Z], Qα

}

= (ΓAB)αβ [MAB, Z] − 2
{

[Q(α, Z], Qβ)

}

.
(9)

As the brane charge Z is a tensor charge, it will transform non-trivially

under the rotation generators. This implies that the first term of (9) will

not vanish. The Jacobi identity can then only hold if Z also transforms non-

trivially under the action of the supersymmetry generators! (In flat space,

only the vanishing bracket [P, Z] appears in the first term of the Jacobi

identity (9), because in that case the {Q, Q} anti-commutator closes on

the translation generators). The simplest option is to assume that no new

fermionic charges should be introduced, and that therefore symbolically

[Qα, Z] = Qα . (10)

Although it is possible to construct an algebra based on (10) which satisfies

all Jacobi identities, it is physically unsatisfactory 10. The essential reason is

that brackets like (10) are incompatible with multiplets on which the brane

charge is zero (the left-hand side would vanish on all states in the multiplet,

while the right-hand side is not zero). In other words, one cannot “turn

off” the brane charges. The only other way out is to add new fermionic

charges Q′

α to the algebra, such that (10) is replaced with

[Qα, Z] = Q′

α . (11)

In this case it becomes possible to find representations in which both Z

and the new charge Q′

α are realised trivially, as expected for e.g. the super-

graviton multiplet, while still allowing for multiplets with non-zero brane

charges.

This formal argument based on Jacobi identities may come as a surprise,

and one would perhaps find it more convincing to see new fermionic brane

charges appear in explicit models. In 11 we have shown that such charges

indeed do appear. In order to show this, we have analysed the world-

volume superalgebras of the supermatrix model and the supermembrane in

a pp-wave limit of the anti-de-Sitter background. These models exhibit, in

the absence of brane charges, a world-volume version of the superisometry

algebra of the background geometry. When bosonic winding charges are

included, the algebra automatically exhibits fermionic winding charges as

well. Moreover, configurations on which these charges are non-zero can be

found explicitly, or can alternatively be generated from configurations on

which the fermionic winding charges are zero. On the basis of these results
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we have briefly discussed a D-brane extension of the osp∗(8|4) superisom-

etry algebra with bosonic as well as fermionic brane charges, which avoids

the problems with purely bosonic modifications as first observed in 10. A

partial construction of this algebra has been carried out in 12.

References

1. A. Bilal and C.-S. Chu, D3 brane(s) in AdS5 × S5 and N = 4, 2, 1 SYM,
Nucl. Phys. B547 (1999) 179–200, hep-th/9810195.

2. J. Gutowski, G. Papadopoulos, and P. K. Townsend, Supersymmetry and
generalized calibrations, Phys. Rev. D60 (1999) 106006, hep-th/9905156.

3. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043,
hep-th/0205236.

4. G. Sarkissian and M. Zamaklar, Diagonal D-branes in product spaces and
their Penrose limits, JHEP 03 (2004) 005, hep-th/0308174.

5. D. Berenstein, J. M. Maldacena, and H. Nastase, Strings in flat space and
pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013,
hep-th/0202021.

6. K. Skenderis and M. Taylor, Branes in AdS and pp-wave spacetimes, JHEP
06 (2002) 025, hep-th/0204054.

7. G. Sarkissian and M. Zamaklar, Symmetry breaking, permutation D-branes
on group manifolds: Boundary states and geometric description,
hep-th/0312215.

8. P. Bain, P. Meessen, and M. Zamaklar, Supergravity solutions for D-branes
in Hpp-wave backgrounds, Class. Quant. Grav. 20 (2003) 913–934,
hep-th/0205106.

9. P. Bain, K. Peeters, and M. Zamaklar, D-branes in a plane wave from
covariant open strings, Phys. Rev. D67 (2003) 066001, hep-th/0208038.

10. P. Meessen, K. Peeters, and M. Zamaklar, On central extensions of
anti-de-Sitter algebras, hep-th/0302198.

11. K. Peeters and M. Zamaklar, Anti-de-Sitter vacua require fermionic brane
charges, Phys. Rev. D69 (2004) 066009, hep-th/0311110.

12. S. Lee and J.-H. Park, Noncentral extension of the AdS5 × S5 superalgebra:
Supermultiplet of brane charges, hep-th/0404051.


