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Energy identity for approximations of harmoni
maps from surfa
esTobias Lamm ∗Mar
h 26, 2008Abstra
tWe prove the energy identity for the Sa
ks-Uhlenbe
k and the biharmoni
 approxi-mation of harmoni
 maps from surfa
es into general target manifolds. The proof relieson Hopf-di�erential type estimates for the two approximations and on estimates forthe 
on
entration radius of bubbles.Mathemati
s Subje
t Classi�
ation (2000): 58E20, 35J60, 53C431 Introdu
tionLet (M2, g) be a smooth and 
ompa
t Riemannian surfa
e and let (Nn, h) be a smoothand 
ompa
t Riemannian manifold, both without boundary. We assume that Nn →֒ R
misometri
ally. For u ∈ W 1,2(M, N) we de�ne the Diri
hlet energy

E(u) =

∫
M

|∇u|2dvg. (1.1)Criti
al points of E are 
alled harmoni
 maps and they solve the ellipti
 system
∆u + A(u)(∇u,∇u) = 0, (1.2)where A is the se
ond fundamental form of the embedding N →֒ R

m. The geometri
interest in harmoni
 maps from surfa
es 
omes from the fa
t that if the harmoni
 mapis additionally 
onformal (i.e. angle preserving) then the image of the map is a minimalimmersion of M in N . For example it is well known that every harmoni
 map u : S2 → Nis minimal. It is therefore of interest to �nd 
riti
al points of the Diri
hlet energy. Sin
e
E does not satisfy the Palais-Smale 
ondition the 
lassi
al variational methods do notapply to to E. In order to over
ome this di�
ulty Sa
ks & Uhlenbe
k [17℄ introdu
ed a
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regularization of the Diri
hlet energy. More pre
isely they 
onsidered for every α > 1 and
u ∈ W 1,2α(M, N) the fun
tional

Eα(u) =

∫
M

(1 + |∇u|2)αdvg. (1.3)Sin
e this fun
tional satis�es the Palais-Smale 
ondition they were able to show the ex-isten
e of a smooth 
riti
al point of Eα for every α > 1 by 
lassi
al variational methods.These 
riti
al points uα solve the ellipti
 system
div((1 + |∇uα|2)α−1∇uα) + (1 + |∇uα|2)α−1A(uα)(∇uα,∇uα) = 0. (1.4)Sa
ks & Uhlenbe
k then studied sequen
es of 
riti
al points uα (α → 1) of Eα with uni-formly bounded energy Eα(uα) ≤ c. They were able to show that for a subsequen
e αk → 1the maps uαk

onverge weakly in W 1,2(M, N) and strongly away from at most �nitely manysingular points to a smooth harmoni
 map u1 ∈ C∞(M, N). Moreover they were able toperform a blow-up around these �nitely many singular points and they showed that theblow-up`s are non-trivial minimal two-spheres. As an appli
ation of this analysis Sa
ks& Uhlenbe
k proved the existen
e of a minimal two-sphere in every homotopy 
lass if

π2(N) = 0.What was left over in their analysis of sequen
es of 
riti
al points of Eα was the questionif there is some energy-loss o

urring during the blow-up pro
ess.In [6℄ the author 
onsidered a di�erent regularization of the Diri
hlet energy, namely forevery ε > 0 and every u ∈ C∞(M, N) we studied the fun
tional
Eε(u) =

∫
M

|∇u|2dvg + ε

∫
M

|∆u|2dvg. (1.5)The Euler-Lagrange equation of Eε is given by
∆u − ε∆2u = −A(u)(∇u,∇u) + f [u], (1.6)where f [u] ⊥ TuN and

|f [u]| ≤ c(|u|)ε(|∇u|∇3u| + |∇2u|2 + |∇u|4). (1.7)For every ε > 0 the fun
tional Eε satis�es the Palais-Smale 
ondition and therefore 
riti
alpoints exist and they are smooth. Hen
e, as in the 
ase of the Sa
ks-Uhlenbe
k approxima-tion, we studied sequen
es uε ∈ C∞(M, N) (ε → 0) of 
riti
al points of Eε with uniformlybounded energy Eε(uε) ≤ c. We were able to show that for a subsequen
e εk → 0 themaps uεk

onverge weakly in W 1,2(M, N) and strongly away from at most �nitely manysingular points to a smooth harmoni
 map u0 : M → N . Moreover, by performing a blow-up around the singular points, we showed that at most �nitely many minimal two-sphereswere separating. Additionally we were able to show that there is no energy lost during theblow-up pro
ess if N = Sn →֒ R

n+1. The 
ase of a general target manifold was left open.In the main result of this paper we show that for both approximations and general targetmanifolds there is no energy-loss o

urring. More pre
isely we have the following2



Theorem 1.1. Let (M2, g) be a smooth, 
ompa
t Riemannian surfa
e without boundaryand let N be a smooth and 
ompa
t Riemannian manifold without boundary, whi
h weassume to be isometri
ally embedded into R
n. Moreover let uα ∈ C∞(M, N) (α → 1) bea sequen
e of 
riti
al points of Eα with uniformly bounded energy. Then there exists asequen
e αk → 0 and at most �nitely many points x1, . . . , xl ∈ M su
h that uαk

→ u1weakly in W 1,2(M, N) and in C∞
loc(M\{x1, . . . , xl}, N) where u1 : M → N is a smoothharmoni
 map.By performing a blow-up at ea
h xi, 1 ≤ i ≤ l, one gets that there exist at most �nitelymany non-trivial smooth harmoni
 maps ωi,j : S2 → N , 1 ≤ j ≤ ji, sequen
es of points

xk
i,j ∈ M , xk

i,j → xi, and sequen
es of radii rk
i,j ∈ R+, rk

i,j → 0, su
h that
max{ rk

i,j

rk
i,j′

,
rk
i,j′

rk
i,j

,
dist(xk

i,j, x
k
i,j′)

rk
i,j + rk

i,j′

} → ∞, ∀ 1 ≤ i ≤ l, 1 ≤ j, j′ ≤ ji, j 6= j′, (1.8)
limsupk→∞(rk

i,j)
1−αk < ∞ ∀ 1 ≤ i ≤ l, 1 ≤ j ≤ ji and (1.9)

limk→∞ Eαk
(uαk

) = E(u1) + vol(M) +
l∑

i=1

ji∑
j=1

E(ωi,j). (1.10)Remark 1.2. The Theorem remains true if we repla
e everywhere Eα by Eε, uα by uε, u1by u0 , the estimate (1.9) by
limsupk→∞

εk

(rk
i,j)

2
= 0 ∀ 1 ≤ i ≤ l, 1 ≤ j ≤ ji, (1.11)and (1.10) by

limk→∞ Eεk
(uεk

) = E(u0) +

l∑
i=1

ji∑
j=1

E(ωi,j). (1.12)Remark 1.3. By the results of Duzaar & Kuwert [3℄ (Theorem 2) the above Theoremimplies that we also have a de
omposition in terms of homotopy 
lasses.As a Corollary of the above Theorem, we obtain a new proof of a result of Jost [5℄ onthe energy identity for min-max sequen
es for the Diri
hlet energy.Corollary 1.4. Let (M2, g) be a smooth, 
ompa
t Riemannian surfa
e without boundaryand let N →֒ R
n be a smooth and 
ompa
t Riemannian manifold without boundary. More-over let A be a 
ompa
t parameter manifold, for simpli
ity we assume ∂A = ∅, and let

h0 : M × A → N be 
ontinuous. Let H be the 
lass of all maps homotopi
 to h0 and
β := infh∈H supt∈A E(h(·, t)). (1.13)
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Then there exists a sequen
e uαk
∈ C∞(M, N) of 
riti
al points of Eαk

, a harmoni
 map
u1 : M → N and at most �nitely many points x1, . . . , xl ∈ M su
h that

Eαk
(uαk

) − vol(M) = βαk
= infh∈H supt∈A Eαk

(h(·, t)) − vol(M), (1.14)
βαk

→ β, (1.15)
uαk

⇀ u1 weakly in W 1,2(M, N) and (1.16)
uαk

→ u1 in C∞
loc(M\{x1, . . . , xl}, N). (1.17)Moreover there exist at most �nitely many non-trivial smooth harmoni
 maps ωi,j : S2 →

N , 1 ≤ i ≤ l, 1 ≤ j ≤ ji, sequen
es of points xk
i,j ∈ M , xk

i,j → xi, and sequen
es of radii
rk
i,j ∈ R+, rk

i,j → 0, su
h that
max{

rk
i,j

rk
i,j′

,
rk
i,j′

rk
i,j

,
dist(xk

i,j , x
k
i,j′)

rk
i,j + rk

i,j′

} → ∞, ∀ 1 ≤ i ≤ l, 1 ≤ j, j′ ≤ ji, j 6= j′, (1.18)
limsupk→∞(rk

i,j)
1−αk < ∞ ∀ 1 ≤ i ≤ l, 1 ≤ j ≤ ji and (1.19)

limk→∞ Eαk
(uαk

) = E(u1) + vol(M) +

l∑
i=1

ji∑
j=1

E(ωi,j). (1.20)Remark 1.5. With the obvious modi�
ations the 
orollary remains true for the biharmoni
approximation Eε.Proof. The proof of this result is quite standard but we in
lude it here for sake of 
om-pleteness. It is obvious that ∀α > 1 we have
β ≤ βα.Let δ > 0 and 
hoose h̃ ∈ H ∩ C∞(M × A, N) su
h that

supt∈A E(h̃(·, t)) ≤ β + δ.Then for α − 1 small enough we have
supt∈A Eα(h̃(·, t)) − vol(M) ≤ β + δ + c(h̃)(α − 1)

≤ β + 2δ.This implies
limα→1 βα = β.Sin
e Eα satis�es the Palais-Smale 
ondition we know from the minmax prin
iple (see forexample [19℄, Theorem 4.2 and Example 4.3) that for every α > 1, βα is a 
riti
al value of

Eα − vol(M). This shows that there exists a sequen
e of 
riti
al points uα of Eα su
h that
Eα(uα) − vol(M) → β.The remaining assertions of the Corollary follow from Theorem 1.1.4



In the existing literature there are already some partial results available for the energyidentity for the Sa
ks-Uhlenbe
k approximation and there are many more results availablefor related problems. In the following we want to mention some of these results.For the Sa
ks-Uhlenbe
k approximation Chen & Tian [1℄ proved the energy identity forsequen
es of minimizers of the energy Eα in a given homotopy 
lass. Re
ently Moore [12℄proved the energy identity (he a
tually proved (1.10) with the Diri
hlet energy E insteadof the full α-energy Eα on the left hand side) for the Sa
ks-Uhlenbe
k approximation forsequen
es of 
riti
al points of Eα with bounded Morse index (additional to our situationhe allowed the 
onformal stru
ture of the domain to vary but it had to remain bounded).The additional assumptions made by the authors were used to ensure that the sequen
e ofminimizers, respe
tively 
riti
al points with bounded Morse index, 
onverges to a geodesi
of �nite length on the ne
ks 
onne
ting the bubbles and the weak limit (or body map)whi
h then implies the energy identity. We argue in a somehow more dire
t way but wewant to mention that it is not 
lear from our analysis that the sequen
e of 
riti
al points
onverges to a geodesi
 of �nite length on the ne
ks.For sequen
es of harmoni
 maps and min-max sequen
es for the Diri
hlet energy the energyidentity was proved by Jost [5℄ (see also [13℄ for an alternative proof of the energy identityfor sequen
es of harmoni
 maps).The energy identity for the harmoni
 map heat �ow and Palais-Smale sequen
es for theDiri
hlet energy with tension �eld bounded in L2 was established by Qing [14℄ (in the
ase N = Sn) and independently by Ding & Tian [2℄ and Wang [21℄ in the general 
ase.Alternative proofs have been given by Qing & Tian [15℄ and Lin & Wang [8℄. See also thepaper of Topping [20℄ for more re�ned results in this 
ase.Lin & Wang [9℄, [10℄ used a Ginzburg-Landau approximation to regularize the Diri
hletenergy and proved the energy identity in this situation. The disadvantage of the Ginzburg-Landau approximation is that the approximating maps don`t have to map into the targetmanifold, only in the limit they are for
ed to do this.For maps from higher dimensional domains the energy identity for sequen
es of harmoni
maps has been proved by Lin & Rivière [7℄ for N = Sn. For other related problems su
has sequen
es of Yang-Mills �elds on a four-dimensional manifold, respe
tively biharmoni
maps from a four-dimensional manifold into the sphere the energy identity has been provedby Rivière [16℄, respe
tively Wang [22℄.In the following we give a brief outline of the paper.In se
tion 2 we prove Theorem 1.1 for the Sa
ks-Uhlenbe
k approximation of harmoni
maps. We start by re
alling the small-energy regularity estimates and the blow-up pro
e-dure of Sa
ks & Uhlenbe
k [17℄ in se
tion 2.1. In Lemma 2.2 we prove the very importantestimate for the 
on
entration radius of the bubbles. The advantages of having a goodestimate for the 
on
entration radius 
an also be seen in the paper of Topping [20℄. Inthe next two se
tions we prove a Hopf-di�erential type estimate and an estimate for thetangential 
omponent of solutions of (1.4) on annular regions. These estimates are provedin the same way as the 
orresponding estimates for harmoni
 maps, see for example [17℄and [2℄. In se
tion 2.4 we use the bubbling indu
tion argument of Ding & Tian [2℄ to5



redu
e the proof of the energy identity to the 
ase of one bubble. In this situation we then
ombine the previous estimates with the estimate for 
on
entration radius to 
omplete theproof of the energy identity.In se
tion 3 we treat the 
ase of the biharmoni
 approximation. For this approximationthe estimate for the 
on
entration radius (see (3.6)) has already been proved in [6℄. Inse
tion 3.1 we review the small-energy estimates and blow-up pro
ess from [6℄. In se
tion
3.2 we use the stress-energy tensor of Eε to get a Hopf-di�erential type estimate for thebiharmoni
 approximation. The rest of the proof of the energy identity then follows as inthe 
ase of the Sa
ks-Uhlenbe
k approximation and in the se
tions 3.3 and 3.4 we brie�ydes
ribe the ne
essary modi�
ations.2 Energy identity for the Sa
ks-Uhlenbe
k approxima-tion of harmoni
 mapsIn this se
tion we prove Theorem 1.1 for the Sa
ks-Uhlenbe
k approximation of harmoni
maps.2.1 Results of Sa
ks and Uhlenbe
kWe 
onsider sequen
es of 
riti
al points uα ∈ C∞(M, N) of the fun
tional Eα with uni-formly bounded energy Eα(uα) ≤ c. Due to the uniform boundedness of the energy it iseasy to see that there exists a subsequen
e αk → 1 su
h that uαk

→ u1 weakly in W 1,2. Inse
tion 3 of [17℄ Sa
ks & Uhlenbe
k proved the following small energy regularity result forsolutions of (1.4).Theorem 2.1. There exists ε0 > 0 su
h that if uα (α 
lose to one) is a 
riti
al point of
Eα with ∫

B2
|∇uα|2 < ε0 then we have for every x ∈ B1 and every m ∈ N

oscB1 uα + |∇muα|(x)|x|m ≤ c(

∫
B2

|∇uα|2)
1
2 . (2.1)With the help of this Theorem Sa
ks & Uhlenbe
k were able to show that the sequen
e

uαk

onverges strongly to a smooth harmoni
 map u1 : M → N away from �nitely manypoints. These �nitely many singular points xi ∈ M , 1 ≤ i ≤ l, are 
ara
terized by the
ondition that

limsupk→∞ E(uαk
, BR(xi)) ≥ ε0, (2.2)for every R > 0 and every 1 ≤ i ≤ l. Around these �nitely many singular points they wereable to perform a blow-up and show that a non-trivial harmoni
 two-sphere separates. Theblow-up 
an be done as follows: Fix R0 > 0 su
h that BR0(xi) ∩ BR0(xj) = ∅ for every6



i, j ∈ {1, . . . , l}, i 6= j. Be
ause of (2.2) there exists a sequen
e of points xk
i → xi and radii

rk
i → 0 su
h that

maxy∈BR0
(xi) E(uαk

, Brk
i
(y)) = E(uαk

, Brk
i
(xk

i )) =
ε0

2
. (2.3)De�ning:

vk
i :BR0

rk
i

→ N

vk
i (x) =uαk

(xk
i + rk

i x) (2.4)we see that vk
i solves (1.4) with 1 repla
ed by (rk

i )
2 and moreover

maxy∈B R0
2rk

i

E(vk
i , B1(y)) = E(vk

i , B1(0)) =
ε0

2
. (2.5)Therefore we 
an apply Theorem 2.1 to vk

i and get that vk
i 
onverges in C1 to a smoothharmoni
 map ωi from R

2 into N . By the point removabilty result of Sa
ks & Uhlenbe
kwe 
an then extend ωi to a smooth harmoni
 map from S2 to N . As a 
onsequen
e of thisblow-up pro
edure we get the following estimate for the 
on
entration radius (see also [18℄were this was observed for a similar approximation of a di�erent problem).Lemma 2.2. Using the above notation we have that
limsupk→∞(rk

i )
1−αk < ∞, (2.6)for every 1 ≤ i ≤ l.Proof. Be
ause of (2.3) and Hölder's inequality we know that

ε0

2
= E(uαk

, Brk
i
(xk

i ))

≤ (

∫
M

(1 + |∇uαk
|2)αk)

1
αk (rk

i )
2(αk−1)

αk

≤ c(rk
i )

2(αk−1)

αk .From this the 
laim follows.2.2 A Hopf di�erential type estimateIn the 
ase of sequen
es of harmoni
 maps or Palais-Smale sequen
es for the Diri
hletenergy with tension �eld bounded in L2 an important ingredient in the proof of the energyidentity was an estimate for the Hopf di�erential (see e.g. [2℄, [17℄). In the next lemma weshow that a related result is true for solutions of (1.4).7



Lemma 2.3. Let B ⊂ R
2 be the unit ball and let uα ∈ C∞(B, N) be a solution of (1.4).Then we have for every 0 < r < 1 and every α 
lose to one

∫
∂Br

r(1 + |∇uα|2)α−1|(uα)r|2 ≤c

∫
∂Br

1

r
(1 + |∇uα|2)α−1|(uα)θ|2 + c

∫
∂Br

r(1 + |∇uα|2)α−1

+ c(α − 1)

∫
Br

(1 + |∇uα|2)α. (2.7)Proof. We multiply equation (1.4) by x ·∇uα and integrate over Br to get (remember that
A(uα)(∇uα,∇uα) ⊥ Tuα

N for every x ∈ B)
0 =

∫
Br

div((1 + |∇uα|2)α−1∇uα)x · ∇uα

= −
∫

Br

(1 + |∇uα|2)α−1|∇uα|2 +

∫
∂Br

r(1 + |∇uα|2)α−1|(uα)r|2

− 1

2

∫
Br

(1 + |∇uα|2)α−1x · ∇(1 + |∇uα|2).Next we integrate by parts and get
1

2

∫
Br

(1 + |∇uα|2)α−1x · ∇(1 + |∇uα|2) = −
∫

Br

(1 + |∇uα|2)α +

∫
∂Br

r

2
(1 + |∇uα|2)α

− α − 1

2

∫
Br

(1 + |∇uα|2)α−1x · ∇(1 + |∇uα|2).Using the identity
|∇uα|2 = |(uα)r|2 +

1

r2
|(uα)θ|2and 
ombining everything we end up with

∫
∂Br

r(1 + |∇uα|2)α−1|(uα)r|2 ≤c

∫
∂Br

1

r
(1 + |∇uα|2)α−1|(uα)θ|2

+ c(α − 1)

∫
Br

(1 + |∇uα|2)α + c

∫
∂Br

r(1 + |∇uα|2)α−1.

2.3 Estimate for the tangential 
omponentIn this se
tion we show that if the Diri
hlet energy is small on all annular regions withbounded geometry then the tangential derivative of uα 
onverges to zero on the annularregion whi
h is the union of all the annuli with bounded geometry. The proof of this fa
tfollows 
losely the previous work of Sa
ks & Uhlenbe
k [17℄ and Ding & Tian [2℄. In thefollowing we use for 0 < a1 < a2 < 1 the notation A(a1, a2) = {x ∈ R
2|a1 ≤ |x| ≤ a2}.8



Lemma 2.4. There exists δ0 > 0 su
h that for all δ < δ0 and all solutions uα ∈ C∞(B, N)of (1.4) with ∫
A(r,2r)

|∇uα|2 < δ for every r ∈ (R1,
R2

2
), we have for α − 1 small enough

∫ R2
4

2R1

∫ 2π

0

1

r
|(uα)θ|2drdθ ≤ c

√
δ(1 + (ln R1)

1−α). (2.8)Proof. Let δ0 < ε0 and let y ∈ A(2R1,
R2

4
). Then we have that 2|y|

3
,

4|y|
3

∈ (R1,
R2

2
) and

B |y|
3

(y) ⊂ B 4|y|
3

\B 2|y|
3

. From our assumption and Theorem 2.1 we therefore 
on
lude that
2∑

i=1

|x|i|∇iuα|(x) ≤ c
√

δ, (2.9)for every x ∈ A(2R1,
R2

4
). Now we let R2

4R1
= 2l + q, l ∈ N and q ≥ 0, and de�ne

Ak = A(2kR1, 2
k+1R1) for all 1 ≤ k ≤ l − 1 and we let Al = A(2lR1,

R2

4
). Next we notethat equation (1.4) 
an equivalently be written as

∆uα + A(uα)(∇uα,∇uα) = −2(α − 1)
〈∇2uα,∇uα〉∇uα

1 + |∇uα|2
=: fα. (2.10)Now we let h = h(r) be a pie
ewise linear fun
tion whi
h equals the mean value of uα on

{R2

4
} × S1 and {2kR1} × S1 for all 1 ≤ k ≤ l − 1. With the help of this we have

∆(u − h) + A(uα)(∇uα,∇uα) = fα.Testing this equation with uα − h and integrating over Ak we get
∫

Ak

|∇(uα − h)|2 =

∫
Ak

(uα − h)(A(uα)(∇uα,∇uα) − fα)

+ 2k+1R1

∫ 2π

0

(uα − h)(uα − h)r(2
k+1R1, θ)dθ

− 2kR1

∫ 2π

0

(uα − h)(uα − h)r(2
kR1, θ)dθ.We remark that the boundary integrals of (uα − h)hr vanish sin
e h is equal to the meanvalue of uα on these boundaries and hr is pie
ewise 
onstant. Be
ause of (2.9) and theSobolev embedding (whi
h we only apply on the annuli Ak) we know that for every x ∈ Akwe have

|uα − h|(x) +
2∑

i=1

|x|i|∇iuα| ≤ cδ
1
2 . (2.11)9



This implies that
∫

Ak

|∇(uα − h)|2 ≤cδ
1
2

∫
Ak

(|∇uα|2 + |fα|) + 2k+1R1

∫ 2π

0

(uα − h)(uα)r(2
k+1R1, θ)dθ

− 2kR1

∫ 2π

0

(uα − h)(uα)r(2
kR1, θ)dθ.Taking the sum over k we get

∫
A(2R1,

R2
4

)

|∇(uα − h)|2 ≤cδ
1
2

∫
A(2R1,

R2
4

)

(|∇uα|2 + |fα|)

+
R2

4

∫ 2π

0

(uα − h)(uα − h)r(
R2

4
, θ)dθ

− 2R1

∫ 2π

0

(uα − h)(uα − h)r(2R1, θ)dθ

≤cδ
1
2 (1 + (ln R1)

1−α),where we used (2.11) to estimate
∫

A(2R1,
R2
4

)

|fα| ≤c(α − 1)

∫
A(2R1,

R2
4

)

|∇2uα|

≤(ln R1)
1−α.This �nishes the proof of the Lemma.2.4 Proof of the energy identityProof. Be
ause of the indu
tion argument of Ding & Tian [2℄ we know that it is enoughto prove the energy identity in the presen
e of one bubble. Sin
e we are dealing with alo
al problem we assume from now on that uα : R

2 ⊃ B1 → N and that we have onlyone energy 
on
entration point x1 = 0. Using the notations from se
tion 2.1 we assumethat we obtain the bubble by res
aling with the fa
tor rk. From the smooth 
onvergen
e
uαk

→ u1 away from 0 we 
on
lude that
Eαk

(uαk
, B1\BR0) → E(u1, B1\BR0) + vol(B1\BR0), (2.12)for every 0 < R0 < 1. Similarly, from the lo
al C1-
onvergen
e vk = uαk

(rk·) → ω, wehave for every R > 0

Eαk
(uαk

, BRrk) → E(ω). (2.13)Moreover this also implies that for every R > 0 and M > 0

Eαk
(uαk

; BR0\BR0
M

) + Eαk
(uαk

; BMrkR\BrkR) → 0, (2.14)10



as k → ∞ and R0 → 0. Therefore it is easy to see that the proof of the energy identity inthe 
ase of one bubble is redu
ed to showing that
limR→∞ limR0→0 limk→∞ Eαk

(uαk
, A(Rrk, R0)) = 0. (2.15)Next we 
laim that due to the fa
t that we have only one bubble we 
an assume that forany δ > 0 there exists k0 > 0 su
h that for all k > k0 we have

E(uαk
, B2r\Br) < δ, (2.16)for every Rrk ≤ r ≤ R0

2
. To see this we argue by 
ontradi
tion. If the 
laim is false, wemay assume that as k → ∞ there exists sk ∈ (Rrk, R0

2
) su
h that

E(uαk
; B2sk\Bsk) = max

r∈(Rrk ,
R0
2

)
E(uαk

; B2r\Br)

≥ δ. (2.17)From (2.14) we get that
R0

sk
→ ∞ and

Rrk

sk
→ 0. (2.18)By de�ning

ṽk : BR0
sk

\B rkR

sk

→ N

ṽk(x) = uαk
(skx) (2.19)we have that ṽk solves (1.4) with 1 repla
ed by (sk)2 and

∫
B R0

sk

\B
rkR

sk

((sk)2 + |∇ṽk|2)αk ≤ c(sk)2(α−1), (2.20)
E(ṽk; B2\B1) ≥ δ. (2.21)By (2.20), (2.18), Lemma 2.2 and the arguments of se
tion 2.1 we may assume that ṽk ⇀ ṽ0weakly in W

1,2
loc (R2\{0}, N), where ṽ0 : R

2 → N is a harmoni
 map with �nite Diri
hletenergy.We have two possibilities. The �rst one is that there exists r̃ > 0 su
h that
supk∈N

supx∈B4\B 1
4

Eαk
(ṽk; Br̃(x)) < ε0.With the help of Theorem 2.1 and a 
overing argument this implies that ṽk → ṽ0 in

C∞(B2\B1, N). Sin
e R
2\{0} is 
onformally equivalent to S2\{N, S} we 
on
lude from(2.21) and the point removability result of Sa
ks & Uhlenbe
k [17℄, that ṽ0 
an be lifted to11



a smooth non-trivial harmoni
 map from S2 to N , 
ontradi
ting the assumption that wehave only one bubble ω.The se
ond possibility is that we have at least one energy-
on
entration point y ∈ B4\B 1
4
.Now we 
an apply the blow-up pro
edure of se
tion 2.1 to 
on
lude that there must exist anon-trivial harmoni
 two-sphere, again 
ontradi
ting the assumption that there is only onebubble. This proves (2.16) and hen
e we 
an 
ombine Theorem 2.1, Lemma 2.2, Lemma2.3 and Lemma 2.4 (with R1 = Rrk and R2 = R0) to estimate

∫
A(2Rrk ,

R0
4

)

(1 + |∇uαk
|2)α ≤ c||(1 + |∇uαk

|2)αk−1||L∞(A(Rrk ,R0))

∫
A(2Rrk ,

R0
4

)

(1 + |∇uαk
|2)

≤ c

∫
A(2Rrk ,

R0
4

)

|∇uαk
|2 + o(R0)

= c

∫ R0
4

2Rrk

∫ 2π

0

(r|(uαk
)r|2 +

1

r
|(uαk

)θ|2)drdθ + o(R0)

≤ c

∫ R0
4

2Rrk

∫ 2π

0

1

r
|(uαk

)θ|2drdθ + o(R0) + c(αk − 1)R0Eαk
(uαk

)

≤ o(k) + o(R0) + c
√

δ,whi
h, 
ombined with (2.14), proves (2.15) (sin
e δ > 0 was arbitrary) and therefore themain Theorem in the 
ase of one bubble.3 Energy identity for the biharmoni
 approximation ofharmoni
 mapsIn this se
tion we prove Theorem 1.1 for the biharmoni
 approximation of harmoni
 maps.3.1 Estimates and blow-upIn the following we 
onsider sequen
es of 
riti
al points uε ∈ C∞(M, N) (ε → 0) of thefun
tional Eε with uniformly bounded energy Eε(uε) ≤ c. Due to the uniform bound onthe W 1,2-norm of uε we get the existen
e of a subsequen
e uεk
su
h that uεk

⇀ u0 weakly in
W 1,2(M, N). In [6℄ we were able to show the following small energy estimate (see Corollary
2.10 in [6℄).Theorem 3.1. There exists δ0 > 0 and c > 0 su
h that if uε ∈ C∞(M, N) is a solution of(1.6) with ∫

B2
(|∇u|2 + ε|∆u|2) < δ0 then we have for ε small enough and every m ∈ N

oscB1 uε + |∇muε|(x)|x|m ≤ c(

∫
B2

(|∇u|2 + ε|∆u|2)) 1
2 , (3.1)for every x ∈ B1. 12



Hen
e, as in se
tion 2.1, the sequen
e uε 
onverges strongly to u0 away from �nitelymany singular points xi ∈ M , 1 ≤ i ≤ l, whi
h are 
hara
terized by the 
ondition
limsupk→∞ Eεk

(uεk
, BR(xi)) ≥ δ0, (3.2)for every R > 0 and every 1 ≤ i ≤ l. Around these �nitely many singular points we wereable to perform a blow-up similar to the one of se
tion 2.1 (see se
tion 3 of [6℄). Namely,for R0 > 0 su
h that BR0(xi)∩BR0(xj) = ∅ for every 1 ≤ i 6= j ≤ l, there exists a sequen
eof points xk

i → xi and a sequen
e of radii rk
i → 0 su
h that

maxy∈BR0
(xi) Eεk

(uεk
, Brk

i
(y)) = Eεk

(uεk
, Brk

i
(xk

i )) =
δ0

2
. (3.3)De�ning

wk
i :BR0

rk
i

→ N,

wk
i (x) = uεk

(xk
i + rk

i x) (3.4)we see that wk
i solves (1.6) with εk repla
ed by ε̃k = εk

(rk
i )2

and
maxy∈B R0

2rk
i

Eε̃k
(wk

i , B1(y)) = Eε̃k
(wk

i , B1(0)) =
δ0

2
. (3.5)Hen
e we 
an apply Theorem 3.1 to wk

i and 
on
lude that wk
i 
onverges smoothly to somemap ωi ∈ C∞∩W 1,2(R2, N). Then we were able to show (Lemma 3.1 in [6℄) that for every

1 ≤ i ≤ l

ε̃k =
εk

(rk
i )

2
→ 0, (3.6)and therefore ωi is a harmoni
 map with �nite Diri
hlet energy and 
an therefore be liftedto a smooth harmoni
 map from S2 to N .3.2 Stress-energy tensorFor a smooth map u we have the well-known stress-energy tensor S1

αβ(u) given by
S1

αβ(u) =
1

2
|∇u|2δαβ − 〈∇αu,∇βu〉. (3.7)An easy 
al
ulation shows that if u is a harmoni
 map then we have

∂αS1
αβ(u) = −〈∆u,∇βu〉 = 0. (3.8)Again for a smooth map u we have the stress-energy tensor S2

αβ(v) de�ned by (see [4℄ and[11℄)
S2

αβ(u) =
1

2
|∆u|2δαβ + 〈∇γu,∇γ∆u〉δαβ − 〈∇αu,∇β∆u〉 − 〈∇βu,∇α∆u〉. (3.9)13



By another easy 
al
ulation we see that if u is an extrinsi
 biharmoni
 map (i.e. a solutionof ∆2u ⊥ TuN) then we have
∂αS2

αβ(u) = −〈∇βu, ∆2u〉 = 0. (3.10)Combining (3.8) and (3.10) we see that
∂α(S1

αβ(uε) − εS2
αβ(uε)) = 〈∇βuε, (ε∆

2 − ∆)uε〉 = 0, (3.11)if uε is a solution of (1.6). As in the 
ase of harmoni
 maps (see [17℄) we use this divergen
e-free quantity to get a Hopf di�erential type estimate for solutions of (1.6).Lemma 3.2. Let uε ∈ C∞(B, N) be a solution of (1.6). Then we have for all 0 < r < 1

r

∫
∂Br

|(uε)r|2 ≤
1

r

∫
∂Br

|(uε)θ|2 + cε

∫
Br

|∆uε|2 + cεr

∫
∂Br

(|∆uε|2 + |∇uε||∇3uε|). (3.12)Proof. Multiplying (3.11) by xβ and integrating by parts we get for every 0 < r < 1∫
Br

(S1
αβ(uε) − εS2

αβ(uε))δαβ =

∫
∂Br

(S1
αβ(uε) − εS2

αβ(uε))x
βνα, (3.13)where ν is the outer unit normal to ∂Br. Now we 
al
ulate

(S1
αβ(uε) − εS2

αβ(uε))δαβ = −ε|∆uε|2and
(S1

αβ(uε) − εS2
αβ(uε))x

βνα =
r

2
|∇uε|2 − r|(uε)r|2

− rε(
1

2
|∆uε|2 + 〈∇uε,∇∆uε〉 − 2〈(uε)r, (∆uε)r〉)

=
1

2r
|(uε)θ|2 −

r

2
|(uε)r|2

− rε(
1

2
|∆uε|2 + 〈∇uε,∇∆uε〉 − 2〈(uε)r, (∆uε)r〉),where we used the identity |∇u|2 = |ur|2+ 1
r2 |uθ|2. This �nishes the proof of the Lemma.3.3 Estimate for the tangential 
omponentIn this subse
tion we prove an estimate for the biharmoni
 approximation similar to theone given in se
tion 2.3 for the Sa
ks-Uhlenbe
k approximation.Lemma 3.3. There exists δ1 > 0 su
h that for all δ < δ1 and all solutions uε of (1.6) with∫

A(r,2r)
(|∇uε|2 + ε|∆uε|2) < δ for every r ∈ (R1,

R2

2
), we have for ε small enough

∫ R2
4

2R1

∫ 2π

0

1

r
|(uε)θ|2drdθ ≤ c

√
δ(1 +

ε

(R1)2
). (3.14)14



Proof. The proof follows dire
tly from the one of Lemma 2.4. Namely instead of usingTheorem 2.1 we use Theorem 3.1 to 
on
lude that
4∑

i=1

|x|i|∇iuε| ≤ c
√

δ (3.15)for every x ∈ A(2R1,
R2

4
). Moreover we note that equation (1.6) 
an equivalently be writtenas
∆uε + A(uε)(∇uε,∇uε) = ε∆2uε + f [uε]

= fε. (3.16)Using this form of the equation it is easy to see that the proof of Lemma 2.4 
arries overto this situation on
e we noti
e that be
ause of (1.7) and (3.15) we have
√

δ

∫
A(2R1,

R2
4

)

|fε| ≤ c
√

δε

∫
A(2R1,

R2
4

)

(|∇4uε| + |∇uε||∇3uε| + |∇2uε|2 + |∇uε|4)

≤ c
√

δ
ε

(R1)2
.

3.4 Proof of the energy identityProof. Following the remarks of se
tion 2.4 (using the results of se
tion 3.1) we 
an assumethat we have only one energy 
on
entration point x1 = 0 ∈ B1 ⊂ R
2 and one bubble ω1whi
h is obtained by res
aling uεk

by the fa
tor rk. Again the proof of the energy identityis redu
ed to showing that
limR→∞ limR0→0 limk→∞ Eεk

(uεk
, BR0\BRrk) = 0. (3.17)Using similar arguments as in se
tion 2.4 we 
an moreover assume that for any δ > 0 thereexists k0 > 0 su
h that for all k > k0 we have

Eεk
(uεk

, B2r\Br) < δ, (3.18)for every Rrk ≤ r ≤ R0

2
. Hen
e we 
an apply (3.15) with R1 = Rrk and R2 = R0 to get
εk

∫
A(2Rrk ,

R0
4

)

|∆uεk
|2 ≤cδεk

∫
A(2Rrk ,

R0
4

)

dx

|x|4

≤cδ
εk

R2r2
k

=o(k), (3.19)15



where we used (3.6) in the last line. Combining Lemma 3.2, Lemma 3.3, (3.18), (3.19) and(3.6) we get
Eεk

(uεk
, A(2Rrk,

R0

4
)) ≤

∫ R0
4

Rrk

∫ 2π

0

(r|(uεk
)r|2 +

1

r
|(uεk

)θ|2)drdθ + o(k)

≤c

∫ R0
4

Rrk

∫ 2π

0

1

r
|(uεk

)θ|2drdθ + o(k) + o(R0)

≤o(k) + o(R0) + c
√

δ, (3.20)whi
h proves (3.17).Referen
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