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Abstract

We prove the energy identity for the Sacks-Uhlenbeck and the biharmonic approxi-
mation of harmonic maps from surfaces into general target manifolds. The proof relies
on Hopf-differential type estimates for the two approximations and on estimates for
the concentration radius of bubbles.
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1 Introduction

Let (M?,g) be a smooth and compact Riemannian surface and let (N™, k) be a smooth
and compact Riemannian manifold, both without boundary. We assume that N" — R™
isometrically. For u € W2(M, N) we define the Dirichlet energy

B(u) = / Vuldv, (1.1)
M
Critical points of E are called harmonic maps and they solve the elliptic system
Au + A(u)(Vu, Vu) = 0, (1.2)

where A is the second fundamental form of the embedding N — R™. The geometric
interest in harmonic maps from surfaces comes from the fact that if the harmonic map
is additionally conformal (i.e. angle preserving) then the image of the map is a minimal
immersion of M in N. For example it is well known that every harmonic map u : S — N
is minimal. It is therefore of interest to find critical points of the Dirichlet energy. Since
E does not satisfy the Palais-Smale condition the classical variational methods do not
apply to to E. In order to overcome this difficulty Sacks & Uhlenbeck [17] introduced a
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regularization of the Dirichlet energy. More precisely they considered for every o > 1 and
u € WH2%(M, N) the functional

Eo(u) = /M(1 - [Vul?)do,. (1.3)

Since this functional satisfies the Palais-Smale condition they were able to show the ex-
istence of a smooth critical point of E, for every a > 1 by classical variational methods.
These critical points u, solve the elliptic system

div((1 + \Vua|2)°‘_1Vua) + (14 | VuaH)* T Alug ) (Vig, Vug) = 0. (1.4)

Sacks & Uhlenbeck then studied sequences of critical points u, (o — 1) of E, with uni-
formly bounded energy E,(u,) < c¢. They were able to show that for a subsequence oy, — 1
the maps u,, converge weakly in W'?(M, N) and strongly away from at most finitely many
singular points to a smooth harmonic map u; € C°°(M, N). Moreover they were able to
perform a blow-up around these finitely many singular points and they showed that the
blow-up‘s are non-trivial minimal two-spheres. As an application of this analysis Sacks
& Uhlenbeck proved the existence of a minimal two-sphere in every homotopy class if
7T2(N) =0.

What was left over in their analysis of sequences of critical points of F, was the question
if there is some energy-loss occurring during the blow-up process.

In [6] the author considered a different regularization of the Dirichlet energy, namely for
every € > 0 and every u € C*°(M, N) we studied the functional

E.(u) = / |Vul*dv, + 6/ |Aul*dv,. (1.5)
M M
The Euler-Lagrange equation of E. is given by
Au — eA*u = —A(u)(Vu, Vu) + flul, (1.6)
where flu] L T, N and
|flull < e(fuDe(|Vu|Viul + [Vul* +[Vul). (1.7)

For every ¢ > 0 the functional E. satisfies the Palais-Smale condition and therefore critical
points exist and they are smooth. Hence, as in the case of the Sacks-Uhlenbeck approxima-
tion, we studied sequences u. € C*°(M, N) (¢ — 0) of critical points of E. with uniformly
bounded energy E.(u.) < c¢. We were able to show that for a subsequence ¢ — 0 the
maps u., converge weakly in W?(M, N) and strongly away from at most finitely many
singular points to a smooth harmonic map wug : M — N. Moreover, by performing a blow-
up around the singular points, we showed that at most finitely many minimal two-spheres
were separating. Additionally we were able to show that there is no energy lost during the
blow-up process if N = 8™ < R"". The case of a general target manifold was left open.

In the main result of this paper we show that for both approximations and general target
manifolds there is no energy-loss occurring. More precisely we have the following



Theorem 1.1. Let (M?,g) be a smooth, compact Riemannian surface without boundary
and let N be a smooth and compact Riemannian manifold without boundary, which we
assume to be isometrically embedded into R™. Moreover let u, € C*°(M,N) (o — 1) be
a sequence of critical points of E., with uniformly bounded energy. Then there exists a
sequence oy, — 0 and at most finitely many points x1,...,x; € M such that u,, —
weakly in WY2(M, N) and in C(M\{x1,...,2;},N) where uy : M — N is a smooth
harmonic map.

By performing a blow-up at each x;, 1 < i <[, one gets that there exist at most finitely
many non—trivial smooth harmonic maps w' 5% — N 1 <5 < j;, sequences of points

xﬁj eM, xi . — x;, and sequences of radii 7’ ;ERy, T Z — 0, such that
ko k k
ri'/rz’dISt [t . .o . . .
maX{ k’]7 kj >M}_)007 V1 SZSZ, 1§]7]/§]17 ]7&]/7 (18)
rhy ey Th
limsupk_)oo(rf’j)l_o‘k <oo V 1<i<l, 1<j5<yj; and (1.9)

L Ji
limy, oo Ea, (ta,) = E(uy) + vol(M Z Z (1.10)

Remark 1.2. The Theorem remains true if we replace everywhere E., by E., us by u., uy
by ug , the estimate (LI) by

limsupy,_ oo 55 =0 V 1<i<l[, 1<j<yj, (1.11)

and (LI0) by

im0 Bz, (ue,) = Eug) + Y Z E(w™). (1.12)

i=1 j=1

Remark 1.3. By the results of Duzaar & Kuwert [3] (Theorem 2) the above Theorem
implies that we also have a decomposition in terms of homotopy classes.

As a Corollary of the above Theorem, we obtain a new proof of a result of Jost [5] on
the energy identity for min-max sequences for the Dirichlet energy.

Corollary 1.4. Let (M?,g) be a smooth, compact Riemannian surface without boundary
and let N — R"™ be a smooth and compact Riemannian manifold without boundary. More-
over let A be a compact parameter manifold, for simplicity we assume 0A = 0, and let
ho: M x A — N be continuous. Let H be the class of all maps homotopic to hy and

B = infpepy sup,e 4 E(h(-,1)). (1.13)



Then there exists a sequence u,, € C°(M,N) of critical points of E,,, a harmonic map
uy : M — N and at most finitely many points x1,...,x; € M such that

E., (tua,) — vOl(M) = B, = infrem sup,e g Ea, (h(-, 1)) — vol(M), (1.14)
oy — . (1.15)
U, — u; weakly in W' (M,N) and (1.16)
Ug, — uy in Coo(M\{z1,...,2}, N). (1.17)

Moreover there exist at most finitely many non- trwzal smooth harmonic maps w™ : S? —
N 1<i< l 1 <5 < Ji, sequences of points x ; €M, a: - — x;, and sequences of radi
w eR,, r m — 0, such that

rEsorks dlst( zk )

b Dyt SRR o, Y 1<i<l 147 < jA7 (L18)

” Ti; —i—r
limsupk_)oo(rf’j)l % <oo ¥V 1<i<l 1 <j<ji and (1.19)
limy oo Eq, (ta,) = E(uy) + vol(M +ZZE i) (1.20)

i=1 j=1

Remark 1.5. With the obvious modifications the corollary remains true for the biharmonic
approzimation E..

Proof. The proof of this result is quite standard but we include it here for sake of com-
pleteness. It is obvious that Va > 1 we have

B < Ba-
Let 6 > 0 and choose h € H N C>(M x A, N) such that
supye E(h(-,1)) < 5 +6.
Then for a — 1 small enough we have

sup;e 4 Ea(h(-,1)) — vol(M) < 840 + ¢(h) (o — 1)
< B+ 26.

This implies
hma—>1 ﬂa = ﬂ

Since E, satisfies the Palais-Smale condition we know from the minmax principle (see for
example [19], Theorem 4.2 and Example 4.3) that for every o > 1, 3, is a critical value of
E, —vol(M). This shows that there exists a sequence of critical points u, of E, such that

E,(uy) —vol(M) — .

The remaining assertions of the Corollary follow from Theorem [Tl O
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In the existing literature there are already some partial results available for the energy
identity for the Sacks-Uhlenbeck approximation and there are many more results available
for related problems. In the following we want to mention some of these results.

For the Sacks-Uhlenbeck approximation Chen & Tian [I] proved the energy identity for
sequences of minimizers of the energy F, in a given homotopy class. Recently Moore [12]
proved the energy identity (he actually proved (LI0) with the Dirichlet energy F instead
of the full a-energy F, on the left hand side) for the Sacks-Uhlenbeck approximation for
sequences of critical points of F, with bounded Morse index (additional to our situation
he allowed the conformal structure of the domain to vary but it had to remain bounded).
The additional assumptions made by the authors were used to ensure that the sequence of
minimizers, respectively critical points with bounded Morse index, converges to a geodesic
of finite length on the necks connecting the bubbles and the weak limit (or body map)
which then implies the energy identity. We argue in a somehow more direct way but we
want to mention that it is not clear from our analysis that the sequence of critical points
converges to a geodesic of finite length on the necks.

For sequences of harmonic maps and min-max sequences for the Dirichlet energy the energy
identity was proved by Jost [5] (see also [13] for an alternative proof of the energy identity
for sequences of harmonic maps).

The energy identity for the harmonic map heat flow and Palais-Smale sequences for the
Dirichlet energy with tension field bounded in L? was established by Qing [14] (in the
case N = S™) and independently by Ding & Tian 2] and Wang [2I] in the general case.
Alternative proofs have been given by Qing & Tian [I5] and Lin & Wang [8]. See also the
paper of Topping [20] for more refined results in this case.

Lin & Wang [9], [10] used a Ginzburg-Landau approximation to regularize the Dirichlet
energy and proved the energy identity in this situation. The disadvantage of the Ginzburg-
Landau approximation is that the approximating maps don‘t have to map into the target
manifold, only in the limit they are forced to do this.

For maps from higher dimensional domains the energy identity for sequences of harmonic
maps has been proved by Lin & Riviére [7] for N = S™. For other related problems such
as sequences of Yang-Mills fields on a four-dimensional manifold, respectively biharmonic
maps from a four-dimensional manifold into the sphere the energy identity has been proved
by Riviére [16], respectively Wang [22].

In the following we give a brief outline of the paper.

In section 2 we prove Theorem [I1] for the Sacks-Uhlenbeck approximation of harmonic
maps. We start by recalling the small-energy regularity estimates and the blow-up proce-
dure of Sacks & Uhlenbeck [17] in section 2.1. In Lemma 22 we prove the very important
estimate for the concentration radius of the bubbles. The advantages of having a good
estimate for the concentration radius can also be seen in the paper of Topping [20]. In
the next two sections we prove a Hopf-differential type estimate and an estimate for the
tangential component of solutions of (L4]) on annular regions. These estimates are proved
in the same way as the corresponding estimates for harmonic maps, see for example [17]
and [2]. In section 2.4 we use the bubbling induction argument of Ding & Tian [2] to
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reduce the proof of the energy identity to the case of one bubble. In this situation we then
combine the previous estimates with the estimate for concentration radius to complete the
proof of the energy identity.

In section 3 we treat the case of the biharmonic approximation. For this approximation
the estimate for the concentration radius (see (3.6)) has already been proved in [6]. In
section 3.1 we review the small-energy estimates and blow-up process from [6]. In section
3.2 we use the stress-energy tensor of E. to get a Hopf-differential type estimate for the
biharmonic approximation. The rest of the proof of the energy identity then follows as in
the case of the Sacks-Uhlenbeck approximation and in the sections 3.3 and 3.4 we briefly
describe the necessary modifications.

2 Enmergy identity for the Sacks-Uhlenbeck approxima-
tion of harmonic maps

In this section we prove Theorem [[.T] for the Sacks-Uhlenbeck approximation of harmonic
maps.

2.1 Results of Sacks and Uhlenbeck

We consider sequences of critical points u, € C*°(M, N) of the functional E, with uni-
formly bounded energy FE,(u,) < ¢. Due to the uniform boundedness of the energy it is
easy to see that there exists a subsequence oy, — 1 such that u,, — u; weakly in W2 In
section 3 of [17] Sacks & Uhlenbeck proved the following small energy regularity result for

solutions of (L4]).

Theorem 2.1. There exists ¢g > 0 such that if u, (o close to one) is a critical point of
E,, with f32 |Vua|? < gy then we have for every x € By and every m € N

08Cp, Ua + |V ua| (@) |2|™ < e | |Vual?)z. (2.1)
B>
With the help of this Theorem Sacks & Uhlenbeck were able to show that the sequence
Uq, converges strongly to a smooth harmonic map u; : M — N away from finitely many
points. These finitely many singular points x; € M, 1 < ¢ < [, are caracterized by the
condition that

limsup,,_, . E(ta,, Br(xi)) > eo, (2.2)

for every R > 0 and every 1 < ¢ <[. Around these finitely many singular points they were
able to perform a blow-up and show that a non-trivial harmonic two-sphere separates. The
blow-up can be done as follows: Fix Ry > 0 such that Bg,(x;) N Br,(x;) = 0 for every



i,j €1{1,...,1}, i # j. Because of ([Z2) there exists a sequence of points ¥ — z; and radii
r¥ — 0 such that

Xy 2 ) Bty Byt (9)) = Bty Byy(af)) = (2.3)
Defining;:
oF :Big — N
vF () :uak(xf +rFr) (2.4)
we see that vF solves (I.4) with 1 replaced by (r¥)? and moreover
max,ep ,, E(f, Bi(y)) = E(vf, By(0)) = 52_0 (2.5)

Therefore we can apply Theorem 1] to v¥ and get that v* converges in C* to a smooth
harmonic map w’ from R? into N. By the point removabilty result of Sacks & Uhlenbeck
we can then extend w® to a smooth harmonic map from S? to N. As a consequence of this
blow-up procedure we get the following estimate for the concentration radius (see also [1§]
were this was observed for a similar approximation of a different problem).

Lemma 2.2. Using the above notation we have that

limsup,,_,(rF)* < oo, (2.6)

for every 1 <1 <.

Proof. Because of (23]) and Holder’s inequality we know that

5 = Blua, B(al)
9 1 & 2(0(;671)
< (A F Vg, [7)*) o (7)o
M
2(ag—1)
<c(ry) o
From this the claim follows. O

2.2 A Hopf differential type estimate

In the case of sequences of harmonic maps or Palais-Smale sequences for the Dirichlet
energy with tension field bounded in L? an important ingredient in the proof of the energy
identity was an estimate for the Hopf differential (see e.g. [2], [I7]). In the next lemma we
show that a related result is true for solutions of (L4]).



Lemma 2.3. Let B C R? be the unit ball and let u, € C*°(B, N) be a solution of (L4).
Then we have for every 0 < r < 1 and every a close to one

1
/ P14 Va2 () 2 <e / (14 [Vata)* (o) + / F(1 4 Vg 2)2?
0B,

oB, T 9B,

—l—c(a—l)/B (14 |Vaua [2)*. (2.7)

Proof. We multiply equation (L4 by z - Vu, and integrate over B, to get (remember that
A(ug)(Vug, Vu,) L T, N for every x € B)

0 :/ div((1 + |[Vua?)* ' Vus)z - Vi,

—— [ TP VP 4 [ (1 [T ) P
By 8B7‘

1
=5 [ U ITuP) e T [T,

T

Next we integrate by parts and get

1
—/ (14 [Vu|))* tr - V(1 4 |[Vue|?) = — / (14 [Vuu|?)* + / f(l + | Vg |?)*

2 /s, B, a8, 2
a—1

/ (1+ [Vua )z - V(1 + [Vua ).

T

Using the identity
1
|Vua|2 = |(ua)r‘2 + r_2|(ua)€|2

and combining everything we end up with
_ 1 o
/ P14 [Vta2)2 (), ? <c / L1 4 190 )2 (0o
OB, 0B, T

+c(a — 1)/ (14 [Vua|*)* + c/ (14 [Vuu|*)*t
By

T

O

2.3 Estimate for the tangential component

In this section we show that if the Dirichlet energy is small on all annular regions with
bounded geometry then the tangential derivative of w, converges to zero on the annular
region which is the union of all the annuli with bounded geometry. The proof of this fact
follows closely the previous work of Sacks & Uhlenbeck [17| and Ding & Tian [2]. In the
following we use for 0 < a; < ay < 1 the notation A(a1,a) = {z € R?|a; < |z| < ay}.
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Lemma 2.4. There exists 69 > 0 such that for all 6 < &y and all solutions u, € C*(B, N)
of (L) with fA(T 2r) |Vua|? < 6 for every r € (Ry,%2), we have for a — 1 small enough

/R /%l\ua o|?drdd < cV/5(1 + (In Ry)'™). (2.8)

Proof. Let 0y < g9 and let y € A(2R1,%). Then we have that 2';", 473/ € (Ry, 22) and

By (y) C Bap \Bayy . From our assumption and Theorem 2] we therefore conclude that
3 3 3

Z |2|'| Viug|(z) < eV, (2.9)

for every x € A(QRI,%). Now we let 4% = 2 +¢q,1 € Nand ¢ > 0, and define
Ay = A(2*Ry,2"R)) for all 1 < k <1 —1 and we let 4; = A(2'R;, %). Next we note
that equation (L4) can equivalently be written as

(V2Ug, Vug) Vg
1 4 |Vug,|?
— £ (2.10)

Now we let h = h(r) be a piecewise linear function which equals the mean value of u, on
{f2} x ST and {2"R;} x S for all 1 < k <[ — 1. With the help of this we have

Aug + A(tg)(Vig, Vi) = —2(a — 1)

A(u—h) + A(ua) (Via, Vi) = fa.

Testing this equation with u, — h and integrating over A, we get
V(o = 1P = [ (o = 1)) (Vita, Vi) = 1)
Ak Ak

27
+ 2M1 R, / (e — ) (g — ), (2T Ry, 0)d0
0

27
_9kR, / (o — ) (1o — 1) (25 Ry, 0)d.
0

We remark that the boundary integrals of (u, — h)h, vanish since h is equal to the mean
value of u, on these boundaries and h, is piecewise constant. Because of (29) and the
Sobolev embedding (which we only apply on the annuli A) we know that for every x € Ay
we have

uo — h|(x +Z\x||vzua|<052. (2.11)

=1



This implies that

2
|V (uq — h)|? <co? / (|Vual® + | fa]) + 2k+1R1/ (e — h)(ua)r (2" Ry, 0)dO
0

Ak Ak

21
_9*R, / (e, — ) () (20 Ry, 0).
0
Taking the sum over k we get

/ IV (e — B)[? <cs / (Vaal? + 1£al)
A(2R1,12)

A(2R1,72)
27
B L e — (B2 0o
A 4

27
— 2R, / (te — B)(ua — h)r(2Ry, 0)d0
0
<cs2 (14 (InRy)'®),

where we used (2.I1) to estimate

[ mlsta-n [ e
A(2R1,72) A(2R1,72)
S(lan)l_a.

This finishes the proof of the Lemma. O

2.4 Proof of the energy identity

Proof. Because of the induction argument of Ding & Tian [2| we know that it is enough
to prove the energy identity in the presence of one bubble. Since we are dealing with a
local problem we assume from now on that u, : R?> D B; — N and that we have only
one energy concentration point x; = 0. Using the notations from section 2.1 we assume
that we obtain the bubble by rescaling with the factor 7*. From the smooth convergence
— wup away from 0 we conclude that

Uy,

Eak (uak, Bl\BRo) — E(ul, Bl\BR()> + VOl(Bl\BRO), (212)

k

for every 0 < Ry < 1. Similarly, from the local C'-convergence v* = u,, (r*) — w, we

have for every R > 0
E., (ta,, Bre) — E(w). (2.13)
Moreover this also implies that for every R > 0 and M > 0

Eak (uak; BRO\B®> + Eak (uak; BMrkR\BrkR) - 07 (214)

M
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as k — oo and Ry — 0. Therefore it is easy to see that the proof of the energy identity in
the case of one bubble is reduced to showing that

i g0 limp, o limy oo B, (Ua,,, A(RT*, Ry)) = 0. (2.15)

Next we claim that due to the fact that we have only one bubble we can assume that for
any 0 > 0 there exists ky > 0 such that for all £ > kg we have

E(uq,,, Bor\By) < 6, (2.16)

for every Rr* < r < %. To see this we argue by contradiction. If the claim is false, we
may assume that as k — oo there exists s* € (Rr*, %) such that

E(uak; B2sk\Bsk> = max E(uak; B2T\Br)

rE(Rrk,%)

> 0. (2.17)
From (2.14) we get that
% — oo and
RS—:IC 0. (2.18)

By defining
O : Bro \Bptg — N
&R
() = g, (s°7) (2.19)

we have that @, solves (I.4)) with 1 replaced by (s*)? and

/ ((s5)2 + |V < e(sF)2oD), (2.20)
Bry\B, kg

E(iy; Bo\By) > 6. (2.21)

By (2:20), (2.18), Lemma[22land the arguments of section 2.1 we may assume that o — 7
weakly in W,'?(R?\{0}, N), where @ : R? — N is a harmonic map with finite Dirichlet
energy.

We have two possibilities. The first one is that there exists 7 > 0 such that

SUPgeN SUPzeB,\B; Eak ({Jlﬂ B;(JI)) < €o-
4
With the help of Theorem 2] and a covering argument this implies that 9, — ¥y in

C>(By\B1, N). Since R?\{0} is conformally equivalent to S*\{N,S} we conclude from
(221)) and the point removability result of Sacks & Uhlenbeck [I7], that @y can be lifted to
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a smooth non-trivial harmonic map from S? to N, contradicting the assumption that we
have only one bubble w.

The second possibility is that we have at least one energy-concentration point y € B4\B%.
Now we can apply the blow-up procedure of section 2.1 to conclude that there must exist a
non-trivial harmonic two-sphere, again contradicting the assumption that there is only one
bubble. This proves (2.I6]) and hence we can combine Theorem 2.1 Lemma 2.2] Lemma
23 and Lemma 24 (with R, = Rr* and Ry = Ry) to estimate

/ (1 [V, )™ < cf|(1+ |Vuak|2)ak_1||L°°(A(Rrk,Ro))/ - (L [Vug, )
A(2Rrk,20) A(2Rrk, 0y
<e / Vit |* + o( Ro)
A(2Rrk B0)

1]
= 27r1

<e /2 |1ty Jodrd8 + o(Ro) + (e — 1) Ro i (1)
< o(k) + o(Ry) + ¢V/0,

which, combined with (2.I4]), proves (2I3]) (since § > 0 was arbitrary) and therefore the
main Theorem in the case of one bubble. O

3 Energy identity for the biharmonic approximation of
harmonic maps

In this section we prove Theorem [Tl for the biharmonic approximation of harmonic maps.

3.1 Estimates and blow-up

In the following we consider sequences of critical points u. € C°(M,N) (¢ — 0) of the
functional E. with uniformly bounded energy E.(u.) < c¢. Due to the uniform bound on
the W12-norm of u. we get the existence of a subsequence U, such that u., — uo weakly in
Wh2(M, N). In [6] we were able to show the following small energy estimate (see Corollary
2.10 in [6]).

Theorem 3.1. There ezists 69 > 0 and ¢ > 0 such that if u. € C°(M, N) is a solution of
(L8) with [, (IVul* +e[Aul?) < dy then we have for & small enough and every m € N

05, e + V™| (2)|2]™ < c(/ (IVul? + e]Aul?)?, (3.1)

B>

for every x € B;.
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Hence, as in section 2.1, the sequence u. converges strongly to ug away from finitely
many singular points x; € M, 1 <7 <[, which are characterized by the condition

limsupy,_, o F-, (uc,, Br(z;)) > do, (3.2)

for every R > 0 and every 1 < i <[. Around these finitely many singular points we were
able to perform a blow-up similar to the one of section 2.1 (see section 3 of [6]). Namely,
for Ry > 0 such that Bg,(z;) N Bg,(z;) = 0 for every 1 <i # j <, there exists a sequence
of points x¥ — x; and a sequence of radii 7¥ — 0 such that

X, 1) By (1, B (9) = By, Brs(a8) = 2 5.3
Defining
w? :Big — N,
wh () :luek (zF +rF) (3.4)
we see that w? solves (L) with e, replaced by &, = (ﬁ—k)Q and
maxyep 5, L, (wk, Bi(y)) = Bz, (wf, B1(0)) = %. (3.5)

¥

rk
7

Hence we can apply Theorem B.1to w¥ and conclude that w¥ converges smoothly to some
map w' € C°NW12(R? N). Then we were able to show (Lemma 3.1 in [6]) that for every
1< <
.k
R

and therefore w’ is a harmonic map with finite Dirichlet energy and can therefore be lifted
to a smooth harmonic map from S? to N.

0, (3.6)

3.2 Stress-energy tensor
For a smooth map u we have the well-known stress-energy tensor S(iﬂ(u) given by
1
Shal) = 5 VuPSas = (Vau, V). (3.7)
An easy calculation shows that if u is a harmonic map then we have
OaSap(u) = —(Au, Vgu) = 0. (3.8)

Again for a smooth map u we have the stress-energy tensor S24(v) defined by (see [4] and
[11])
1

Sag(u) = §\Au|25a5 + (Vyu, V,Au)oas — (Vau, VgAu) — (Vau, V,Au). (3.9)
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By another easy calculation we see that if w is an extrinsic biharmonic map (i.e. a solution
of A%y L T, N) then we have

0aS25(u) = —(Vgu, A%u) = 0. (3.10)
Combining (3.8) and (B.I0) we see that
Oa(Sap(ue) — eSiﬁ(ug)) = (Vgu., (eA? — A)u.) =0, (3.11)

if u. is a solution of (L6]). As in the case of harmonic maps (see [17]) we use this divergence-
free quantity to get a Hopf differential type estimate for solutions of (L.G).

Lemma 3.2. Let u. € C°(B, N) be a solution of (LO). Then we have for all 0 < r < 1
2 _ 1 2 2 2 3
r [(ue), | < |(ue)gl” +ce [ |Aug|” + cer (|Auc|* + |Vue||Viue]). (3.12)
9B " JoB, By 9By
Proof. Multiplying (3.I1) by 2 and integrating by parts we get for every 0 < r < 1

[ (Statue) = eSEuts = [ (Shtu) — eSSyl @13)
where v is the outer unit normal to 0B,. Now we calculate
(Sagluc) —eSa5(ue))dap = —e|Au|?
and

.
(Sag(ue) = eS5g(ue))a’v® =5 |Vuel* = r|(uc), |’

_ 7“6(%|Au5|2 + (Vaue, VAW — 2((u)r, (Au.),))
1 o T 2
e CANEATAN

—re(G1Aul 4 (Vi V) — 2((u),, (Au),)),

where we used the identity [Vu|* = |u,|*+2 |ug|?. This finishes the proof of the Lemma. [

3.3 Estimate for the tangential component

In this subsection we prove an estimate for the biharmonic approximation similar to the
one given in section 2.3 for the Sacks-Uhlenbeck approximation.

Lemma 3.3. There exists 61 > 0 such that for all 6 < §; and all solutions u. of (LE) with
fA(T’2r)(|Vug|2 + e|Au.|?) < § for every r € (Ry, %), we have for e small enough

S 9 €
/R1 / —\ uz)ol2drdd < eVo(1+ TAE 5) (3.14)
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Proof. The proof follows directly from the one of Lemma 24l Namely instead of using
Theorem 2.1] we use Theorem [B.1] to conclude that

4
> el |Viue| < Vo (3.15)
=1

for every x € A(2R;, #2). Moreover we note that equation (I.G) can equivalently be written
as

Au, + A(u)(Vue, Vu,) = eAu, + flu.]
- (3.16)

Using this form of the equation it is easy to see that the proof of Lemma 2.4] carries over
to this situation once we notice that because of (L7) and (3.I3) we have

\/5/ Ife] < C\/Sa/ (V| + |Vue| | Viue| + [V * 4+ |[Vue|h)
A(2R1,2) A(2Ry1,2)

SC\/SW.

3.4 Proof of the energy identity

Proof. Following the remarks of section 2.4 (using the results of section 3.1) we can assume
that we have only one energy concentration point x; = 0 € B; C R? and one bubble w'
which is obtained by rescaling u., by the factor r*. Again the proof of the energy identity
is reduced to showing that

limR_m limRO_@ hmk_,oo Egk (Uek, BRO\BRrk> = 0. (317)

Using similar arguments as in section 2.4 we can moreover assume that for any 6 > 0 there
exists kg > 0 such that for all £ > ky we have

E. (ue,, Bay\B,) < 0, (3.18)

for every Rrf <r < £ Hence we can apply (B15) with By = Rr* and Ry = Ry to get

d
gk/ \Au5k|2 Sc&ek/ _x4
A(2Rrk, 0y A(2Rrk, 0y ||
Ek
=2
=o(k), (3.19)
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where we used (3.6)) in the last line. Combining Lemma[3.2] Lemma B.3] (3.I8), (3.19) and
B8) we get

1
E. (.., AR, 10 / / e (e, Jol)drdd + o)
Rrk

|
<C/Rrk / —| uz, )o|*drdf + o(k) + o(Ry)
o(k) + o(Ry) + ¢V/s, (3.20)

which proves ([B.17)). O
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