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Regional Differences of fMR Signal Changes
Induced by Hyperventilation: Comparison Between
SE-EPI and GE-EPI at 3-T

Shinji Naganawa, MD,'* David G. Norris, PhD,? Stefan Zysset, PhD,? and

Toralf Mildner, PhD?

Purpose: To evaluate whether reproducible signal change
of brain tissues by hyperventilation (HV) can be seen on
spin-echo (SE)-echo planar imaging (EPI) at 3-T and to
examine the sensitivity of SE-EPI for measuring vascular
reactivity in regions of the brain, such as the hippocampal
formation, that are difficult to visualize with gradient-echo
(GE)-EPI due to susceptibility artifacts.

Materials and Methods: Six healthy human subjects per-
formed a voluntary HV task. The task design was as follows:
two minutes normal breathing (rest) followed by two min-
utes HV, giving a basic four-minute block that was repeated
three times for a total scan time of 12 minutes for one run.
Each subject performed the run both for SE-EPI and GE-
EPI. Statistical analysis was performed to detect the area
with significant cerebrovascular reactivity. The percentage
signal change was also obtained for each cerebral region.

Results: Both GE-EPI and SE-EPI showed globally signifi-
cant signal decreases in the cerebral cortex. In GE-EPI, the
frontal cortex showed a larger signal decrease than the
other gray matter tissues (P < 0.05). In SE-EPI, the differ-
ences among gray matter tissues except for the hippocam-
pal formation were not significant. The hippocampal forma-
tion showed the largest signal change (P < 0.05) in SE-EPI,
but no significant signal change was observed in GE-EPI
due to the presence of susceptibility artifacts.

Conclusion: HV using SE-EPI at 3-T provides robust and
reproducible signal decreases and may make the evaluation
of the vascular reactivity in hippocampal formation feasible.
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HYPERVENTILATION (HV) HAS PREVIOUSLY been
used as an easy and reliable task for the assessment of
global cerebral vascular reactivity (1-3). It is reported
that the functional magnetic resonance (fMR) signal
change induced by HV differs between cerebral regions
(4). Signal changes are reported to be larger in frontal
cortex than in cerebral white matter, cerebellum, and
visual cortex (4). Frontal lobe dominance in vascular
reactivity has also been reported using Xe-133 (5). This
regional variability is at odds with the results reported
for hypercapnia induced by breath-holding (6). These
authors reported that signal change by breath-holding
was larger in the cerebellum and visual cortex than in
the frontal cortex. They speculated that regional differ-
ences in vascular reactivity were induced by differences
in capillary density between cerebral regions, although
the cause of discrepancies between the studies using
hypo- and hypercapnia is unknown. Although spin-
echo (SE) echo planar imaging (EPI) gives a lower blood
oxygenation level-dependent (BOLD) signal change
compared to gradient-echo (GE)-EPI, the two methods
have different sensitivities to various vascular struc-
tures (7,8). The BOLD signal change detected by GE is
mainly the result of static dephasing, which at 1.5-T is
thought to mostly stem from the intravascular compo-
nent in large veins (9,10), although the true origin of
fMR imaging signal change still remains controversial
(11). At 1.5-T using standard spatial resolution, the
SE-EPI BOLD signal change is also mainly intravascu-
lar (12). However, at 9.4-T, the BOLD signal change
detected by SE-EPI is independent of the intravascular
component (13). At 3-T, it can reasonably be expected
that the contribution from the intravascular compo-
nent to SE-EPI BOLD signal change is lower compared
to that at 1.5-T.

We conducted this study to evaluate whether repro-
ducible signal change by HV can be seen on SE-EPI and
to investigate whether this frontal dominance in vascu-
lar reactivity is seen on SE-EPI, as well as GE-EPI at
3-T. A further aim was to examine the sensitivity of
SE-EPI for measuring vascular reactivity in regions of
the brain, such as the hippocampal formation, that are
difficult to visualize with GE-EPI due to susceptibility
artifacts.
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MATERIALS AND METHODS
Subjects

Six right-handed healthy subjects (three men and three
women; 22-29 years old, average 25.8 years old) were
included in this study. All subjects gave their written
informed consent to participate in this study. This in-
vestigation was approved by the Ethics Committee of
the University of Leipzig.

MR Imaging

All MR imaging was performed on a 3-T whole body MR
scanner (MedSpec 30/100; Bruker Medizintechnik, Et-
tlingen, Germany) using a bird-cage head coil. Each
subject’s head was fixed tightly with foam pad packing.
After the scout scan, anatomical T;-weighted two-di-
mensional modified driven equilibrium Fourier trans-
form (MDEFT) images (14) (256 X 256, TR 1.3 seconds,
echo time [TE] of 10 msec) were obtained with a non-
slice-selective inversion pulse followed by a single exci-
tation of each slice (15). Slice orientation was made
parallel to the bicommissural plane (AC-PC). For the
registration purposes of EPI fMR images, a set of T;-
weighted inversion recovery EPI images was also taken
with the same parameters as the fMR imaging data. The
inversion time was 1200 msec, with a TR of 45 seconds
and four averages. For each subject, high resolution
whole-head T;-weighted three-dimensional MDEFT im-
ages (16) were obtained with 128 sagittal slices, 1.5 mm
thickness, field of view (FOV) of 25 X 25 X 19 cm, and
256 X 256 matrix for subsequent image registration.
The three-dimensional MDEFT images were obtained in
a different session to reduce total examination time.
fMR imaging was performed using both single-shot GE-
EPI and single-shot SE-EPI. For both sequences, the
following parameters were employed: TR two seconds, 5
mm slice thickness, 2 mm gap, 64 X 64 matrix, FOV of
19.2 cm (in-plane resolution of 3 mm X 3 mm), 16 slices
parallel to the AC-PC line, and bandwidth of 100 kHz.
For GE-EPI, the flip angle was 90° and TE was 30 msec.
For SE-EPI, a TE of 80 msec was used. The echo times
chosen were appropriate for the expected relaxation
times at 3-T.

HV Experiment

Subjects were instructed to perform voluntary HV for
two minutes upon request by the operator. Subjects
were also instructed to keep their heads as still as
possible during HV. End-tidal CO, partial pressure
(EtCO,) was monitored via a nasal canula (three meters
long) every three seconds using a “Maglife” capnometer
(Bruker Medizintechnik, Ettlingen, Germany). The
EtCO, measurement delay was approximately six sec-
onds after expiration due to the dead space of the can-
nula.

The task design for HV was as follows: two minutes of
normal breathing (rest) followed by two minutes HV,
giving a basic four-minute block that was repeated
three times for a total scan time of 12 minutes for one
run.

Each subject was asked to perform the run both for
SE-EPI and GE-EPI. Between the two runs, at least 10
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minutes of rest period was set. The order of SE-EPI and
GE-EPI was randomized in order to eliminate any sys-
tematic differences in response to repeated HV. SE-EPI
was performed first in three subjects and GE-EPI was
performed first in the other three subjects.

Data Analysis

Prior to the statistical analysis, individual subject’s fMR
data were visually inspected to check for gross motion
and then preprocessed as follows: using an in-plane
motion correction, baseline fluctuation was corrected
for by using a voxel-wise high-pass filter in the temporal
domain (cut-off period of 1.5 times of trial length), a
spatial Gaussian filter, and a slice-time correction that
linearly compensated for the time difference between
slices. A transformation matrix was calculated by map-
ping the two-dimensional anatomical slices (two-di-
mensional MDEFT) onto the individual three-dimen-
sional anatomical data set (three-dimensional MDEFT).
For this purpose, a rigid linear registration with six
degrees of freedom (three rotational, three transla-
tional) was performed. The rotational and translational
parameters were acquired on the basis of the two-di-
mensional MDEFT to achieve an optimal match be-
tween these slices and the individual three-dimensional
MDEFT reference data set. The inversion recovery EPI
data was applied to refine the transformation matrix for
fMR imaging by EPI. The statistical evaluation was
based on a least-squares estimation using the general
linear model for serially autocorrelated observations
(17). First, for each individual subject, statistical para-
metric maps were generated and were averaged over all
subjects afterwards (18). The design matrix was gener-
ated with a boxcar (square wave). The model equation,
including the observation data, the design matrix, and
the error term, was convolved with a Gaussian kernel of
dispersion of four seconds full width half maximum
(FWHM). The model included an estimate of temporal
autocorrelation used to estimate the effective degrees of
freedom. The contrast between the different conditions
was calculated using the t-statistic. Subsequently, t-
values were transformed to z-scores. As the individual
functional datasets were all aligned to the same stereo-
tactic reference space (19) by a linear affine transfor-
mation, a group analysis of fMR imaging data was per-
formed by averaging individual z-maps and multiplying
each z-value with square root of N (N = number of
subjects) (18). During this process, data were linearly
interpolated to 3 mm X 3 mm X 3 mm resolution.
Regions with a z-score higher than 3.5 (P < 0.0001)
were considered as responding significantly to HV. The
z-maps and percentage signal changes were evaluated
using the data from the last minute of each rest and HV
period, to exclude the transient period between HV and
rest. The percentage signal change from each brain
region was measured in two ways. In one method, we
chose a most significantly activated voxel in a particu-
lar region on the averaged normalized three-dimen-
sional z-map of GE-EPI, and signal intensity values of a
voxel and its neighboring 26 voxels were averaged in
normalized three-dimensional space for the individual
subject. By this method, a 729 mm® cubic volume was
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Figure 1. Axial T;-weighted images showing the delineation of the larger ROIs. a: cerebellum, b: hippocampal formation, c:
occipital cortex, d: basal ganglia, e: frontal cortex, f: white matter, g: parietal cortex.

evaluated. This measurement was performed for the
frontal cortex, parietal cortex, occipital cortex, basal
ganglia, hippocampal formation, cerebellum, and white
matter. Each measurement was conducted for both
hemispheres of the brain and an average from both
sides was obtained. For each subject, the voxel with the
same coordinate value in the normalized space was
selected. Besides this relatively small region of interest
(ROI) analysis, the second method used the larger ROIs
drawn manually on two-dimensional non-preprocessed
source images (raw data) for seven anatomical areas
described above (Fig. 1). The percentage signal change
in each ROI was also measured by this manual method.
We used two kinds of ROI analysis methods because
the smaller ROIs placed in significantly activated voxels
might be more influenced by flow (20). However, al-
though manually set larger ROIs might be more vulner-
able to anatomical bias, we felt it worthwhile to evaluate
non-preprocessed data to reduce the influence from the
vessel itself and to exclude the possibility that one of the

preprocessing methods could subtly modify the results
of a small signal change. The average of three rest pe-
riods and three HV periods were calculated to obtain
the percentage signal change values. The percentage
signal change normalized by the values of the EtCO,
change were also calculated. These percentage signal
change values, normalized percentage signal change
values, EtCO, change, and normalized z-map in three-
dimensional space were averaged over all six subjects.
Statistical analysis of percentage signal change values
was performed by paired student’s t-test. For the data
processing and statistical analysis, the in-house soft-
ware LIPSIA (Leipzig Image Processing and Statistical
Interference Algorithms) was used (21).

RESULTS

All subjects performed the HV task well and without
any adverse reactions or detectable gross head motion.
Averaged EtCO, values during normal breathing were
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Table 1
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Mean Percentage (%) Signal Change, Mean %Signal Change/mmHg EtCO2 and z-score by Smaller ROI Setting

SE-EPI

GRE-EPI

Py
Mean %signal Mean %signal

Py
Mean %signal Mean %signal

change (SD) change/mmHg EtCO, z-score change (SD) change/mmHg EtCO, z-score
(SD) (SD)

Hippocampus -3.3(2.7) —0.134 (0.110) 13.0 -0.5(1.6) —0.026 (0.067) 2.2
Frontal -1.5(0.7) —0.064 (0.027) -10.0 —4.3 (4.0) —0.175 (0.153) -7.4
Cerebellum -1.2(1.0) —0.049 (0.040) -13.0 —0.6 (0.8) —0.028 (0.034) -11.0
Parietal -1.7 (1.3) —0.069 (0.043) -6.4 —1.4 (0.9) —0.057 (0.036) -9.4
Occipital —1.0(0.8) —0.040 (0.026) —-2.6 —1.1(0.5) —0.044 (0.015) -11.0
Basal ganglia —0.6 (0.5) —0.027 (0.026) -11.0 71 .4 (0.5) —0.058 (0.028) -7.0
White matter 0.1 (0.2) 0.006 (0.008) -4.9 8(0.3) 0.033 (0.018) -10.0

z-scores shows that of the center voxel in the ROI.

41.0 (2.2) mmHg (standard deviation) for SE-EPI and
40.0 (2.3) for GE-EPI. Averaged EtCO, values during HV
were 16.5 (4.2) for SE-EPI and 16.5 (2.4) for GE-EPI. All
subject’s EtCO, values were decreased by more than 16
mmHg. Mean EtCO, change was 24.5 (4.2) mmHg for
GE-EPI and 23.5 (4.3) mmHg for SE-EPI.

Averaged percentage signal changes for the smaller
ROI analysis and z-values from each region of the
brain-regions examined are listed in Table 1. The re-
sults of the larger ROI analysis are shown in a graph
(Fig. 2) and also numerically in Table 2. The percentage
signal change values obtained from the two types of ROI
showed comparable results. In GE-EPI, percentage sig-
nal change for both ROI types in the frontal cortex was
larger than those of all other gray matter tissue (P <
0.05), and hippocampal percentage signal change for
both ROI types was smaller than for all other gray mat-
ter tissue (P < 0.05). In SE-EPI, the percentage signal
change in all cerebral cortex (gray matter tissue except
hippocampal formation) was more uniform and there
was no significant difference between each cortex. The
percentage signal change for both ROI types in the

frontal cortex was larger in GE-EPI than in SE-EPI (P <
0.05). In the parietal cortex, the signal change was
slightly greater in SE-EPI than in GE-EPI, but this dif-
ference was not significant (Figs. 2 and 3). The signal
change in the hippocampal formation could be appre-
ciated in SE-EPI but was not apparent in GE-EPI, prob-
ably due to susceptibility artifact from the paranasal
sinus. GE-EPI and SE-EPI images from this region are
shown in Figure 4. Averaged percentage signal change
of hippocampal formation in SE-EPI for both ROI types
was larger than that of other gray matter tissue (P <
0.05). In white matter, a statistically significant signal
increase for both ROI types was observed in GE-EPI.
This white matter signal increase seemed to be located
mostly in the frontal area in the watershed between the
anterior and middle cerebral arteries (Fig. 3). This phe-
nomenon was seen in all subjects.

In the occipital cortex, basal ganglia, and cerebellum,
averaged percentage signal change by both ROI settings
and normalized values by EtCO, was larger in GE-EPI
than in SE-EPI, but the differences were not significant.
On the z-maps (Fig. 3), the basal ganglia seemed to
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Figure 2. Mean percentage (%) signal changes for manually drawn ROIs during periodic HV task.
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Mean Percentage (%) Signal Change and Mean %Signal Change/mmHg EtCO2 by Larger ROI Setting

SE-EPI

GRE-EPI

Mean %signal
change (SD)

Mean %signal
change/mmHg EtCO,

Mean %signal

Mean %signall change/mmHg EtCO,

change (SD)

(SD) (SD)

Hippocampus —2.0(1.1) —0.080 (0.034) 0.0 (0.2) 0.001 (0.009)
Frontal ~1.3(0.6) —0.054 (0.032) ~3.8(2.1) ~0.165 (0.099)
Cerebellum ~0.9 (0.2) —0.037 (0.014) ~1.5(0.6) —0.066 (0.027)
Parietal ~1.5(0.8) —0.062 (0.035) -1.3(0.4) —0.057 (0.024)
Occipital ~1.1(0.6) —0.046 (0.029) —2.0(0.9) —0.086 (0.040)
Basal ganglia ~1.0 (0.6) —0.043 (0.030) -1.3(0.5) —0.059 (0.024)
White matter 0.3 (0.3) 0.012 (0.017) 0.8 (0.4) 0.036 (0.017)

show slightly more distinct vascular reactivity on SE-
EPI than GE-EPI. The time courses of averaged percent-
age signal change in frontal cortex ROI and white mat-
ter ROI by larger ROI setting are shown both for SE-EPI
and GE-EPI (Fig. 5).

DISCUSSION

Vascular reactivity to global cerebral stimulation, such
as hypercapnia, hypocapnia, and pharmacological
stress, has been investigated by positron emission to-
mography (PET) (1,22,23), near-infrared spectroscopy
(24), and fMR imaging (4,6,25). Vascular reactivity has

become of interest, because it can assist in the evalua-
tion of activation-induced flow changes and pathologic
changes in regional cerebral hemodynamics (24).
There are a number of methods by which a vaso-
motoric challenge can be achieved. Breath-holding has
been employed as a simple and easy method for achiev-
ing hypercapnia in young healthy volunteers. However,
to achieve a significant signal change, 30 seconds of
breath-holding at expiration is necessary (6), which is
not always possible for elderly or diseased subjects.
Inhalation of CO, gas requires a specialized device, al-
though it may cause less motion artifact compared to
HV. Acetazolamide provides a pharmacological chal-

Figure 3. Averaged z-map of six subjects. Upper row shows z-maps from GE-EPI and lower row shows those from SE-EPI. Blue
indicates the significant signal decrease and red indicates the significant signal increase. Note that hippocampal signal change
is more conspicuous on SE-EPI. Frontal cortex dominance is less prominent on SE-EPI.
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(a)

(b)

lenge and is widely used as vasodilating agent; however,
its use cannot be repeated in a short period and the true
mechanism of its vasodilating action is still unknown
(23). Ethanol ingestion is relatively easy, but it may
affect not only the global cerebral blood flow, but also
the neural activity itself (26,27). HV has been used as
an easy and reliable task for the assessment of global
cerebral vascular reactivity and it is believed that HV
does not alter cerebral oxygen consumption except in
extreme cases (4,28). The other advantages of HV over
other pharmacological interventions are that it can be
monitored non-invasively and regulated, it can cause
rapid global cerebral blood flow (CBF) decrease (29),
and it can be repeated at will. Furthermore, if the sub-
ject suffers an adverse reaction, HV can be terminated
immediately. The disadvantage of HV is the risk of head
motion, although it can be reduced by fixing the sub-
ject’s head tightly and instructing the subject to not
move.

The fMR signal depends on multiple physiological
parameters, such as cerebral blood volume (CBV), CBF,
and cerebral metabolic rate of oxygen (CMRO,) (6,9,29—
32). The physiological effect of HV is to reduce the
PaCO, and then increase the perivascular pH. In-

WM (GRE)
‘¢ WM(SE)
- frontal GM (SE)
""" frontal GM (GRE)

Signal Change [%)]

A ————
Hyperventilation

0 60 120 180 240
Time [s]

Figure 5. The time courses of mean percentage signal change
of gray matter and white matter (N = 6) averaged over three
rest and three HV periods. Note that the white matter signal
stays near baseline during rest period and increases during
the HV period. The response peak of gray matter seems to
delayed compared to white matter.

Naganawa et al.

Figure 4. GE-EPI (a) and SE-EPI (b) images ob-
tained in the region of the hippocampal forma-
tion. Note on GE-EPI (a) the hippocampal area is
distorted and shows almost no signal due to
severe susceptibility artifacts arising from the
paranasal sinus.

creased perivascular pH induces marked vasoconstric-
tion that results in a rapid reduction in CBF. To main-
tain the rate of oxidative energy metabolism during the
blood flow reduction that occurs due to hypocapnia, an
increased oxygen extraction fraction is necessary. This
increases the deoxyhemoglobin concentration and re-
duces the BOLD-weighted MR signal intensity (3.4).
However, except in extreme cases, HV does not alter
cerebral oxygen consumption in healthy subjects
(4,33). For a PaCO,, decrease to 26 mmHg (hypocapnia),
it is reported that CBF decreases by 30% and CBV
decreases by 7.2% in healthy human subjects studied
using radioisotopic methods (34). For these decreases
in CBF and CBV, we can calculate percentage signal
decreases according to the Balloon model for BOLD fMR
imaging (31). The relative MR signal change is given by:

Asi VQ
Sy BVo+1-V,

AC A
{_(ke(l = Vo) + k) ot (B—1- k(1= Vp) 7‘0/} (1)

where Sy, Vp, and Cj are the resting state values of the
signal intensity, vascular volume, and deoxyhemoglo-
bin concentration, respectively. The values of the pa-
rameters k., k;, and B, for 1.5-T and 3-T are given in
Table 3. In order to calculate AC/C, from the ACBF
value, we used the deoxyhemoglobin dilution model
(32) or Fick’s law. Then for a constant oxygen consump-
tion, the relative change in the deoxyhemoglobin con-
centration is inversely proportional to that in blood
flow, i.e., AC/Cy = (1 + ACBF/100) '—1. This yields
AC/Cy = + 42%. If we take these values of AC/C, and
AV /V,and use the parameters k., k;, and B, Eq. [1] gives

Table 3
The Values of the Parameters kg, k and B, for 1.5 T and 3 T for
Balloon Model Simulation

1.5 T (66 ms TE)

3T (30 ms TE)®

K 0.94 1.71
Ke 4.62 4.19
B 1.79 0.59

#Measurement values obtained in the authors’ laboratory.
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AS/S = —4.7% for an echo time of 66 msec at 1.5-T and
AS/S = —3.8% for an echo time of 30 msec at 3-T. In the
present study, 1.1%-4.3% signal decrease was noted in
cortical gray matter on GE-EPI. In the previous study at
1.5-T using GE-EPI (4), a 2.8%-5.3% signal decrease
corresponds to their results for this degree of hypocap-
nia. These experimental values are comparable to the
calculated values.

In the present study, the frontal cortex showed sig-
nificantly larger signal change compared to other corti-
ces on GE-EPI. This is consistent with the previous
study (4). However, it is reported that the cerebellum
and visual cortex have larger CBV values and higher
capillary densities than the frontal cortex (6,35). In the
present study, frontal lobe dominance in percentage
signal change was less prominent in SE-EPI than GE-
EPI. The AR2*/AR2 ratio depends most strongly on the
vessel radius and spin diffusion coefficient (36). At
2.0-T, it has been shown that CBF increase induced by
hypercapnic stress in rats reduced R2* but did not
change the apparent diffusion coefficient (ADC) of brain
tissue (37). Thus, we can deduce that the frontal lobe
dominance is mainly due to the contribution of vessels
with larger diameter. The reason for the discrepancy
between hypo- and hypercapnia is still not clear. The
regional cerebrovascular reactivities to hypo- and hy-
percapnia might differ. A breath-holding study using
the same methods as the present study would be of
interest. The one possible cause for the discrepancy
between hypo- and hypercapnia may be the degree of
head motion, although we could not see the detectable
gross motion and we could not see the frontal domi-
nance in SE-EPI. As we used a relatively short repeti-
tion time of two seconds, slight sub-voxel head motion
in the z-direction might have caused the slight signal
fluctuation. The study with three-dimensional thick
slab EPI may be interesting for future study to reduce
the risk of signal modulation by slight head motion in
the z-direction.

The frontal cortices, especially their medial aspect,
are sometimes influenced by field inhomogeneities
caused by paranasal sinuses. However, in this study,
ROIs were set on relatively upper slices (Fig. 1); thus,
the effect of paranasal sinuses are thought to be small.

At 1.5-T, SE-EPI had significantly lower BOLD signal
changes than GE-EPI (7,8), and as mentioned above,
the two methods had different sensitivities to various
vascular structures (9). In the present study at 3-T, the
largest percentage signal decrease in SE-EPI was found
in the hippocampal formation. This is compatible with a
previous report in rats that hippocampal formation was
most susceptible to hypocapnia and showed signifi-
cantly greater signal decreases than other parts of the
brain (38). Vascular reactivity and blood flow in the
hippocampal formation is important for the assessment
of transient global amnesia (39), Alzheimer disease (40),
and other pathologies. The results of this study suggest
that the combined use of SE-EPI and HV at 3-T provides
an easy vascular reactivity test for the hippocampal
formation, which would have been impossible with GE-
EPI due to severe susceptibility artifacts from the para-
nasal sinus.
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The signal increase in white matter due to HV was an
unexpected result. It has been reported that white mat-
ter signal change is delayed by three seconds compared
to gray matter in a hypercapnia study (20). In the cur-
rent study, as shown in Figure 5, the peak of gray
matter signal change due to hypocapnia was delayed
compared to that of white matter. This also suggests a
difference in physiological response to hypo- and hy-
percapnia. However, the two minute HV duration em-
ployed here was so long that it is inconceivable that the
white matter change should be in antiphase to the gray
matter change. Furthermore, the white matter signal
during the rest period stayed near baseline, which is
inconsistent with a phase shift. We have excluded the
possibility of white matter signal alteration during the
preprocessing period by measuring the signal from a
ROI on non-preprocessed raw data, as well as prepro-
cessed data. A partial volume averaging artifact can be
excluded by the large area of significant signal increase
in white matter. We are convinced that the slight white
matter signal increase during HV is not artifactual;
however, we are at present unable to offer a physiolog-
ical explanation for this phenomen. One possibility
would be if there was a rapid increase in the resistance
to blood flow in gray matter that could cause a transient
blood increase in white matter. It should be emphasized
that while this would offer a mechanistic explanation
for the effect, it is not corroborated with any physiolog-
ical evidence. The distribution of the white matter sig-
nal increase seems to correspond to the watershed be-
tween the anterior and middle cerebral artery; it is
possible that this region may have a different vascular
reactivity.

In the basal ganglia, the averaged percentage signal
change by both ROI settings and normalized values by
EtCO, was larger in GE-EPI than in SE-EPI, although
the differences were not significant. On the z-maps, the
basal ganglia seemed to show slightly more distinct
vascular reactivity on SE-EPI than GE-EPI. The z-map
showed the degree of correlation to the task design, not
the degree of vascular response itself. This may be the
cause of the discrepancy between percentage signal
change and z-maps. The breathing motion itself is re-
ported to cause the magnetic field alteration and results
in the signal intensity modification by *1% and the
pseudo-motion artifact by 0.1 pixel in phase encoding
direction (41). These artifacts by breathing motion
should also be evaluated in future studies.

In conclusion, we consider the HV task combined
with SE-EPI at 3-T to be a robust and reproducible
method for evaluating cerebral vascular reactivity. It is
of interest to investigate whether HV with SE-EPI is
feasible even in the elderly and patient populations. If
so, this method may find utility not only in basic scien-
tific investigations such as that reported here, but also
in clinical application.
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