IV.-RESEARCH.

THE TIME TAKEN UP BY CEREBRAL OPERATIONS. ${ }^{1}$

By;James MoKeen Cattell, Ph. D., Assistant in the ${ }^{\text {PPoychological Laboratory, University of Leipsic. }}$

III. The Perception-Time.

We have found the simple reaction-time on daylight for B and C to be about 150 s , and I have given my reasons for assuming that a perception-time is not included in this interval. The per-ception-time can be defined as the interval between sensation and perception (or between indefinite and definite perception, apperception), that is, the time passing after the impression has reached consciousness before it is distinguished. The impression is perhaps in the back-ground of consciousness when it reaches the optic thalami; before it is in the centre of consciousness it must probably travel to the cortex of the cerebrum and excite there changes corresponding to its nature. The method used by Wundt ${ }^{2}$ to determine this time is to let the subject react as quickly as possible in one series of experiments, and in a second series not to react until he has distinguished the impression, the difference of the times in the two series giving the perceptiontime for the impression. I have not been able myself to get results by this method; I apparently either distinguished the impression and made the motion simultaneously, or if I tried to avoid this by waiting antil I had formed.a distinct impression before I began to make the motion, I added to the simple reaction, not only a perception, but also a volition. The method for determining the perception-time suggested by Donders ${ }^{3}$ and since used by a number of others, is to let the motion depend on the nature of the stimulus. It has been thought by Donders, v. Kries and Auerbach and others, that if the subject reacts on one of two impressions and makes no motion when the other occurs, only a perception has been added to the simple reaction. This is however not the case, it being necessary after the impression has been distinguished to decide between making a motion and not making it. This question, which has been much discussed, becomes quite simple if we consider the cerebral operations that probably take place. I assume that the changes do not penetrate into the cortex at all when a simple reaction is made.

[^0]When, however, lights of two different colours (say red and blue) are used, and the subject may only lift his hand if the light is blue, the motor impulse cannot be sent to the hand until the subject knows that the light is blue. The nervous impulse must therefore probably travel from the thalami to the cortex and excite changes there, causing in consciousness the sensation or perception of a blue light; this gives a perception-time. In the cortex after the light has been distinguished a nervous impulse must be prepared and sent to the motor centre discharging a motor impulse there held in readiness.; this gives a will-time. I do not think it is possible to add a perception to the reaction without also adding a will-act. We can however change the nature of the perception without altering the will-time, and thus investigate with considerable thoroughness the length of the perception-time.

The object most quickly perceived through the sense of sight is a simple light. In order to investigate the time required I took two cards, one entirely black, the other having on the black a white surface. One of the cards, the observer not knowing which, was placed by the experimenter in the springs of the gravity-chronometer, and the clockwork of the chronoscope was set in motion. The observer fixated the grey spot on the screen immediately before the centre of the white surface (supposing this card to be there), and with his left hand broke an electric current and let the screen fall. The card appeared at the point fixated, and at this same instant the current controlling the chronoscope was closed. The observer either saw nothing, or at the point fixated a white surface. If the light appeared he lifted his hand as quickly as possible, if there was no light he did not let go the key, and the hands of the chronoscope ran on until the clockwork was stopped by the experimenter. Twenty-six experiments were made in a series, the white light occurring thirteen times. Determinations were only made when the light occurred, so the averages in this section are from thirteen reactions (in the corrected series from ten). It will be seen that, as the observer tries to make the reaction as quickly as possible, he may lift his hand when the light is not present. If this happens often the times measured are not correct, but too short, since we may assume that the observer lifte his hand as often when the white light is present before he has seen it, as he makes the motion when no light comes. We must however expect such a false reaction occasionally to occur, otherwise we might assume that the reaction is not made in the minimum time when the light is present. In these experiments such false reactions scarcely happened except when the observer was disturbed, or when the impressions to be distinguished were similar (E from F , for example). In the tirst case the average is not seriously affected, as the reactions are as apt to be unduly retarded as unduly hurried. In the second case false reactions lead us to suppose that some of the reactions on the stimulus are too short. The method I have introduced of giving
a corrected average eliminates all premature reactions. I give in the Tables the number of false reactions made; ${ }^{1}$ it would have been well if v . Kries and Auerbach, Merkel and others had done the same.

We can now examine the Table giving the time needed to perceive and react on a white surface.

Table XII.

	B				C			
	R	V	R^{\prime}	V^{\prime}	R	V	R'	V^{\prime}
14. 1.	203	8	203	6	239	14	246	${ }^{7}$
19.	217	18	213	12	219	13	217	10
20.............	222	22	222	15	226	13	226	9
31.	234	35	217	11	238	13	241	10
2. II...........	219	21	214	13	215	16	217	11
	214	30	206	18	216	12	219	7
	207	20	203	7	256	20	254	10
25. III.........	239	28	234	21	250	18	253	15
	212	19	205	6	263	22	259	9
31.	215	34	205	15	244	16	248	9
	189	13	186	6	245	10	242	7
	191	16	189	7	251	11	252	5
	183	12	185	8	248	17	242	12
2. VII.........	213	13	212	7	262	7	268	4
	209	13	210	8	251	11	251	6
A.	211	20	207	11	241	14	242	9

The simple reaction-tome for B and C is about $150 a$, therefore (on our hypothesis as to the nature of the cerebral operations, and assuming, though not without hesitation, that the corresponding physiological processes take up the same time as in the simple reaction) the time needed for the nervous impulse to travel from the thalami to the centre for sight in the cortex and excite the cells there so as to call forth the sensation of a light, and for a will-impulse to be prepared there and sent thence to the motor centre, was for B61, for C 95 . We may suppose that the time of the centripetal and centrifugal progress through the brain is about the same, and that the time used in the cortex is about equally divided between the perception of the light and the preparation of the motor impulse ; at all events the whole time is so short that, if we divide it equally between the processes of perception and volition, the error cannot be great. We therefore set the perception-time for light, where the nature of the light need
${ }^{1}$ After "false," the entire number made during the series given in the column ander which it stands.
not be distinguished, at $30 a$ for $\mathrm{B}, 50$ for C , and the will-time in these and similar experiments at the same.

The reaction was made with the speech-organs in quite the same manner. When the white surface was seen the observer said ' Weiss' and the hands of the chronoscope were stopped by means of the lip-key or sound-key. When no white surface was present the observer said nothing, and the hands ran on until the experimenter stopped the clockwork.

Table XIII.

	SOUND-EEY.				LIP-EEY.			
	B		C		B		C	
	R	R^{\prime}	R	R^{\prime}	R	R^{\prime}	R	R^{\prime}
3. IV...	246	241	288	281	236	241	276	275
4..............	255	247	302	308	241	246	281	276
6..............	234	237	274	268	233	235	256	250
	247	244	264	264	243	248	283	263
7.............	248	246	274	268	244	245	256	258
A.	246	243	279	278	239	243	268	264
AV...........	20	11	18	12	14	9	18	12

We have seen that the motor-time is longer when a simple reaction is made with the speech-organs than when it is made with the hand. There is no reason why the perception and willtime found by subtracting the simple reaction-time (Table III.) from the time here measured should not be the same as when the reaction was made with the hand. If we average together the determinations with the sound-key and lip-key we get 65σ for B, 100 for C, which agrees very well with the determinations made with the hand.
If instead of two black cards on one of which there is a white surface, we take two white cards on one of which there is a black surface, and let the observer react only when the black is present, the conditions are sabstantially as before; the perception may require slightly longer, the will-time is probably the same. The results of such experiments are given in Table XIV.

If, instead of black, we place a colour on the white card, the perception becomes slightly more difficalt; it is not quite so easy to see that something is there when it is yellow as when it is black, the will-time however presumedly remains the same. In one series of experiments (to the left in Table XV.) only one colour was used at a time, in a second series (right in Table
XV.) ten colours, the observer not knowing which was to come, but not needing to distinguish it before making the motion.

Table XIV.

	B				C			
	R	V	R^{\prime}	V^{\prime}	R	V	R^{\prime}	V^{\prime}
6. I...........	250	20	233	15	236	21	233	16
14.............	227	19	226	7	236	13	234	10
19.............	245	21	249	13	231	14	230	8
20.............	215	20	212	14	244	12	243	7
31.............	227	10	227	7	246	21	241	13
A............	233	18	233	11	239	16	236	11

Table XV.

It thus takes a little longer to recognise the presence of a colour (even though the colour need not be distinguished) than of a white light. It is to be noticed that B's times became shorter in 1885 than they were in 1884.

We next determine the perception-time when it is necessary to distinguish the colour. Two cases were considered; in one the colours were taken in pairs, and one colour was distinguished
from the other; in the second each colour was distinguished from ten colours. With blue and red electric lights (the abovementioned Puluj's tube seen through coloured glasses) I got as perception- and will-time 75σ for $\mathrm{B}, 109$ for C. ${ }^{1}$ In most of my experiments however, with aid of the gravity-chronometer, I used daylight reflected from coloured surfaces, these exciting the processes with which our brain is occupied in our daily life. Red and blue and green and yellow were taken in pairs, the coloured surface being $3 \times 30 \mathrm{~mm}$. The numbers in Table XVI. give the average of six series.

Table XVI.

		B				C			
		R	V	R^{\prime}	∇^{\prime}	R	V	R^{\prime}	V^{\prime}
27. XI.-2. XII. I.-b. XII........	Red...	278	22	272	11	322	40	324	26
	Blue...	287	19	280	17	291	24	288	16
	Green.	288	26	265	18	313	32	312	21
	Yellow	278	26	273	16	297	31	300	20
	A.......	277	23	272	15	306	32	308	21
	AV....	2				8			

Ten colours were further taken in pairs, as indicated in Table XVII., and the time required to distinguish the one from the other determined.

If we average together the results given in Tables XVI and
${ }^{1}$ These are the only experiments described in this section which had been previously made; Donders (Archiv f. Anat u. Physiol, 1868) found the time to be 184a, Wundt (Physiol. Poych., 11, 251) 210 to 250 , v. Kries and Auerbach, working under the direction of Helmholtz (Archiv f. Anat. 2. Physioh, 1877), 12 and 34σ. I cannot accept the results reached by these latter experimenters. The times seem to be too short to be correct. I do not know where the error lies, the experiments having apparently been made with great care, but the simple reactions are very long, the reactions with perception and volition very short. The latter may have been made unduly short through the frequent occurrence of prenuature reactions (the number of false reactions is not given) ; at all events I consider their method of calculating the averages dangerous, they ignoring what reactions they saw fit. They do not give the number of measurements made in the selies, but in the model series given in the appendix, we find that in one 22 reactions were used, in one on the perception of light only 9 ; we may therefore assume that in the latter series over half of the reactions were ignored. If the mean variation of the reactions used in this series be calculated, it will be found to be 6 (smaller, I imagine, than the mean error of the recording apparatus) ; the mean variation of the corresponding series of simple reactions (from which determinations had also been omitted) is 12a. When averages are made up in this way any results desired can be obtained.

Table XVII.

XVIL, and subtract the reaction-time and supposed will-time, we find that it took B 100, C 110a, to distinguish one colour from another.

In the series of experiments next to be given, I determine the time it takes to distinguish a colour from nine others, that is the real perception-time for a colour. The results of ten series in which the motion was made with the hand, and of five in which it was made with the speech-organs, are given in Table XVIII.

This gives as the time needed to distinguish a colour 105σ for $\mathrm{B}, 117$ for C ; respectively 5 and 7σ longer than it took to distinguish one colour from another, and 26 and 41σ longer than it took to see that a colour was present when it was not necessary to distinguish it.

The results given in Table XVII. (where the reaction was made with the hand) were obtained at the beginning of the investigation; the determinations were repeated after four months of constant practice, and aggain after a pause of three months, the results being given in Table XIX.

Practice therefore shortened the perception- and will-times about 30σ for B and 20 for C , and this decrease in the length of the times was not lost by an interruption in the practice.

With the same methods I found the time it takes to see or distinguish a letter. I tried in my experiments to determine the time taken up by those operations which are constantly going on in the brain; the letters chosen therefore were such as we usually have to read (of the size in which this is printed). The time for larger letters is somewhat shorter. In the first experiments it was not necessary to distinguish the letter, only to know that a letter was present ; the conditions were consequently the same as in the first experiments (Table XV.) on colours.

Table XVIII.

Table XIX.

		B		C			B		C	
		R	R^{\prime}	R	R'		R	R'	R	R'
Red...	4. IV.... 7. \qquad 8. \qquad	$\left\lvert\, \begin{aligned} & 244 \\ & 247 \\ & 270 \\ & 246 \\ & 290 \end{aligned}\right.$	$\begin{aligned} & 237 \\ & 239 \\ & 258 \\ & 246 \\ & 249 \end{aligned}$	$\left\|\begin{array}{l} 294 \\ 311 \\ 283 \\ 273 \\ 304 \end{array}\right\|$	$\begin{array}{\|l\|} \hline 287 \\ 309 \\ 279 \\ 275 \\ 302 \end{array}$	2. VII... 4. 31..... 31	$\begin{aligned} & 283 \\ & 247 \\ & 264 \\ & 253 \\ & 243 \end{aligned}$	$\begin{aligned} & 267 \\ & 252 \\ & 257 \\ & 257 \\ & 245 \end{aligned}$	$\begin{aligned} & 992 \\ & 277 \\ & 325 \\ & 286 \\ & 267 \end{aligned}$	$\begin{array}{\|l} 286 \\ 278 \\ 314 \\ 279 \\ 264 \end{array}$
Green.........										
Gray										
Blue...........										
Yellow.........										
A.............		259	246	293	290		258	258	289	284
AV..........		35	13	16	10		30	17	24	15
False..........		5		2			0		0	

Table XX.

	B				C			
	R	V	R'	V^{\prime}	R	V	R'	V'
3. II.	281	31	260	18	298	12	268	11
27. III...........	234	21	228	18	235	23	229	11
1. IV...........	205	37	194	23	261	38	255	25
	230	38	220	25	251	24	255	19
	206	18	208	6	277	23	281	16
A.	227	29	228	17	258	23	257	16

It therefore (making the same assumptions as above) took B 47, C 58π, to see that a small object was on a white surface.

The next case to be given is where it was necessary to distingaish one of two letters from the other, A and Z being taken. The averages given are taken from six series.

Table XXI

		B				C			
		R	V	R	V	R	V	R'	V'
4.-10. XII....	A	$\begin{aligned} & 315 \\ & 330 \end{aligned}$	28 31	$\begin{aligned} & 319 \\ & 325 \end{aligned}$	$\begin{aligned} & 16 \\ & 21 \end{aligned}$	$\begin{aligned} & 327 \\ & 348 \end{aligned}$	31 29	$\begin{aligned} & 323 \\ & 348 \end{aligned}$	18 21
	A......	382	28	322	18	337	30	335	19
	False..	3				6			

It thus took B 142, C 137 σ, to diatinguish one letter from another, respectively 45 and 31σ longer than to distinguish one colour from another.

We now come to consider the time needed to distingaish one letter from all the others; that is the time it takes to see a letter. This is a process with which our brain is constantly basy; the time taken up by it is therefore of special interest. If for example the time is different for the several letters, it is a matter of the greatest practical importance, for those letters which it takes the longest to see might be so modified as to shorten the time. If it takes 20σ longer to see E than it would to see a symbol that might be taken in its place, say Δ, it is startling if we calculate how much time is being wasted and how mach unnecessary strain is being put on eye and brain. I have published ${ }^{1}$ extended series

[^1]of experiments, determining the time the light reflected from a printed letter must work on the retina in order that it may be possible to see the letter. These experiments show that there is a great difference in the legibility of the several letters; out of 270 trials W was read correctly $241, \mathrm{E}$ only 63 times. In this case the whole time was short, 1 to $1 \cdot 5 \sigma$, and the difference in the time for the several letters correspondingly small. When however we determine the entire time needed to recognise the letter, we may expect to find the time considerably shorter for a simple and distinct symbol than for one complicated or easily confused with others, just as the time is shorter for a colour than for a letter. ${ }^{1}$ The speech-organs as well as the hand were used in these experiments. Here however a slight complication is added, as we cannot be sure that a difference in the time for the several letters is to be referred only to the perception-time, it being possible that the time needed to name the several letters or to register the different motions may be different. This difference in time can however only be very small, as the observer knew what letter he had to name, so there was no choice between different motions, as in the experiments to be considered in the next section of this paper. Tables XXI.-XXIV. (placed, with others, at the end of this paper) give the results obtained at different times, the motion being made both with the hand and the speech-organs.

A shortening in the time through practice will be noticed in these Tables; if we take Table XXIII., which contains the most determinations and times representing about the average of the three Tables, we find the perception-time for a capital letter of the size in which this is printed to be 119σ for $\mathrm{B}, 116$ for C . The Tables contain the results of a great many experiments, but not enough to determine finally the time for the several letters; if however the four series made with the hand on E and M are averaged together, we find that it took B 19, C 22σ longer to see E than to see M. The order for the five letters on which four series were made is M A Z B E, which (except the position of Z) agrees with the order of legibility established in the paper referred to.

Similar determinations were made with the small letters, the results being given in Table XXV. It seems from this Table

[^2]that the perception-time is about the same for the large and small letters, which agrees with experiments I have made by an entirely different method (see Mind 41).

We now come to consider the time it takes to see a word, a process with which the brain is constantly occupied. Twenty-six words were taken, and when the expected one was seen the observer lifted his hand. The perception-time so determined is the time needed to distinguish the word from the other twentyfive; the time is slightly longer when it is necessary to distinguish words from others very similar in form; for example, hand from band. Indeed we must remember that perception is not a sharply defined process. As I have shown, we see a letter before we see what letter it is; in like manner a further time passes before we see the letter in all its details, that it is not perfectly printed, for example. The perception-time for a painting by Raphael is indefinitely long. The results of experiments with English and German words are given in the Tables XXVI.-VII.

The Tables give us a perception-time for short English words B 132, C 141σ; for short German words B 118, C 150π; for long English words B 154, C 158a. The time was therefore slightly shorter (B22, C 17) for a short than for a long word, and for a word in the native than in a foreign language (B 14, C 9). It will be noticed that the perception-time is only slightly longer for a word than for a single letter; we do not therefore perceive separately the letters of which a word is composed, but the word as a whole. The application of this to teaching children to read is evident; I have already in connexion with other experiments called attention to it.

The only other perception-time we have to consider is for a picture. It takes, we may suppose, about the same time to recognise the picture of a tree as it takes to see the tree itself; this is consequently a process nearly always going on in the brain. I had carefully drawn twenty-six pictures of common objects, tree, hand, ship, etc., about one square cm. in size, the method of determining the perception-time being as before.

We thus find that the perception-time for a picture, and we may assume for the objects we are continually seeing in our daily life, was 96σ for $\mathrm{B}, 117$ for C , about the same as for a colour and shorter than for a letter or word.
(To be concluded.)

Table XXI.

		B				C			
		R	V	R^{\prime}	V^{\prime}	R	V	R^{\prime}	V^{\prime}
		Hand.							
11. XII.	B......	358	25	354	18	342	28	346	17
18..................	Z......	345	24	350	18	370	33	353	20
	A	327	31	314	14	337	22	342	16
18................	M.....	338	38	345	20	329	15	324	7
	E......	360	31	345	9	343	28	326	9
17...............	S......	333	22	326	11	341	25	338	17
	P......	339	24	332	14	329	32	318	18
	T......	330	29	320	16	323	30	330	18
18................	0......	293	19	297	11	302	25	301	18
	L......	338	15	339	10	350	37	333	16
	A......	336	28	332	14	337	27	331	16
	False.	5				4			
		Sound-key.							
17. II............	A......	330	27	337	17	406	16	401	11
19..................	M.....	336	36	332	30	410	29	412	17
21................	E.....	308	36	310	22	359	35	354	28
24................	P......	311	22	307	13	321	13	325	8
26.................	0......	303	21	307	16	380	33	372	27
	A......	318	28	319	20	375	25	373	18
	False.	1				1			

Table XXIII.

	Hand.					Lip-ker.				
		B		C			B		C	
		R	R'	R	R^{\prime}		R	R^{\prime}	R	R'
	13. I.....	309	312	323	328	15. I.....	288	295	338	332
	12.......	307	311	353	350	13.......	348	353	362	363
C	17........	304	308	319	322	17.......	307	310	333	325
		342	309	332	341		320	324	346	354
	14.......	328	334	341	345	15.......	333	345	340	330
F..............	17.......	322	324	358	344	20........	307	310	317	321
		326	321	331	327		309	308	311	309
H..:...........	19.......	323	320	320	317		305	308	338	333
I...............		294	293	295	301		271	275	296	290
J		329	326	299	288	21.......	342	338	330	335
K...		330	335	305	297		334	334	315	314
	14.......	296	304	302	299	29.......	320	302	357	353
M.	13.......	311	316	320	322	15.	342	330	373	366
	20........	318	317	333	330	21..	318	321	323	328
		263	266	292	288	13.	315	319	355	358
		288	284	337	326	29.	321	324	338	339
	20.......	317	315	315	319	21.	312	314	312	302
		311	313	322	317		334	340	322	315
	.	285	281	327	332	15...	318	325	313	313
		319	295	310	305	29.	318	315	368	363
	20.......	311	298	329	331		320	320	335	331
V.	22.	322	330	334	330		324	327	333	338
		278	283	338	332		312	314	343	345
		315	297	349	341		292	297	362	366
		303	307	341	337		318	313	339	339
Z.	12.	323	319	347	345	13...	350	343	331	324
A..............		310	308	326	324		318	319	336	334
AV............		22	15	22	14		22	14	25	16
False..........		13		13			18		4	

Table XXIV.

		B		C			B		C	
		R	R^{\prime}	R	R^{\prime}		R	R^{\prime}	R	R'
B..............	8. IV....	275	262	321	319	31.VII.	307	308	304	306
Z		272	273	310	301		313	314	311	303
A..............		276	281	292	288	2.........	295	295	309	302
M................	7........	293	291	302	306	4.........	298	299	307	306
E...............	8........	316	316	337	331		313	308	315	319
A..............		286	285	312	309		305	304	309	307
A V...........		25	16	20	13		28	14	26	18
False...........		2		3			0		0	

Table XXV.

		Hand.					Lip-mey.			
		B		C			B		C	
		R	R^{\prime}	R	R'		R	R^{\prime}	R	R^{\prime}
	5. I......	301	306	314	306	22. I.....	313	317	327	321
x..................		307	298	324	325		305	300	338	328
a...............	...	316	320	327	320	23...	330	328	313	309
mı..............		310	312	311	313		310	304	313	315
e...............	12.......	337	342	356	356		331	321	330	322
		322	325	368	359		297	290	338	343
p..............	13.......	323	320	341	337	28........	345	345	370	372
t.		311	310	319	315		305	300	346	342
o...................	14.......	293	290	306	304		299	299	335	338
1...............		303	300	306	304		311	314	344	339
A..............		312	312	327	324		315	312	335	332
AV............		19	13	28	19		20	11	25	16
False.		4		8			7		2	

Table XXVI.

	Hand.					LIP-KEy.				
		B		C			B		C	
		B	R^{\prime}	R	R'		R	\mathbf{R}^{\prime}	R	R^{\prime}
Mind.	12. XII.	353	352	337	329	13. I.....	360	366	374	364
Life.	15.	348	351	373	377		368	367	363	365
Time	16.	333	330	375	372	15.	311	312	371	366
House.		377	366	383	389		331	324	355	361
Child.		345	343	328	339	17.	347	341	370	375
Year...........	18.	353	359	369	360		337	336	354	358
Truth		358	329	376	367	29.	302	311	360	353
Name.		341	339	392	393		313	315	374	380
Light.	19.	332	328	327	323		325	332	372	372
Ship...........		318	313	338	332		294	302	340	340
		345	341	360	358		329	331	363	363
AV...		84	13	26	17		23	18	28	20
Folse		2		4			7		0	
Education.	b. I.	331	331	348	348	17. I.	349	345	382	386
Philosophy...		330	322	349	354		347	351	376	377
Knowledge...		341	337	368	360	22.	353	348	329	319
Architecture.		377	375	382	377		357	355	338	340
Literature...	10.	339	320	363	354	23.......	333	332	377	388
Temperance.		341	333	399	404		339	330	377	376
Imnorance....		300	297	380	369		325	319	378	382
Physician		385	329	380	375	26.	339	333	351	346
Enthusiasm.	18.	334	337	405	409		353	349	409	400
Imagination.		321	317	384	375		342	337	395	391
A.		334	330	375	373		344	340	371	370
AV.		25	18	28	19		23	15	27	17
False..........		8		8			6		9	
Buch	24. I.....	290	294	367	363	23. I.....	315	318	359	355
Znhl.		309	311	380	378		310	319	370	378
Kunst.		307	309	369	374		310	314	362	352
Welt.		308	307	361	353		308	305	362	362
Haus	26.	295	298	354	353	24........	299	297	339	344
Licht..........		394	323	354	359		330	329	358	350
Kind.		323	323	377	380		303	308	352	356
Land..........	89..	309	307	363	365	28.	316	321	373	365
Traum.........		321	316	377	376		324	325	368	373
Jahr...........		319	318	365	368		321	325	374	378
A.		311	310	367	367		314	316	382	361
AV............		14	9	20	13		17	12	31	20
False..........		6		5			101		7	

Table XXVII.

		Hand.						Sound-key.			
		B		C				B		C	
		R	R^{\prime}	R	\mathbf{R}^{\prime}			R	R'	R	R^{\prime}
6. IV 7..... 8..	Mind...	266	269	312	308	14. II.	Mind ...	311	307	380	391
	Life.....	302	298	340	340	19.....	Life.....	338	333	400	409
	Time...	307	303	325	330	24.....	Child...	319	326	360	364
	Honse..	299	296	321	317		Truth...	317	318	339	345
	Child...	282	284	327	322	26.....	Ship....	320	328	361	387
	A........	291	289	325	323			321	322	368	375
	AV.....	18	10	22	14			87	19	25	16
	False...	5		0				3		4	

Table XXVIII.

[^0]: ${ }^{1}$ Continued from Mind 42, pp. 220-42
 ${ }^{3}$ Physiol. Poych, ii., 247 ff. ; Phil. Studien., i., 25 ff.
 ${ }^{3}$ De Jaager, De physiologische Tijd Bij prychische Frocessen, Utrecht, 1865 ; Donders, Archio f. Anat. u. Phyriol., 1868.

[^1]: ${ }^{1}$ Phil. Studien, ii. 4 ; Brain, No. 31.

[^2]: ${ }^{1}$ I bave not been able to determine accurately and finally the percep-tion-time for different alphnbets and for the several letters. In these experiments the different letters cannot well be usel in the same series, and further in holf the cases no measurement is made. As the difference in the times is small and the variation of the series not inconsiderable, a large number of experiments must le made before the ditference in the time for the several letters can be determined with certainty. This is however not only a subject of scientific interest, but also of neat practical importance ; it is to be hoped that it will be thoroughly investigated by independent experimenters.

